

# ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ Geochronology results From the Upper Tesuque Formation in Northern Espanola Basin 

Prepared By:<br>Lisa Peters<br>New Mexico Bureau of Geology, Socorro, NM 87801

Prepared For:
Dr. Dan Koning
New Mexico Bureau of Geology, Socorro, NM 87801

Initially prepared as:
NM Geochronology Research
Laboratory Internal Report
NMGRL-IR 398
April 25, 2005

# NEW MEXICO BUREAU OF GEOLOGY AND MINERAL RESOURCES <br> Peter A. Scholle, Director and State Geologist <br> a division of <br> NEW MEXICO INSTITUTE OF MINING AND TECHNOLOGY <br> Daniel H. López, President 

BOARD OF REGENTS
Ex Officio
Bill Richardson, Governor of New Mexico
Michael J. Davis, Superintendent of Public Instruction
Appointed
Ann Murphy Daily, President, 1999-2004, Santa Fe
Randall E. Horn, Secretary/Treasurer, 1997-2003, Albuquerque
Sidney M. Gutierrez, 2001-2007, Albuquerque
Anthony L. Montoya, Jr., 2001-2003, Socorro
Robert E. Taylor, 1997-2003, Silver City

## NEW MEXICO GEOCHRONOLOGY RESEARCH LABORATORY STAFF

William McIntosh, Geochronolog ist
Matt Heizler, Geochronologist

Lisa Peters, Argon Laboratory Technician
RICHARD EsSER, Argon Laboratory Technician

## BUREAU STAFF

Bruce D. Allen, Field Geologist
Ruben Archuleta, Metallurgical Lab. Technician II
Valentina Avramidi, Business Office Manager
Albert Baca, Lead Maintenance Carpenter
Rasima Bakhtiyarova, Manager of Geologic Information Center $\mathcal{E}$ Publication Sales Office
James M. Barker, Associate Director for Operations,
Senior Industrial Minerals Geologist
Paul W. Bauer, Associate Director for Operations,

## Senior Geologist

Doug Bland, Special Projects Manager
Ron Broadhead, Principal Senior Petroleum Geologist
Rita Case, Administrative Secretary II (Alb. Office)
Steven M. Cather, Senior Field Geologist
Richard Chamberlin, Senior Field Geologist
Sean D. Connell, Albuquerque Office Manager, Field Geologist
Ruben A. Crespin, Manager, Fleet/General Services
Gina D'Ambrosio, Production Editor
Kelly Donahue, Senior Geological Lab Associate
NeliaW. Dunbar, Assistant Director for Laboratories,
Analytical Geochemist
Richard Esser, Geochronology Lab. Technician
Robert W. Eveleth, Senior Mining Engineer
Barbara Fazio, Executive Secretary
Brigitte Felix Kludt, GIS Technician
Bonnie Frey, Chemistry Lab. Manager
Leo O. Gabaldon, Cartographer II
Lewis Gillard, GIS Technician
Nancy S. Gilson, Editor
Kathryn E. Glesener, Senior Cartographer
Ibrahim Gundiler, Senior Extractive Metallurgist
Lynn Heizler, Senior Lab. Associate
Matt Heizler, Geochronologist
Lynne Hemenway, Geologic Information Center Coordinator
Gretchen K. Hoffman, Senior Coal Geologist
Peggy S. Johnson, Senior Hydrogeologist

Glen E. Jones, Assistant Director for Computer/Internet Services
Thomas J. Kaus, Cartographer II
Shari A. Kelley, Geologist, Information Specialist
Daniel Koning, Field Geologist
Lynne Kurilovitch, Geologic Lab Associate
Philip Kyle, Research Scientist
Lewis A. Land, Hydrogeologist
Annabelle Lopez, Petroleum Information Coordinator
David W. Love, Principal Senior Environmental Geologist
Jane A. Calvert Love, Managing Editor
Virgil W. Lueth, Mineralogist/Economic Geologist,
Curator of Mineral Museum
Mark Mansell, GIS Specialist
David McCraw, GIS Cartographer
William C. McIntosh, Senior Volcanologist/Geochronologist
Christopher G. McKee, X-ray Facility Manager
Virginia T. McLemore, Minerals Outreach Liaison, Senior Economic Geologist
Lisa Peters, Senior Lab. Associate
L. Greer Price, Associate Director for Outreach,

Senior Geologist/Chief Editor
James Quarles, Lab Associate
Geoff Rawling, Field Geologist
Adam S. Read, Senior Geological Lab. Associate
Marshall A. Reiter, Principal Senior Geophysicist
Gregory Sanchez, Mechanic-Carpenter Helper
Mike Smith, GIS Technician
Mike Timmons, Manager, Geologic Mapping
Stacy Timmons, Senior Geological Research Associate
Loretta Tobin, Admin. Services Coordinator
Amy Trivitt-Kracke, Petroleum Computer Specialist
Manuel J. Vasquez, Mechanic II
Patrick Walsh, Subsurface Fluid Geologist
Susan J. Welch, Manager, Geologic Extension Service
Jennifer Whiteis, GIS Technician
Maureen Wilks, Geologic Librarian

## EMERITUS

George S. Austin, Emeritus Senior Industrial Minerals Geologist
Lynn Brandvold, Emeritus Senior Chemist
Charles E. Chapin, Emeritus Director/State Geologist
John W. Ha wley, Emeritus Senior Environmental Geologist

Jacques R. Renault, Emeritus Senior Geologist Samuel Thompson III, Emeritus Senior Petroleum Geologist Robert H. Weber, Emeritus Senior Geologist

## Introduction

Twelve samples from the lower coarse white tephra series of the upper Tesuque Formation and one stratigraphically higher tuffaceous sample possibly from the lower Chamita tuffaceous zone were submitted for dating by Dan Koning of the NMBMMR. It was noted during the mineral separation process that all samples were altered. Sanidine was not present in any of the samples so biotite was separated from four of the least altered lower coarse white tephras (SCV-948-251102-djk, SCV-318-230702-djk, SCV-1014-051202-djk, and FW1-CWA-Encinos-djk) and from the possible lower Chamita tuffaceous zone sample (SCV-1154-160103-djk). This report presents results from these samples. This information is briefly summarized in Table 1.

Table 1. Brief summary of results.

| Sample | Phase | Unit | Age $\pm \mathbf{2 \sigma ( M a )}$ |
| :--- | :--- | :--- | :--- |
| SCV-1154-160103-djk | biotite | lower Chamita | $9.40 \pm 0.46$ |
| SCV-948-251102-djk | biotite | lowaceous Zone coarse white ash | $11.98 \pm 0.67$ |
| SCV-318-230702-djk | biotite | lower coarse white ash | $12.63 \pm 0.74$ |
| SCV-1014-051202 | biotite | lower ccoarse white ash | $12.7 \pm 2.1$ |
| FW1-CWA-Encinos-djk | biotite | lower coarse white ash | $15.6 \pm 2.4$ |

## ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ Analytical Methods and Results

The submitted samples were crushed and cleaned with distilled water. The biotite was separated with standard magnetic separator and handpicking techniques. The mineral separates were then loaded into aluminum discs and irradiated for 7 hours at the Nuclear Science Center in College Station, Texas.

The biotite separates were heated as single crystals in two steps with a $\mathrm{CO}_{2}$ laser. The lower power A steps were used to drive off the atmospheric Ar and thereby increase the precision of the B steps. The age data are displayed on probability distribution
diagrams (Deino and Potts, 1992). Abbreviated analytical methods for the dated samples are given in Table 2, and details of the overall operation of the New Mexico Geochronology Research Laboratory are provided in the Appendix. The argon isotopic results are summarized in Tables 1 and 2 and listed in Tables 3 and 4. It is noted that the undefined $\mathrm{K} / \mathrm{Ca}$ ratios for these biotites are due to the length of time between irradiation and analysis. 37 Ar , which is used as a proxy for calcium, has a half-life of 35.1 days. These samples were analyzed $\sim 5$ months after irradiation and the 37Ar has decayed to undectectable levels.

These biotite samples from the lower coarse white tephra series yield results very similar to the results from the first suit of tephras submitted by Dan Koning and included in report IR\#365. As with the others, the A step ${ }^{40} \mathrm{Ar}$ signal sizes are up to 2 orders of magnitude larger than the B steps and are very non-radiogenic ( $<5 \%$, Table 2). The B steps are more radiogenic but not as radiogenic as typical biotite samples of this age (<26.6\%, SCV-1154-160103-djk; <32.3\%, SCV-948-251102-djk; <28.9\%, SCV-318-230702-djk; <25.6\%, SCV-1014-051202-djk; <6.3\%, FW1-CWA-Encinos-djk).

Unaltered biotite from mid-Tertiary tuffs commonly have radiogenic yields $>90 \%$. These low radiogenic yields have resulted in age uncertainties one to two orders of magnitude larger than uncertainties of typical unaltered biotite. Weighted-mean ages have been calculated by eliminating suspected xenocrystic contaminants and analytical outliers that have ${ }^{40} \mathrm{Ar}$ signal sizes one to two orders of magnitude smaller than the majority of the other analyses ( $9.40 \pm 0.46 \mathrm{Ma}$, SCV-1154-160103-djk; $11.98 \pm 0.67 \mathrm{Ma}$, SCV-948251102; 12.63 $\pm 0.74 \mathrm{Ma}$, CSV-318-230702-djk; $12.7 \pm 2.1 \mathrm{Ma}, \mathrm{SCV}-1014-051202$-djk; 15.6 $\pm 2.4 \mathrm{Ma}$, FW1-CWA-Encinos-djk). These populations are shown plotted on Figures 1-5 and a summary figure with these five and a previously dated sample of the lower coarse white tephra series are shown on Figure 6.

## Discussion

The weighted mean ages calculated from the B steps are assigned as eruption ages of the lower coarse white ashes ( $11.98 \pm 0.67 \mathrm{Ma}, \mathrm{SCV}-948-251102 ; 12.63 \pm 0.74 \mathrm{Ma}$,

SCV-318-230702-djk; 12.7 $\pm 2.1 \mathrm{Ma}$, SCV-1014-051202-djk; 15.6 $\pm 2.4 \mathrm{Ma}$, FW1-CWA-Encinos-djk). We note that all agree within error to the more precise age assigned to SCV-946FV-251102-djk ( $13.03 \pm 0.40 \mathrm{Ma}$, also from the Lower Coarse White Ashes) that was dated as part of a group of samples submitted previously by Dan Koning. We also note that the age assigned to SCV-1154-160103-djk ( $9.40 \pm 0.46 \mathrm{Ma}$ ), which is stratigraphically higher than the lower coarse white ash tephras, yields a younger age than any of the lower coarse white ashes. This adds to our confidence in the low precision ages we have assigned to these samples. We do caution that with radiogenic yields as low as those from these samples and atmospheric ${ }^{40} \mathrm{Ar}$ signal sizes as large as those seen in the A steps, the possibility of alteration and accompanying Ar loss is very high. This would have the effect of lowering the apparent ages of the biotites. The agreement of the assigned lower coarse white ash ages to each other and the relatively young apparent age assigned to the stratigraphically higher SCV-1154-160103-djk add to our confidence in these ages.

## References Cited

Deino, A., and Potts, R., 1990. Single-Crystal ${ }^{40} \mathrm{Ar} /^{39} \mathrm{Ar}$ dating of the Olorgesailie Formation, Southern Kenya Rift, J. Geophys. Res., 95, 8453-8470.

Deino, A., and Potts, R., 1992. Age-probability spectra from examination of singlecrystal ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ dating results: Examples from Olorgesailie, Southern Kenya Rift, Quat. International, 13/14, 47-53.
sSamson, S.D., and, Alexander, E.C., Jr., 1987. Calibration of the interlaboratory ${ }^{40} \mathrm{Ar}{ }^{39} \mathrm{Ar}$ dating standard, Mmhb-1, Chem. Geol., 66, 27-34.

Steiger, R.H., and Jäger, E., 1977. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth and Planet. Sci. Lett., 36, 359-362.

Taylor, J.R., 1982. An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements,. Univ. Sci. Books, Mill Valley, Calif., 270 p.

Table 2. Summary of ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ results and analytical methods

| Sample | Lab \# | Irradiation | mineral | $\begin{gathered} \text { age } \\ \text { analysis } \\ \hline \end{gathered}$ | \# of crystals | Age | $\pm 2 \sigma$ | comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SCV-1154-160103 | 54445 | NM-172 | biotite | single crystal step-heat | 14 | 9.40 | 0.46 |  |
| SCV-948-251102-djk | 54435 | NM-172 | biotite | single crystal step-heat | 10 | 11.98 | 0.67 |  |
| SCV-318-230702-djk | 54436 | NM-172 | biotite | single crystal step-heat | 14 | 12.63 | 0.74 |  |
| SCV-1014-051202-djk | 54437 | NM-172 | biotite | single crystal step-heat | 12 | 12.7 | 2.1 |  |
| FW1-CWA-Encinos-djk | 54438 | NM-172 | biotite | single crystal step-heat | 7 | 15.6 | 2.4 |  |

Sample preparation and irradiation:
Minerals separated with standard heavy liquid, Franz Magnetic and hand-picking techniques.
Samples were loaded into a machined Al disc and irradiated for 7 hours in D-3 position, Nuclear Science Center, College Station, TX.
Neutron flux monitor Fish Canyon Tuff sanidine (FC-1). Assigned age =27.84 Ma (Deino and Potts, 1990)
relative to Mmhb-1 at 520.4 Ma (Samson and Alexander, 1987).

## Instrumentation:

Mass Analyzer Products 215-50 mass spectrometer on line with automated all-metal extraction system.
Single crystal biotite were step-heated by a 50 watt Synrad $\mathrm{CO}_{2}$ laser.
Reactive gases removed during a 6 minute reaction with 2 SAES GP-50 getters, 1 operated at $\sim 450^{\circ} \mathrm{C}$ and
1 at $20^{\circ} \mathrm{C}$. Gas also exposed to a W filament operated at $\sim 2000^{\circ} \mathrm{C}$ and a cold finger operated at $-140^{\circ} \mathrm{C}$
Analytical parameters:
Electron multiplier sensitivity averaged $1.55 \times 10^{-16} \mathrm{moles} / \mathrm{pA}$
Total system blank and background averaged $4750,24.1,7.6,3.9,1.8 \times 10^{-18}$ moles at masses $40,39,38,37$ and 36 , respectively for the biotite analyses.
J -factors determined to a precision of $\pm 0.1 \%$ by $\mathrm{CO}_{2}$ laser-fusion of 4 single crystals from each of 4 radial positions around the irradiation tray.
Correction factors for interfering nuclear reactions were determined using K -glass and $\mathrm{CaF}_{2}$ and are as follows:
$\left({ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}\right)_{\mathrm{K}}=0.00020 \pm 0.0003 ;\left({ }^{36} \mathrm{Ar}{ }^{37} \mathrm{Ar}\right)_{\mathrm{C}_{\mathrm{a}}}=0.00028 \pm 0.000005$; and $\left({ }^{39} \mathrm{Ar}{ }^{37} \mathrm{Ar}\right)_{\mathrm{Ca}_{\mathrm{a}}}=0.0007 \pm 0.00002$.

Table 3. ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ analytical data.

|  | ID | ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ | ${ }^{37} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ | $\begin{gathered} { }^{36} \mathrm{Ar} /{ }^{39} \mathrm{Ar} \\ \left(\times 10^{-3}\right) \end{gathered}$ | $\begin{aligned} & { }^{39} \mathrm{Ar}_{\mathrm{K}} \\ & \left(\times 10^{-15} \mathrm{~mol}\right) \end{aligned}$ | K/Ca | $\begin{aligned} & { }^{40} \mathrm{Ar}^{*} \\ & (\%) \\ & \hline \end{aligned}$ | Age <br> (Ma) | $\begin{gathered} \pm 1 \sigma \\ (\mathrm{Ma}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SCV-1154-160103-djk,G12:172, single crystal biotite $J=0.0007514, \mathrm{D}=1.005$, NM -172, Lab\#=54445 |  |  |  |  |  |  |  |  |  |
|  | 08B | 138.0 | 0.1330 | 448.0 | 2.200 | 3.8 | 4.1 | 7.66 | 0.89 |
|  | 06B | 60.23 | 0.1886 | 183.7 | 0.817 | 2.7 | 9.9 | 8.09 | 0.55 |
|  | 07B | 123.0 | 0.0739 | 396.0 | 1.557 | 6.9 | 4.9 | 8.11 | 0.81 |
|  | 04B | 98.73 | 0.6000 | 313.0 | 2.525 | 0.85 | 6.4 | 8.49 | 0.64 |
|  | 11B | 53.43 | 0.2938 | 159.2 | 3.022 | 1.7 | 12.0 | 8.66 | 0.40 |
|  | 13B | 39.09 | 0.1371 | 110.2 | 2.273 | 3.7 | 16.7 | 8.83 | 0.29 |
|  | 02B | 86.50 | 0.1156 | 270.6 | 2.070 | 4.4 | 7.6 | 8.87 | 0.57 |
|  | 01B | 92.88 | 0.2874 | 291.3 | 1.395 | 1.8 | 7.3 | 9.23 | 0.72 |
|  | 10B | 42.29 | 0.1649 | 120.0 | 1.162 | 3.1 | 16.1 | 9.23 | 0.44 |
|  | 12B | 32.82 | 0.1508 | 87.35 | 2.096 | 3.4 | 21.4 | 9.50 | 0.24 |
|  | 03B | 115.2 | 0.2693 | 365.4 | 1.529 | 1.9 | 6.3 | 9.79 | 0.75 |
|  | 14B | 28.89 | 0.0201 | 71.79 | 0.464 | 25.4 | 26.6 | 10.39 | 0.52 |
|  | 15B | 31.81 | 0.0311 | 81.66 | 1.027 | 16.4 | 24.2 | 10.39 | 0.33 |
|  | 05B | 57.36 | 0.2471 | 166.5 | 1.838 | 2.1 | 14.3 | 11.06 | 0.41 |
| $\dagger$ | 09B | 128.3 | 0.0782 | 181.5 | 0.397 | 6.5 | 58.2 | 98.52 | 0.90 |
| Mean age $\pm \mathbf{2} \sigma$ |  |  | $\mathrm{n}=14$ | MSWD=4.02 |  | $5.6 \pm 13.8$ |  | 9.40 | 0.46 |
| SCV-948-251102-djk,G1:172, singlecrystal biotite $J=0.0007536, \mathrm{D}=1.005$, NM-172, Lab\#=54435 |  |  |  |  |  |  |  |  |  |
| $\dagger$ | $12 B$ | 483.2 | 11.59 | 1716.6 | 0.009 | 0.044 | -4.8 | -31.9 | 22.3 |
| $t$ | 09B | 394.1 | -210.1472 | 1322.2 | 0.017 | - | -3.5 | -16.6 | 10.9 |
| $\dagger$ | 04B | 651.5 | -147.9266 | 2172.8 | 0.023 | - | -0.4 | -3.5 | 10.5 |
|  | 03B | 1178.1 | -14.6551 | 3979.0 | 0.204 | - | 0.1 | 1.5 | 7.6 |
|  | 15B | 658.0 | -344.2798 | 2109.0 | 0.011 | - | 1.0 | 6.9 | 14.0 |
|  | 05B | 46.22 | 0.8854 | 129.4 | 0.703 | 0.58 | 17.4 | 10.93 | 0.54 |
|  | 07B | 206.1 | -5.4862 | 667.9 | 0.550 | - | 4.0 | 11.2 | 1.5 |
|  | 01B | 58.65 | -0.7929 | 168.5 | 3.233 | - | 15.0 | 11.92 | 0.35 |
|  | 11B | 64.58 | -1.5794 | 188.2 | 1.578 | - | 13.7 | 11.95 | 0.45 |
|  | 14B | 29.82 | 0.7563 | 68.50 | 0.183 | 0.67 | 32.3 | 13.07 | 0.86 |
|  | 02B | 289.1 | -55.9174 | 923.2 | 0.055 | - | 4.1 | 15.3 | 4.9 |
|  | 13B | 80.69 | -163.0441 | 184.3 | 0.021 | - | 15.8 | 15.5 | 6.5 |
|  | 08B | 101.5 | 1.606 | 305.2 | 0.370 | 0.32 | 11.3 | 15.5 | 1.1 |
| $\dagger$ | 06B | 257.7 | 4.302 | 822.3 | 0.037 | 0.12 | 5.9 | 20.4 | 5.7 |
| $t$ | 10B | 127.6 | 3.362 | 372.4 | 0.026 | 0.15 | 14.0 | 24.2 | 6.3 |
| Mean age $\pm \mathbf{2} \sigma$ |  |  | $\mathrm{n}=10$ | MSWD=2.15 |  | $0.52 \pm 0.20$ |  | 11.98 | 0.67 |


|  | ID | ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ | ${ }^{37} \mathrm{Ar}{ }^{39} \mathrm{Ar}$ | ${ }^{36} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ $\left(\times 10^{-3}\right)$ | $\begin{gathered} { }^{39} \mathrm{Ar}_{\mathrm{K}} \\ \left(\times 10^{-15} \mathrm{~mol}\right) \end{gathered}$ | K/Ca | ${ }^{40} \mathrm{Ar}^{*}$ <br> (\%) | Age <br> (Ma) | $\begin{gathered} \pm 1 \sigma \\ (\mathrm{Ma}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SCV-318-230702-djk,G2:172, single crystal biotite, J=0.0007532, $\mathrm{D}=1.005$, NM-172, Lab\#=54436 |  |  |  |  |  |  |  |  |  |
|  | 04B | 28.62 | -4.9755 | 67.47 | 0.605 | - | 28.9 | 11.16 | 0.36 |
|  | 17B | 74.25 | -17.9887 | 217.3 | 0.195 | - | 11.5 | 11.5 | 1.2 |
|  | 06B | 84.95 | -2.1201 | 257.9 | 1.260 | - | 10.1 | 11.57 | 0.59 |
|  | 10B | 146.1 | -2.3238 | 462.7 | 1.205 | - | 6.3 | 12.46 | 0.96 |
|  | 05B | 143.3 | -0.6337 | 453.7 | 1.917 | - | 6.4 | 12.50 | 0.89 |
|  | 13B | 102.5 | -1.9158 | 315.1 | 1.409 | - | 9.0 | 12.54 | 0.69 |
|  | 07B | 121.7 | -0.8026 | 379.7 | 3.091 | - | 7.8 | 12.77 | 0.72 |
|  | 18B | 67.57 | -9.7917 | 193.0 | 0.339 | - | 14.4 | 13.09 | 0.93 |
|  | 03B | 135.7 | -4.6780 | 423.4 | 0.618 | - | 7.5 | 13.83 | 0.95 |
|  | 08B | 76.38 | -5.7816 | 221.9 | 0.500 | - | 13.5 | 13.94 | 0.72 |
|  | 02B | 141.7 | -1.2271 | 443.9 | 1.679 | - | 7.3 | 14.07 | 0.84 |
|  | 01B | 80.58 | 1.617 | 238.0 | 0.300 | 0.32 | 12.9 | 14.08 | 0.93 |
|  | 09B | 127.6 | -0.0411 | 396.0 | 5.098 | - | 8.3 | 14.27 | 0.71 |
|  | 12B | 141.3 | -0.4438 | 439.5 | 5.032 | - | 8.1 | 15.46 | 0.80 |
| $\dagger$ | 16B | 82.98 | 1.706 | 235.6 | 0.164 | 0.30 | 16.3 | 18.3 | 1.5 |
| $\dagger$ | 15B | 359.4 | -14.3189 | 1165.2 | 0.203 | - | 3.9 | 18.6 | 2.8 |
| $t$ | 11B | 395.7 | 4.374 | 1259.3 | 0.075 | 0.12 | 6.0 | 32.3 | 5.9 |
| $\dagger$ | 14B | 212.8 | -18.4930 | 584.8 | 0.165 | - | 18.1 | 50.9 | 2.7 |
| Mean age $\pm \mathbf{2} \boldsymbol{\sigma}$ |  |  | $\mathrm{n}=14$ | MSWD=3.85 |  | $0.32 \pm 0.00$ |  | 12.63 | 0.74 |
| SCV-1014-051202-djk,G\#:172, single crystal biotite, J=0.0007527, $\mathrm{D}=1.005$, NM-172, Lab\#=54437 |  |  |  |  |  |  |  |  |  |
| $\dagger$ | 13B | 2904.3 | -2.7004 | 9847.8 | 0.008 | , | -0.2 | -8.1 | 44.0 |
|  | 14B | 92.61 | 0.7402 | 290.3 | 0.078 | 0.69 | 7.5 | 9.4 | 2.7 |
|  | 12B | 99.06 | 0.1737 | 310.9 | 0.075 | 2.9 | 7.3 | 9.7 | 2.4 |
|  | 06B | 198.5 | 3.499 | 647.6 | 0.030 | 0.15 | 3.7 | 10.0 | 5.2 |
|  | 08B | 49.34 | 1.005 | 140.9 | 0.154 | 0.51 | 15.8 | 10.54 | 0.95 |
|  | 15B | 71.29 | 0.3083 | 209.3 | 0.111 | 1.7 | 13.3 | 12.8 | 1.7 |
|  | 03B | 272.6 | 4.553 | 889.6 | 0.028 | 0.11 | 3.7 | 13.7 | 7.4 |
|  | 07B | 119.7 | 1.932 | 367.4 | 0.039 | 0.26 | 9.4 | 15.2 | 4.0 |
|  | 10B | 65.63 | 0.9355 | 183.8 | 0.078 | 0.55 | 17.3 | 15.4 | 2.9 |
|  | 09B | 117.5 | 2.290 | 354.2 | 0.068 | 0.22 | 11.1 | 17.6 | 2.6 |
|  | 01B | 178.1 | 2.490 | 559.4 | 0.061 | 0.20 | 7.3 | 17.6 | 3.9 |
|  | 02B | 114.4 | 2.245 | 339.2 | 0.036 | 0.23 | 12.5 | 19.4 | 4.0 |
|  | 04B | 62.91 | 2.170 | 159.0 | 0.056 | 0.24 | 25.6 | 21.8 | 2.6 |
| $\dagger$ | 11B | 214.4 | 0.6020 | 647.4 | 0.015 | 0.85 | 10.8 | 31.2 | 8.5 |
| $\dagger$ | 05B | 258.0 | 7.009 | 787.6 | 0.009 | 0.073 | 10.0 | 35.0 | 17.0 |
| Mean age $\pm \mathbf{2} \sigma$ |  |  | $\mathrm{n}=12$ | MSWD=2.74 |  | $0.65 \pm 1.67$ |  | 12.7 | 2.1 |
| FW1-CWA-Encinos-djk,G4:172, single crystal biotite, J=0.000752, $\mathrm{D}=1.005, \mathrm{NM}-172$, Lab\#=54438 |  |  |  |  |  |  |  |  |  |
| $\dagger$ | 08B | 272.8 | -5.0435 | 947.0 | 0.008 | - | -2.7 | -10.0 | 21.9 |
|  | 06B | 216.3 | 0.1191 | 702.9 | 1.777 | 4.3 | 4.0 | 11.7 | 1.4 |
|  | 04B | 223.9 | 0.0623 | 724.8 | 0.234 | 8.2 | 4.4 | 13.2 | 2.2 |
|  | 03B | 580.2 | 0.2994 | 1923.4 | 0.174 | 1.7 | 2.0 | 16.1 | 4.5 |
|  | 01B | 195.8 | 0.1769 | 620.9 | 1.694 | 2.9 | 6.3 | 16.7 | 1.2 |
|  | 05B | 244.5 | 0.0912 | 783.5 | 0.379 | 5.6 | 5.3 | 17.6 | 1.8 |
|  | 02B | 896.6 | 0.2921 | 2983.6 | 0.529 | 1.7 | 1.7 | 20.3 | 5.3 |
|  | 07B | 362.3 | 0.1915 | 1175.4 | 1.646 | 2.7 | 4.1 | 20.3 | 2.1 |
|  | 09B | -138.6154 | -47.6641 | -734.1714 | 0.001 | - | -53.7 | 95.2 | 263.1 |
| $\dagger$ Mean age $\pm 2 \sigma$ |  |  | $\mathrm{n}=7$ | MSWD=2.89 |  | $3.9 \pm 4.7$ |  | 15.6 | 2.4 |


| ID | ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ | ${ }^{37} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ | ${ }^{36} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ <br> $\left(\times 10^{-3}\right)$ | ${ }^{39} \mathrm{Ar}_{\mathrm{K}}$ <br> $\left(\times 10^{-15} \mathrm{~mol}\right)$ | $\mathrm{K} / \mathrm{Ca}$ | ${ }^{40} \mathrm{Ar}^{*}$ | Age |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

[^0]Table 4. ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ analytical data.

| $\begin{array}{lll} \hline \text { ID } & \begin{array}{l} \text { Power } \\ \text { (Watts) } \end{array} & { }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar} \end{array}$ | ${ }^{37} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ | $\begin{aligned} & { }^{36} \mathrm{Ar} /{ }^{39} \mathrm{Ar} \\ & \left(\times 10^{-3}\right) \end{aligned}$ | $\begin{gathered} { }^{39} \mathrm{Ar}_{\mathrm{K}} \\ \left(\times 10^{-15} \mathrm{~mol}\right) \end{gathered}$ | K/Ca | $\begin{aligned} & { }^{40} \mathrm{Ar}^{*} \\ & (\%) \end{aligned}$ | $\begin{gathered} { }^{39} \mathrm{Ar} \\ (\%) \end{gathered}$ | Age <br> (Ma) | $\begin{gathered} \pm 1 \sigma \\ (\mathrm{Ma}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SCV-1154-160103-djkbi,G12:172, single xtal bi, J=0.0007514 $\pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001, \mathrm{NM}-172$, Lab\#=54445-01 |  |  |  |  |  |  |  |  |
| A $\quad 14402.0$ | 0.8313 | 14875.1 | 1.22 | 0.61 | 0.1 | 17.8 | 8.8 | 27.0 |
| B $\quad 1092.88$ | 0.2874 | 291.3 | 5.63 | 1.8 | 7.3 | 100.0 | 9.23 | 0.72 |
| Integrated age $\pm \mathbf{2 \sigma}$ | $\mathrm{n}=2$ |  | 6.84 |  |  |  | 9.1 | 10.3 |
| Plateau $\pm 2 \sigma$ steps A-B | $\mathrm{n}=2$ | MSWD $=0.00$ | 6.84 | 1.6 |  | 100.0 | 9.2 | 1.4 |
| SCV-1154-160103-djkbi,G12:172, single xtal bi, J=0.0007514 $\pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001$, NM-172, Lab\#=54445-02 |  |  |  |  |  |  |  |  |
| A 118836 | 0.1025 | 2816.1 | 2.76 | 5.0 | 0.5 | 24.8 | 5.9 | 5.3 |
| B 1086.50 | 0.1156 | 270.6 | 8.35 | 4.4 | 7.6 | 100.0 | 8.87 | 0.57 |
| Integrated age $\pm \mathbf{2 \sigma}$ | $\mathrm{n}=2$ |  | 11.1 |  |  |  | 8.1 | 3.3 |
| Plateau $\pm 2 \sigma$ steps A-B | $\mathrm{n}=2$ | MSWD $=0.32$ | 11.1 | 4.6 |  | 100.0 | 8.8 | 1.1 |
| SCV-1154-160103-djkbi,G12:172, single xtal bi, J=0.0007514 $\pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001$, NM-172, Lab\#=54445-03 |  |  |  |  |  |  |  |  |
| A $\quad 11529.9$ | 0.2339 | 5189.1 | 1.18 | 2.2 | -0.2 | 16.1 | -4.7 | 9.4 |
| B $\quad 10 \quad 115.2$ | 0.2693 | 365.4 | 6.17 | 1.9 | 6.3 | 100.0 | 9.79 | 0.75 |
| Integrated age $\pm \mathbf{2 \sigma}$ | $\mathrm{n}=2$ |  | 7.35 |  |  |  | 7.5 | 4.0 |
| Plateau $\pm 2 \sigma$ steps A-B | $\mathrm{n}=2$ | MSWD=2.37 | 7.35 | 1.9 |  | 100.0 | 9.7 | 2.3 |
| SCV-1154-160103-djkbi,G12:172, single xtal bi, J=0.0007514 $\pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001$, NM-172, Lab\#=54445-04 |  |  |  |  |  |  |  |  |
| A $\quad 13276.5$ | 0.1932 | 11032.0 | 1.19 | 2.6 | 0.5 | 10.5 | 22.3 | 19.1 |
| B 1098.73 | 0.6000 | 313.0 | 10.2 | 0.85 | 6.4 | 100.0 | 8.49 | 0.64 |
| Integrated age $\pm \mathbf{2 \sigma}$ | $\mathrm{n}=2$ |  | 11.4 |  |  |  | 9.9 | 4.9 |
| Plateau $\pm 2 \sigma$ steps A-B | $\mathrm{n}=2$ | MSWD $=0.52$ | 11.4 | 1.0 |  | 100.0 | 8.5 | 1.3 |
| SCV-1154-160103-djkbi,G12:172, single xtal bi, J=0.0007514 $\pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001$, $\mathrm{NM}-172$, Lab\#=54445-05 |  |  |  |  |  |  |  |  |
| A 13050.5 | 0.2927 | 10404.0 | 1.09 | 1.7 | -0.8 | 12.8 | -32.7 | 18.7 |
| B 1057.36 | 0.2471 | 166.5 | 7.41 | 2.1 | 14.3 | 100.0 | 11.06 | 0.41 |
| Integrated age $\pm \mathbf{2 \sigma}$ | $\mathrm{n}=2$ |  | 8.50 |  |  |  | 5.5 | 5.2 |
| Plateau $\pm 2 \sigma$ steps A-B | $\mathrm{n}=2$ | MSWD=5.46 | 8.50 | 2.0 |  | 100.0 | 11.0 | 1.9 |
| SCV-1154-160103-djkbi,G12:172, single xtal bi, J=0.0007514 $\pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001$, NM-172, Lab\#=54445-06 |  |  |  |  |  |  |  |  |
| A $\quad 11775.9$ | 0.1738 | 6015.7 | 1.18 | 2.9 | -0.1 | 26.3 | -2.3 | 11.1 |
| B 1060.23 | 0.1886 | 183.7 | 3.29 | 2.7 | 9.9 | 100.0 | 8.09 | 0.55 |
| Integrated age $\pm \mathbf{2 \sigma}$ | $\mathrm{n}=2$ |  | 4.47 |  |  |  | 5.4 | 6.3 |
| Plateau $\pm 2 \sigma$ steps A-B | $\mathrm{n}=2$ | MSWD $=0.87$ | 4.47 | 2.8 |  | 100.0 | 8.1 | 1.1 |
| SCV-1154-160103-djkbi,G12:172, single xtal bi, $J=0.0007514 \pm 0.10 \%, D=1.005 \pm 0.001$, $\mathrm{NM}-172$, Lab\# $=54445-07$ |  |  |  |  |  |  |  |  |
| $\begin{array}{lll}\text { A } & 1 & 469.9\end{array}$ | 0.0767 | 1578.9 | 2.31 | 6.7 | 0.7 | 26.9 | 4.5 | 3.0 |
| B $\quad 10 \quad 123.0$ | 0.0739 | 396.0 | 6.28 | 6.9 | 4.9 | 100.0 | 8.11 | 0.81 |
| Integrated age $\pm \mathbf{2 \sigma}$ | $\mathrm{n}=2$ |  | 8.59 |  |  |  | 7.1 | 2.5 |
| Plateau $\pm 2 \sigma$ steps A-B | $\mathrm{n}=2$ | MSWD=1.36 | 8.59 | 6.8 |  | 100.0 | 7.9 | 1.8 |


| ID | Power <br> (Watts) | ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ | ${ }^{37} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ | $\begin{aligned} & { }^{36} \mathrm{Ar} /{ }^{39} \mathrm{Ar} \\ & \left(\times 10^{-3}\right) \\ & \hline \end{aligned}$ | $\begin{gathered} { }^{39} \mathrm{Ar}_{\mathrm{K}} \\ \left(\times 10^{-15} \mathrm{~mol}\right) \end{gathered}$ | K/Ca | $\begin{aligned} & { }^{40} \mathrm{Ar}^{*} \\ & (\%) \\ & \hline \end{aligned}$ | ${ }^{39} \mathrm{Ar}$ <br> (\%) | Age <br> (Ma) | $\begin{gathered} \pm 1 \sigma \\ (\mathrm{Ma}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SCV-1154-160103-djkbi,G12:172, single xtal bi, $\mathrm{J}=0.0007514 \pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001$, $\mathrm{NM}-172$, Lab\# $=54445-08$ |  |  |  |  |  |  |  |  |  |  |
| A |  | 2389.6 | 0.3028 | 8081.3 | 2.11 | 1.7 | 0.1 | 19.2 | 2.1 | 14.3 |
| B | 10 | 138.0 | 0.1330 | 448.0 | 8.87 | 3.8 | 4.1 | 100.0 | 7.66 | 0.89 |
|  | ted age | $\pm \mathbf{~} \mathbf{~} \sigma$ | $\mathrm{n}=2$ |  | 11.0 |  |  |  | 6.6 | 6.6 |
|  | $u \pm 2 \sigma$ | steps A-B | $\mathrm{n}=2$ | MSWD $=0.15$ | 11.0 | 3.4 |  | 100.0 | 7.6 | 1.8 |
| SCV-1154-160103-djkbi,G12:172, single xtal bi, $J=0.0007514 \pm 0.10 \%, D=1.005 \pm 0.001$, NM-172, Lab\#=54445-09 |  |  |  |  |  |  |  |  |  |  |
| A | 1 | 151.8 | 0.2618 | 282.8 | 1.18 | 1.9 | 45.0 | 42.5 | 90.3 | 1.2 |
| B | 10 | 128.3 | 0.0782 | 181.5 | 1.60 | 6.5 | 58.2 | 100.0 | 98.52 | 0.90 |
|  | ed ag | e $\pm 2 \sigma$ | $\mathrm{n}=2$ |  | 2.78 |  |  |  | 95.0 | 1.6 |
|  | $u \pm 2 \sigma$ | steps $A-B$ | $\mathrm{n}=2$ | MSWD=29.77 | 2.78 | 4.6 |  | 100.0 | 95.6 | 7.9 |
| SCV-1154-160103-djkbi,G12:172, single xtal bi, $\mathrm{J}=0.0007514 \pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001, \mathrm{NM}-172$, Lab\#=54445-10 |  |  |  |  |  |  |  |  |  |  |
| A | 1 | 675.2 | 0.0303 | 2265.3 | 1.08 | 16.8 | 0.9 | 18.7 | 7.9 | 4.4 |
| B | 10 | 42.29 | 0.1649 | 120.0 | 4.69 | 3.1 | 16.1 | 100.0 | 9.23 | 0.44 |
|  | ed ag | e $\pm 2 \sigma$ | $\mathrm{n}=2$ |  | 5.77 |  |  |  | 9.0 | 2.0 |
|  | $u \pm 2 \sigma$ | steps $A-B$ | $\mathrm{n}=2$ | MSWD $=0.09$ | 5.77 | 5.7 |  | 100.0 | 9.22 | 0.87 |
| SCV-1154-160103-djkbi,G12:172, single xtal bi, $\mathrm{J}=0.0007514 \pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001, \mathrm{NM}-172$, Lab\#=54445-11 |  |  |  |  |  |  |  |  |  |  |
| A | 1 | 565.5 | 0.0375 | 1916.8 | 1.26 | 13.6 | -0.2 | 9.3 | -1.2 | 3.9 |
| B | 10 | 53.43 | 0.2938 | 159.2 | 12.2 | 1.7 | 12.0 | 100.0 | 8.66 | 0.40 |
|  | ted age | $\pm \mathbf{~} \mathbf{2} \sigma$ | $\mathrm{n}=2$ |  | 13.4 |  |  |  | 7.7 | 1.3 |
|  | $u \pm 2 \sigma$ | steps A-B | $\mathrm{n}=2$ | MSWD=6.24 | 13.4 | 2.8 |  | 100.0 | 8.6 | 2.0 |
| SCV-1154-160103-djkbi,G12:172, single xtal bi, $\mathrm{J}=0.0007514 \pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001, \mathrm{NM}-172$, Lab\#=54445-12 |  |  |  |  |  |  |  |  |  |  |
| A | 1 | 485.5 | 0.1789 | 1624.6 | 2.01 | 2.9 | 1.1 | 19.2 | 7.4 | 3.3 |
| B | 10 | 32.82 | 0.1508 | 87.35 | 8.45 | 3.4 | 21.4 | 100.0 | 9.50 | 0.24 |
|  | rated age | e $\pm 2 \sigma$ | $\mathrm{n}=2$ |  | 10.5 |  |  |  | 9.1 | 1.5 |
|  | $u \pm 2 \sigma$ | steps A-B | $\mathrm{n}=2$ | MSWD=0.41 | 10.5 | 3.3 |  | 100.0 | 9.48 | 0.48 |
| SCV-1154-160103-djkbi,G12:172, single xtal bi, $\mathrm{J}=0.0007514 \pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001, \mathrm{NM}-172$, Lab\# $=54445-13$ |  |  |  |  |  |  |  |  |  |  |
| A | 1 | 910.8 | 0.0455 | 3062.0 | 2.06 | 11.2 | 0.7 | 18.4 | 8.1 | 5.5 |
| B | 10 | 39.09 | 0.1371 | 110.2 | 9.17 | 3.7 | 16.7 | 100.0 | 8.83 | 0.29 |
|  | rated age | e $\pm \mathbf{2 \sigma}$ | $\mathrm{n}=2$ |  | 11.2 |  |  |  | 8.7 | 2.3 |
|  | $a \mathrm{u} \pm 2 \sigma$ | steps $A-B$ | $\mathrm{n}=2$ | MSWD=0.02 | 11.2 | 5.1 |  | 100.0 | 8.82 | 0.58 |
| SCV-1154-160103-djkbi,G12:172, single xtal bi, J=0.0007514 $\pm 0.10 \%, D=1.005 \pm 0.001, \mathrm{NM}-172$, Lab\# $=54445-14$ |  |  |  |  |  |  |  |  |  |  |
| A | 1 | 441.0 | 0.0806 | 1480.6 | 1.01 | 6.3 | 0.8 | 35.1 | 4.7 | 3.4 |
| B | 10 | 28.89 | 0.0201 | 71.79 | 1.87 | 25.4 | 26.6 | 100.0 | 10.39 | 0.52 |
|  | rated age | $\pm \pm \mathbf{~} \mathbf{\sigma}$ | $\mathrm{n}=2$ |  | 2.88 |  |  |  | 8.4 | 2.6 |
|  | $a u \pm 2 \sigma$ | steps A-B | $\mathrm{n}=2$ | MSWD=2.83 | 2.88 | 18.7 |  | 100.0 | 10.3 | 1.7 |
| SCV-1154-160103-djkbi,G12:172, single xtal bi, J=0.0007514 $\pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001$, NM-172, Lab\#=54445-15 |  |  |  |  |  |  |  |  |  |  |
| A | 1 | 219.6 | 0.0704 | 719.4 | 1.79 | 7.2 | 3.2 | 30.1 | 9.6 | 1.7 |
| B | 10 | 31.81 | 0.0311 | 81.66 | 4.14 | 16.4 | 24.2 | 100.0 | 10.39 | 0.33 |
| Integrated age $\pm \mathbf{2 \sigma}$ |  |  | $\mathrm{n}=2$ |  | 5.92 |  |  |  | 10.1 | 1.2 |
|  | $a u \pm 2 \sigma$ | steps A-B | $\mathrm{n}=2$ | MSWD $=0.24$ | 5.92 | 13.6 |  | 100.0 | 10.36 | 0.65 |


| ID | Power <br> (Watts) | ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ | ${ }^{37} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ | $\begin{aligned} & { }^{36} \mathrm{Ar} /{ }^{39} \mathrm{Ar} \\ & \left(\times 10^{-3}\right) \end{aligned}$ | $\begin{gathered} { }^{39} \mathrm{Ar}_{\mathrm{K}} \\ \left(\times 10^{-15} \mathrm{~mol}\right) \end{gathered}$ | $\mathrm{K} / \mathrm{Ca}$ | ${ }^{40} \mathrm{Ar}{ }^{*}$ <br> (\%) | ${ }^{39} \mathrm{Ar}$ <br> (\%) | Age <br> (Ma) | $\begin{aligned} & \pm 1 \sigma \\ & (\mathrm{Ma}) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SCV-948-251102-djk,G1:172, single xtal bi, J=0.0007536 $\pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001$, NM-172, Lab\#=54435-01 |  |  |  |  |  |  |  |  |  |  |
| A | 2 | 786.6 | -1.5384 | 2637.6 | 7.49 | - | 0.9 | 36.5 | 9.6 | 4.5 |
| B | 10 | 58.65 | -0.7929 | 168.5 | 13.0 | - | 15.0 | 100.0 | 11.92 | 0.35 |
|  | ated age | $\pm \mathbf{~} \mathbf{~} \sigma$ | $\mathrm{n}=2$ |  | 20.5 |  |  |  | 11.1 | 3.6 |
|  | $u \pm 2 \sigma$ | steps $A-B$ | $\mathrm{n}=2$ | MSWD=0.27 | 20.5 | 0.000 |  | 100.0 | 11.91 | 0.70 |
| SCV-948-251102-djk,G1:172, single xtal bi, J=0.0007536 $\pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001$, NM-172, Lab\#=54435-02 |  |  |  |  |  |  |  |  |  |  |
| A | 2 | 362.9 | -1.6288 | 1205.1 | 7.13 | - | 1.8 | 97.0 | 9.0 | 2.1 |
| B | 10 | 289.1 | -55.9174 | 923.2 | 0.223 | - | 4.1 | 100.0 | 15.3 | 4.9 |
|  | rated age | e $\pm \mathbf{2 \sigma}$ | $\mathrm{n}=2$ |  | 7.35 |  |  |  | 9.2 | 4.2 |
|  | $\underline{ \pm} \mathbf{2} \boldsymbol{\sigma}$ | steps A-B | $\mathrm{n}=2$ | MSWD=1.34 | 7.35 | 0.000 |  | 100.0 | 10.0 | 4.6 |
| SCV-948-251102-djk,G1:172, single xtal bi, $\mathrm{J}=0.0007536 \pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001$, NM-172, Lab\#=54435-03 |  |  |  |  |  |  |  |  |  |  |
| A | 2 | 5565.3 | -667.5564 | 18951.2 | 0.027 | - | -1.6 | 3.2 | -85.4 | 49.8 |
| B |  | 1178.1 | -14.6551 | 3979.0 | 0.823 | - | 0.1 | 100.0 | 1.5 | 7.6 |
|  | rated age | $\pm \mathbf{~} \mathbf{2} \sigma$ | $\mathrm{n}=2$ |  | 0.850 |  |  |  | -1.2 | 16.1 |
|  | $\underline{ \pm} \mathbf{2} \boldsymbol{\sigma}$ | steps A-B | $\mathrm{n}=2$ | MSWD=2.97 | 0.850 | 0.000 |  | 100.0 | -0.5 | 25.9 |
| SCV-948-251102-djk,G1:172, single xtal bi, J=0.0007536 $\pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001$, NM-172, Lab\#=54435-04 |  |  |  |  |  |  |  |  |  |  |
| A | 2 | 269.0 | -3.6560 | 887.1 | 3.38 | - | 2.4 | 97.3 | 8.9 | 1.8 |
| B | 10 | 651.5 | -147.9266 | 2172.8 | 0.093 | - | -0.4 | 100.0 | -3.5 | 10.5 |
|  | rated age | $\pm \mathbf{~} \mathbf{\sigma}$ | $\mathrm{n}=2$ |  | 3.47 |  |  |  | 8.6 | 3.7 |
|  | $\underline{ \pm} \mathbf{2} \boldsymbol{\sigma}$ | steps A-B | $\mathrm{n}=2$ | MSWD=1.36 | 3.47 | 0.000 |  | 100.0 | 8.5 | 4.2 |
| SCV-948-251102-djk,G1:172, single xtal bi, J=0.0007536 $\pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001, \mathrm{NM}-172$, Lab\#=54435-05 |  |  |  |  |  |  |  |  |  |  |
| A | 2 | 828.1 | -2.3011 | 2772.5 | 5.04 | - | 1.0 | 64.0 | 11.7 | 4.7 |
| B | 10 | 46.22 | 0.8854 | 129.4 | 2.84 | 0.58 | 17.4 | 100.0 | 10.93 | 0.54 |
|  | rated age | $\pm \pm \mathbf{~}$ | $\mathrm{n}=2$ |  | 7.87 |  |  |  | 11.4 | 6.2 |
|  | $\underline{ \pm} \mathbf{2} \boldsymbol{\sigma}$ | steps A-B | $\mathrm{n}=2$ | MSWD=0.02 | 7.87 | 0.58 |  | 100.0 | 10.9 | 1.1 |
| SCV-948-251102-djk,G1:172, single xtal bi, J=0.0007536 $\pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001$, NM-172, Lab\#=54435-06 |  |  |  |  |  |  |  |  |  |  |
| A | 2 | 329.6 | -3.2762 | 1098.8 | 3.68 | - | 1.4 | 96.1 | 6.3 | 2.0 |
| B | 10 | 257.7 | 4.302 | 822.3 | 0.150 | 0.12 | 5.9 | 100.0 | 20.4 | 5.7 |
|  | rated age | e $\pm 2 \sigma$ | $\mathrm{n}=2$ |  | 3.83 |  |  |  | 6.8 | 4.0 |
|  | $a u \pm 2 \sigma$ | steps A-B | $\mathrm{n}=2$ | MSWD=5.45 | 3.83 | 0.12 |  | 100.0 | 7.8 | 8.8 |
| SCV-948-251102-djk,G1:172, single xtal bi, $J=0.0007536 \pm 0.10 \%, D=1.005 \pm 0.001$, NM-172, Lab\#=54435-07 |  |  |  |  |  |  |  |  |  |  |
| A | 2 | 441.7 | -2.5040 | 1468.4 | 4.84 | - | 1.7 | 68.6 | 10.3 | 2.7 |
| B | 10 | 206.1 | -5.4862 | 667.9 | 2.22 | - | 4.0 | 100.0 | 11.2 | 1.5 |
|  | rated age | $\pm \mathbf{~} \mathbf{\sigma}$ | $\mathrm{n}=2$ |  | 7.06 |  |  |  | 10.6 | 4.3 |
|  | $a \mathrm{t}$ 2 $\sigma$ | steps A-B | $\mathrm{n}=2$ | MSWD=0.10 | 7.06 | 0.000 |  | 100.0 | 11.0 | 2.5 |
| SCV-948-251102-djk,G1:172, single xtal bi, $\mathrm{J}=0.0007536 \pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001$, NM-172, Lab\#=54435-08 |  |  |  |  |  |  |  |  |  |  |
| A | 2 | 256.8 | -1.9814 | 849.2 | 6.04 | - | 2.2 | 80.2 | 7.7 | 1.6 |
| B | 10 | 101.5 | 1.606 | 305.2 | 1.49 | 0.32 | 11.3 | 100.0 | 15.5 | 1.1 |
| Integrated age $\pm 2 \sigma$ |  |  | $\mathrm{n}=2$ |  | 7.53 |  |  |  | 9.3 | 2.8 |
|  | $a u \pm 2 \sigma$ | steps A-B | $\mathrm{n}=2$ | MSWD=16.41 | 7.53 | 0.32 |  | 100.0 | 13.1 | 7.2 |


| ID | Power <br> (Watts) | ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ | ${ }^{37} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ | $\begin{aligned} & { }^{36} \mathrm{Ar} /{ }^{39} \mathrm{Ar} \\ & \left(\times 10^{-3}\right) \end{aligned}$ | $\begin{gathered} { }^{39} \mathrm{Ar}_{\mathrm{K}} \\ \left(\times 10^{-15} \mathrm{~mol}\right) \end{gathered}$ | $\mathrm{K} / \mathrm{Ca}$ | ${ }^{40} \mathrm{Ar}^{*}$ <br> (\%) | ${ }^{39} \mathrm{Ar}$ <br> (\%) | Age <br> (Ma) | $\begin{aligned} & \pm 1 \sigma \\ & (\mathrm{Ma}) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SCV-948-251102-djk, G1:172, single xtal bi, J=0.0007536 $\pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001, \mathrm{NM}-172$, Lab\#=54435-09 |  |  |  |  |  |  |  |  |  |  |
| A | 2 | 544.1 | -3.2361 | 1811.4 | 3.73 | - | 1.6 |  | 11.6 | 3.1 |
| SCV-948-251102-djk,G1:172, single xtal bi, $=0.0007536 \pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001$, NM-172, Lab\#=54435-9B |  |  |  |  |  |  |  |  |  |  |
|  | 10 | 394.1 | -210.1472 | 1322.2 | 0.069 | - | -3.5 |  | -16.6 | 10.9 |
|  |  |  |  |  |  |  |  |  |  |  |
| A | 2 | 288.8 | -3.3979 | 949.8 | 3.66 | - | 2.7 | 97.3 | 10.6 | 1.9 |
| B | 10 | 127.6 | 3.362 | 372.4 | 0.103 | 0.15 | 14.0 | 100.0 | 24.2 | 6.3 |
|  | ated ag | $\pm 2 \sigma$ | $\mathrm{n}=2$ |  | 3.77 |  |  |  | 11.0 | 3.8 |
|  | $a \pm \mathbf{~} \sigma^{\circ}$ | steps A-B | $\mathrm{n}=2$ | MSWD=4.29 | 3.77 | 0.15 |  | 100.0 | 11.7 | 7.6 |
| SCV-948-251102-djk,G1:172, single xtal bi, $==0.0007536 \pm 0.10 \%, D=1.005 \pm 0.001$, NM-172, Lab\#=54435-11 |  |  |  |  |  |  |  |  |  |  |
| A | 2 | 873.4 | -2.4109 | 2942.7 | 4.78 |  | 0.4 | 42.9 | 4.9 | 5.1 |
| B | 10 | 64.58 | -1.5794 | 188.2 | 6.37 | - | 13.7 | 100.0 | 11.95 | 0.45 |
|  | ted ag | $\pm 2 \sigma$ | $\mathrm{n}=2$ |  | 11.2 |  |  |  | 8.9 | 4.7 |
|  | $\underline{ \pm} \pm \mathbf{2}$ | steps A-B | $\mathrm{n}=2$ | MSWD=1.90 | 11.2 | 0.000 |  | 100.0 | 11.9 | 1.2 |
| SCV-948-251102-djk,G1:172, single xtal bi, J=0.0007536 $\pm 0.10 \%, D=1.005 \pm 0.001$, NM-172, Lab\#=54435-12 |  |  |  |  |  |  |  |  |  |  |
| A | 2 | 1097.3 | -12.1184 | 3675.7 | 1.01 |  | 0.9 | 96.5 | 13.6 | 7.4 |
| B | 10 | 483.2 | 11.59 | 1716.6 | 0.036 | 0.044 | -4.8 | 100.0 | -31.9 | 22.3 |
|  | ated ag | $\pm \mathbf{2 \sigma}$ | $\mathrm{n}=2$ |  | 1.04 |  |  |  | 12.0 | 14.5 |
|  | $\underline{ \pm} \pm \mathbf{2}$ | steps A-B | $\mathrm{n}=2$ | MSWD=3.74 | 1.04 | 0.044 |  | 100.0 | 9.1 | 27.2 |
| SCV-948-251102-djk,G1:172, single xtal bi, J=0.0007536 $\pm 0.10 \%, D=1.005 \pm 0.001$, NM-172, Lab\#=54435-13 |  |  |  |  |  |  |  |  |  |  |
| A | 2 | 192.7 | -2.8414 | 626.6 | 4.23 |  | 3.8 | 98.0 | 9.9 | 1.2 |
| B | 10 | 80.69 | -163.0441 | 184.3 | 0.085 | - | 15.8 | 100.0 | 15.5 | 6.5 |
|  | ated ag | $\pm \mathbf{2 \sigma}$ | $\mathrm{n}=2$ |  | 4.32 |  |  |  | 10.0 | 2.3 |
|  | $a \mathrm{t} \mathbf{2} \mathbf{\sigma}$ | steps A-B | $\mathrm{n}=2$ | MSWD=0.70 | 4.32 | 0.000 |  | 100.0 | 10.1 | 2.3 |
| SCV-948-251102-djk,G1:172, single xtal bi, $\mathrm{J}=0.0007536 \pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001$, $\mathrm{NM}-172$, Lab\#=54435-14 |  |  |  |  |  |  |  |  |  |  |
| A | 2 | 157.9 | -1.7492 | 507.4 | 6.72 | - | 4.9 | 90.1 | 10.57 | 0.99 |
| B | 10 | 29.82 | 0.7563 | 68.50 | 0.737 | 0.67 | 32.3 | 100.0 | 13.07 | 0.86 |
|  | rated ag | $\pm \mathbf{2} \sigma$ | $\mathrm{n}=2$ |  | 7.45 |  |  |  | 10.8 | 1.8 |
|  | $a u \pm 2 \sigma$ | steps A-B | $\mathrm{n}=2$ | MSWD=3.60 | 7.45 | 0.67 |  | 100.0 | 12.0 | 2.5 |
| SCV-948-251102-djk,G1:172, single xtal bi, J=0.0007536 $\pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001$, NM-172, Lab\#=54435-15 |  |  |  |  |  |  |  |  |  |  |
| A | 2 | 208.9 | -4.8152 | 683.3 | 2.48 | - | 3.2 | 98.3 | 8.9 | 1.5 |
| B | 10 | 658.0 | -344.2798 | 2109.0 | 0.044 | - | 1.0 | 100.0 | 6.9 | 14.0 |
|  | rated ag | $\pm 2 \sigma$ | $\mathrm{n}=2$ |  | 2.53 |  |  |  | 8.9 | 3.1 |
|  | $a u \pm 2 \sigma$ | steps A-B | $\mathrm{n}=2$ | MSWD=0.02 | 2.53 | 0.000 |  | 100.0 | 8.9 | 3.0 |
| SCV-318-230702-djk,G2:172, single xtal bi, $J=0.0007532 \pm 0.10 \%, D=1.005 \pm 0.001$, $\mathrm{NM}-172$, Lab\#=54436-01 |  |  |  |  |  |  |  |  |  |  |
| A | 2 | 545.2 | -1.2192 | 1812.3 | 7.77 | - | 1.8 | 86.5 | 12.9 | 3.2 |
| B | 10 | 80.58 | 1.617 | 238.0 | 1.21 | 0.32 | 12.9 | 100.0 | 14.08 | 0.93 |
| Integrated age $\pm 2 \sigma$ |  |  | $\mathrm{n}=2$ |  | 8.98 |  |  |  | 13.1 | 5.6 |
|  | $a u \pm 2 \sigma$ | steps A-B | $\mathrm{n}=2$ | MSWD=0.12 | 8.98 | 0.32 |  | 100.0 | 14.0 | 1.8 |


| ID | Power (Watts) | ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ | ${ }^{37} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ | $\begin{aligned} & { }^{36} \mathrm{Ar} /{ }^{39} \mathrm{Ar} \\ & \left(\times 10^{-3}\right) \\ & \hline \end{aligned}$ | $\begin{gathered} { }^{39} \mathrm{Ar}_{\mathrm{K}} \\ \left(\times 10^{-15} \mathrm{~mol}\right) \end{gathered}$ | K/Ca | $\begin{aligned} & { }^{40} \mathrm{Ar}^{*} \\ & (\%) \\ & \hline \end{aligned}$ | $\begin{array}{r} { }^{39} \mathrm{Ar} \\ (\%) \\ \hline \end{array}$ | Age <br> (Ma) | $\begin{aligned} & \pm 1 \sigma \\ & (\mathrm{Ma}) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SCV-318-230702-djk, G2:172, single xtal bi, |  |  |  | $J=0.0007532 \pm 0.10 \%, D=1.005 \pm 0.001, \mathrm{NM}-172$, |  |  | Lab\#=54436-02 |  |  |  |
| A | 2 | 1893.0 | -1.3514 | 6376.8 | 5.38 | , | 0.5 | 44.3 | 11.6 | 10.8 |
| B | 10 | 141.7 | -1.2271 | 443.9 | 6.77 | - | 7.3 | 100.0 | 14.07 | 0.84 |
|  | ated age | e $\pm 2 \sigma$ | $\mathrm{n}=2$ |  | 12.2 |  |  |  | 13.0 | 10.3 |
|  | $u \pm 2 \sigma$ | steps A-B | $\mathrm{n}=2$ | MSWD=0.05 | 12.2 | 0.000 |  | 100.0 | 14.1 | 1.7 |
| SCV-318-230702-djk,G2:172, single xtal bi |  |  |  | i, $J=0.0007532 \pm 0.10 \%, D=1.005 \pm 0.001, N M-172$ |  |  | Lab\#=54436-03 |  |  |  |
| A | 2 | 962.1 | -1.6925 | 3206.7 | 6.34 | - | 1.5 | 71.8 | 19.4 | 5.5 |
| B | 10 | 135.7 | -4.6780 | 423.4 | 2.49 | - | 7.5 | 100.0 | 13.83 | 0.95 |
|  | rated age | e $\pm \mathbf{2} \boldsymbol{\sigma}$ | $\mathrm{n}=2$ |  | 8.83 |  |  |  | 17.8 | 8.2 |
|  | $\underline{ \pm} \pm \mathbf{\sigma}$ | steps A-B | $\mathrm{n}=2$ | $M S W D=1.00$ | 8.83 | 0.000 |  | 100.0 | 14.0 | 1.9 |
| SCV-318-230702-djk,G2:172, single xtal bi, |  |  |  | i, $J=0.0007532 \pm 0.10 \%, D=1.005 \pm 0.001, N M-172$ |  |  | Lab\#=54436-04 |  |  |  |
| A | 2 | 642.7 | -1.9953 | 2149.8 | 5.96 | , | 1.1 | 70.9 | 9.9 | 3.7 |
| B | 10 | 28.62 | -4.9755 | 67.47 | 2.44 | - | 28.9 | 100.0 | 11.16 | 0.36 |
|  | rated age | e $\pm 2 \sigma$ | $\mathrm{n}=2$ |  | 8.40 |  |  |  | 10.2 | 5.3 |
|  | $\underline{ \pm} \mathbf{2} \boldsymbol{\sigma}$ | steps A-B | $\mathrm{n}=2$ | MSWD=0.12 | 8.40 | 0.000 |  | 100.0 | 11.15 | 0.71 |
| SCV-318-230702-djk, G2:172, single xtal bi |  |  |  | i, J=0.0007532 $\pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001$, NM-172, |  |  | Lab\#=54436-05 |  |  |  |
| A | 2 | 876.7 | -0.7251 | 2952.1 | 5.49 | - | 0.5 | 41.5 | 5.9 | 5.0 |
| B | 10 | 143.3 | -0.6337 | 453.7 | 7.73 | - | 6.4 | 100.0 | 12.50 | 0.89 |
|  | rated age | $\pm \pm \mathbf{~} \boldsymbol{\sigma}$ | $\mathrm{n}=2$ |  | 13.2 |  |  |  | 9.7 | 5.0 |
|  | $\underline{ \pm} \pm \mathbf{\sigma}$ | steps A-B | $\mathrm{n}=2$ | MSWD=1.69 | 13.2 | 0.000 |  | 100.0 | 12.3 | 2.3 |
| SCV-318-230702-djk,G2:172, single xtal bi, |  |  |  | i, $J=0.0007532 \pm 0.10 \%, D=1.005 \pm 0.001, N M-172$ |  |  | Lab\#=54436-06 |  |  |  |
| A | 2 | 571.6 | -0.7495 | 1912.0 | 6.68 | - | 1.1 | 56.8 | 8.8 | 3.2 |
| B | 10 | 84.95 | -2.1201 | 257.9 | 5.08 | - | 10.1 | 100.0 | 11.57 | 0.59 |
|  | rated age | e $\pm \mathbf{2} \boldsymbol{\sigma}$ | $\mathrm{n}=2$ |  | 11.8 |  |  |  | 10.0 | 4.0 |
|  | $\underline{u} \pm \mathbf{2 \sigma}$ | steps A-B | $\mathrm{n}=2$ | MSWD=0.70 | 11.8 | 0.000 |  | 100.0 | 11.5 | 1.2 |
| SCV-318-230702-djk,G2:172, single xtal bi, |  |  |  | i, $J=0.0007532 \pm 0.10 \%, D=1.005 \pm 0.001, \mathrm{NM}-172$ |  |  | Lab\#=54436-07 |  |  |  |
| A |  | 2007.6 | -1.1141 | 6728.3 | 9.50 |  | 1.0 | 43.2 | 26.0 | 11.5 |
| B | 10 | 121.7 | -0.8026 | 379.7 | 12.5 | - | 7.8 | 100.0 | 12.77 | 0.72 |
|  | rated age | e $\pm 2 \sigma$ | $\mathrm{n}=2$ |  | 22.0 |  |  |  | 18.5 | 10.6 |
|  | $\underline{u} \pm 2 \sigma$ | steps A-B | $\mathrm{n}=2$ | $M S W D=1.32$ | 22.0 | 0.000 |  | 100.0 | 12.8 | 1.7 |
| SCV-318-230702-djk,G2:172, single xtal bi, |  |  |  | i, J=0.0007532 $\pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001, \mathrm{NM}-172$ |  |  | Lab\#=54436-08 |  |  |  |
| A | 2 | 891.3 | -1.0840 | 2975.9 | 8.74 |  | 1.3 | 81.3 | 16.0 | 5.1 |
| B | 10 | 76.38 | -5.7816 | 221.9 | 2.02 | - | 13.5 | 100.0 | 13.94 | 0.72 |
|  | rated age | e $\pm \mathbf{2} \boldsymbol{\sigma}$ | $\mathrm{n}=2$ |  | 10.8 |  |  |  | 15.6 | 8.4 |
|  | $a u \pm 2 \sigma$ | steps A-B | $\mathrm{n}=2$ | MSWD=0.16 | 10.8 | 0.000 |  | 100.0 | 14.0 | 1.4 |
| SCV-318-230702-djk, G2:172, single xtal bi, |  |  |  | bi, J=0.0007532 $\pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001, \mathrm{NM}-172$ |  |  | Lab\#=54436-09 |  |  |  |
|  |  |  |  | 4451.5 | 11.6 | - | 1.3 | 36.0 | 22.9 | 7.5 |
| B | 10 | 127.6 | -0.0411 | 396.0 | 20.6 | - | 8.3 | 100.0 | 14.27 | 0.71 |
|  | rated age | e $\pm \mathbf{2} \boldsymbol{\sigma}$ | $\mathrm{n}=2$ |  | 32.1 |  |  |  | 17.4 | 6.2 |
|  | $a u \pm 2 \sigma$ | steps A-B | $\mathrm{n}=2$ | $\mathrm{MSWD}=1.32$ | 32.1 | 0.000 |  | 100.0 | 14.3 | 1.6 |


| ID | Power <br> (Watts) | ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ | ${ }^{37} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ | $\begin{aligned} & { }^{36} \mathrm{Ar} /{ }^{39} \mathrm{Ar} \\ & \left(\times 10^{-3}\right) \end{aligned}$ | $\begin{gathered} { }^{39} \mathrm{Ar}_{\mathrm{K}} \\ \left(\times 10^{-15} \mathrm{~mol}\right) \end{gathered}$ | $\mathrm{K} / \mathrm{Ca}$ | ${ }^{40} \mathrm{Ar}$ * <br> (\%) | ${ }^{39} \mathrm{Ar}$ <br> (\%) | Age <br> (Ma) | $\begin{aligned} & \pm 1 \sigma \\ & (\mathrm{Ma}) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SCV-318-230702-djk,G2:172, single xtal bi, J=0.0007532 $\pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001$, NM-172, Lab\#=54436-10 |  |  |  |  |  |  |  |  |  |  |
| A |  | 2651.5 | -8.1941 | 8921.0 | 1.47 | - | 0.6 | 23.2 | 19.7 | 15.2 |
| B | 10 | 146.1 | -2.3238 | 462.7 | 4.86 | - | 6.3 | 100.0 | 12.46 | 0.96 |
|  | rated age | $\pm 2 \sigma$ | $\mathrm{n}=2$ |  | 6.33 |  |  |  | 14.1 | 8.2 |
|  | $u \pm 2 \sigma$ | steps A-B | $\mathrm{n}=2$ | MSWD=0.22 | 6.33 | 0.000 |  | 100.0 | 12.5 | 1.9 |
| SCV-318-230702-djk,G2:172, single xtal bi, J=0.0007532 $\pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001$, NM-172, Lab\#=54436-11 |  |  |  |  |  |  |  |  |  |  |
| A | 2 | 0.7300 | 8.441 | 22.67 | -0.038 | 0.060 | -717.2 | -14.5 | -7.2 | 24.3 |
| B | 10 | 395.7 | 4.374 | 1259.3 | 0.303 | 0.12 | 6.0 | 100.0 | 32.3 | 5.9 |
|  | ated age | $\pm 2 \sigma$ | $\mathrm{n}=2$ |  | 0.264 |  |  |  | 38.0 | 16.2 |
|  | $u \pm 2 \sigma$ | steps A-B | $\mathrm{n}=2$ | MSWD=2.49 | 0.264 | 0.12 |  | 100.0 | 30.1 | 18.1 |
| SCV-318-230702-djk,G2:172, single xtal bi, $\mathrm{J}=0.0007532 \pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001, \mathrm{NM}-172$, Lab\#=54436-12 |  |  |  |  |  |  |  |  |  |  |
| A | 2 | 3113.2 | -0.9988 | 10390.0 | 10.5 | - | 1.4 | 34.2 | 57.3 | 17.7 |
| B | 10 | 141.3 | -0.4438 | 439.5 | 20.3 | - | 8.1 | 100.0 | 15.46 | 0.80 |
|  | ated age | $\pm 2 \sigma$ | $\mathrm{n}=2$ |  | 30.8 |  |  |  | 29.9 | 13.1 |
|  | $u \pm 2 \sigma$ | steps A-B | $\mathrm{n}=2$ | MSWD=5.60 | 30.8 | 0.000 |  | 100.0 | 15.5 | 3.8 |
| SCV-318-230702-djk, G2:172, single xtal bi, J=0.0007532 $\pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001$, NM-172, Lab\#=54436-13 |  |  |  |  |  |  |  |  |  |  |
| A | 2 | 907.4 | -1.3955 | 3038.5 | 8.19 | , | 1.0 | 59.0 | 12.7 | 5.0 |
| B | 10 | 102.5 | -1.9158 | 315.1 | 5.68 | - | 9.0 | 100.0 | 12.54 | 0.69 |
|  | ated age | $\pm \mathbf{2 \sigma}$ | $\mathrm{n}=2$ |  | 13.9 |  |  |  | 12.6 | 6.4 |
|  | $u \pm 2 \sigma$ | steps A-B | $\mathrm{n}=2$ | MSWD $=0.00$ | 13.9 | 0.000 |  | 100.0 | 12.5 | 1.4 |
| SCV-318-230702-djk,G2:172, single xtal bi, J=0.0007532 $\pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001, \mathrm{NM}-172$, Lab\#=54436-14 |  |  |  |  |  |  |  |  |  |  |
| A | 2 | 841.5 | -0.7592 | 2782.6 | 4.35 |  | 2.3 | 86.7 | 25.9 | 4.7 |
| B | 10 | 212.8 | -18.4930 | 584.8 | 0.666 | - | 18.1 | 100.0 | 50.9 | 2.7 |
|  | rated age | $\pm 2 \sigma$ | $\mathrm{n}=2$ |  | 5.02 |  |  |  | 29.2 | 8.4 |
|  | $u \pm 2 \sigma$ | steps A-B | $\mathrm{n}=2$ | MSWD=21.31 | 5.02 | 0.000 |  | 100.0 | 44.6 | 21.8 |
| SCV-318-230702-djk,G2:172, single xtal bi, J=0.0007532 $\pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001$, NM-172, Lab\#=54436-15 |  |  |  |  |  |  |  |  |  |  |
| A | 2 | 846.5 | -1.4324 | 2821.4 | 3.10 | - | 1.5 | 79.1 | 17.1 | 4.8 |
| B | 10 | 359.4 | -14.3189 | 1165.2 | 0.819 | - | 3.9 | 100.0 | 18.6 | 2.8 |
|  | ated age | $\pm 2 \sigma$ | $\mathrm{n}=2$ |  | 3.92 |  |  |  | 17.4 | 8.4 |
|  | $u \pm 2 \sigma$ | steps A-B | $\mathrm{n}=2$ | MSWD $=0.07$ | 3.92 | 0.000 |  | 100.0 | 18.3 | 4.9 |
| SCV-318-230702-djk,G2:172, single xtal bi, $\mathrm{J}=0.0007532 \pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001$, $\mathrm{NM}-172$, Lab\#=54436-16 |  |  |  |  |  |  |  |  |  |  |
| A | 2 | 721.9 | -1.6306 | 2418.2 | 7.60 | - | 1.0 | 92.0 | 9.8 | 4.1 |
| B | 10 | 82.98 | 1.706 | 235.6 | 0.661 | 0.30 | 16.3 | 100.0 | 18.3 | 1.5 |
|  | ated age | $\pm 2 \sigma$ | $\mathrm{n}=2$ |  | 8.26 |  |  |  | 10.5 | 7.6 |
|  | $u \pm 2 \sigma$ | steps A-B | $\mathrm{n}=2$ | MSWD=3.86 | 8.26 | 0.30 |  | 100.0 | 17.3 | 5.4 |
| SCV-318-230702-djk,G2:172, single xtal bi, J=0.0007532 $\pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001$, NM-172, Lab\#=54436-17 |  |  |  |  |  |  |  |  |  |  |
| A | 2 | 506.6 | -2.0981 | 1670.9 | 5.98 |  | 2.5 | 88.4 | 17.1 | 2.8 |
| B | 10 | 74.25 | -17.9887 | 217.3 | 0.786 | - | 11.5 | 100.0 | 11.5 | 1.2 |
| Integrated age $\pm \mathbf{2 \sigma}$ |  |  | $\mathrm{n}=2$ |  | 6.77 |  |  |  | 16.5 | 5.1 |
| Plateau $\pm 2 \sigma$ steps A-B |  |  | $\mathrm{n}=2$ | MSWD=3.43 | 6.77 | 0.000 |  | 100.0 | 12.3 | 4.0 |



| ID | Power <br> (Watts) | ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ | ${ }^{37} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ | $\begin{aligned} & { }^{36} \mathrm{Ar} /{ }^{39} \mathrm{Ar} \\ & \left(\times 10^{-3}\right) \end{aligned}$ | $\begin{gathered} { }^{39} \mathrm{Ar}_{\mathrm{K}} \\ \left(\times 10^{-15} \mathrm{~mol}\right) \end{gathered}$ | K/Ca | ${ }^{40} \mathrm{Ar}^{*}$ <br> (\%) | ${ }^{39} \mathrm{Ar}$ <br> (\%) | Age <br> (Ma) | $\begin{aligned} & \pm 1 \sigma \\ & (\mathrm{Ma}) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SCV-1014-051202-djk,G\#:172, single xtal bi, J=0.0007527 $\pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001, \mathrm{NM}-172$, Lab\#=54437-08 |  |  |  |  |  |  |  |  |  |  |
| A | 2 | 257.2 | -2.2523 | 839.3 | 4.18 | - | 3.5 | 87.1 | 12.2 | 1.7 |
| B | 10 | 49.34 | 1.005 | 140.9 | 0.619 | 0.51 | 15.8 | 100.0 | 10.54 | 0.95 |
|  | rated age | $\pm 2 \sigma$ | $\mathrm{n}=2$ |  | 4.79 |  |  |  | 12.0 | 3.0 |
|  | $u \pm 2 \sigma$ | steps A-B | $\mathrm{n}=2$ | MSWD=0.70 | 4.79 | 0.51 |  | 100.0 | 10.9 | 1.7 |
| SCV-1014-051202-djk,G\#:172, single xtal bi, J=0.0007527 $\pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001, \mathrm{NM}-172$, Lab\#=54437-09 |  |  |  |  |  |  |  |  |  |  |
| A | 2 | 402.6 | -4.4647 | 1336.4 | 2.78 | - | 1.8 | 91.0 | 9.8 | 2.5 |
| B | 10 | 117.5 | 2.290 | 354.2 | 0.276 | 0.22 | 11.1 | 100.0 | 17.6 | 2.6 |
|  | ated age | $\pm 2 \sigma$ | $\mathrm{n}=2$ |  | 3.06 |  |  |  | 10.5 | 4.7 |
|  | $u \pm 2 \sigma$ | steps A-B | $\mathrm{n}=2$ | $\mathrm{MSWD}=4.56$ | 3.06 | 0.22 |  | 100.0 | 13.6 | 7.8 |
| SCV-1014-051202-djk,G\#:172, single xtal bi, J=0.0007527 $\pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001, \mathrm{NM}-172$, Lab\#=54437-10 |  |  |  |  |  |  |  |  |  |  |
| A | 2 | 297.4 | -3.2808 | 980.4 | 3.72 | - | 2.5 | 92.2 | 10.1 | 2.0 |
| B | 10 | 65.63 | 0.9355 | 183.8 | 0.314 | 0.55 | 17.3 | 100.0 | 15.4 | 2.9 |
|  | ated age | $\pm \mathbf{2 \sigma}$ | $\mathrm{n}=2$ |  | 4.03 |  |  |  | 10.5 | 3.7 |
|  | $u \pm 2 \sigma$ | steps A-B | $\mathrm{n}=2$ | MSWD=2.34 | 4.03 | 0.55 |  | 100.0 | 11.8 | 5.0 |
| SCV-1014-051202-djk,G\#:172, single xtal bi, J=0.0007527 $\pm 0.10 \%, D=1.005 \pm 0.001, \mathrm{NM}-172$, Lab\#=54437-11 |  |  |  |  |  |  |  |  |  |  |
| A | 2 | 414.8 | 0.1960 | 1387.7 | 2.86 | 2.6 | 1.2 | 97.9 | 6.5 | 2.8 |
| B | 10 | 214.4 | 0.6020 | 647.4 | 0.063 | 0.85 | 10.8 | 100.0 | 31.2 | 8.5 |
|  | ated age | $\pm 2 \sigma$ | $\mathrm{n}=2$ |  | 2.93 |  |  |  | 7.0 | 5.6 |
|  | $u \pm 2 \sigma$ | steps A-B | $\mathrm{n}=2$ | MSWD=7.56 | 2.93 | 2.6 |  | 100.0 | 8.9 | 14.8 |
| SCV-1014-051202-djk,G\#:172, single xtal bi, J=0.0007527 $\pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001, \mathrm{NM}-172$, Lab\#=54437-12 |  |  |  |  |  |  |  |  |  |  |
| A | 2 | 456.6 | 0.2310 | 1509.7 | 3.55 | 2.2 | 2.3 | 92.1 | 14.2 | 3.0 |
| B | 10 | 99.06 | 0.1737 | 310.9 | 0.304 | 2.9 | 7.3 | 100.0 | 9.7 | 2.4 |
|  | ated age | $\pm 2 \sigma$ | $\mathrm{n}=2$ |  | 3.85 |  |  |  | 13.8 | 5.6 |
|  | $u \pm 2 \sigma$ | steps A-B | $\mathrm{n}=2$ | MSWD=1.32 | 3.85 | 2.3 |  | 100.0 | 11.5 | 4.3 |
| SCV-1014-051202-djk,G\#:172, single xtal bi, J=0.0007527 $\pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001, \mathrm{NM}-172$, Lab\#=54437-13 |  |  |  |  |  |  |  |  |  |  |
| A | 2 | 436.1 | 0.4213 | 1446.4 | 2.13 | 1.2 | 2.0 | 98.6 | 11.8 | 3.0 |
| B |  | 2904.3 | -2.7004 | 9847.8 | 0.030 | - | -0.2 | 100.0 | -8.1 | 44.0 |
|  | ated age | $\pm 2 \sigma$ | $\mathrm{n}=2$ |  | 2.16 |  |  |  | 11.5 | 6.4 |
|  | $u \pm 2 \sigma$ | steps A-B | $\mathrm{n}=2$ | MSWD=0.20 | 2.16 | 1.2 |  | 100.0 | 11.7 | 6.0 |
| SCV-1014-051202-djk,G\#:172, single xtal bi, J=0.0007527 $\pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001$, NM-172, Lab\#=54437-14 |  |  |  |  |  |  |  |  |  |  |
| A | 2 | 378.6 | 0.1543 | 1257.6 | 4.92 | 3.3 | 1.8 | 94.0 | 9.4 | 2.3 |
| B | 10 | 92.61 | 0.7402 | 290.3 | 0.313 | 0.69 | 7.5 | 100.0 | 9.4 | 2.7 |
|  | ated age | $\pm \mathbf{2} \sigma$ | $\mathrm{n}=2$ |  | 5.23 |  |  |  | 9.4 | 4.4 |
|  | $u \pm 2 \sigma$ | steps A-B | $\mathrm{n}=2$ | MSWD $=0.00$ | 5.23 | 3.2 |  | 100.0 | 9.4 | 3.5 |
| SCV-1014-051202-djk,G\#:172, single xtal bi, $\mathrm{J}=0.0007527 \pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001, \mathrm{NM}-172$, Lab\#=54437-15 |  |  |  |  |  |  |  |  |  |  |
| A | 2 | 350.5 | 0.4001 | 1166.4 | 3.60 | 1.3 | 1.7 | 88.9 | 8.0 | 2.1 |
| B | 10 | 71.29 | 0.3083 | 209.3 | 0.448 | 1.7 | 13.3 | 100.0 | 12.8 | 1.7 |
| Integrated age $\pm \mathbf{2 \sigma}$ |  |  | $\mathrm{n}=2$ |  | 4.05 |  |  |  | 8.5 | 3.8 |
| Plateau $\pm 2 \boldsymbol{\sigma}$ steps A-B |  |  | $\mathrm{n}=2$ | MSWD=3.24 | 4.05 | 1.3 |  | 100.0 | 11.0 | 4.7 |


| ID | Power <br> (Watts) | ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ | ${ }^{37} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ | $\begin{aligned} & { }^{36} \mathrm{Ar} /{ }^{39} \mathrm{Ar} \\ & \left(\times 10^{-3}\right) \end{aligned}$ | $\begin{gathered} { }^{39} \mathrm{Ar}_{\mathrm{K}} \\ \left(\times 10^{-15} \mathrm{~mol}\right) \end{gathered}$ | K/Ca | $\begin{aligned} & { }^{40} \mathrm{Ar}^{*} \\ & (\%) \end{aligned}$ | $\begin{gathered} { }^{39} \mathrm{Ar} \\ (\%) \\ \hline \end{gathered}$ | Age <br> (Ma) | $\begin{aligned} & \pm 1 \sigma \\ & (\mathrm{Ma}) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FW1-CWA-Encinos-djk,G4:172, single xtal bi, J=0.000752 $\pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001$, NM-172, Lab\#=54438-01 |  |  |  |  |  |  |  |  |  |  |
| A |  | 1251.8 | 0.1244 | 4190.7 | 6.05 | 4.1 | 1.1 | 46.9 | 18.2 | 7.1 |
| B | 10 | 195.8 | 0.1769 | 620.9 | 6.83 | 2.9 | 6.3 | 100.0 | 16.7 | 1.2 |
|  | ated ag | $\pm 2 \sigma$ | $\mathrm{n}=2$ |  | 12.9 |  |  |  | 17.4 | 7.7 |
|  | $u \pm 2 \sigma$ | steps A-B | $\mathrm{n}=2$ | MSWD=0.04 | 12.9 | 3.5 |  | 100.0 | 16.8 | 2.3 |
| FW1-CWA-Encinos-djk,G4:172, single xtal bi, $\mathrm{J}=0.000752 \pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001, \mathrm{NM}-172$, Lab\#=54438-02 |  |  |  |  |  |  |  |  |  |  |
| A |  | 2151.2 | 0.3737 | 7180.7 | 1.01 | 1.4 | 1.4 | 32.1 | 39.4 | 15.8 |
| B | 10 | 896.6 | 0.2921 | 2983.6 | 2.13 | 1.7 | 1.7 | 100.0 | 20.3 | 5.3 |
|  | rated ag | $\pm 2 \sigma$ | $\mathrm{n}=2$ |  | 3.14 |  |  |  | 26.4 | 15.8 |
|  | $u \pm 2 \sigma$ | steps A-B | $\mathrm{n}=2$ | MSWD=1.33 | 3.14 | 1.6 |  | 100.0 | 22.2 | 11.6 |
| FW1-CWA-Encinos-djk,G4:172, single xtal bi, $\mathrm{J}=0.000752 \pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001$, NM-172, Lab\#=54438-03 |  |  |  |  |  |  |  |  |  |  |
| A |  | 1370.9 | 0.2465 | 4608.0 | 3.23 | 2.1 | 0.7 | 82.1 | 12.5 | 7.8 |
| B | 10 | 580.2 | 0.2994 | 1923.4 | 0.702 | 1.7 | 2.0 | 100.0 | 16.1 | 4.5 |
|  | rated ag | $\pm 2 \sigma$ | $\mathrm{n}=2$ |  | 3.93 |  |  |  | 13.1 | 13.9 |
|  | $u \pm 2 \sigma$ | steps A-B | $\mathrm{n}=2$ | MSWD=0.15 | 3.93 | 2.0 |  | 100.0 | 15.2 | 7.8 |
| FW1-CWA-Encinos-djk,G4:172, single xtal bi, $\mathrm{J}=0.000752 \pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001$, NM-172, Lab\#=54438-04 |  |  |  |  |  |  |  |  |  |  |
| A |  | 1571.4 | 0.0650 | 5284.5 | 6.53 | 7.8 | 0.6 | 87.4 | 13.3 | 9.2 |
| B | 10 | 223.9 | 0.0623 | 724.8 | 0.945 | 8.2 | 4.4 | 100.0 | 13.2 | 2.2 |
|  | ated ag | $\pm 2 \sigma$ | $\mathrm{n}=2$ |  | 7.47 |  |  |  | 13.3 | 16.3 |
|  | $u \pm 2 \sigma$ | steps A-B | $\mathrm{n}=2$ | MSWD $=0.00$ | 7.47 | 7.9 |  | 100.0 | 13.2 | 4.3 |
| FW1-CWA-Encinos-djk,G4:172, single xtal bi, J=0.000752 $\pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001$, NM-172, Lab\#=54438-05 |  |  |  |  |  |  |  |  |  |  |
| A |  | 1847.2 | 0.0796 | 6230.6 | 4.56 | 6.4 | 0.3 | 74.9 | 8.2 | 11.1 |
| B | 10 | 244.5 | 0.0912 | 783.5 | 1.53 | 5.6 | 5.3 | 100.0 | 17.6 | 1.8 |
|  | ated ag | $\pm 2 \sigma$ | $\mathrm{n}=2$ |  | 6.09 |  |  |  | 10.6 | 17.2 |
|  | $u \pm 2 \sigma$ | steps A-B | $\mathrm{n}=2$ | MSWD=0.69 | 6.09 | 6.2 |  | 100.0 | 17.4 | 3.6 |
| FW1-CWA-Encinos-djk,G4:172, single xtal bi, $\mathrm{J}=0.000752 \pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001$, NM-172, Lab\#=54438-06 |  |  |  |  |  |  |  |  |  |  |
| A |  | 1594.9 | 0.1043 | 5346.3 | 4.50 | 4.9 | 0.9 | 38.6 | 20.3 | 8.9 |
| B | 10 | 216.3 | 0.1191 | 702.9 | 7.17 | 4.3 | 4.0 | 100.0 | 11.7 | 1.4 |
|  | ated ag | $\pm 2 \sigma$ | $\mathrm{n}=2$ |  | 11.7 |  |  |  | 15.0 | 8.3 |
|  | $u \pm 2 \sigma$ | steps A-B | $\mathrm{n}=2$ | MSWD=0.91 | 11.7 | 4.5 |  | 100.0 | 11.9 | 2.7 |
| FW1-CWA-Encinos-djk,G4:172, single xtal bi, $\mathrm{J}=0.000752 \pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001, \mathrm{NM}-172$, Lab\#=54438-07 |  |  |  |  |  |  |  |  |  |  |
| A | 2 | 911.7 | 0.1631 | 3059.4 | 2.98 | 3.1 | 0.8 | 31.0 | 10.4 | 5.2 |
| B | 10 | 362.3 | 0.1915 | 1175.4 | 6.64 | 2.7 | 4.1 | 100.0 | 20.3 | 2.1 |
|  | rated ag | $\pm 2 \sigma$ | $\mathrm{n}=2$ |  | 9.62 |  |  |  | 17.2 | 5.9 |
|  | $u \pm 2 \sigma$ | steps A-B | $\mathrm{n}=2$ | MSWD=3.06 | 9.62 | 2.8 |  | 100.0 | 18.9 | 6.8 |
| FW1-CWA-Encinos-djk,G4:172, single xtal bi, $\mathrm{J}=0.000752 \pm 0.10 \%, \mathrm{D}=1.005 \pm 0.001$, NM-172, Lab\#=54438-08 |  |  |  |  |  |  |  |  |  |  |
| A | 2 | 892.4 | 0.0339 | 2990.4 | 2.57 | 15.0 | 1.0 | 98.8 | 11.8 | 5.4 |
| B | 10 | 272.8 | -5.0435 | 947.0 | 0.032 | - | -2.7 | 100.0 | -10.0 | 21.9 |
| Integrated age $\pm \mathbf{2 \sigma}$ |  |  | $\mathrm{n}=2$ |  | 2.60 |  |  |  | 11.6 | 10.7 |
|  | $u \pm 2 \sigma$ | steps A-B | $\mathrm{n}=2$ | MSWD=0.94 | 2.60 | 14.8 |  | 100.0 | 10.6 | 10.4 |



[^1]

Figure 1. Age probability distribution diagram of SCV-1154-160103-djk single crystal biotite B steps. ${ }^{*} 2$ sigma


Figure 2. Age probability distribution diagram of SCV-948-251102-djk single crystal biotite B steps. *2 sigma


Figure 3. Age probability distribution diagram of SCV-318-230702-djk single crystal biotite B steps. $* 2$ sigma


Figure 4. Age probability distribution diagram of SCV-1014-05122-djk single crystal biotite B steps. $* 2$ sigma

FW1-CWA-Encinos-djk Biotite


Figure 5. Age probability distribution diagram of FW1-CWA-Encinos-djk single crystal biotite B steps. $* 2$ sigma


Figure 6. Summary of Lower Coarse White Ashes and possible Lower Chamita Tuffaceous Zone sample, analyzed with single crystal biotite.

# New Mexico Bureau of Mines and Mineral Resources 

Procedures of the New Mexico Geochronology Research Laboratory

For the Period June 1998 - present

Matthew Heizler<br>William C. McIntosh<br>Richard Esser<br>Lisa Peters

## ${ }^{40} \mathrm{Ar}{ }^{39} \mathrm{Ar}$ and $\mathrm{K}-\mathrm{Ar}$ dating

Often, large bulk samples (either minerals or whole rocks) are required for $\mathrm{K}-\mathrm{Ar}$ dating and even small amounts of xenocrystic, authigenic, or other non-ideal behavior can lead to inaccuracy. The K-Ar technique is susceptible to sample inhomogeneity as separate aliquots are required for the potassium and argon determinations. The need to determine absolute quantities (i.e. moles of ${ }^{40} \mathrm{Ar}^{*}$ and ${ }^{40} \mathrm{~K}$ ) limits the precision of the $\mathrm{K}-\mathrm{Ar}$ method to approximately $1 \%$ and also, the technique provides limited potential to evaluate underlying assumptions. In the ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ variant of the K -Ar technique, a sample is irradiated with fast neutrons thereby converting ${ }^{39} \mathrm{~K}$ to ${ }^{39} \mathrm{Ar}$ through a ( $\mathrm{n}, \mathrm{p}$ ) reaction. Following irradiation, the sample is either fused or incrementally heated and the gas analyzed in the same manner as in the conventional K - Ar procedure, with one exception, no argon spike need be added.

Some of the advantages of the ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ method over the conventional K - Ar technique are:

1. A single analysis is conducted on one aliquot of sample thereby reducing the sample size and eliminating sample inhomogeneity.
2. Analytical error incurred in determining absolute abundances is reduced by measuring only isotopic ratios. This also eliminates the need to know the exact weight of the sample.
3. The addition of an argon spike is not necessary.
4. The sample does not need to be completely fused, but rather can be incrementally heated. The ${ }^{40} \mathrm{Ar}{ }^{39} \mathrm{Ar}$ ratio (age) can be measured for each fraction of argon released and this allows for the generation of an age spectrum.

The age of a sample as determined with the ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ method requires comparison of the measured ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ ratio with that of a standard of known age. Also, several isotopes of other elements $(\mathrm{Ca}, \mathrm{K}, \mathrm{Cl}, \mathrm{Ar})$ produce argon during the irradiation procedure and must be corrected for. Far more in-depth details of the determination of an apparent age via the ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ method are given in Dalrymple et al. (1981) and McDougall and Harrison (1988).

## Analytical techniques

## Sample Preparation and irradiation details

Mineral separates are obtained in various fashions depending upon the mineral of interest, rock type and grain size. In almost all cases the sample is crushed in a jaw crusher and ground in a disc grinder and then sized. The size fraction used generally corresponds to the largest size possible which will permit obtaining a pure mineral separate. Following sizing, the sample is washed and dried. For plutonic and metamorphic rocks and lavas, crystals are separated using standard heavy liquid, Franz magnetic and hand-picking techniques. For volcanic sanidine and plagioclase, the sized sample is reacted with $15 \% \mathrm{HF}$ acid to remove glass and/or matrix and then thoroughly washed prior to heavy liquid and magnetic separation. For groundmass concentrates, rock fragments are selected which do not contain any visible phenocrysts.

The NMGRL uses either the Ford reactor at the University of Michigan or the Nuclear Science Center reactor at Texas A\&M University. At the Ford reactor, the L67 position is used (unless otherwise noted) and the D-3 position is always used at the Texas A\&M reactor. All of the Michigan irradiations are carried out underwater without any shielding for thermal neutrons, whereas the Texas irradiations are in a dry location which is shielded with B and Cd. Depending upon the reactor used, the mineral separates are loaded into either holes drilled into Al discs or into 6 mm I.D. quartz tubes. Various Al discs are used. For Michigan, either six hole or twelve hole, 1 cm diameter discs are used and all holes are of equal size. Samples are placed in the 0 , 120 and $240^{\circ}$ locations and standards in the 60, 180 and $300^{\circ}$ locations for the six hole disc. For the twelve hole disc, samples are located at $30,60,120,150,210,240,300$, and $330^{\circ}$ and standards at 0, 90, 180 and 270 degrees. If samples are loaded into the quartz tubes, they are wrapped in Cu foil with standards interleaved at $\sim 0.5 \mathrm{~cm}$ intervals. For Texas, 2.4 cm diameter discs contain either sixteen or six sample holes with smaller holes used to hold the standards. For the six hole disc, sample locations are $30,90,150,210,270$ and $330^{\circ}$ and standards are at 0,60 , $120,180,240$ and $300^{\circ}$. Samples are located at 18, 36, 54, 72, 108, 126, 144, 162, 198, 216, 234, $252,288,306,324,342$ degrees and standards at $0,90,180$ and 270 degrees in the sixteen hole disc. Following sample loading into the discs, the discs are stacked, screwed together and sealed
in vacuo in either quartz (Michigan) or Pyrex (Texas) tubes.

## Extraction Line and Mass Spectrometer details

The NMGRL argon extraction line has both a double vacuum Mo resistance furnace and $\mathrm{a} \mathrm{CO}_{2}$ laser to heat samples. The Mo furnace crucible is heated with a W heating element and the temperature is monitored with a W-Re thermocouple placed in a hole drilled into the bottom of the crucible. A one inch long Mo liner is placed in the bottom of the crucible to collect the melted samples. The furnace temperature is calibrated by either/or melting Cu foil or with an additional thermocouple inserted in the top of the furnace down to the liner. The $\mathrm{CO}_{2}$ laser is a Synrad 10W laser equipped with a $\mathrm{He}-\mathrm{Ne}$ pointing laser. The laser chamber is constructed from a $33 / 8$ " stainless steel conflat and the window material is ZnS . The extraction line is a two stage design. The first stage is equipped with a SAES GP-50 getter, whereas the second stage houses two SAES GP-50 getters and a tungsten filament. The first stage getter is operated at $450^{\circ} \mathrm{C}$ as is one of the second stage getters. The other second stage getter is operated at room temperature and the tungsten filament is operated at $\sim 2000^{\circ} \mathrm{C}$. Gases evolved from samples heated in the furnace are reacted with the first stage getter during heating. Following heating, the gas is expanded into the second stage for two minutes and then isolated from the first stage. During second stage cleaning, the first stage and furnace are pumped out. After gettering in the second stage, the gas is expanded into the mass spectrometer. Gases evolved from samples heated in the laser are expanded through a cold finger operated at $-140^{\circ} \mathrm{C}$ and directly into the second stage. Following cleanup, the gas in the second stage and laser chamber is expanded into the mass spectrometer for analysis.

The NMGRL employs a MAP-215-50 mass spectrometer which is operated in static mode. The mass spectrometer is operated with a resolution ranging between 450 to 600 at mass 40 and isotopes are detected on a Johnston electron multiplier operated at $\sim 2.1 \mathrm{kV}$ with an overall gain of about 10,000 over the Faraday collector. Final isotopic intensities are determined by linear regression to time zero of the peak height versus time following gas introduction for each mass. Each mass intensity is corrected for mass spectrometer baseline and background and the extraction system blank.

Blanks for the furnace are generally determined at the beginning of a run while the furnace is cold and then between heating steps while the furnace is cooling. Typically, a blank is
run every three to six heating steps. Periodic furnace hot blank analysis reveals that the cold blank is equivalent to the hot blank for temperatures less than about $1300^{\circ} \mathrm{C}$. Laser system blanks are generally determined between every four analyses. Mass discrimination is measured using atmospheric argon which has been dried using a Ti-sublimation pump. Typically, 10 to 15 replicate air analyses are measured to determine a mean mass discrimination value. Air pipette analyses are generally conducted 2-3 times per month, but more often when samples sensitive to the mass discrimination value are analyzed. Correction factors for interfering nuclear reactions on K and Ca are determined using K-glass and $\mathrm{CaF}_{2}$, respectively. Typically, 3-5 individual pieces of the salt or glass are fused with the $\mathrm{CO}_{2}$ laser and the correction factors are calculated from the weighted mean of the individual determinations.

## Data acquisition, presentation and age calculation

Samples are either step-heated or fused in a single increment (total fusion). Bulk samples are often step-heated and the data are generally displayed on an age spectrum or isochron diagram. Single crystals are often analyzed by the total fusion method and the results are typically displayed on probability distribution diagrams or isochron diagrams.

The Age Spectrum Diagram

Age spectra plot apparent age of each incrementally heated gas fraction versus the cumulative $\%{ }^{39} \mathrm{Ar}_{\mathrm{K}}$ released, with steps increasing in temperature from left to right. Each apparent age is calculated assuming that the trapped argon (argon not produced by in situ decay of ${ }^{40} \mathrm{~K}$ ) has the modern day atmospheric $\left.{ }^{40} \mathrm{Ar}\right)^{36} \mathrm{Ar}$ value of 295.5 . Additional parameters for each heating step are often plotted versus the cumulative $\%{ }^{39} \mathrm{Ar}_{\mathrm{K}}$ released. These auxiliary parameters can aid age spectra interpretation and may include radiogenic yield (percent of ${ }^{40} \mathrm{Ar}$ which is not atmospheric), $\mathrm{K} / \mathrm{Ca}$ (determined from measured Ca-derived ${ }^{37} \mathrm{Ar}$ and K -derived ${ }^{39} \mathrm{Ar}$ ) and/or $\mathrm{K} / \mathrm{Cl}$ (determined from measured Cl -derived ${ }^{38} \mathrm{Ar}$ and K -derived ${ }^{39} \mathrm{Ar}$ ). Incremental heating analysis is often effective at revealing complex argon systematics related to excess argon, alteration, contamination, ${ }^{39} \mathrm{Ar}$ recoil, argon loss, etc. Often low-temperature heating steps have low radiogenic yields and apparent ages with relatively high errors due mainly to
loosely held, non-radiogenic argon residing on grain surfaces or along grain boundaries. An entirely or partially flat spectrum, in which apparent ages are the same within analytical error, may indicate that the sample is homogeneous with respect to K and Ar and has had a simple thermal and geological history. A drawback to the age spectrum technique is encountered when hydrous minerals such as micas and amphiboles are analyzed. These minerals are not stable in the ultra-high vacuum extraction system and thus step-heating can homogenize important details of the true ${ }^{40} \mathrm{Ar}$ distribution. In other words, a flat age spectrum may result even if a hydrous sample has a complex argon distribution.

The Isochron Diagram

Argon data can be plotted on isotope correlation diagrams to help assess the isotopic composition of Ar trapped at the time of argon closure, thereby testing the assumption that trapped argon isotopes have the composition of modern atmosphere which is implicit in age spectra. To construct an "inverse isochron" the ${ }^{36} \mathrm{Ar} /{ }^{40} \mathrm{Ar}$ ratio is plotted versus the ${ }^{39} \mathrm{Ar} /{ }^{40} \mathrm{Ar}$ ratio. A best fit line can be calculated for the data array which yields the value for the trapped argon (Y-axis intercept) and the ${ }^{40} \mathrm{Ar}^{*} \beta^{\beta 9} \mathrm{Ar}_{\mathrm{K}}$ value (age) from the X -axis intercept. Isochron analysis is most useful for step-heated or total fusion data which have a significant spread in radiogenic yield. For young or low K samples, the calculated apparent age can be very sensitive to the composition of the trapped argon and therefore isochron analysis should be preformed routinely on these samples (cf. Heizler and Harrison, 1988). For very old (>Mesozoic) samples or relatively old sanidines (>mid-Cenozoic) the data are often highly radiogenic and cluster near the X -axis thereby making isochron analysis of little value.

## The Probability Distribution Diagram

The probability distribution diagram, which is sometimes referred to as an ideogram, is a plot of apparent age versus the summation of the normal distribution of each individual analysis (Deino and Potts, 1992). This diagram is most effective at displaying single crystal laser fusion data to assess the distribution of the population. The $\mathrm{K} / \mathrm{Ca}$, radiogenic yield, and the moles of ${ }^{39} \mathrm{Ar}$ for each analysis are also often displayed for each sample as this allows for visual ease in identifying apparent age correlations between, for instance, plagioclase contamination, signal size and/or radiogenic concentrations. The error (1 $\sigma$ ) for each age analysis is generally shown by the horizontal lines in the moles of ${ }^{39} \mathrm{Ar}$ section. Solid symbols represent the analyses used for the weighted mean age calculation and the generation of the solid line on the ideogram, whereas open symbols represent data omitted from the age calculation. If shown, a dashed line represents the probability distribution of all of the displayed data. The diagram is most effective for displaying the form of the age distribution (i.e. gaussian, skewed, etc.) and for identifying xenocrystic or other grains which fall outside of the main population.

## Error Calculations

For step-heated samples, a plateau for the age spectrum is defined by the steps indicated. The plateau age is calculated by weighting each step on the plateau by the inverse of the variance and the error is calculated by either the method of Samson and Alexander (1987) or Taylor (1982). A mean sum weighted deviates (MSWD) value is determined by dividing the Chisquared value by $\mathrm{n}-1$ degrees of freedom for the plateau ages. If the MSWD value is outside the 95\% confidence window (cf. Mahon, 1996; Table 1), the plateau or preferred age error is multiplied by the square root of the MSWD.

For single crystal fusion data, a weighted mean is calculated using the inverse of the variance to weight each age determination (Taylor, 1982). Errors are calculated as described for the plateau ages above.

Isochron ages, ${ }^{40} \mathrm{Ar}{ }^{36} \mathrm{Ar}_{\mathrm{i}}$ values and MSWD values are calculated from the regression results obtained by the York (1969) method.

## References cited

Dalrymple, G.B., Alexander, E.C., Jr., Lanphere, M.A., and Kraker, G.P., 1981. Irradiation of samples for ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ dating using the Geological Survey TRIGA reactor. U.S.G.S., Prof. Paper, 1176.

Deino, A., and Potts, R., 1990. Single-Crystal ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ dating of the Olorgesailie Formation, Southern Kenya Rift, J. Geophys. Res., 95, 8453-8470.

Deino, A., and Potts, R., 1992. Age-probability spectra from examination of single-crystal ${ }^{40} \mathrm{Ar}{ }^{\beta 9} \mathrm{Ar}$ dating results: Examples from Olorgesailie, Southern Kenya Rift, Quat. International, 13/14, 47-53.

Fleck, R.J., Sutter, J.F., and Elliot, D.H., 1977. Interpretation of discordant ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ age-spectra of Mesozoic tholieiites from Antarctica, Geochim. Cosmochim. Acta, 41, 15-32.

Heizler, M. T., and Harrison, T. M., 1988. Multiple trapped argon components revealed by ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ analysis, Geochim. Cosmochim. Acta, 52, 295-1303.

Mahon, K.I., 1996. The New "York" regression: Application of an improved statistical method to geochemistry, International Geology Review, 38, 293-303.

McDougall, I., and Harrison, T.M., 1988. Geochronology and thermochronology by the ${ }^{40} \mathrm{Ar}-$ ${ }^{39}$ Ar method. Oxford University Press.
Samson, S.D., and, Alexander, E.C., Jr., 1987. Calibration of the interlaboratory ${ }^{40} \mathrm{Ar}{ }^{\beta 9} \mathrm{Ar}$ dating standard, Mmhb-1, Chem. Geol., 66, 27-34.

Steiger, R.H., and Jäger, E., 1977. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth and Planet. Sci. Lett., 36, 359-362.

Taylor, J.R., 1982. An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements,. Univ. Sci. Books, Mill Valley, Calif., 270 p.

York, D., 1969. Least squares fitting of a straight line with correlated errors, Earth and Planet. Sci. Lett., 5, 320-324.


[^0]:    Notes:
    Isotopic ratios corrected for blank, radioactive decay, and mass discrimination, not corrected for interfering reactions.
    Ages calculated ralative to FC-1 Fish Canyon Tuff sanidine interlaboratory standard at 27.84 Ma .
    Errors quoted for individual analyses include analytical error only, without interfering reaction or J uncertainties.
    Mean age is weighted mean age of Taylor (1982). Mean age error is weighted error
    of the mean (Taylor, 1982), multiplied by the square root of the MSWD where MSWD>1, and also incorporates uncertainty in J factors and irradiation correction uncertainties.
    Decay constants and isotopic abundances after Steiger and Jäger (1977).
    $\dagger$ symbol preceding sample ID denotes analyses excluded from mean age calculations.
    Discrimination $=1.005 \pm 0.001$
    Correction factors:
    $\left({ }^{39} \mathrm{Ar} /{ }^{37} \mathrm{Ar}\right)_{\mathrm{Ca}}=0.0007 \pm 2 \mathrm{e}-05$
    $\left({ }^{36} \mathrm{Ar}{ }^{37} \mathrm{Ar}\right)_{\mathrm{Ca}}=0.00028 \pm 5 \mathrm{e}-06$
    $\left({ }^{38} \mathrm{Ar} /{ }^{39} \mathrm{Ar}\right)_{\mathrm{K}}=0.01077$
    $\left({ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}\right)_{\mathrm{K}}=0.0002 \pm 0.0003$

[^1]:    Notes:
    Isotopic ratios corrected for blank, radioactive decay, and mass discrimination, not corrected for interfering reactions.
    Ages calculated ralative to FC-1 Fish Canyon Tuff sanidine interlaboratory standard at 27.84 Ma .
    Errors quoted for individual analyses include analytical error only, without interfering reaction or J uncertainties.
    Integrated age calculated by recombining isotopic measurements of all steps.
    Integrated age error calculated by recombining errors of isotopic measurements of all steps.
    Plateau age is inverse-variance-weighted mean of selected steps.
    Plateau age error is inverse-variance-weighted mean error (Taylor, 1982) times aquare root MSWD where MSWD>1.
    Plateau and integrated ages incorporate uncertainties in interfering reaction corrections and J factors.
    Decay constants and isotopic abundances after Steiger and Jäger (1977).
    \# symbol preceding sample ID denotes analyses excluded from plateau age calculations.
    Discrimination $=1.005 \pm 0.001$
    Correction factors:

    $$
    \begin{aligned}
    & \left({ }^{39} \mathrm{Ar} /^{37} \mathrm{Ar}\right)_{\mathrm{ca}}=0.0007 \pm 2 \mathrm{e}-05 \\
    & \left({ }^{36} \mathrm{Ar} /{ }^{77} \mathrm{Ar}\right)_{\mathrm{Ca}}=0.00028 \pm 5 \mathrm{e}-06 \\
    & \left({ }^{38} \mathrm{Ar} /^{39} \mathrm{Ar}\right)_{\mathrm{K}}=0.01077
    \end{aligned}
    $$

    $$
    \left({ }^{40} \mathrm{Ar}{ }^{39} \mathrm{Ar}\right)_{K}=0.0002 \pm 0.0003
    $$

