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DESCRIPTION OF MAP UNITS, MOUND SPRINGS QUADRANGLE 
CENOZOIC EARATHEM

NEOGENE

Valley -floor  deposits

af Artificial fill (Historic) — Dumped fill and areas affected by human disturbances;   mapped 
where deposits or extractions are areally extensive. Commonly includes earth dams in alluvial 
drainages, borrow pits for road construction and raised roads, and large sand and gravel quarries 
where original deposits can no longer be interpreted. 

Qa Valley-floor alluvium, undivided young deposits (Holocene to uppermost Pleistocene) — Very 
pale brown to light reddish-brown (10 YR 8/3 to 5YR 6/4), inter-channel dominantly fine-
grained (fine sand, silt, and clay) alluvium and anastomosing small channels of poorly to moder-
ately sorted, unconsolidated pebbly sand with local gravel bars. Relief between channels and 
alluvial valley floors is typically less than 1 m. Locally buries older gravel bars, former terrace 
deposits (Qpil), and accumulations of gypsum. Soil horizons are not evident. In bedrock areas, 
deposit is less than about 3 m thick. In bajada areas, deposit is more than 10 m thick and proba-
bly caps similar bolson fill.  

Qag Thin alluvium in drainages crossing thick gypsum deposits (Holocene to upper Pleistocene?) — 
Unconsolidated pale brown to light reddish brown (10 YR 8/3 to 5YR 6/4) fine-grained sand to 
clayey silt alluvium and loess with angular clasts of gypsum crust. Rarely contains pebbles de-
rived from the Oscura Mountains. Locally fills dissolution-related small valleys developed in 
gypsum megamounds. Commonly less than 1 m thick, but ranges to more than 4 m thick. 

Qc Colluvium (Holocene to uppermost Pleistocene) — Unconsolidated to very poorly consolidated, 
angular blocks of sandstone and minor limestone resting on slopes below bedrock ledges. Colors 
similar to underlying units and blocks. Matrix includes mudstone and rare pedogenic gypsum 
crust. Deposits range from less than 1 m to about 3 m thick. 

Qe Eolian sand (Holocene to uppermost Pleistocene) — Unconsolidated to very poorly consolidated, 
moderately to well sorted, very pale brown (10 YR 7/3) sand. Forms extensive sheets and low 
dunes along the northeast sides of drainages. Common as coppice dunes beneath mesquite 
(Prosopis glandulosa) thickets. Deposits range from less than 1 m to about 3 m thick. 

Spring-related deposits

Qgs Gypsum spring deposits as spring mounds (Holocene to upper Pleistocene?) —Well to semi-
consolidated, conical to domal, white (N9), gray (10 YR 8/2), to light tan (10 YR 8/3) gypsum 
deposits surrounding central spring-orifice craters. Eolian siliceous-sediment accumulations and 
finely disseminated organic matter form a minor component of some mounds, although the sur-
faces of a few mounds contain significant amounts of eolian silt and sand. Gypsum precipitates 
generally consist of scattered, sand-sized lenticular grains set in a cryptocrystalline matrix, and 
may contain up to several weight percent carbonate minerals. Spring mounds range from less 
than 1 to more than 6 m high and from 12 to more than 100 m in diameter. Inactive craters are 
nearly filled with pale brown fine sand, silt, and clay deposited as loess and extensively bur-
rowed by small mammals. Crater rims and upper slopes of mounds commonly are unburrowed 
consolidated gypsum crusts underlain by rock gypsum. Lower slopes commonly have discontinu-
ous eolian and alluvial cover. Subsurface deposits of active spring mounds are moist beneath 
gypsophilous vegetation and powdery evaporite efflorescence. Gypsum precipitates on the sub-
strate of active pools are largely silt- and fine-sand-sized lenticular and hemi-bipyramidal crys-
tals. Consolidated gypsum commonly is broken into sub-meter columnar polygons with vertical 
and anastomosing fractures filled with banded gypsum and minor calcium carbonate. Iron and 
manganese staining of consolidated gypsum is locally apparent. Deposits overlie valley floor 
alluvium and/or older gypsum deposits. Spring mound numbers 1 through 29 are from Meinzer 
and Hare (1915). Mounds 1 through 43 located using differential Global Positioning System 
techniques. 

Qgmm Gypsum megamounds and associated, down-gradient gypsum spring deposits (Holocene? to 
upper Pleistocene) — Consolidated light brown to gray to white gypsum deposits forming exten-
sive upland areas above alluviated drainages, and associated, generally thick, distal accumula-
tions. Uppermost ~1 m is generally a consolidated gypsum crust broken into sub-meter columnar 
polygons, further broken into cobbles and sub-horizontal plates 2-5 cm thick at the surface. In 
some areas the indurated surface crust is underlain by up to several decimeters of relatively 
loose, powdery gypsum silt and sand. Loess and thin alluvium locally covers the crust. Beneath 
the surface where exposed in artificial excavations and in sinkholes are crudely bedded semi-
consolidated and consolidated gypsum layers.  Estimated to be as much as 14 m thick. 

Qgmk Karst features developed in eastern megamound, and adjacent areas (Holocene) — 
Consolidated light brown to gray to white gypsum deposits in the immediate vicinity 
of sinkholes that are up to 7 m deep and 100 m across, oriented along NW and two 
parallel NE trends and locally in N-S trends.  The floors of several of the sinkholes 
contain vertical to sub-horizontal dissolution fractures and caves of unknown extent. 
Observations following an intense rainfall event indicate that large quantities of sur-
face runoff flowing into the sinkholes disappears immediately into these subterranean 
passages. Other sinkholes have become plugged with eolian loess and alluvium and 
some are nearly filled. 

Qss Alluvium and saline-spring-affected deposits (Holocene to upper Pleistocene) — Unconsolidated 
to partially consolidated,  light brown to gray and greenish gray, structureless to crudely bedded 
sand, silt, and clay cemented with gypsum and other evaporites associated with shallow ground-
water adjacent to and northwest of Salt Creek. 

Piedmont alluvial deposits 

Qpy Piedmont stream channel and floodplain alluvium (Historic and Holocene) — Unconsolidated 
light brown, light reddish brown, reddish brown and gray-brown sand, silt, and clay with local 
concentrations of pebble to boulder gravel in bars and riffles in proximal to medial alluvial-apron 
landscape positions. Pebbles are subangular to rounded with more durable siliciclastic types far-
ther from mountain slopes, and locally-derived sandstones, limestones, and igneous rocks closer 
to mountain fronts. Color and composition of the sandy and finer alluvium depends on sources 
upslope. For example, sediments derived from the Bursum Formation pediment commonly are 
maroon pebbly sand and silt. Pedogenic calcium carbonate accumulation reflecting soil develop-
ment locally reaches Stage I. The unit commonly buries older layers on the distal piedmont 
slope, but is inset against older piedmont alluvial units in the proximal and medial piedmont. 
Discontinuous arroyo channels dissect the piedmont alluvium locally. Thickness estimated to be 
less than 10 m. 

Qpyd Piedmont, distal foot-slope apron, fine-grained alluvial deposits (Holocene) — Un-
consolidated light brown, light reddish brown, reddish brown and gray-brown sand, 
silt, and clay with local concentrations of pebbles and eolian loess. Decrease in slope 
and fewer channels from Qpy upslope to Qa downslope. 

Qpi Piedmont alluvial deposits, undivided intermediate levels (Historic to middle Pleistocene) — 
Light reddish brown (5YR 6/4 and other colors), poorly to moderately sorted, unconsolidated 
fine- to coarse-grained sand and gravel. Medial and proximal deposits contain some boulders. 
The tops of these deposits are extensive, nearly planar surfaces that are abandoned by inset chan-
nels and floodplains of Qpy. Sheet-wash and eolian processes may still take place. Range in ages 
shown by range in soil horizon development from none to stage I pedogenic calcium carbonate.  
Thicknesses vary from 3-4 m near apexes to less than 1 m (often less than 0.3 m as they com-
monly grade to floodplain levels) at their distal margins. 

Qpif Piedmont, intermediate level, fine-grained alluvial deposits (Holocene to upper Pleis-
tocene?) — Unconsolidated pale brown, fine sand, silt, and clay deposited as allu-
vium and possibly loess forming broad planar sloping surfaces in western part of 
quadrangle and local valley fill in northeast part of quadrangle. Overlies low, gravelly 
terraces in a few places, but does not have soil horizons developed. At least 3 m thick. 

Qpifs Piedmont, intermediate level, erosional scarps in fine-grained alluvial depos-
its (Holocene) — Partially eroded scarps in unconsolidated, pale brown, fine 
sand, silt, and clay forming at eastern and southeastern edges of Qpif. From 
0 to 3 m thick. 

Qpil Piedmont and alluvial-fan deposits (Holocene to upper Pleistocene) — Pale brown to 
light reddish brown (10 YR 8/3 to 5YR 6/4), poorly exposed, poorly to moderately 
sorted, unconsolidated pebbly to cobbly sand. Deposit surfaces are more than 1 m 
above local base level along active piedmont drainages, continue to be more than 3 m 
above local base level upstream. Soils are weakly developed and exhibit Stage I+ 
pedogenic carbonate morphology. This unit probably includes two distinct kinds of 
deposits that occupy the same landscape position. Some of these gravelly deposits are 
exhumed terrace deposits; others are late Holocene alluvial fan deposits. Estimated to 
be 3 to 5 m thick. 

Qpih Piedmont and Alluvial-fan deposits (Pleistocene) — Light reddish brown (5YR 6/4), 
unconsolidated to moderately consolidated sand and gravel. Gravels consist of suban-
gular to subrounded limestone, granitic and metamorphic, and red sandstone rock 
types. Stable surface of deposit, where not deeply dissected on rounded and planar 
divides between 5 and 12 m above adjacent channels, exhibits well developed soils 
with Stage III+ pedogenic carbonate morphology. Deposits commonly are more than 
12 m thick. 

QTp Piedmont and Alluvial-fan deposits of bolson fill (Neogene) —In subsurface cross 
section only, south of range-bounding fault. Light reddish brown (5YR 6/4), uncon-
solidated sand, mud, and gravel to consolidated sandstone, mudstone and conglomer-
ate. Pebbles consist of subangular to subrounded limestone, granitic and metamor-
phic, and red sandstone rock types. According to modeled gravity profile across 
southern Oscura Mountains (Peterson and Roy, 2005) piedmont and alluvial fan de-
posits of northern Tularosa basin may be at least 2.3 km thick. 

PALEOGENE

Ti Diabase dikes (probably upper Oligocene) — Dark gray to greenish gray mafic dikes exhibiting 
diabasic texture of plagioclase and augite. Dikes follow east-west vertical faults and fractures 
developed in Paleozoic sedimentary rocks. Dikes and wall rocks of Bursum Formation have mi-
nor copper oxide and copper carbonate (malachite) mineralization revealed in numerous prospect 
pits. Dikes range from less than 1 to 7 m wide. 

MESOZOIC ERATHEM 

   CRETACEOUS 

Kd Dakota Formation (Upper Cretaceous [Cenomanian]) —Unit not exposed in quadrangle; in cross 
section only. Consists of white, pale gray, and yellow cross-bedded coarse-grained sandstone and 
conglomeratic sandstone deposited in fluvial and marine environments. Unit is 55 m thick east of 
Mound Springs quadrangle (Arkell, 1986). 

   TRIASSIC 

Trm Moenkopi Formation (Middle Triassic [Anisian]) —Unit not exposed in quadrangle; in cross 
section only. Consists of grayish red to maroon, poorly sorted, cross-bedded micaceous 
litharenites, mudstones, and intraformational conglomerates. The Moenkopi Formation is 91 m 
thick at Bull Gap east of Mound Springs quadrangle (Lucas, 1991). 

PALEOZOIC ERATHEM 

PERMIAN

Pag Artesia Group: Grayburg, Queen, Seven Rivers, Yates and Tansill formations, undivided (Middle 
Permian [Guadalupian]) —Unit not exposed in quadrangle; in cross section only. Consists of red 
to orange to light gray, fine- to very fine-grained sandstone, siltstone, gray limestone, and 
evaporititic gypsum. The Artesia Group is estimated to be 0 to 100 m thick in the northern Tula-
rosa basin and shown as 100 m thick in cross section. 

Psa San Andres Formation (Lower Permian [Leonardian-Guadalupian]) —Unit not exposed in quad-
rangle; in cross section only. Consists of gray marine limestone, interbeds of gray marine shale, 
evaporitic gypsum, and beds of light gray to yellowish fine sandstone. Limestone units are planar 
over several km and exhibit decimeter scales of cyclic bedding. The San Andres Formation is 
shown to be 213 m thick in the cross section, but ranges from 140 to 250 m thick in the Chu-
padera Mesa area (Broadhead and Jones, 2004). 

Pg Glorieta Formation (Lower Permian [Leonardian]) —Unit not exposed in quadrangle; projected 
in cross section only. Consists of thick-bedded, light gray to yellowish fine sandstone with inter-
beds of gray marine limestone. It commonly interfingers with the overlying San Andres Forma-
tion and resembles sandstone in the underlying Yeso Group. The Glorieta Formation is estimated 
to be about 30 m thick in the southern Oscura Mountains, but it thins to the south and may range 
from 0 to 100 m thick according to Broadhead and Jones (2004).  

Pyt Yeso Group: Torres, Canas, and Joyita formations undivided (Lower Permian [Leonardian]) — 
Base of unit (Bachman's upper Yeso Formation) was mapped in the southern Oscura Mountains 
at the transition from pale red siliciclastic beds below to dolomitic limestone, yellowish green 
shale, and gypsum above (see Bachman, 1968). This transition is not exposed on the Mound 
Springs quadrangle.  The unit is present at the surface as a north-south ridge in the northwestern 
part of the map area, where it contains poorly exposed bedded gray gypsum and yellowish gray 
siltstone, and resistant, medium-bedded light gray limestone and yellowish brown sandstone in-
terbeds. Estimated by Bachman (1968) to be 435 m thick. To northeast in the subsurface the Tor-
res formation is as much as 1067 m thick and contains salt as well as anhydrite (Broadhead and 
Jones, 2004). The overlying Canas and Joyita formations are about 100 m thick. 

Pya Yeso Group, Arroyo de Alamillo Formation (Lower Permian [Leonardian]) — Previously mis-
correlated to Mesita Blanca Sandstone but recently described as the Arroyo de Alamillo Forma-
tion by Lucas and others (2006). Base of formation mapped at base of meter-scale ledges of rip-
ple-crosslaminated sandstone or local conglomeratic sandstones with colors distinctly different 
(2.5 YR 4/2; 5/2; 5/6) from underlying Abo Formation. Overlying beds composed of thin-
bedded, fine-grained sandstone, pebble conglomerate, and siltstone. Trace fossils common. Top 
of formation is not exposed in the map area. Weathers weak red (10 R 5/3), with darker weak red 
(2.5 YR 4/2 to 5/3) mudstone with mudcracks. Estimated to be 50 m thick in the southern Oscura 
Mountains. Exposed in northwestern and north-central part of quadrangle on east side of Red 
Hill.

Pa Abo Formation (Lower Permian [Wolfcampian]) — Base of unit mapped at poorly exposed 
change from brownish maroon of Bursum Formation to redder (2.5 YR 5/4; 4/3) sandstone and 
mudstone typical of Abo Formation farther north in central New Mexico. Unit is more mature 
(less arkosic) than underlying beds in the Bursum Formation, and consists largely of a basal se-
quence of poorly exposed mudstone, grading up to fine-grained sandstone and mudstone at the 
top. Sandstone and conglomerate units are commonly lenticular in distinct channels. Unlike Abo 
Formation farther north, minor thin limestone beds and limestone-clast conglomerates are present 
throughout. Limestones do not have recognizable macrofossils, and some appear to have been 
calcareous soils. A distinctive bed of red, ripple-crosslaminated fine-grained sandstone contain-
ing pods and stringers of similarly crosslaminated dolomitic calcarenite is present near the top of 
the Abo Formation in the area. In general, unit weathers red and pale reddish brown with local 
white and pale green oxidation-reduction spots. Estimated to be about 41 m thick on Red Hill.   

PENNSYLVANIAN

lPb Madera Group, Bursum Formation (Pennsylvanian-Permian [Virgilian and Wolfcampian (?)]) — 
Base of unit mapped at change from fossiliferous gray and yellowish gray limestone and greenish 
gray shale of top of Atrasado Formation to reddish brown and maroon shale, siltstone, sandstone, 
and conglomerate. Coarse-grained units are arkosic. Siliciclastic clasts in conglomerate range to 
20 cm in diameter and consist of reddish gray, salmon, and weak red (10 R 4/2, 10R 6/1, 10R 
5/6) Precambrian metarhyolite porphyries, quartzites, granite gneisses, and cherts in an arkosic 
dark reddish gray sandstone matrix (10 R 4/1-4/2). Siltstone and shale commonly are maroon, 
but may also be glauconitic green. Several gray to yellowish gray to maroon ledges of limestone 
and/or limestone conglomerate form parallel bands along the outcrop belt, but do not contain 
macrofossils. The Bursum Formation is estimated to be on the order of 254 m thick or more in 
the southern Oscura Mountains and the Mound Springs quadrangle. 

lPma Madera Group, Atrasado Formation (Upper Pennsylvanian [Missourian and Virgilian]) — Base 
of unit not exposed in quadrangle. Kues (2001) summarized regional correlations of Pennsylva-
nian strata in New Mexico, and concluded that the formation-rank names Gray Mesa and 
Atrasado, respectively, should be used rather than the informal "lower mem-
ber" (~Desmoinesian) and "upper member" (~Missourian-Virgilian) division of the Madera used 
by Bachman (1968) in the Oscura Mountains. Consists of gray and greenish gray shale, reddish 
brown and brown silty micaceous shale (10 YR 5/3), glauconitic sandstone, crossbedded, quart-
zose to arkosic sandstone and pebbly sandstone, and gray, fossiliferous (marine) limestone and 
calcareous shale. Limestone units are planar over several km and exhibit several scales of cyclic 
bedding. The Atrasado Formation is estimated to be 480 m thick in the southern Oscura Moun-
tains. 

lPmg Madera Group, Gray Mesa Formation (Middle Pennsylvanian [Atokan-Desmoinesian]) —Unit 
not exposed in quadrangle; in cross section only. Consists of gray marine limestone and interbeds 
of gray marine shale. Limestone units are planar over several km and exhibit several scales of 
cyclic bedding. The Gray Mesa Formation is estimated to be 124-140 m thick in the southern 
Oscura Mountains. 

lPs Sandia Formation (Lower Pennsylvanian [Atokan]) —Unit not exposed in quadrangle; in cross 
section only. Consists of gray, brown, and pink conglomeratic coarse sandstone, gray micaceous 
shale, and gray and brown fossiliferous marine limestone. It is estimated to be 76-128 m thick in 
the southern Oscura Mountains. 

   CAMBRIAN AND ORDOVICIAN 

_O Cambrian and Ordovician formations, undivided (Upper Cambrian to Middle Ordovician) —
Units not exposed in quadrangle; in cross section only. Consists of dark brown to gray calcareous 
sandstone of Bliss Formation; olive to gray sandy dolomite of El Paso Dolomite; and gray crys-
talline dolomite and interbeds of gray marine shale of Upham Dolomite member of the Montoya 
Dolomite (see Bachman, 1968). Composite thickness in cross section is about 100 m thick in the 
southern Oscura Mountains. 

PROTEROZOIC ERATHEM 

XY Metamorphic and intrusive rocks (Upper Proterozoic) —Unit not exposed in quadrangle; in cross 
section only. Consists of gray and pink granite, granite gneiss, and dark greenish gray diorite. 
Exposed in major uplifts of Oscura, northern San Andres Mountains and Mockingbird Hills. 
Found as cobble-to-boulder-sized inclusions in Paleogene diabase dikes in quadrangle, as clasts 
in Bursum Formation, and as clasts in Quaternary piedmont deposits.  
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