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Mafic dike (Oligocene?) — Dark green to black dikes intruded along some north-trending faults or
fissures. Dikes are chloritically altered and composed mostly of calcic plagioclase and pyroxene (Parchman,
1980). Dikes are probably correlative to an Oligocene mafic to intermediate dike exposed on the northern
flank of the Sandia Mountains (cf., Connell et al., 1995) and may be associated with early extension
along the Rio Grande rift.                                        .

Abo and Yeso Formations, undivided — The lower two lithostratigraphic units of the Permian represent
a red-colored feldspathic to quartzose siliciclastic sequence that are recognized in the subsurface only.
The Yeso Formation is a yellowish brown, orangish brown, and reddish brown sandstone and shale with
interbedded gray limestones.  The sandstones are typically cross-stratified and/or cross-laminated and
virtually identical to those within the underlying Abo formation except that, rarely, salt hopper casts and
molds are present. The Abo Formation is a red and locally tan-colored (particularly near the base),
medium- and thin-bedded arkose and feldspathic sandstone and comglomeritic sandstone interbedded
with red, micaceous siltstone, mudstone, and shale, commonly with green reduction spots.  The lowermost
arkoses are typically lighter-colored and coarser-grained than the younger feldspathic sandstones, and
at least one of them is strongly bioturbated (Macaronichnus).

Madera Formation, undivided — Two informal members, an arkosic limestone and a gray limestone,
are recognized but not differentiated. The upper and lower members are respectively generally correlative
to the Wild Cow Formation and Los Moyos Limestone (Formation) of the Madera Group of Myers and
McKay (1976). These informal member names are used because the units were lithostratigraphically
defined on the Sedillo (Read et al., 1998) and Tijeras (Karlstrom et al., 1994) 7.5-minute quadrangles
rather than biostratigraphically defined and may therefore not strictly correlate with the units defined by
Myers and McKay (1976). The Madera Group nomenclature was not used because of the gradational
contacts between members and the difficulty of distinguishing these contacts in the field.                       .

Madera Formation, upper arkosic limestone — A gray, greenish-gray, olive-gray, tan and buff-
brown fossiliferous limestone (comprises slightly more than half of member) interbedded with
intervals of sub-arkosic sandstone and mudstone; mostly slope to ledge forming. Yellowish to reddish
brown and light gray arkosic to feldspathic sandstones and conglomeratic sandstones are lenticular
and grade into pale yellow brown, gray and purplish gray mudstones and micaceous siltstones.
These arkosic sandstones are typically coarse- to medium-grained and often contain granules and
pebbles. The base of this member is defined as the first occurrence of a thick and relatively continuous
arkosic sandstone bed. Silicified wood is seen locally in clastic beds throughout this member. Red
muddy soils are common on the upper arkosic member. Generally equivalent to Pine Shadow and
La Casa Members of Wild Cow Formation of Myers (1973) or    muc and    mud of Myers and
McKay (1970). As much as 400 ft (120 m) thick, with erosional top.

Madera Formation, lower gray cherty fossiliferous limestone — Mostly cliff-forming, gray
fossiliferous limestone with minor interbedded shales and quartzose to feldspathic sandstones and
conglomeratic sandstones. Individual massive to nodular limestone beds are commonly 20–30
feet (3–9 m) thick and may be as much as 60 feet (18 m) thick. Irregular masses of black to reddish
orange chert are common in massive limestone beds. Nodular limestones often weather to mottled
gray and brown surfaces. Limestones are interbedded with light to dark gray and yellowish brown
shales, nodular shales and yellowish brown to greenish gray siltstones that are often micaceous.
Siltstones locally grade upward into lenticular to tabular quartz arenites and quartz pebble
conglomerates of light gray to yellowish brown color. Clastic units locally contain silicified wood.
Includes Los Moyos Limestone and overlying Sol se Mete Member of Wild Cow Formation of
Myers (1973), or    ml and    mub of Myers and McKay (1970). Approximate thickness 500 to
800 feet (150–240 m).

Sandia Formation — Mostly slope-forming shales and siltstones grading down into basal quartz pebble
conglomerates and up into thin bedded limestones. Limestones and shales occur in uppermost 20 ft (7
m) near gradational contact into overlying cliff-forming limestones of Madera Formation and are distinct
due to the fact that they are typically thinner-bedded, clast-supported, greenish, and contain abundant
siliciclastic material. Well indurated (siliceous) basal quartz pebble conglomerates are thickest (20–40
ft; 6–12 m) in northwestern third of quadrangle and generally thin to low ledge-forming conglomerates
(3.5–7.5 ft;1–2 m thick) and sandstones in southeast quadrant. Sparse metamorphic and limestone
pebbles or shell fragments are locally present in thinner (lower energy?) basal zones (e.g. NE1/4 sec. 7,
T8N, R5E). Light gray to yellowish brown conglomerates of basal zone grade upward into yellowish
brown, gray and greenish gray sandstones and micaceous siltstones interbedded with yellowish brown,
gray and black shales or carbonaceous shales. Medial shaley zone is 100–150 ft (30–45 m) thick and
commonly mantled with blocky limestone colluvium (generally not mapped) derived from overlying
Madera Formation. Where locally well exposed along road to Sol se Mete Peak, medial shales also
contain a thin red siltstone that may represent an ancient subaerial weathering zone. Conglomeratic
sandstones are unusually abundant in medial to upper section about 0.25 mi north of HERTF site and
one mile south of USGS Seismic Laboratory (NE1/4, Sec. 30, T9N, R5E; and SE1/4 Sec. 7, T8N, R5E).
Average thickness is 200 ft (60 m); ranges from about 80–300 ft (24–90 m).                            .

Granitic to rhyolitic dike — Light gray granite porphyry dike about 23 ft (6 m)a thick with flow-banded
rhyolitic margins about 2.3 ft (0.6 m) thick. Appears to parallel regional foliations of adjacent metasedimentary
rocks; pinches out to NE along strike. Contains medium to coarse phenocrysts of quartz, K-feldspar, albite
and minor muscovite plus biotite in a chalky (partly kaolinized?) groundmass of similar mineralogy.
Muscovite yields 40Ar/39Ar plateau age of 1,428 ± 2 Ma (M. Heizler, New Mexico Geochronology
Research Lab, written communication,1997), which is interpreted as the cooling age of the dike. Dike
post-dates regional metamorphism and associated ductile deformation.

Quartz veins  — Veins and veinlets of massive, milky-white quartz generally parallel to the regional fabric
although smaller veinlets (0.8–2 in; 2-5 cm) locally cross cut the fabric. In some locations, thin quartz
veinlets are folded with the main fabric as axial plane. Mappable quartz veins consist of white quartz
with minor hematite and brown calcite.

Manzanita Granite — A homogenous quartz monzonite with 1-4 cm K-feldspar euhedral phenocrysts.
In zones of stronger deformation K-feldspar porphyroclasts have an oval shape and show dynamic
recrystallization and grain size reduction along margins. Foliation and lineation are variably developed
in the granite with zones of well-develop L-S fabrics that grade into undeformed granite. Other zones
contain a strong linear element and lack any planar tectonic fabric. Manzanita granite shows a gradational
contact along the northern boundary into a strongly deformed, reddish-orange, fine grained foliated felsic
rock that Cavin (1985) named metarhyolite but which is interpreted here as mylonitic Manzanita granite.
Foliation is defined by elongate quartz grains, ovoid shaped K-feldspar and aligned muscovite grains
and is parallel to lithologic contacts. Mineral lineations are defined by elongate quartz grains and aligned
muscovite and is commonly down dip. Asymmetric K-feldspar porphyroclasts and shear bands within the
deformed granite record north-directed thrusting. U-Pb dating of zircons indicates an age of 1,645 ± 16
Ma for this unit (Brown, et al., 1999).

Leucocratic granite, aplite and pegmatite — Irregular pods (dikes) within the Manzanita granite and
greenstone unit. Both pods and dikes are frequently parallel to local tectonic fabrics. Aplite occurs as
white to reddish-white fine grained rock with mm-size phenocrysts of quartz and K-feldspar in a fine-
grained matrix. Certain bodies of aplite have a strong lineation and no foliation. Pegmatite has similar
outcrop pattern as aplite but occurs more generally in m-size dikes and sills. Pegmatite consists of cm-size
K-feldspar phenocrysts and irregular stringers of quartz and minor plagioclase feldspar. Probably represents
evolved units of Manzanita granite.

Biotite granite — Occurs in dikes and irregular shaped intrusions. This unit is light pink to pinkish gray
with granitic textures and minor development of a tectonic fabric. Foliation in these rocks is defined by
a weak alignment of chlorite and elongate quartz grains. Includes quartz monzonite of Parchman (1980)
and large outcrops at NW corner of quadrangle that may correlate with the Cibola granite.                .

Diorite — Diabase, diorite and quartz diorite that occur within the greenstone and metatuff units and are
grouped together based on lithologic similarity and field occurrence. These three rock units occur as
small, poorly-exposed intrusive bodies some of which have a sill-like outcrop pattern. Where observed
in outcrop these lithologies have a blocky, massive appearance with a brown to red-brown weathered
surfaces. Fresh samples show an aphanitic texture with rare plagioclase feldspar laths that are occasionally
aligned perhaps defining an original flow texture. Local schistosity is developed in some exposures and
is parallel to regional structures.

Mafic intrusives — Amphibolite, chlorite-schists and gabbroic intrusive rocks. These rocks occur as m-
thick, discontinuous sills and parallel to the regional fabric although several exposures have apophyses
that cross-cut foliation. Individual sills show transition from undeformed mafic rock in the sill interior to
chlorite schist along sill margins. Parchman (1980) reports that mafic intrusives range from chlorite schists
to amphibolites towards the Manzanita granite. Mafic intrusive parent rocks include basalt and gabbroic
sills.                                    .

Schist and Phyllite — Mottled quartz-rich schist and phyllite with red, hematitic and green fuchsite-rich
(?) zones that occur as discontinuous layers of variable thickness. Schistosity is complexly injected with
lense-shaped quartz pods. Phyllite occurs also in a band of green to reddish green phyllite up to 230 ft
(60 m) thick between two exposures of deformed Manzanita granite. Contacts with the deformed
Manzanita granite at north end of quadrangle are strongly tectonized with interlayering of deformed
granite and green phyllite. Parent rocks for the schist probably consisted of impure quartz-rich siltstones.
This unit includes Coyote Schist and Coyote Phyllite of Cavin (1985), and it may correlate with the Blue
Springs Schist of Reiche (1949).
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A geologic map displays information on the distribution, nature, orientation and age relationships of rock and deposits and the occurrence of structural features.
 Geologic and fault contacts are irregular surfaces that form boundaries between different types or ages of units.  Data depicted on this geologic quadrangle
map are based on reconnaissance field geologic mapping, compilation of published and unpublished work, and photogeologic interpretation.  Locations of
contacts are not surveyed, but are plotted by interpretation of the position of a given contact onto a topographic base map; therefore, the accuracy of contact
locations depends on the scale of mapping and the interpretation of the geologist(s). Any enlargement of this map could cause misunderstanding in the detail
of mapping and may result in erroneous interpretations. Site-specific conditions should be verified by detailed surface mapping or subsurface exploration.
Topographic and cultural changes associated with recent development may not be shown.

The map has not been reviewed according to New Mexico Bureau of Geology and Mineral Resources standards.  Revision of the map is likely because of
the on-going nature of work in the region.  The contents of the report and map should not be considered final and complete until reviewed and published by
the New Mexico Bureau of Geology and Mineral Resources. The views and conclusions contained in this document are those of the authors and should not
be interpreted as necessarily representing the official policies, either expressed or implied, of the State of New Mexico and the U.S. Government.
                        .
The Mount Washington quadrangle lies within the northeastern part of the Isleta Indian Reservation and southeastern sector of the Sandia Military Reservation
(KAFB & SNL); travel within KAFB, SNL and Isleta Reservation is prohibited or locally restricted. The area is not accessible by public roads; however, several
graded dirt and paved roads allow access to portions of the study area. The eastern half lies within the Manzanita Mountains and has very limited road access.

Artificial fill (Historic) — Dumped fill and areas affected by human disturbances. Locally mapped where
areally extensive or geologic contacts are obscured.                       .

Colluvium and alluvium, undivided (Holocene to upper-middle Pleistocene) — Poorly consolidated,
poorly sorted and stratified, fine- to coarse-grained, clast- and matrix-supported deposits derived from a
variety of mass-movement hill slope processes, including debris flow, shallow slump and creep. Gravel
clasts are typically angular to subangular and composition reflects local provenance. Soils locally exhibit
Stage I to III pedogenic carbonate morphology. Differentiated where areally extensive, thick, or where
geologic contacts are obscured. Variable thickness, up to 12 ft (4 m).

Travertine and spring deposits (Pleistocene) — Light-gray massive constructional mounds of travertine
interlayered with quartzite breccia near Coyote Springs (N1/2, Sec. 24, T9N, R4E). Variable thickness,
ranging from 3-30 ft (1-10 m).

Youngest stream alluvium, undivided (Historic to upper Holocene) — Poorly consolidated pebble-
 to cobble conglomerate and fine- to coarse-grained sand with minor accumulations of boulders and silt-
to clay-rich beds. Unit underlies modern arroyos and forms very narrow valley floors with discontinuous
elongated boulder and cobble bars. Unit is inset against younger stream alluvium (Qay). Soils are weakly
developed and possess disseminated to no pedogenic carbonate. Deposit in low terrace near mouth of
Hells Canyon Wash contains charcoal dated at 1,220±60 yr BP. Locally contains a higher undivided
terrace. Correlative to H8 and H9 of Thomas et al. (1995). Base is not exposed west of the mountain
front. Variable thickness, probably ranging from 0-10 ft (0-3 m).

Younger stream alluvium (Holocene to uppermost Pleistocene) — Light-brown and light reddish-
brown to gray-brown, poorly consolidated pebble and cobble gravel and sand with minor accumulations
of boulders and silt- to clay-rich beds. Gravel are subangular to subrounded and composed of limestone,
greenstone, metamorphic, and granite clasts. Clast surfaces are typically unweathered and are not pitted,
except along Cañada Colorada. Soil development is variable, often ranging from weakly developed
soils with stage I pedogenic carbonate morphology overlying multiple buried soils with stage II and III
morphology. Unit forms broad valley floors and terraces inset against unit Qpo. Bar and swale topography
is locally well expressed. Divided into two subunits on the basis of inset relations. Contains interbedded
calcareous spring deposits near springs in Coyote Canyon. Correlative to H7 and P5-6 of Thomas et al.
(1995). Variable thickness estimated between 0-10 ft (0-3 m).

Younger subunit (Holocene) — Stream terraces deposits about 5 m above local base level and
adjacent to modern and historic channels. Contains weakly developed soils. Locally forms two
undivided terraces.
                                 .
Older subunit (upper Pleistocene) — Stream terraces deposits about 11 m above local base
level. Inset against unit Qpo. Correlative to P5, which has radiocarbon date of about 21,000 yr
BP (Thomas et al., 1995).

Younger piedmont alluvium, undivided (Holocene to upper Pleistocene) — Unconsolidated gravel
and sand associated with broad, slightly dissected mountain-front alluvial fans. Inset against piedmont
alluvium (Qpm) and dissected by younger stream deposits (QHa). Deposit surface (top) is moderately
dissected and exhibits well developed to subdued bar-and-swale topography.  Soils possess Stage I to
II pedogenic carbonate morphology and weakly to moderately developed clay films. Generally correlative
to units H7-P5 of Thomas et al. (1995). Divided into two subunits (Qpy2 and Qpy1) on the basis of inset
relations and soil development. Unit is correlative to Qay. Variable thickness from 0-30 ft (0-9 m).

Younger subunit (Holocene to upper Pleistocene) — Forms broad range-front alluvial fan
deposits, exhibiting stage I and II pedogenic carbonate morphology. Unit is correlative to P6 of
Thomas et al. (1995).                       .

Older subunit (upper Pleistocene) — Forms broad alluvial fan deposits that are inset against
unit Qpo. Soils exhibit stage I to strong stage II pedogenic carbonate morphology. Unit is correlative
to Pf5 of Thomas et al. (1995), which contains charcoal that was radiocarbon dated at about
21,000 yr BP (Thomas et al., 1995, p. 2-36).
                             .

Middle piedmont alluvium, undivided (middle Pleistocene) — Moderately consolidated pebble and
cobble gravel and sand. The deposit contains multiple buried paleosols with Bk horizons that exhibit
stage II and III pedogenic carbonate morphology. Unit forms slightly to moderately dissected and
abandoned valley floors inset against unit Qpo. Qay locally mantles unitin narrow to broad swales.
Divided into two subunits (Qpm2 and Qpm1) on the basis of inset relations. Thickness is variable from
0-30 ft (0-9 m).

Younger subunit (middle Pleistocene) — Forms low terraces about 13 to 15 ft (3.5 to 4 m)
above local base level. Inset against unit Qpm1.                      .

Older subunit (middle Pleistocene) — Forms elongate valley-border fans about 27 to 32 ft (7
to 8.5 m) above local base level. Inset against unit Qpo.

Older piedmont alluvium, undivided (middle Pleistocene) — Poorly to moderately consolidated,
slightly calcium-carbonate cemented sandstone and cobble to pebbly conglomerate inset against unit
QTsp. Unit grades to the west where it is cut by the Hubbell Springs fault zone (Love et al., 1996). Deposits
are poorly exposed and locally posess multiple buried soils that are partially stripped and exhibit  stage
III (IV in gravel) pedogenic carbonate morphology. The deposit surface (top) is moderately dissected
and forms rounded hillslopes that sit about 20 to 38 ft (5 to 10 m) above local base level. Unit is buried
and locally inset by units Qpm and Qay. Deposits are possibly correlative to P4 of Thomas et al. (1995),
which has a radiocarbon date of about 51,000 yr BP; however much of this unit is likely much older than
51 Ka. It is also likely correlative to uppermost Santa Fe Group strata to the west in the Hubbell Springs
quadrangle, where similar piedmont deposits interfinger with early Pleistocene fluvial deposits of the
ancestral Rio Grande (Love et al., 1996). Unit is locally differentiated into two subunits on the basis of
inset relationships. The base is not exposed in the quadrangle, but deposits are estimated between 0-
30 ft (0-9 m) in thickness.

Younger subunit (middle Pleistocene) — Forms rounded hills with partially stripped calcic soils.
Inset against units Qpo1and Tsp.                      .

Older subunit (middle Pleistocene) — Forms rounded hills with partially stripped calcic soils.
Inset against units QTsp and Tsp. Locally contains two subunits that are recognized by inset
topographic relations near the mouth of Cañada Colorada.

Piedmont alluvial deposits, undivided (Holocene to middle Pleistocene) — Undivided deposits of
Qpy, Qpm, and Qpo underlying most of piedmont slope south of Hells Canyon Wash.                         .

Younger piedmont deposits (lower Pleistocene to upper Pliocene) — Well consolidated, calcium-
carbonate cemented sandstone and conglomerate inset against unit Tsp. Unit is poorly exposed and
slopes to the west where it is cut by the Hubbell Spring fault zone. The deposit surface is moderately
dissected and locally exposes partially stripped soils with stage IV pedogenic carbonate morphology.
Deposit tops may locally contain pediments or straths cut into older deposits of Tsp in Cañada Colorada.
Base is not exposed, but is estimated to range from 0 to at least 30 ft (0-9 m) in thickness.                    .

Older Piedmont deposits (Pliocene to Miocene) — Well consolidated, calcium-carbonate cemented,
clast-supported conglomerate and sandstone. Conglomerate clasts are composed of Paleozoic limestone,
schist, greenstone and quartzite with minor reddish-brown (Abo or Yeso Fm.?) sandstone. Limestone clasts
are locally deeply weathered and have an irregular and pitted surface. Overlies tilted Permian strata
of the Abo Fm., Yeso Fm., Glorieta Sandstone, and San Andres Limestone exposed along western
escarpment of the Hubbell Spring fault zone to the west on the adjacent Hubbell Spring quadrangle
(Love et al., 1996). Drill hole data indicate that this deposit primarily overlies Madera Fm. in this
quadrangle. The deposit surface is typically mantled by fine- to medium-grained eolian sand that buries
a complex petrocalcic soil developed in sand. This soil exhibits stage III+ to possibly a degraded stage
V(?) pedogenic carbonate morphology. The top comprises three undivided topographic levels, suggesting
that these deposits have been cut by straths, or that it contains two younger deposits inset against an
older and higher surface. Because of the strongly developed soil and well cemented nature of this deposit,
the hydraulic conductivity of these sediments is probably quite low. Variable thickness, and tends to thicken
to the east to 35 to 100 ft (10.7 to 30.5 m).

Stream-valley Alluvium

Typically contains poorly to well sorted and stratified, clast- and matrix-supported sand and gravel with minor muddy sand
interbeds associated with modern and late Pleistocene entrenched arroyos and streams originating in the Manzanita and
Manzano Mountains. Deposits unconformably overlie Santa Fe Group deposits and older rocks, and are differentiated on
the basis of inset relationships and soil-morphology.                             .                                      .

Piedmont-slope Alluvium

Typically contains poorly to moderately sorted and stratified, clast- and matrix-supported sand and gravel with minor muddy
sand interbeds associated with coalescent range-front alluvial fans along the Manzanita and Manzano Mountains. Deposits
unconformably overlie Santa Fe Group deposits and older rocks, and are differentiated on the basis of inset relationships
and soil-morphology.
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Quartzite — Massive to thickly-bedded, gray- to milky white quartzite. Original bedding in the quartzite
consists of 0.04–0.2 in- (1-5 mm-) thick black and red hematite-rich layers. Cross bedding is locally
preserved. Interlayered with the quartzite are greenish-gray micaceous quartzite, that contain up to 35%
muscovite and chlorite. Protolith for the thickly bedded quartzite was pure quartzose sands intermixed
with impure sandstones and siltstones. Includes the Cerro Pelon and Coyote quartzites of Cavin (1985).

Lithic arenite — A variety of metasedimentary rocks including metawacke, meta-arkose and impure
metaquartzite. Up to 50% of this unit is a brown weathered impure arkosic metaquartzite with light green
to gray fresh surfaces. Schistosity is variably developed throughout most of the unit and appears to be
better developed towards the contact with the Manzanita granite. Compositional layering (S0) is variably
preserved and is generally at low angles to the dominant schistosity (S1). Metamorphic grade and field
appearance of this unit varies towards the Manzanita granite suggesting development of a contact
aureole associated with granite emplacement. Away from the Mazanita granite metasedimentary rocks
have a granular appearance with a weak foliation. Samples of metasediments near the Manzanita granite
are granoblastic hornfels with porphyroblasts of andalusite, sillimanite, kyanite and garnet. Schists and
slates are also more evident closer to the Manzanita granite contact.

Phyllite and schist — Occurs as interlayered and gradational with the lithic arenite but has been mapped
as a separate unit in several zones where it constitutes greater than 90% of the exposure. This unit also
occurs throughout the metasedimentary unit (Xla) as <20 ft (<5 m) thick beds that were too small to map
as individual units. This unit consists of blue to light grayish green phyllite that become more schistose
and massive in exposures closer to the Manzanita granite. Parent rocks for this lithology were siltstones.
               .
Metachert and Jasperoid — Occur as prominent, low-lying outcrops infolded and interlayered with
the metavolcanic, the metasedimentary, and the blue phyllite unit. These layers range from several cm
to m thickness and are discontinuous along strike frequently pinching off within phyllitic layers or adjacent
to chlorite-rich amphibolites. This unit varies from white to hematite-stained quartz-rich sediment with
narrow miceous zones parallel to local foliation. Jasperoids consist of red-stained, discontinuous pods
of jasper. This unit marks the transition from volcanic to clastic deposition.

Dacite tuff — Gray to light grayish green dacite metatuff with a well-developed schistosity. Major parts
of this unit contains flattened ovoid shaped fragments of light gray to buff phyllite, chlorite phyllite, chert,
metaquartzite and greenstone. These fragments range in size from 1.5 to 12 in (4 to 30 cm) and are
aligned parallel with the schistosity. Towards the gradational contact with the metasedimentary unit the
metatuff contains abundant (up to 80%) blue to blue-gray phyllite fragments. The matrix of the metatuff
is fine grained, gray to greenish gray. The metatuff is interpreted to be the metamorphic equivalent of a
crystal and vitric-crystal tuff that is dominantly dacite with minor andesite. Includes the Lacorocah metatuff
of Parchman (1980).

Intermediate metavolcanics rocks — Buff, schistose bands intimately interfingered with the greenstone
(Xmv) and metatuff (Xmt) units. This unit also defines broad, regional folds. Lithologies within this unit
consists of a mixture of volcaniclastic rocks including quartz-mica phyllites and volcanic rocks with an
andesitic composition (Parchman, 1980). In outcrop this unit has a brown to gray-green color with a
moderately well-developed schistosity.

Mafic metavolcanic rocks — Heterogeneous metavolcanic unit composed of basaltic greenstones,
intermediate volcanics, volcaniclastic greenschists (quartz-actinolite-chlorite schists) and metapelites. Rare
epidote-rich bands are present in some areas and may denote margins of metamorphosed pillows. Other
primary features include compositional layering defined by white, plagioclase(?)-rich layers that are
parallel to foliation and plagioclase-phenocrystic volcanic rocks. Unit grades upwards to volcaniclastic
rocks (Xdt) and is interlayered with mappable units of felsic to intermediate volcanic rocks (Xiv and Xdt).
Unit includes Coyote greenstone and Isleta greenstone of Cavin (1985) and the lower part of Tijeras
greenstone of Connolly (1981).
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Location of geologic cross section

Geologic contact—solid where exposed, dashed where approximately located, dotted where concealed, queried where inferred

Normal fault—Showing dip with arrow showing trend and plunge of slickenlines where measurable; solid where exposed; dashed
where approximately located; dotted where concealed; ball-and-bar on downthrown side                          .

Reverse fault—teeth on upthrown side of hanging wall block; solid where exposed; dashed where approximately located; dotted
where concealed

Well exposed fault showing dip direction and inclination. Number with arrow indicates trend and plunge of striations on fault
surface. Letters indicate apparent sense of shear based on orientation of slip lines combined with stratigraphic offset or other
directional indicators, such as riedel shears and fibre steps (N=normal, R=reverse, D=dextral, S=sinistral; lower case indicates
minor component). Striae with rake angles greater than 60°are considered to be essentially dip-slip (ie. normal or reverse).

Fault with inferred complex slip history; older sense of slip listed first.

Fault trace—double barb indicates trace was inferred from degraded topographic scarp

Anticline—Trace of axial plane showing direction of plunge; dashed where approximately located, dotted where concealed,
queried where inferred

Syncline—Trace of axial plane showing direction of plunge; dashed where approximately located, dotted where concealed,
queried where inferred

Overturned anticline—Trace of axial plane showing direction of plunge; dashed where approximately located                                 .

Overturned syncline—Trace of axial plane showing direction of plunge; dashed where approximately located                           .

Minor low-angle thrust fault, number and long axis of "T" indicates plunge and bearing of low-angle striations (local shortening
direction); most thrusts are essentially dip slip

Strike and dip of minor high-angle strike-slip fault (N=normal, R=reverse, D=dextral, S=sinistral; lower case indicates minor
component), plunge and bearing of striations indicated by numbers at half arrow head, sense of slip from reidel shears or
local offset of other features (eg. veins, and pebbles)

Strike and dip of bedding

Horizontal bedding

Overturned bedding

Strike and dip of S1 foliation, arrow showing trend and plunge of minor F1 fold axis and fold assymmetry in map view              .

Strike and dip of S2 foliation, arrow showing trend and plunge of lineation

Dip direction and inclination of tensional mineral vein; double line shows trend (approximate strike)                                           .
.
Strike and dip of minor dikes and veins

Metamorphic facies isograds (Sil=Sillimanite; And+Gar=Andalusite + Garnet)

Location of radiometrically dated sample

Water-supply well, including number assigned by the New Mexico Office of the State Engineer

Exploratory soil pits

Cañada Colorada geomorphic surface
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M
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Canyon
Largo
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Arroyo del Coyot
e

Cañada
Colorada

Hells Canyon
Wash

Locality
1
2
3
4

Date
1,645 ±16 Ma

1,432.1±4.7 Ma
1,651±42 Ma

1,428±2.01 Ma

Rock Unit
Xmg
Xmv
Xmv
Ygd

Method
U-Pb zircon

40Ar/39Ar (hornblende)
40Ar/39Ar (hornblende)
40Ar/39Ar (muscovite)

Reference

Table of Geochronologic Samples

ISLETA PUEBLO
INDIAN RESERVATION

Mount
Washington

Sol Se
Mete
Peak

Myers and McKay (1970)
Kelley (1977)

Entire Quadrangle

Thomas and others (1995)

Cavin (1985)

SANDIA MILITARY
RESERVATION

Parchman (1981)

Brown, et al. (1999)
Brown, et al. (1999)
Brown, et al. (1999)
Brown, et al. (1999)

Depth (feet)
0-3

3-40

40-85
85-100

100-140
140-155

155-235
235-370
370-395
395-405
405-415

Driller’s Log
top soil

caliche and boulders

gray limestone, broken
gray limestone, broken

red clay, sandy
yellow clay

red clay
red clay
red sand
red sand
red clay

Interpretation
piedmont alluvium

(calcic soil?)

Yeso Fm.

Abo Fm.

Notes

water

Summary Table of Driller’s Logs For Water-supply Wells, Isleta Reservation

Well Number:  RWP-14
Date Drilled:  1958
Drilling Method:  Unknown
Location:  SE1/4, SW 1/4, SW1/4, Sec. 12, T.8N. R.4E.
Elevation: 5,810±20 ft (estimate from topographic map)

Depth (feet)
0-3
3-6

6-65

65-105
105-125
125-145
145-155
155-160

160-170
170-205
205-270
270-290
290-297

Driller’s Log
top soil

white shale
gravel and boulders

red shale
red shale and boulders

red rock, hard
boulders
red shale

red shale
red shale
red shale

brown sand
shale

Interpretation
piedmont alluvium

(calcic soil)
Santa Fe Group

Abo Fm.

Notes

one-day drilling
one-day drilling
one-day drilling

one-day drilling; water
water at 160 ft (1967);
water at 130 ft (1968)

stop date: 7/9/68
depth to water: 162 ft

Well Number:  RWP-24
Date Drilled:  1967 and 1968
Drilling Method:  Unknown
Location:  SE1/4, SE 1/4, NW1/4, Sec. 26, T.8N. R.4E.
Elevation: 5,730±20 ft (estimate from topographic map)

Depth (feet)
0-4

4-10
10-40
40-65
65-70
70-78
78-91

91-105

105-125
125-155
155-163
163-170
170-175
175-178
178-188

188-216
216-222

Driller’s Log
top soil and gravel

gravel
gravel

gravel and boulders
gravel and boulders

limestone
limestone

shale and boulders

limestone
brown shale
gray shale
limestone
limestone

broken limestone
limestone

broken limestone
gray shale

Interpretation
piedmont alluvium

and
Santa Fe Group

(Qpa-Tsp)

Madera Fm.

Notes
starting date: 10/7/70

one-day drilling
one-day drilling

date: 10/19/70

date: 10/23/70

water
stop date: 10/30/70
depth to water: 160 ft

flow rater: 20 gpm
extended hole: 1976
depth to water: 188 ft

flow rate: 12 gpm

Well Number:  RWP-29
Date Drilled:  1970 and 1976
Drilling Method:  Unknown
Location:  SE1/4, SE 1/4, SE1/4, Sec. 18, T.8N. R.5E.
Elevation: 6,010±20 ft (estimate from topographic map)

Lithologic Summary of Geophysical Logs, Sandia National Laboratories site,
Kirtland Air Force Base

Depth (feet)
0-130

Driller’s Log
gravel and sand

Interpretation
undivided piedmont alluvium and

Santa Fe Group (Qpa-Tsp)

Well Number:  MW-13
Date Drilled:  Unknown
Drilling Method:  Unknown
Location:  NE1/4, Sec. 3, T.9N. R.4E.
Elevation: 5,660±20 ft (estimate from topographic map)
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