NEW MEXICO HYDROCARBON SOURCE
ROCK EVALUATION PROJECT

BAR-S-BAR RANCH NO. 1 FEE WELL
SEC. 23, T12N, R10E, SANTA FE CO., NEW MEXICO
API NO. 30-049-20001
NORTHWEST AREA
GEOCHEM JOB NO. 3820

Prepared
for
PROGRAM PARTICIPANTS

by

Dr. Geoffrey S. Bayliss
and
Dr. Rudy R. Schwarzer

GEOCHEM LABORATORIES, INC.
1143-C BRITTMORE ROAD
HOUSTON, TEXAS 77043
(713) 467-7011

CONFIDENTIAL
JUNE, 1989
Well Information

WELL NAME: BAR-S-BAR RANCH NO.1 FEE WELL
API NO.: 30-049-20001
AREA: NORTHWEST
LOCATION: SANTA FE COUNTY, NEW MEXICO
GEOCHEM JOB NO.: 3820
TOTAL DEPTH: 4204 ft.
INTERVAL SAMPLED: 1940-2300 ft.
TOTAL NUMBER OF SAMPLES: 3

Sample Information

<table>
<thead>
<tr>
<th>GEOCHEM SAMPLE NUMBER</th>
<th>SAMPLE DEPTH</th>
<th>STRATIGRAPHIC INTERVAL</th>
<th>LITHO</th>
<th>TOC</th>
<th>ROCK-EVAL</th>
<th>KEROGEN</th>
<th>OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>3820-001</td>
<td>1940-1990</td>
<td>Madera</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3820-002</td>
<td>2000-2020</td>
<td>Madera</td>
<td>X</td>
<td>X</td>
<td>M</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3820-003</td>
<td>2200-2300</td>
<td>Madera</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE I

RESULTS OF TOTAL ORGANIC CARBON

NEW MEXICO HYDROCARBON SOURCE ROCK EVALUATION

BAR-S-BAR RANCH NO.1 FEE WELL

SEC. 23, T12N, R10E, SANTA FE COUNTY, NEW MEXICO

API #30-049-20001

<table>
<thead>
<tr>
<th>GEOCHEM SAMPLE NUMBER</th>
<th>DEPTH INTERVAL (feet)</th>
<th>TOTAL ORGANIC CARBON (% of Rock)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3820-001</td>
<td>1940-1990</td>
<td>0.07</td>
</tr>
<tr>
<td>3820-002</td>
<td>2000-2020</td>
<td>1.35/1.33</td>
</tr>
<tr>
<td>3820-003</td>
<td>2200-2300</td>
<td>2.02</td>
</tr>
<tr>
<td>GEOCHEM SAMPLE NUMBER</td>
<td>DEPTH INTERVAL (feet)</td>
<td>LITHO DESCRIPTION</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>3820-001-A</td>
<td>1940-1990</td>
<td>100% Limestone, fine crystalline, pale yellowish brown.</td>
</tr>
<tr>
<td>3820-002-A</td>
<td>2000-2020</td>
<td>100% Shale, slightly calcareous, micaceous, grayish black.</td>
</tr>
<tr>
<td>3820-003-A</td>
<td>2200-2300</td>
<td>100% Shale, slightly calcareous, micaceous, grayish black.</td>
</tr>
</tbody>
</table>
TABLE III

SUMMARY OF ORGANIC CARBON AND VISUAL KEROGEN DATA

NEW MEXICO HYDROCARBON SOURCE ROCK EVALUATION

BAR-S-BAR RANCH NO.1 FEE WELL

SEC. 23, T12N, R10E, SANTA FE COUNTY, NEW MEXICO

API #30-069-20001

<table>
<thead>
<tr>
<th>GEOCHEM SAMPLE NUMBER</th>
<th>DEPTH INTERVAL (feet)</th>
<th>TOTAL ORGANIC CARBON</th>
<th>ORGANIC MATTER TYPE</th>
<th>VISUAL ABUNDANCE NORMALIZED PERCENT</th>
<th>ALTERATION STAGE</th>
<th>THERMAL ALTERATION INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>3820-001</td>
<td>1940-1990</td>
<td>0.07</td>
<td>Am-H*:1</td>
<td>0 50 38 0 12</td>
<td>2</td>
<td>2.2</td>
</tr>
<tr>
<td>3820-002</td>
<td>2000-2020</td>
<td>1.35/1.33</td>
<td>H-W;Am-I:*</td>
<td>0 17 33 33 17</td>
<td>2</td>
<td>2.2</td>
</tr>
<tr>
<td>3820-003</td>
<td>2200-2300</td>
<td>2.02</td>
<td>H*:W;Am-I</td>
<td>0 15 47 23 15</td>
<td>2 to 2+</td>
<td>2.3</td>
</tr>
</tbody>
</table>

LEGEND:

KEROGEN KEY

<table>
<thead>
<tr>
<th>Predominant:</th>
<th>Secondary:</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>60-100%</td>
<td>20-40%</td>
<td>0-20%</td>
</tr>
</tbody>
</table>

- **AI** = Algal
- **Am** = Amorphous-Sapropel
- **Am* = Relic Amorphous-Sapropel
- **H** = Herbaceous-Spore/Pollen
- **H* = Degraded Herbaceous
- **W** = Woody-Structured
- **U** = Unidentified Material
- **I** = Inertinite
- **C** = Cosly
TABLE IV

RESULTS OF ROCK-EVAL PYROLYSIS ANALYSIS

NEW MEXICO HYDROCARBON SOURCE ROCK EVALUATION

BAR-S-BAR RANCH NO.1 FREE WELL
SEC.23, T12N, R10E, SANTA FE COUNTY, NEW MEXICO
API #30-049-20001

<table>
<thead>
<tr>
<th>SAMPLE NUMBER</th>
<th>DEPTH INTERVAL (Feet)</th>
<th>Tmax (°C)</th>
<th>S1 (mg/g)</th>
<th>S2 (mg/g)</th>
<th>S3 (mg/g)</th>
<th>PI</th>
<th>FC*</th>
<th>T.O.C. (wt.%)</th>
<th>HYDROGEN INDEX</th>
<th>OXYGEN INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>3820-001</td>
<td>1940-1990</td>
<td>435</td>
<td>0.04</td>
<td>0.02</td>
<td>0.34</td>
<td>0.67</td>
<td>0.05</td>
<td>0.07</td>
<td>28</td>
<td>485</td>
</tr>
<tr>
<td>3820-002</td>
<td>2000-2020</td>
<td>440</td>
<td>0.51</td>
<td>2.32</td>
<td>0.34</td>
<td>0.18</td>
<td>0.23</td>
<td>1.34</td>
<td>173</td>
<td>25</td>
</tr>
<tr>
<td>3820-003</td>
<td>2200-2300</td>
<td>440</td>
<td>0.30</td>
<td>2.74</td>
<td>0.33</td>
<td>0.10</td>
<td>0.25</td>
<td>2.02</td>
<td>135</td>
<td>16</td>
</tr>
</tbody>
</table>

T.O.C. = Total organic carbon, wt.%
S1 = Free hydrocarbons, mg Hc/g of rock
S2 = Residual hydrocarbon potential (mg Hc/g or rock)
S3 = CO2 produced from kerogen pyrolysis (mg CO2/g of rock)
PC* = 0.083 (S1 + S2)
Hydrogen Index = mg Hc/g organic carbon
Oxygen Index = mg CO2/g organic carbon
PI = S1/S1 + S2
Tmax = Temperature Index, degrees C.
Table V
Visual Kerogen Assessment Worksheet

<table>
<thead>
<tr>
<th>GEOCHEM No</th>
<th>DEPTH</th>
<th>Indigenous Population (Interpreted)</th>
<th>General Characteristics</th>
<th>Caved And/or Reworked Population (%)</th>
<th>Summary Organic Matter Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>3820-001</td>
<td>1940-1990</td>
<td></td>
<td></td>
<td></td>
<td>An-B*; I</td>
</tr>
<tr>
<td>3820-002</td>
<td>2000-2020</td>
<td></td>
<td></td>
<td></td>
<td>H-W1Am-Ij-</td>
</tr>
<tr>
<td>3820-003</td>
<td>2200-2300</td>
<td></td>
<td></td>
<td></td>
<td>H*; W1Am-I</td>
</tr>
</tbody>
</table>

Bar-S-Bar Ranch No. 1 Fee Well
Santa Fe, New Mexico
Sec. 23, T12N, R10E
API 730-049-20001
T.D. 4,204 ft.
LEGEND FOR SUMMARY DIAGRAM

DEPTH: in feet
LITHOLOGY: see lithology symbols
STRATIGRAPHY: by age
% TOC: percent total organic carbon
HI: Rock-Eval, Hydrocarbon Index = 100 S2(0/00 Wt)/TOC
OI: Rock-Eval, Oxygen Index = 100 S3 (0/00 Wt)/TOC
HC YIELD: Rock-Eval, S2 peak (ppm)
S2/S3: Rock-Eval, Ratio of S2 to S3 peak
KEROGEN: see Kerogen symbols
T-MAX: Rock-Eval, maximum temperature of S2 peak, in degrees Centigrade
\%RO (△): Vitrinite Reflectance (scale 0 to 5)
TAI (*): Thermal Alteration Index (Scale 1 to 5)
FREE HC: Rock-Eval, S1 peak (ppm)
PI: Rock-Eval, Productivity Index = S1/(S1+S2)

LITHOLOGIES

SHALE
MUDDSTONE
SILTSTONE
SANDSTONE
CONGLOMERATE
BRECCIA
LIMESTONE
DOLOMITE
MARL

KEROGEN TYPES

AMORPHOUS
HERBACEOUS
WOODY
INERTINITE

MISSING SECTION
APPENDIX A

Brief Description of Organic Geochemical analyses Carried Out by GeoChem

C₁-C₄ Hydrocarbon

The C₁-C₄ hydrocarbon content and composition of sediments reflects source type, source quality and thermal maturity.

The C₁-C₄ hydrocarbon content of whole cuttings is determined by analyzing each a sample of the cuttings and the air space at the top of the can. The results of the two analyses are summed to give an inventory of the C₁-C₄ hydrocarbon content of the walk cuttings prior to any losses from the cuttings during the lapse time between collection at the wellsite and laboratory analysis.

The air space C₁-C₄ hydrocarbon analysis involves taking a measured volume of the air space gas out of the can with a syringe and injecting it into a gas chromatograph. GeoChem uses a Varian Aerograph Model 1460 instrument equipped with a Porapak Q column. The gas sample is passed through the column by a carrier gas and before reaching the detector is separated into its various C₁ (methane), C₂ (ethane), C₃ (propene), C₄ (isobutane), C₅ (normal butane), and C₆, C₇, C₈ hydrocarbon components.

This particular analysis gives a complete separation of the C₁-C₄ gas-range hydrocarbons and a partial separation of the C₅-C₇ gasoline-range hydrocarbons. (A detailed C₅-C₇ analysis, to be discussed later, involving a capillary column, effects a complete separation of the molecular range into its several individual molecular species.)

The electrical response of the various hydrocarbons as they reach the detector is recorded on a paper strip chart as a peak. This response is simultaneously fed into an integrator which computes the area of each peak. The concentration of C₁-C₄ hydrocarbons in the air space, expressed as volumes of gas per million volumes of cuttings, is determined by a calculation involving the volume of cuttings, volume of air space in the can, volume of sample injected, volume of standard gas sample used in the calibration, calibration factor for C₁, C₂, C₃, etc. determined by gas analysis of a standard gas sample and the gc peak response.

The C₁-C₄ hydrocarbon content of the cuttings is determined by degasification of a measured volume of cuttings (in a medium of a measured volume of water) in a closed blender, sampling the air space at the top of the blender, and injection of a measured volume of gas into the gas chromatograph.

The C₁-C₄ hydrocarbon content from the air space and cuttings gas analyses are summed to give a "restored" C₁-C₄ hydrocarbon content of the cuttings.

Sample Washing and Hand-Picking of Uncured Lithology Samples

The cuttings samples are washed to remove all drilling mud from the cuttings. Care is taken in the washing procedure not to remove any soft clays, claystones, etc. and any loose fine sand and silt. The washed cuttings are usually kept under water cover until picked, to prevent loss of any gasoline-range hydrocarbons. Using the C₁-C₄ hydrocarbon data profile and the electrical well log supplied to us and our visual examination of the cuttings material under the biocor microscope, we carefully hand-pick and describe a suite of uncured lithologies representative of the various stratigraphic zones penetrated by the well. The lithological data is used to compile a gross litho percentage log which is shown on all figures. The 2-4 gram picked lithology samples are stored under water in small glass vials in those instances where we wish to run detailed C₅-C₇ hydrocarbon analyses. This sample set is used not only for the C₁-C₄ hydrocarbon analysis, but also for the visual kerogen and total organic carbon analyses. All remaining cuttings material is dried and packaged in labelled plastic bags for possible C₁₅⁺ extract and/or elemental return to the client. Sample material from this study will be retained at GeoChem until advised of disposition.

Detailed C₅-C₇ Hydrocarbon

The C₅-C₇ gasoline-range hydrocarbon content of sediments reflects source quality, thermal maturity and organic facies. Compositional data can be used in crude oil-pore rock correlation work.

The C₅-C₇ hydrocarbon content and detailed molecular composition of hydrocarbon, in hand-picked lithologies, is determined by a gc analysis of the light hydrocarbon extracted from 2-4 gram cuttings samples macerated in a microblender. A measured volume of whole cuttings is placed in a sealed microblender along with a measured volume of hot water. The rock sample is agitated by a motorized blade of the microblender. A sample of the liberated light hydrocarbons which collect in the air space at the top of the blender is injected into our Varian Aerograph 1460 gc unit which is equipped with a Porapak Q column. Data recording, computations, etc. are comparable to those used for the C₁-C₄ analysis discussed previously in this report. Hydrocarbon concentration is expressed as volume gas per million volumes of cuttings.

Organic Carbon

The total organic carbon content of a rock is a measure of its total organic richness. This data is used, in conjunction with visual kerogen and C₁-C₄, C₅-C₇ and C₁₅⁺ hydrocarbon content of a rock, to indicate the hydrocarbon source quality of rock.

The procedure for determining the total organic carbon content of a rock involves drying the sample, grinding to a powder, weighing out 0.2723 grams sample into a crucible, adding with hot and cold hydrochloric acid to remove calcium and magnesium carbonate, and carbon analysis by combustion in a Leco carbon analyzer.

We run several blank crucibles, standards (iron rings of known carbon content) and duplicate rock samples in this analysis as an additional charge to the client for purposes of data quality control.

C₁₅⁺ Soxhlet Extraction, Desphosphating and Chromatographic Separation

The amount and composition of the organic matter which can be solvent-extracted from a rock reflects source quality and source type. C¹²/C¹³ carbon isotope, high mass spectrometric and gas analyses of the paraffin-naphthalene and aromatic hydrocarbon fractions of the soluble extract gives data which is used in crude oil-pore rock correlations.

This analysis involves grinding of a dry rock sample to a powder and removal of the soluble organic matter by soxhlet extraction using a co-distilled toluene-methanol mixture solvent. Where the amount of available sample material permits, we use to use at least 100 grams of rock for this analysis.

The extracted bitumen is separated into an asphaltenes (ASPH) and a pentane soluble fraction by normal pentane precipitation. The pentane soluble components are separated into a C₁₅⁺, paraffin-naphthalene (P-N) hydrocarbons, C₁₅⁺ aromatic hydrocarbon (AROM) and C₁₅⁺ nitrogen-sulfur-oxygen containing fraction (NSO) by adsorption chromatography on a silica gel-alumina columns using pentane, toluene and toluene-methanol eluents.
APPENDIX A (continued)

GC Analysis of C_{16+} Paraffin-Naphthene (P-N) Hydrocarbons

The content and molecular composition of the heavy C_{16+} paraffin-naphthene (P-N) hydrocarbons of rocks, as determined by gc analysis, reflects source quality, source type and degree of thermal maturation.

In this analysis, we subject a very small fraction of the total amount of the P-N fraction extracted from a rock sample to gc analysis. The gas chromatograph is a Varian Aerograph Model 1400 equipped with a solid rod injection system and a cutetric column.

The calculated C.P.I. (carbon preference index) values for the normal paraffin data is defined as the mean of two ratios which are determined by dividing the sum of concentrations of odd-carbon numbered n-paraffins by the sum of even-carbon numbered n-paraffins. The C.P.I. Indices A and B were obtained by the formulas:

\[
\text{C.P. Index A} = \frac{C_{27} + C_{29} + C_{31}}{C_{28} + C_{29} + C_{30}}
\]

\[
\text{C.P. Index B} = \frac{C_{26} + C_{28} + C_{29} + C_{30}}{C_{27} + C_{29} + C_{31}}
\]

Visual Kerogen

A visual study of kerogen, the insoluble organic matter in rocks, can indicate the relative abundance, size, and state of preservation of the various recognizable kerogen types and thereby indicate the hydrocarbon source character of a rock. The color of the kerogen can be used to indicate the state of thermal maturity of the sediments (i.e. their time-temperature history). Thermal maturation plays an important role in the generation of hydrocarbons from organic matter, and also affects the composition of reservoir hydrocarbons.

Our procedure for visual kerogen slide preparation involves isolation of the organic matter of a rock by removal of the rock material with hydrochloric and hydrofluoric acid treatment and heavy liquid separation. This procedure is comparable to that used by the palynologist except that it does not include an oxidation stage. (The oxidation treatment is deleted from our procedure because it removes a great deal of kerogen and blanches any remaining kerogen to an extent whereby it is useless for our kerogen color observations.) The kerogen residue is mounted on a glass slide and is examined visually under a high power microscope.

Vitrinite Reflectance

Measurement of the reflectivity of vitrinite particles (K_R) present in the kerogen isolated from sedimentary rocks provides a method of determining the state of maturation, and the diagenetic (time-temperature) history of the organic matter present in the sediments.

The kerogen, obtained from a 25 gram aliquot of crushed rock by the acid procedure previously discussed, is dried and embedded in a Biclastic plug. The surface of the plug is polished using 0.03 micron alumina and the reflectivity determined under oil using a Zeiss high resolution microscope. A minimum of 40 values are required to adequately determine the Maturity Rank.

Fluorescence Spectrophotometric Analysis

Fluorescence spectrophotometry can be used to characterize and fingerprint crude oils, establish crude oil-source rock relationships, and to measure the hydrocarbon source potential of fine-grained sediments.

A one (1) microliter aliquot of either (1) a crude oil or (2) the solvent extractable rock bitumen, is passed through an alumina/silica gel micro column and the C_{19} aromatic hydrocarbons isolated. The aromatic hydrocarbon is diluted and the emission and excitation spectra determined at 440 nm and 420 nm using a Perkin-Elmer Model 512 Double Beam Fluorescence Spectrophotometer.

GEOTHERMAL DIAGENETIC CRITERIA

(BOGEN LABORATORIES, INC.)