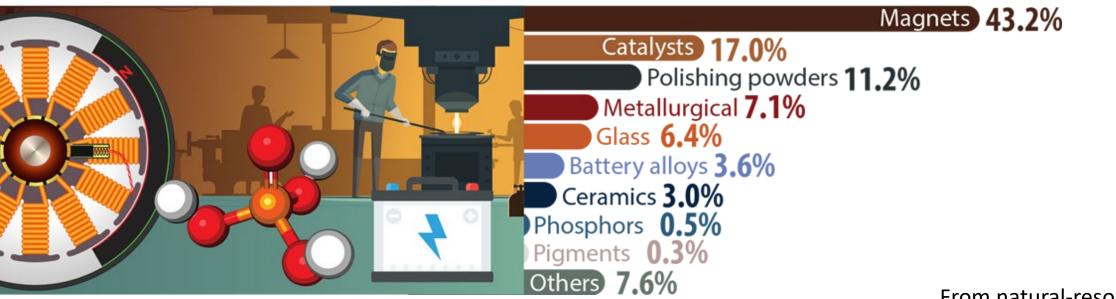


FGIM ()>

THE FORUM ON THE GEOLOGY OF INDUSTRIAL MINERALS

MAY 21-23, 2023 | AUSTIN, TX

REE Distribution of Selected Deposits in New Mexico


Evan J. Owen¹ and Virginia T. McLemore¹

¹New Mexico Bureau of Geology and Mineral Resources, New Mexico Tech, Socorro, NM 87801

Rare earth elements

- Similar, but slightly different properties
- Creates unique demand for each element
 - Magnets (Nd, Pr, Sm, Dy), catalysts (La), polishing (Ce), phosphors (Eu, Y), lightweight alloys (Sc), etc.

From natural-resources.canada.ca

SME

Rare earth elements

TABLE 3RARE-EARTH-OXIDE PRICES1

- No dedicated REE exchange
 - Prices are not as straightforward as precious metals
- Wide range in REE prices
 - LREE-enriched deposits more common than HREE
 - Bastnäsite, monazite > xenotime
- Important to characterize REE distribution in deposits

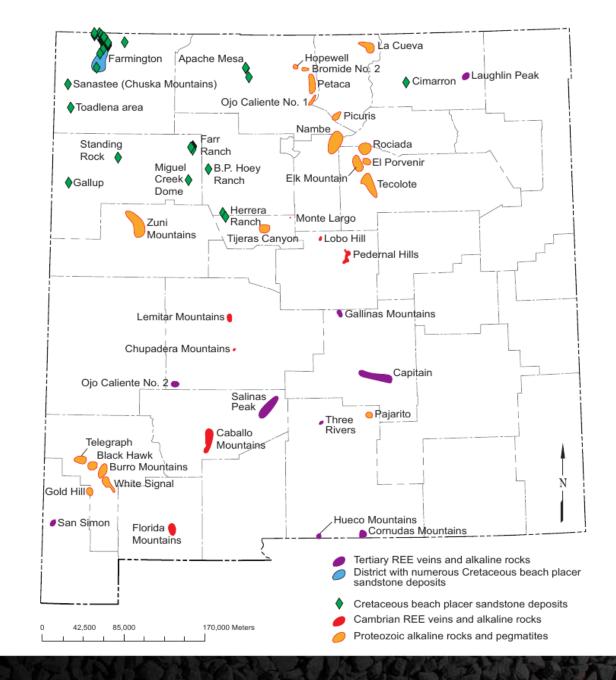
SME

	Purity	Price (dollars per kilogram)				
Product (oxide)	(percent)	2017	2018			
Scandium ²	99.990	4,600	4,600			
Yttrium ³	99.999	3	3			
Lanthanum ³	99.500	2	2			
Cerium ³	99.500	2	2			
Praseodymium ³	99.500	65	63			
Neodymium ³	99.500	50	50			
Samarium ³	99.500	2	2			
Europium ³	99.990	77	53			
Gadolinium ³	99.999	37	44			
Terbium ³	99.990	501	455			
Dysprosium ³	99.500	187 ^r	179			
P						

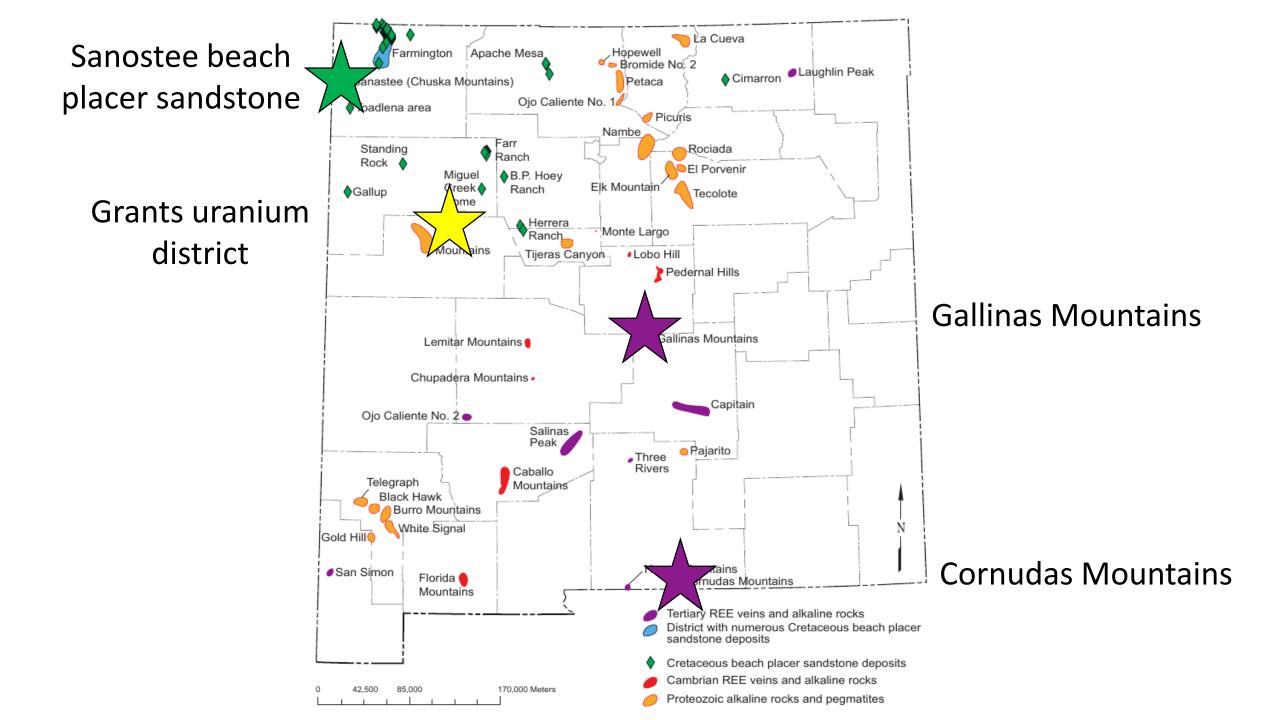
^rRevised.

¹Products are listed in order of atomic number.

²Source: Stanford Metals Corp.


³Source: Argus Media group – Argus Metals International.

From 2018 USGS Mineral Yearbook



REE in New Mexico

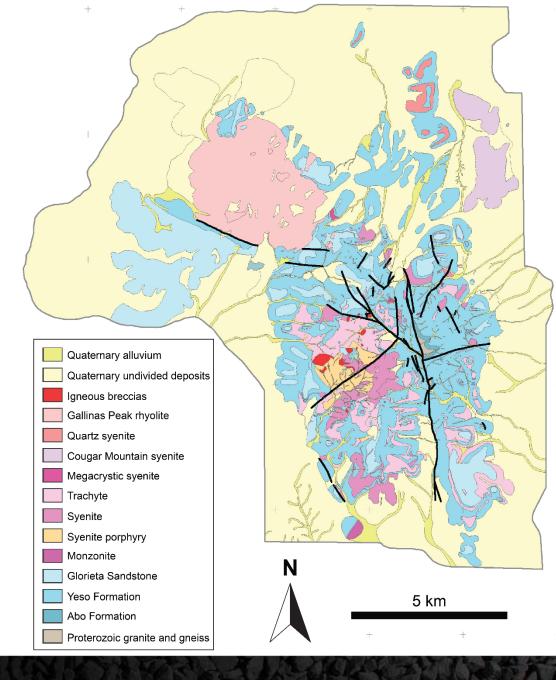
- Several types of REE deposits in New Mexico
 - Proterozoic alkaline rocks and pegmatites
 - Cambrian alkaline rocks and carbonatites
 - Cretaceous beach placer (heavy mineral) sandstones
 - Tertiary alkaline rocks and REE veins

SME

Methodology

SME

- Whole rock and trace element geochemical dataset at the NMBGMR
 - ALS Geochem, USGS labs
- IMDEX ioGAS used for analysis
- 90th percentile values of total REE
- What's the distribution of REE in the most enriched samples from each district?


	SampleId	Project EJO	Date collected	Date analyzed	Chem Lab File
1	•	_T_	•	•	No. (wQA/QC -
610	Gal1017	Gallinas Mountains	5/26/2020	11/10/2020	MRP-18942
611	Gal1018avg	Gallinas Mountains	5/26/2020	11/10/2020	MRP-18942
612	Gal102	Gallinas Mountains	9/10/2019	4/27/2020	MRP-18649
613	Gal103	Gallinas Mountains	1/23/2020	4/27/2020	MRP-18649
614	Gal1032	Gallinas Mountains	5/27/2020	11/10/2020	MRP-18942
615	Gal1052	Gallinas Mountains	5/28/2020	11/10/2020	MRP-18942
616	Gal106	Gallinas Mountains	1/29/2020	4/27/2020	MRP-18649
617	Gal1066	Gallinas Mountains	5/29/2020	11/10/2020	MRP-18942
618	Gal107	Gallinas Mountains	1/29/2020	4/27/2020	MRP-18649
619	Gal1085	Gallinas Mountains	10/22/2020	6/1/2021	MRP-19076
	Gal1089	Gallinas Mountains	10/22/2020	6/1/2021	MRP-19076
	Gal11	Gallinas Mountains	9/10/2020	4/27/2020	MRP-18649
622	Gal111	Gallinas Mountains	11/7/2019	4/27/2020	MRP-18649
	Gal1148Avg	Gallinas Mountains	11/6/2020	6/1/2021	MRP-19076
	Gal1150	Gallinas Mountains	11/6/2020	6/1/2021	MRP-19076
	Gal1154	Gallinas Mountains	11/18/2020	6/1/2021	MRP-19076
626	Gal1180	Gallinas Mountains	11/20/2020	6/1/2021	MRP-19076
627	Gal1181	Gallinas Mountains	11/20/2020	6/1/2021	MRP-19076
628	Gal125	Gallinas Mountains	3/4/2020	9/16/2020	NM20-002_MRP
629	Gal126	Gallinas Mountains	3/4/2020	9/16/2020	NM20-002_MRP
630	Gal128	Gallinas Mountains	3/5/2020	9/16/2020	NM20-002_MRP
631	Gal129	Gallinas Mountains	3/5/2020	9/16/2020	NM20-002_MRP
632	Gal130	Gallinas Mountains	3/5/2020	9/16/2020	NM20-002_MRP
633	Gal131	Gallinas Mountains	3/5/2020	9/16/2020	NM20-002_MRP
634	Gal132avg	Gallinas Mountains	3/5/2020	9/16/2020	NM20-002_MRP
635	Gal136avg	Gallinas Mountains	3/11/2020	9/16/2020	NM20-002_MRP
636	Gal137	Gallinas Mountains	3/11/2020	9/16/2020	NM20-002_MRP
637	Gal138	Gallinas Mountains	3/11/2020	9/16/2020	NM20-002_MRP

Gallinas Mountains

- Eocene-Oligocene trachyte/syenite intrude Permian sediments
 - Bastnäsite-bearing fluorite veins and breccias
 - Fe skarns

SME

- Historic mining of Pb, Cu, Fe, Ag, fluorite, REE
- USGS Earth MRI project
- REE possibly related to carbonatite at depth?
 - Could fluorite and barite be recovered with REE?

REE distribution in the Gallinas Mountains

- Bastnäsite-(Ce) primary REE mineral
 - Little to no phosphorus (no monazite or \bullet xenotime)
- Locally up to ~9% TREO
- Sample n=28 for TREO > 1.3% (90th) percentile)
- Average 2.75% TREO

Ce

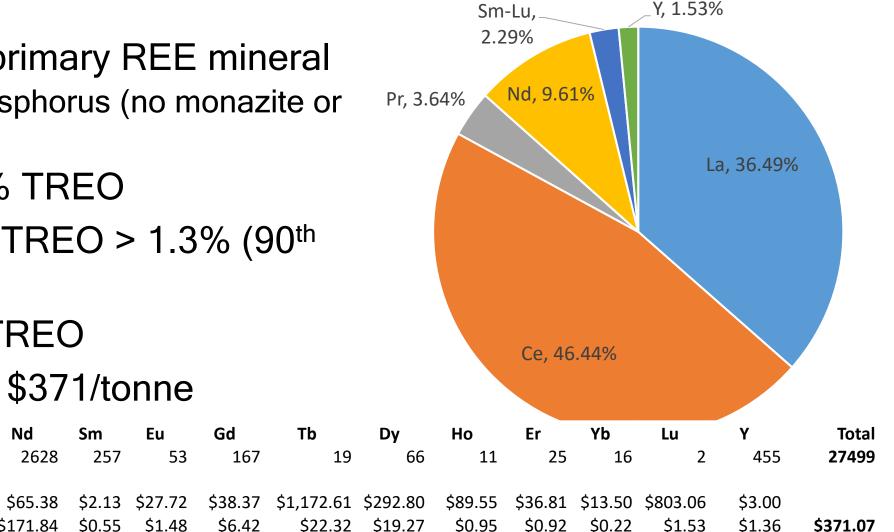
12760

La

10039

\$3.41

\$34.23


Contained value: \$371/tonne

\$3.55 \$64.67

Pr

1000

\$45.30 \$64.69 \$171.84

REO (ppm)

Oxide price

Contained value

(USD/kg)

Nd

2628

Sm

257

\$0.55 \$1.48

Eu

53

Gd

167

\$6.42

Tb

Cornudas Mountains

- Eocene-Oligocene nepheline syenite and phonolite intrude Permian Hueco limestone
 - Eudialyte-group minerals (zirconosilicates)
 - Disseminated and contact metasomatic zones
- Explored for REE and nepheline syenite for bottle glass
- Recently remapped under USGS Earth MRI

SME | FGIM ()

REE distribution in the Cornudas Mountains

- Eudialyte main REE-bearing mineral
 - Variable REE substitution
- Locally up to ~0.4% TREO (contact metasomatic zones)
- Sample n=40 for TREO > 0.2% (90th) percentile)
- Average 0.28% TREO

La

675

\$3.41

\$2.30

Ce

1145

\$3.55

\$4.06

Contained value: \$67/tonne (plus Zr!)

Nd

301

\$65.38

\$19.66

Sm

50

\$0.11

Eu

4

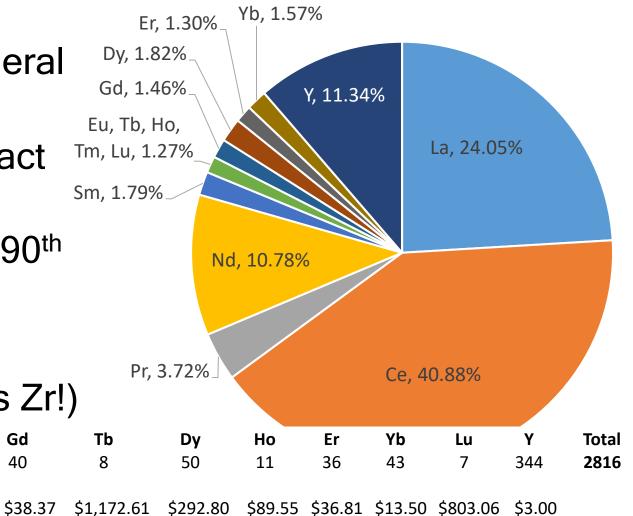
\$0.10

\$2.13 \$27.72

Gd

40

\$1.55


\$8.99

\$14.62

\$0.97

Pr

104

\$1.31 \$0.58

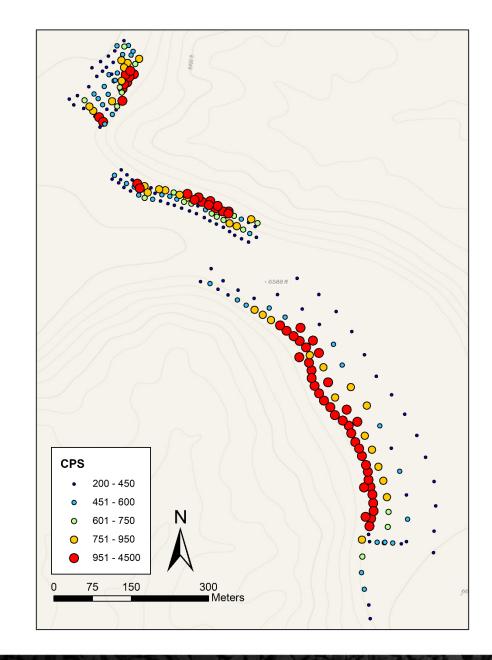
\$5.40 \$1.03 **\$67.41**

REO (ppm)

Oxide price (USD/kg)

Contained value

\$64.67


\$6.74

Sanostee BPS deposit

- Cretaceous accumulation of heavy minerals
 - Zircon, ilmenite, rutile, monazite(?)
 - Sorting by wave action in coastal environments
- Discovered with aeroradiometric survey during U boom
 - Th, U substitution in zircon
- Being revisited as part of DoE CORE-CM project

SME

 On Navajo tribal lands, permit acquired

REE distribution in the Sanostee deposit

Tb

15

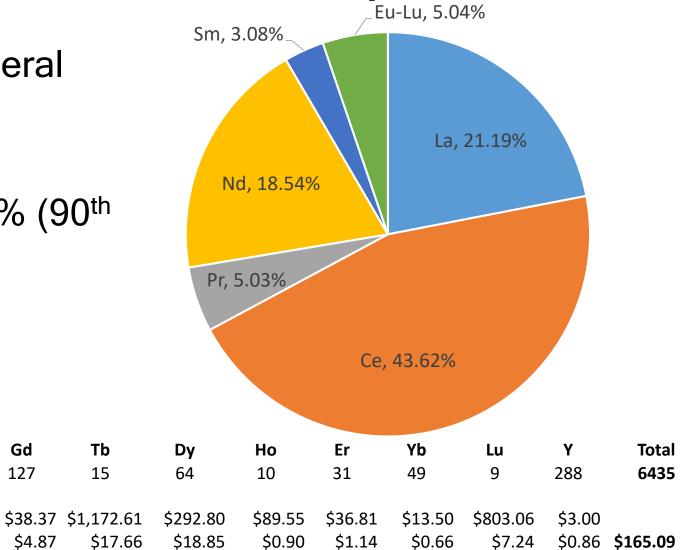
- Zircon main REE-bearing mineral
 - Variable REE substitution •
- Locally up to ~1% TREO
- Sample n=5 for TREO > 0.34% (90th percentile)
- Average 0.64% TREO
- Contained value: \$165/tonne

Pr

321

\$64.67

\$20.75


Plus Zr and Ti! \bullet

Ce

2787

\$3.55

\$9.89

REO (ppm)

Oxide price (USD/kg)

Contained value

La

1355

\$3.41

\$4.62

Nd

1179

\$65.38

\$77.11

Sm

195

\$2.13

\$0.42

Eu

4

\$27.72

\$0.12

Gd

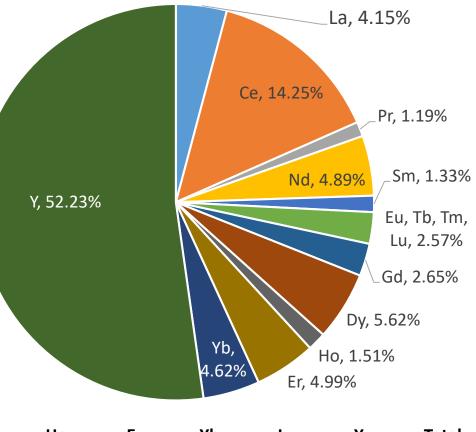
127

\$4.87

Grants U district

- Jurassic sedimentary hosted
 uranium deposits
 - Primary uraninite

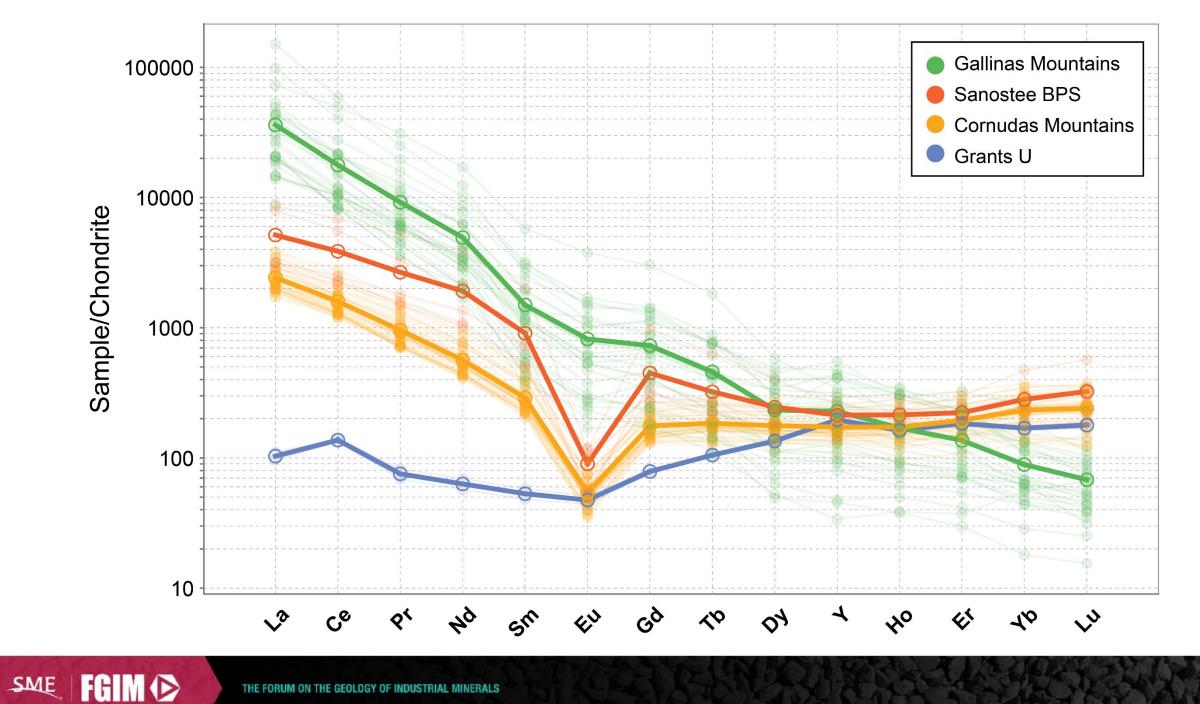
SME


- Average grade ~0.2% U₃O₈ average grade
- World-class uranium district
 - More than 169,500 short tons U₃O₈ produced from 1950 to 2002
- Recovery of REE from uraninite?
 - HREE selective extractions

From NMBGMR photo archive

REE distribution in the Grants district

- REE possibly substituting in uraninite
 - Worldwide uraninite can contain ~3% TREO
- Sample n=2 for TREO > 600 ppm (90th percentile)
 - Need more data, sample collection difficult
- Average ~710 ppm TREO
- Contained value: \$28/tonne (plus U!)



	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Yb	Lu	Y	Total
REO (ppm)	29	98	8	34	9	3	18	4	38	10	34	31	5	391	713
Oxide price															
(USD/kg)	\$3.41	\$3.55	\$64.67	\$65.38	\$2.13	\$27.72	\$38.37	\$1,172.61	\$292.80	\$89.55	\$36.81	\$13.50	\$803.06	\$3.00	
Contained value	\$0.10	\$0.35	\$0.53	\$2.20	\$0.02	\$0.09	\$0.69	\$5.12	\$11.14	\$0.91	\$1.24	\$0.42	\$4.01	\$1.17	\$27.99

		REO conc	entration (ppm)		Contained value (USD/tonne)				
	Oxide price									
REE	(USD/kg)	Gallinas	Cornudas	Sanostee	Grants	Gallinas	Cornudas	Sanostee	Grants	
La	\$3.41	10039	675	1355	29	\$34.23	\$2.30	\$4.62	\$0.10	
Ce	\$3.55	12760	1145	2787	98	\$45.30	\$4.06	\$9.89	\$0.35	
Pr	\$64.67	1000	104	321	8	\$64.69	\$6.74	\$20.75	\$0.53	
Nd	\$65.38	2628	301	1179	34	\$171.84	\$19.66	\$77.11	\$2.20	
Sm	\$2.13	257	50	195	9	\$0.55	\$0.11	\$0.42	\$0.02	
Eu	\$27.72	53	4	4	3	\$1.48	\$0.10	\$0.12	\$0.09	
Gd	\$38.37	167	40	127	18	\$6.42	\$1.55	\$4.87	\$0.69	
Тb	\$1,172.61	19	8	15	4	\$22.32	\$8.99	\$17.66	\$5.12	
Dy	\$292.80	66	50	64	38	\$19.27	\$14.62	\$18.85	\$11.14	
Но	\$89.55	11	11	10	10	\$0.95	\$0.97	\$0.90	\$0.91	
Er	\$36.81	25	36	31	34	\$0.92	\$1.31	\$1.14	\$1.24	
Yb	\$13.50	16	43	49	31	\$0.22	\$0.58	\$0.66	\$0.42	
Lu	\$803.06	2	7	9	5	\$1.53	\$5.40	\$7.24	\$4.01	
Υ	\$3.00	455	344	288	391	\$1.36	\$1.03	\$0.86	\$1.17	
	Total: 27499 2816 6435				713	\$371.07	\$67.41	\$165.09	\$27.99	

USD/TREO (%)								
Gallinas Cornudas Sanostee Grants								
\$135	\$239	\$257	\$393					

SME FGIM ()

THE FORUM ON THE GEOLOGY OF INDUSTRIAL MINERALS

Conclusions

- REE distribution important for economics of a deposit
 - Overall grade is still important, but not the only factor
 - REE could be a coproduct or byproduct
 - Mineralogy and metallurgy important
- Importance of good trace element geochem as we explore non-traditional critical mineral deposits
 - Overlooked byproducts?

Acknowledgements

This study was supported by:

- USGS Earth Mapping Resources Initiative (MRI)
- USGS National Geological and Geophysical Data Preservation Program (NGGDPP)
- DoE Carbon Ore, Rare Earth, and Critical Minerals (CORE-CM) Initiative
- New Mexico Bureau of Geology and Mineral Resources (NMBGMR), Nelia Dunbar, Director and State Geologist

