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Introduction 
As part of Task 2.0, Los Alamos National Lab was tasked with developing a machine learning 
based model of rare earth and critical mineral elemental distribution within the New Mexico 
CORE-CM region. A traditional approach to a elemental distribution map would rely on 
aggregation of known elemental concentrations through field sampling and subsequent 
geochemical analyses, followed by integration into a geographic information system and some 
sort of interpolation algorithm applied (e.g., Kriging). In cases where there is abundant data, and 
where predictive capabilities are not needed (e.g., measuring a set of elements in the field to 
predict others), this can often be a fruitful approach. However, in the case of New Mexico as 
relates to REE/CM distribution, we have a twofold challenge of often missing data fields within 
historical data (e.g., missing elements in USGS Coalqual database) and/or sparse data 
concentrated in just a few regions. The LANL developed SmartTensors packages is ideal for this 
task. Below, we detail progress made in developing a predicative geospatial model of REE/CM 
in the New Mexico CORE-CM basin. Finally, we detail key successes, key challenges, and goals 
for future work. 

Methods and Challenge 
We used the package SmartTensors to develop the set of signals corresponding to REE 
enrichment. As implemented here, SmartTensors is general high-performance unsupervised 
machine learning algorithm. Here, we employ non-negative matrix-factorization + k-means 
clustering. Algorithms such as these find patterns in the available data, and in this case is done so 
in an unsupervised manner on the entire database. The advantage here, is that the resulting 
patterns yield an output with many fewer variables of the most importance and is generally 
insensitive to missing values. Table 1 shows an example of missing data from the New Mexico 
dataset. 
Table 1. Example of input data file, highlighting lack of information for many elements and 
many samples and the complex need to account for missing data. 

Sample Lat Lon Datum Depth Cr Cs Cu Ga Ge … 
A 36.803 -108.4407 NAD27 0 49.073 NA 50.525 NA NA … 
B 35.484 -107.6634 NAD27 -313.08 49 10.11 NA NA 17.1 … 
C 35.484 -107.6634 NAD27 -308.08 7 NA NA NA NA … 
D 35.484 -107.6634 NAD27 -269.93 5 NA NA 5.45 NA … 
E 35.484 -107.6634 NAD27 -240.46 3 NA NA NA NA … 

 
The data was provided by the resource characterization team developed as part of Task 2.0 and 
includes new analyses performed as part of CORE-CM plus a compilation of data from the 
USGS Coalqual database. A total of 252 samples were used, with approximately 100 input 
variables. Bad data was removed, and unusable (e.g., textual data) was removed for this initial 



effort. We will elaborate on needs for future work around textual data more below. Samples 
cover an area of approximately 20,000 mi2, mostly from the San Juan Basin coal fields (Figure 
1). Also included however are samples from other potential REE deposits, some of which are 
higher in concentration. This sparsity of data at multiple scales, and wide range in observed 
concentrations will important impacts on result map products. 
Fundamentally, the initial output will be signals associated with only points of known elemental 
concentration, in other words and map of signals for our training data. IN a perfect world, the 
data would be abundant and evenly distributed across the domain of interest. However, in our 
case here, we need to spatially interpolate resulting signals. We explored this using a variety of 
Kriging methods. 

 
Figure 1. Distribution of samples for initial model development. 
 

Results 
Initial results are promising but will require refinement. Example signals are shown in table 2, 
and for each location, there is a unique set of matrix factorizations for a given signal. These 
signals are then Kriged to generate a spatial representation of the various signals. For the 252 test 
samples considered here, there were three resulting signals. The number of signals is not initially 
set by the model, and instead is part of the learning process. Table 2 and Figure 2 shows the 
results for the three signals determined by the model. It is important to note that there are not any 
specific REE nor a concentration, but rather a heat map of the importance spatially of a various 
signal. 
  



Table 2. Example output of NMFk signals from our 252 sample test dataset. 

X Y Depth Signal 1 Signal 2 Signal 3 

35.4 -107.6 -82.18 19.858 11.091 157.884 

36.8 -104.9 -35.8 1.225 11.537 143.244 

35.6 -107.6 -290 122.386 53.054 2.083 

35.9 -107.4 0 108.681 9.343 0.000 

… … … … … ... 

 
Figure 2. Example of NMFk signals as a stack to represent the vertical direction. Shown are 
unique signals for the different signals, which are influenced by different combinations of 
geochemical parameters. 
 
Figure 3 shows the conversion of the 3 NMFk signals when used to determine the total REE for 
the New Mexico domain. Two main takeaways from this figure, the first is strong anisotropy 
between the horizontal and vertical domains. While there may exist anisotropy as a result of 
variation in total REE concentration, we are most likely observing strong biases in the 
distribution of data points. Second, for the surface concentrations the relatively large spread in 
concentration means that data representation is currently poor with little resolution to refine 
variation in REE concentration. 

Signal 1 Signal 2 Signal 3 



 
Figure 3. Heat map of predicted total REE concentration based on three NMFk signals 
Figure 4 further highlights the issue of anisotropic variation in the horizontal and vertical 
domains. In particular, it demonstrates the sensitivity of the resulting data to the application of 
scale factors. All units in feet.  
Figure 4. See next page. 
Finally, we examined the correlation between NMFk signals (weights) and the parameters in 
source data set. Such an analysis starts to examine which measurable/observable parameters 
control a given signal and its weight. For example, Signal 1 has high weight lithologically with 
“coal”, it also has high weight elementally with carbon, along with a few other elements. One 
caveat here however is that the model currently handles textual data so common in geologic 
literature as binary. That is, for any given variable such as coal, it is either coal and converted to 
a value of 1, or if false, 0. 

Conclusions and Key takeaways 
We have made good initial progress on machine learning based modeling of REE/CM 
distribution in the New Mexico CORE-CM domain. We tested model development using 252 
legacy and new samples developed by Task 2 and implemented using the SmartTensors machine 
learning package. Anisotropy is the norm within the data and highlights the need for additional 
data much as possible; however, we can also explore potential solutions in data presentation. 
Finally, additional work is needed in handling textual geo data, for example lithologic 
descriptions, formation names, etc. 
Successes 

• Built a proof-of-concept model that can predict concentrations of REE/CMs across the 
region; 



• Combined unsupervised ML techniques with geostatistics to learn signatures of 
REE/CMs and map them spatially; 

• The current set of data provide useful information for horizontal variation in REE 
concentration; 

Key Challenges 
• Lack of data in the vertical direction sets up strong anisotropy in resulting data models; 
• Overall lack of samples to generate tall skinny matrices, which are preferred in ML 

models. Currently have too many variables for the number of samples, resulting in model 
runs not always replicating adequately; 

• Incorporation of geologic textual information needs advancement (e.g., natural language 
models); 

Work remaining that might constitute a Phase 2 
• Incorporating detailed stratigraphic information and improving the way we represent 

geologic information in the model; 
• How much data is too much, in this case it isn’t too many samples but rather too many 

variables as possible signals; 
• Connecting the existing model with a GIS framework. We have some initial, promising 

progress on the GIS front, but there’s a lot more to do; 
• Improving the way we deal with anisotropy in the vertical direction. 

  



Figure 4. Heat map of NMFk signals for a given geologic or geochemical parameter.

 


