
DEEP-SEATED LANDSLIDE SUSCEPTIBILITY 
MAP OF NEW MEXICO 

New Mexico Bureau of Geology and Mineral Resources Open-File Report OFR-594 

Prepared by 

Colin T. Cikoski, Geologist 

Daniel J. Koning, Senior Field Geologist 

New Mexico Bureau of Geology and Mineral Resources 
New Mexico Tech, 801 Leroy Place 
Socorro, NM 87801 

Prepared for 

New Mexico Department of Homeland Security and Emergency Management 
13 Bataan Blvd. 
Santa Fe, NM 87508 

New Mexico Hazard Mitigation Assistance Program 

Sub-grant FEMA-4152-DR-NM-020 

December, 2017 



i 

ACKNOWLEDGEMENTS 

The authors thank the members of the New Mexico Department of Homeland Security 
and Emergency Management Preparedness Bureau for their assistance and guidance in this 
investigation, particularly Wendy Blackwell, State Hazard Mitigation Supervisor, and Kyle 
Mason, Mitigation Specialist. The Earth Data Analysis Center (EDAC) of the University of New 
Mexico digitized scans of landslide maps for this project. The U.S. Army Corps of Engineers 
provided the high-resolution digital terrain model that served as a basis for all topographic data 
used in this investigation. Mark Mansell, Geographic Information Systems (GIS) specialist with 
the New Mexico Bureau of Geology and Mineral Resources, provided cartographic and GIS 
support. Esri provided the GIS software and tools used in processing spatial data throughout this 
project, while the R Development Core Team maintains the R Project for Statistical Computing, 
which was used for the statistical analyses performed in this project. 

DISCLAIMER 

The State of New Mexico assumes no liability of the contents of this report or use 
thereof. 

The contents of this report reflect the views of the authors who are solely responsible for 
the facts and accuracy of the material presented. The contents do not necessarily reflect the 
official views of the State of New Mexico or the Department of Homeland Security and 
Emergency Management.  

The State of New Mexico does not endorse products or software. Use of particular 
products herein was solely for the purpose of completing this project. Trademarks or 
manufacturers’ names appear herein only where and because they are considered essential to the 
object of this document. 

This report does not constitute a standard or specification. This report and accompanying 
map are not substitutes for detailed, location-specific geotechnical or geohazards analyses. 



ii 

Contents 
1 Executive Summary ................................................................................................................ 1 

2 Background and Theory .......................................................................................................... 3 

2.1 Purpose and Motivation ................................................................................................... 3 

2.2 Background ...................................................................................................................... 4 

2.2.1 Style of landsliding ................................................................................................... 4 

2.2.2 Recent landslide incidents......................................................................................... 4 

2.2.3 Previous landslides studies in New Mexico.............................................................. 4 

2.2.4 Overview of regional approaches to assessing landslide susceptibility.................. 11 

2.2.5 Logistic regression modeling .................................................................................. 12 

3 Input Data.............................................................................................................................. 15 

3.1 Statewide map of deep-seated landslides and escarpments ........................................... 15 

3.2 Geologic map ................................................................................................................. 15 

3.3 Topographic data ............................................................................................................ 15 

3.4 Precipitation data ............................................................................................................ 15 

3.5 Hydrographic data .......................................................................................................... 16 

4 Methods................................................................................................................................. 17 

4.1 Modeling approach ......................................................................................................... 17 

4.1.1 Physiographic provinces ......................................................................................... 17 

4.1.2 Training areas and validation areas......................................................................... 17 

4.1.3 Logistic regression modeling .................................................................................. 18 

4.2 Input preparation ............................................................................................................ 24 

4.2.1 Landslide map accuracy improvements .................................................................. 24 

4.2.2 Indicator variable data binning and categorization ................................................. 24 

4.3 Input assessment tests..................................................................................................... 30 

4.3.1 Independence of indicator variables ....................................................................... 34 

4.3.2 Disproportionately influential indicator variables .................................................. 34 

4.3.3 The ability of a training area to represent the province as a whole ........................ 35 

4.3.4 Treatment of slope in Mogollon-Datil and Southern Rocky Mountains areas ....... 46 

4.4 Summary of final input parameters ................................................................................ 46 

4.4.1 Statewide map of deep-seated landslides ................................................................ 46 

4.4.2 Map of escarpments ................................................................................................ 51 

4.4.3 Geologic map .......................................................................................................... 51 

4.4.4 Topographic data .................................................................................................... 51 



iii 

4.4.5 Precipitation data .................................................................................................... 52 

4.4.6 Hydrographic data ................................................................................................... 52 

4.5 Model-driven refinements .............................................................................................. 53 

5 Final Model Results .............................................................................................................. 54 

5.1 Individual model results ................................................................................................. 54 

5.1.1 Basin and Range ..................................................................................................... 54 

5.1.2 Colorado Plateau ..................................................................................................... 58 

5.1.3 Great Plains ............................................................................................................. 58 

5.1.4 Mogollon-Datil area ................................................................................................ 58 

5.1.5 North Rift ................................................................................................................ 58 

5.1.6 Southern Rocky Mountains..................................................................................... 59 

5.1.7 Tableland vs mountainous provinces ...................................................................... 59 

5.2 Synthesis of province results .......................................................................................... 65 

5.2.1 Province boundary mismatches .............................................................................. 65 

5.2.2 Developing susceptibility classes ........................................................................... 65 

5.2.3 Low relief susceptibility classification ................................................................... 66 

5.2.4 Downsampling ........................................................................................................ 67 

5.3 Statewide results ............................................................................................................. 67 

6 Discussion ............................................................................................................................. 75 

6.1 Methodology .................................................................................................................. 75 

6.1.1 Predicting landslide susceptibility by assessing landslide deposits ........................ 75 

6.1.2 Accuracy of model extrapolation ............................................................................ 75 

6.2 Model results .................................................................................................................. 76 

6.3 Use of map and associated limitations ........................................................................... 76 

6.3.1 Land use .................................................................................................................. 77 

6.3.2 Public safety ............................................................................................................ 77 

6.3.3 Transportation and utility corridors ........................................................................ 77 

6.3.4 Construction Projects .............................................................................................. 77 

7 References ............................................................................................................................. 79 

8 Descriptions of Digital Appendices ...................................................................................... 84 



iv 

Figures 

Figure 2-1. Drawings illustrating rotational versus translational landslides................................... 5 

Figure 2-2. Examples of rotational landslides. ............................................................................... 6 

Figure 2-3. A translational landslide near the crest of the San Andres Mountains. ....................... 7 

Figure 2-4. Photograph of a rock avalanche on the eastern side of Socorro Peak. ......................... 8 

Figure 2-5. Landslides southwest of Picuris along the Rio Grande. ............................................... 9 

Figure 2-6. Example of a recent landslide that occurred along the Farmers Mutual Ditch near 

Farmington. ................................................................................................................................... 10 

Figure 2-7. The logistic function with one indicator variable. ..................................................... 14 

Figure 4-1. Map of physiographic provinces and associated training and validation areas. ........ 19 

Figure 4-2. Illustration of the data sampling strategy. .................................................................. 20 

Figure 4-3. Example ROC curves. ................................................................................................ 22 

Figure 4-4. Example of landslide-area model probability histograms. ......................................... 23 

Figure 4-5. Example model probability maps............................................................................... 26 

Figure 4-6. Example of landslide mapping adjustments. .............................................................. 27 

Figure 4-7. Comparison of coverage ratios of preliminary and final province-specific geologic 

unit groupings. .............................................................................................................................. 33 

Figure 4-8. Example set of subsample areas. ................................................................................ 39 

Figure 4-9. Example subsample parameter coefficient estimate variability evaluation plots. ..... 40 

Figure 4-10. Proportions of training data sample points in each slope bin by province. .............. 47 

Figure 4-11. Distributions of slope angle bins in known landslide areas for the Mogollon-Datil 

and Southern Rocky Mountain provinces. .................................................................................... 48 

Figure 5-1. Model evaluation plots for the final Basin and Range model. ................................... 57 

Figure 5-2. Model evaluation plots for the final Colorado Plateau model. .................................. 60 

Figure 5-3. Model evaluation plots for the final Great Plains model. .......................................... 61 

Figure 5-4. Model evaluation plots for the final Mogollon-Datil model. ..................................... 62 

Figure 5-5. Model evaluation plots for the final North Rift model. ............................................. 63 

Figure 5-6. Model evaluation plots for the final Southern Rocky Mountains model. .................. 64 

Figure 5-7. Boundary gradation example. .................................................................................... 68 

Figure 5-8. Histogram of model probabilities from known landslide areas. ................................ 69 

Figure 5-9. Susceptibility classification and downsampling example. ......................................... 71 



v 

Figure 5-10. Histogram of pixel counts of landslide susceptibility classes from final map in 

known landslide areas. .................................................................................................................. 72 

Tables 

Table 4-1. Example bin coverage assessment............................................................................... 28 

Table 4-2. Summary of training area to province-wide coverage ratios. ...................................... 29 

Table 4-3. Summary of aspect category coefficients from spatial subsampling routine. ............. 31 

Table 4-4. Summary of geologic unit groupings. ......................................................................... 32 

Table 4-5. Summary of correlation coefficients between all continuous variables across all 

provinces. ...................................................................................................................................... 38 

Table 4-6. Summary of final subsampling routine results. ........................................................... 41 

Table 4-7. Final slope angle coefficients for the Mogollon-Datil and Southern Rocky Mountains 

models. .......................................................................................................................................... 49 

Table 4-8. Summary of indicator variables considered. ............................................................... 50 

Table 5-1. Summary of coefficients for final models. .................................................................. 55 

Table 5-2. Summary of final model evaluation measures. ........................................................... 56 

Table 5-3. Summary of Weibull distribution-based susceptibility classification. ........................ 70 

Table 5-4. Summary of known landslide area susceptibility classifications in final susceptibility 

map. ............................................................................................................................................... 73 

Table 5-5. Summary of final map susceptibility class coverage. ................................................. 74 

Plates 

Plate 1: Landslide susceptibility map of New Mexico 

Appendices (Digital) 

A) Input GIS files (Esri geodatabase)



vi 

B) Continuous data binning tables (Esri geodatabase)

C) Individual province model probability results (Esri geodatabase)

D) Statewide deep-seated landslide susceptibility (Esri geodatabase)

E) Scripts used for data processing (folder)

F) Indicator variable training area coverage assessment (folder)

G) Indicator variable independence evaluation (folder)

H) Spatial subsampling full results (folder)

I) Individual province models (folder)



1 

1 Executive Summary 
We used logistic regression methods to construct a map of deep-seated landslide 

susceptibility for the state of New Mexico. Deep-seated landslides involve slide planes deeper 
than unconsolidated surficial material, which is typically greater than 3 m in depth. As used here, 
“susceptibility” refers only to the propensity of a portion of the landscape to fail as a landslide, 
irrespective of driving forces such as heavy precipitation or earthquakes. We therefore only 
considered landscape indicator variables, and trained the logistic regression models using 
existing statewide maps of deep-seated landslide deposits. 

Given the diversity in topographic and geologic settings across the state, we chose to 
divide the state into six distinct physiographic provinces and derive a separate model for each 
province. Within each province, we designated a specific region to be a training area, from which 
data would be extracted to derive the model, and a separate external validation area, from which 
data would be extracted to test the robustness of the model. An internal validation, using the 
same validation process but using data collected at random from the original training area, was 
also performed. 

We considered numerous landscape variables as potential indicators for landslide 
susceptibility including elevation, slope angle, slope curvature, slope aspect, slope and surface 
roughness, geologic unit, precipitation, distance to a fault, distance to a major stream, and 
distance to a topographic escarpment. Each variable was binned or categorized in such a way as 
to compress the range of values in each input and to facilitate the capacity for the training areas 
to represent the remainder of each physiographic province. Each binned variable was tested for 
interdependence, for disproportionate influence, and for the consistency of the relationship 
between the variable and landslide occurrence at different locations within the training and 
validation areas. Test results led to revisions in indicator variable categorizations and to a final 
acceptable indicator variable list of (simplified) geologic unit, slope angle, slope curvature, slope 
aspect, and, locally, precipitation. 

We used a statewide deep-seated landslide deposit map as the source of landslide 
presence/absence data. However, as this dataset proved to be the least precise in terms of spatial 
accuracy (lateral inaccuracies commonly 300 to 1,000 m), we relocated, using aerial imagery, 
much of the map elements in the training and validation areas to improve precision to within 200 
m. We extracted data for the logistic regression model by grid-sampling the landslide deposit
locations at a minimum 28 m spacing (the pixel resolution of the slope angle dataset) up to a 
maximum of 100,000 landslide-area training points, recording the values of the indicator 
variables occurring at each point,. We also collected an equal number of randomly-located non-
landslide area points. These were exported to an R-based script (LAND-SE; Rossi and 
Reichenbach, 2016) to derive the logistic regression model and perform model diagnostics. 

This method implicitly assumes that the landscape characteristics of the landslide 
deposits are also reflective of the characteristics of landslide-susceptible slopes. In certain 
provinces, particularly those characterized by plateaus and mesas, this assumption appears valid, 
and final models perform well according to standard measures of discriminatory capacity. For 
other provinces, particularly those characterized by high-relief mountainous terrain, this 
assumption may not be as valid. However, application of some slope stability-based restrictions 
on the parameterization of the slope angle indicator variable in these areas resulted in models 
that appear to accurately characterize landslide susceptibility. 
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Each model takes as inputs values of the indicator landscape parameters and outputs a 
model probability, a value between 0 and 1 that quantifies the potential for landslide 
susceptibility. Model accuracy was assessed by evaluating the receiver operating characteristic 
(ROC) curve, the distribution of model probabilities occurring in known landslide areas, and 
qualitative assessment of the spatial distribution of model probabilities in the training and 
validation areas. Models with validation results that indicate accurate portrayal of susceptibility 
were then extrapolated throughout the remainder of each province. Province-wide results were 
then merged together, with a gradation process applied to the probabilities occurring at province 
boundaries to produce a seamless map of landslide susceptibility probabilities. 

Using the distribution of model probabilities occurring in known landslide areas as a 
guide, we determined threshold probabilities to distinguish four susceptibility classes: unlikely 
susceptible (probabilities between 0 and 0.285), potentially susceptible (0.285 to 0.485), 
moderately likely susceptible (0.485 to 0.685), and likely susceptible (0.685 to 1). We considered 
the precision of the various input data, and subsequently conservatively downsampled the 
susceptibility class raster to a 500 m pixel resolution. Based on the histogram of susceptibility 
classes occurring in known landslide areas across the state, the final map appears to accurately 
characterize susceptibility, as ~85% of known landslides lie in the likely susceptible class. 

The final product is intended to be a coarse-scale, low-resolution guide for planning 
purposes. It is, however, not suitable for site-specific assessment of landslide susceptibility, and 
should not be used as a substitute for a focused, high-resolution geotechnical study. 
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2 Background and Theory 

2.1 Purpose and Motivation 
The purpose of this project was to produce a statewide map showing landscape 

susceptibility for deep-seated landsliding. The term susceptibility, as used here, means the 
propensity inherent in the landscape to experience deep-seated mass-wasting due to features that 
include slope steepness and rock type. Susceptibility does not consider driving forces such as 
precipitation events or earthquakes.  

Types of deep-seated landslides are expounded on below, but are characterized by having 
their basal slide plane deeper than unconsolidated surficial material (such as colluvium), which is 
typically greater than 3 m (10 ft) in depth. In contrast, shallow landslides commonly involve only 
unconsolidated surficial sediment (such as soils or colluvium) that move downslope as earth 
slumps, earth-flows, debris avalanches, or debris slides -- which may possibly evolve to debris 
flows. Deep-seated landslides are ubiquitous in New Mexico's landscape, being especially 
common on the slopes of mesas in the northwest part of the state, northern Rio Grande valley, 
and in the northeastern part of the state. Limited field studies indicate that most landslides 
occurred in wetter climate regimes in the late Pleistocene (130,000 to 10,000 years ago) than 
those which dominated the Holocene (the past 10,000 years). Thus, it is possible that prolonged 
(multi-year) periods exhibiting above-average precipitation may simulate late Pleistocene 
conditions and increase the probability for localized deep-seated slides. Furthermore, 
construction activity at the foot of a landslide may weaken buttress-like resisting forces and 
induce deep-seated slope failure. For these reasons, having a deep-seated landslide susceptibility 
map is useful for construction and safety planning in New Mexico. 

There were two main motivations for this project. One, in preparing for the 2018 update 
for the New Mexico state hazard mitigation plan for the Federal Emergency Management 
Agency (FEMA), it was realized that landslide hazard was poorly defined for New Mexico. A 
landslide susceptibility map would serve as a useful tool to identify regions in the state where 
this risk is non-negligible and should be taken into account by public and private planners. Two, 
a statewide, deep-seated landslide susceptibility map is a logical and useful derivation product of 
a pre-existing map that shows the spatial distribution of deep-seated landslides across the entire 
state (Cardinali et al., 1990). This map was constructed at a scale of 1:500,000 by Mauro 
Cardinali, Fausto Guzzetti (Research Institute for Hydrogeological Protection in Central Italy), 
and Earl E. Brabb (U.S. Geological Survey [USGS]). Having a single map of the state compiled 
by a limited number of authors who are experts in deep-seated landslides, presumably employing 
consistent criteria, is a major asset for constructing a statewide deep-seated landslide 
susceptibility map.  

As discussed below, there are a number of methods that one could potentially use to 
produce a deep-seated landslide susceptibility map. Some methods are more appropriate for 
higher scales (more localized and detailed) and others more appropriate for lower scales (more 
regional and less detailed). Popular low-scale approaches include qualitative "best-expert" maps, 
weighted overlay maps and frequency ratios, logistic regression, ordinary least squares, and 
machine learning methods (cf., Guzzetti et al., 1999; Olsen et al., 2015).  We chose to use 
logistic regression based on its objectiveness, the computational capability of the New Mexico 
Bureau of Geology and Mineral Resources (NMBGMR), and the availability of a landslide-
specific logistic regression computer code (LAND-SE, Rossi and Reichenbach, 2016) that we 
could modify for our purposes. 
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2.2 Background 

2.2.1 Style of landsliding 
Varnes (1978) proposed a classification scheme for landslides that is still widely 

employed today, although some modifications have been proposed (Hungr et al., 2013). Four 
types of landslides are differentiated in New Mexico. Of these, rotational deep-seated landslide 
types are particularly common. These landslides have a concave-up slide plane and exhibit back-
rotation of landslide-involved strata (Figure 2.1). A type of rotational landslide that is abundant 
in New Mexico is called a Toreva-block landslide. Toreva-block landslides are characterized by 
having resistant ridges of hard rock that are back-rotated in the larger rotational landslide (Figure 
2.2). They are common along the slopes of mesas in the Colorado Plateau, in the Rio Grande rift, 
and in the Great Plains (northeast New Mexico). In these areas, hard caprocks (such as 
sandstones or lavas) overlie soft, failure-prone strata (e.g., rift basin fill or the Morrison 
Formation). Translational landslides are characterized by having a relatively planar slide plane, 
commonly coinciding with a dipping fracture plane or bedding plane (Figures 2.1 and 2.3). Rock 
avalanches occur when a large mass of rock peels off of a steep slope and disintegrates into 
boulder-dominated blocks (Figure 2.4). Lastly, earth-flows are locally differentiated; they also 
may form on the lower end of rotational slides (Figure 2.1).  

2.2.2 Recent landslide incidents 
A prime example of a recent deep-seated landslide is along the northwestern side of the 

Rio Grande gorge, at a location 6 km southwest of the town of Picuris (Figure 2.5). At this 
location, a combination of seeps near the head scarp and cutting of a preexisting landslide toe by 
the river has reactivated the preexisting landslide. Advancement of the landslide has constricted 
the Rio Grande, forming Sous rapid (Paul Bauer, pers. comm., 2016). Highway 68 is on the 
southeast side of the river and has not been damaged by this landslide. 

Two other landslides were reported in New Mexico over the past 50 years, although 
whether they are deep-seated or shallow is ambiguous (NMDHSEM, 2013). One is a landslide 
that occurred on the Farmers Mutual Ditch in April of 2007 (Figure 2.6). This caused a complete 
obstruction of the main canal over a length of approximately 300 m. The total cost of repairing 
the canal was $263,408. Second, a landslide event in Taos, which occurred in June of 1977, 
caused $50,000 of property damage (NMDHSEM, 2013).  

2.2.3 Previous landslides studies in New Mexico 
Detailed studies of landslides have been surprisingly sparse in New Mexico and 

immediate environs. A quintessential study that first identified Toreva block landsliding was 
done in eastern Arizona (Reiche, 1937). Mega-landslides are present along the eastern 
escarpment of the Chuska Mountains in northwestern New Mexico. Originally, workers inferred 
that these were deposited by block glide processes, where individual blocks of capping sandstone 
separated along vertical joints and slid down on poorly cemented sandstone and shale without 
backward rotation (Watson and Wright, 1963). However, Cardinali et al. (1990) interpreted these 
as Toreva block type slides. Watson and Wright (1963) suggest a late Pleistocene age for the 
Chuska landslide complex. Reneau and Dethier (1996a,b) interpreted that most landslides in the 
White Rock gorge (Santa Fe County), comprised of rotational and slump type landslides 
(commonly Toreva block style), occurred in the late Pleistocene. In terms of age, practically all 
age-constrained landslides in New Mexico occurred in the Pleistocene. 



Figure 2.1. Drawings illustrating rotational versus translational landslides. Features within a landslide are noted on the leftmost 
drawing. From US Geological Survey (2004).
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Figure 2.2. Top image: Examples of rotational landslide complexes north of Espanola, on the eastern slope of Black 
Mesa. This mesa is capped by basalt and underlain by poorly cemented Santa Fe Group basin �ll consisting primarily 
of sand. Green line corresponds to our adjusted landslide boundary. Rio Grande is in the foreground. Red rectangle 
delineates the area of the lower image. Bottom image:  Resistant ridges of basalt that have been displaced and 
back-rotated. Such resistant ridges are a hallmark of toreva-block landslides. Images courtesy of Google Earth, 
©Google, Inc., 2017
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Figure 2.3. A translational landslide near the crest of the San Andres Mountains, where strata dip steeply to the west.. Here, the bedding plain appears to be relatively 
planar (based on the lack of visible back-rotation) and probably coincides with a dipping bedding plane. Images courtesy of Google Earth, ©Google, Inc., 2017
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Outline of 
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Figure 2.4. Photograph of a rock avalanche on the eastern side 
of Socorro Peak, immediately west of the town of Socorro. The 
deposit is demarcated by the thick, light gray line. The inferred 
source of the rock avalanche is also shown.
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Figure 2.5. Landslide southwest of Picuris along the Rio Grande. Approximate 
extent of landslide deposit is shown in green; state highway 68 lies in the 
foreground in the lower-left corner of the image. Imagery courtesy of Google 
Earth, ©Google, Inc., 2017.
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Figure 2.6. Example of a recent landslide that occurred along the Farmers Mutual Ditch near Farmington. The main canal was 
obstructed over about 300 m. This event lead to a State Disaster Declaration, and the total cost for repair was $263,408 
(NMDHSEM, 2013).
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2.2.4 Overview of regional approaches to assessing landslide susceptibility 
There are many approaches available to construct a map showing regional susceptibility to deep-
seated landsliding. These can be classified as direct or indirect (Guzzetti et al., 1999). Direct 
methods typically involve geomorphic mapping of landslides and associated hazards. Instability 
factors are ranked and weighted, either based on frequency ratios or a priori knowledge of the 
investigator (best-expert opinion). Indirect approaches attempt to predict future patterns of 
landslide instability from past and present distributions of landslide deposits (Guzzetti et al., 
1999). This approach includes such methods as contouring of point densities of landslides, the 
weight of evidence method, the slope-angle threshold method, and multivariate approaches (e.g., 
ordinary least squares, discriminant function analysis, logistic regression, and machine learning). 
Deterministic methods commonly involve geotechnical process approaches, which determine 
safety factors using slope stability approaches. The high degree of simplification in the 
geotechnical process approach makes it suitable for fairly uniform ground conditions but not 
ideal for regional studies (Terlien et al., 1995; Wu and Sidle, 1995; Yilmaz, 2009; Olsen et al., 
2015). 

Within the direct approach, probably the most popular choice is using the weighted overlay 
method, commonly used in conjunction with landslide factor frequency ratios. In this method, a 
set of rasters are generated of particular landscape features, such as slope or rock type. Values 
are binned in each raster and weights are assigned to these subunits. The weighting is typically 
done by using frequency ratios (e.g., Lee and Sambath, 2006), although one could also do this by 
expert opinion. The rasters are overlain spatially in a geographic information system (GIS) and 
the weights (or frequency ratios) of the raster set over a particular grid is summed. Higher/lower 
values are then assigned corresponding higher/lower susceptibility values (Lee and Min, 2001; 
Lee and Sambath, 2006). Examples of the overlay method where weights were assigned using 
expert-opinion include: Anbalagan (1992), Pachauri and Pant (1992), and Sarkar et al. (1995). 
Other examples of probabilistic models under the direct approach include Jibson et al. (2000), 
Luzi et al. (2000), Parise and Jibson (2000), Donati and Turrini (2002), Lee et al. (2002a), Zhou 
et al. (2002), Lee and Choi (2003), and Lee et al. (2004). 

Of the indirect approaches listed in Guzzetti et al., probably the simplest one is to contour the 
point density of landslides using GIS-processing techniques (Guzzetti et al., 1994, 1999; 
DeGraff and Canuti, 1998). The presence and density of past deep-seated landslides is a
proxy for the susceptibility of a given area.   

The weight of evidence method is a probabilistic approach based on a log linear form of Bayes' 
rule. This method uses the presence or absence of a landslide within an area to calculate a weight 
value for each landslide predictive factor (Bonham-Carter, 1988). Studies employing this
method include Lee and Choi (2004), Lee et al. (2002b), Yilmaz (2009), Pradhan et al. (2010), 
Neuhauser et al. (2012), and Vakhshoori and Zare (2016). 

In Utah, the Utah Geological Survey produced a statewide regional landslide susceptibility map 
using slope-angle thresholds (Giraud and Shaw, 2007). Landslide slope statistics were compiled 
as a function of generalized map units. For each generalized unit, the mean and standard 
deviation was calculated. Pre-existing landslides were categorized as highly susceptible 
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regardless of slope statistics. Otherwise, for a given generalized map unit, susceptibilities were 
assigned according to means and standard deviations of the data: 1) moderate (slopes above 
mean-minus-one-standard deviation); 2) low (slopes between mean-minus-two-standard-
deviations and mean-minus-one-standard-deviations); and 3) very low (slopes lower than mean-
minus-two-standard deviations).  

Multivariate methods commonly involve multiple regression analysis, ordinary least squares 
analysis, discriminant function analysis, and logistic regression. Ordinary least squares analysis 
was used successfully by Gorsevski et al. (2000) and Olsen et al. (2015). Discriminant analysis 
was employed in Taiwan by Lee et al. (2008). 

Another popular approach to determining regional susceptibility of landsliding involves using 
logistic regression modeling. The details of this technique are described below. Notable earlier 
works employing this technique include Carrara et al. (1991), Rowbotham and Dudycha (1998), 
Atkinson and Massari (1998), Dai et al. (2001), Dai and Lee (2002), Ohlmacher and Davis 
(2003), Lee (2004), and Lee and Sambath (2006). 

Recently, machine learning has been employed to produce susceptibility maps (Ercamoglu and 
Gokceoglu, 2002; Pistocchi et al., 2002; Lee et al., 2003a,b, 2004b). The particular methods 
include artificial neural networks and fuzzy logic. These methods perform comparably or slightly 
better when compared to the commonly employed frequency ratio overlay model (Yilmaz, 2009; 
Vakhshoori and Zare, 2016).  

2.2.5 Logistic regression modeling 
Logistic regression seeks to quantify the relationship between a set of independent 

indicator variables and a categorical dependent variable, usually a binary dependent variable that 
can take values of only 0 or 1. Logistic regression determines a set of coefficients B0, B1, B2, …, 
Bn that, given a set of training data, best fit the following two equations: 

P(Z) = (1 + e-Z)-1 (1) 
Z = B0 + B1X1 + B2X2 + … + BnXn (2) 

Where: 
X1, X2, X3, …, Xn are independent indicator variables. 

P(Z) will vary between 0 and 1, as shown in Figure 2.7. The training data is a set of known 
binary responses and associated values of the selected indicator variables. The output of equation 
(1) is interpreted to be the probability that a given set of indicator variable values will be 
associated with a positive response (i.e., that the dependent variable will be 1). In the context of 
prediction, a threshold probability is typically assumed or otherwise selected (often taken to be 
0.5) that categorizes the probability results of function P(Z) as a prediction of 0 (absence) or 1 
(occurrence). Ideally, the function P(Z) has a sharp transition as shown in Figure 2.7 that well-
defines the threshold. 

In the context of landslide susceptibility mapping, the independent indicator variables are 
landscape or geologic parameters such as elevation, slope angle, slope aspect, underlying 
geologic unit, etc., that can each be defined at a single point on the landscape, while the binary 



13 

dependent variable is whether or not a given point on the landscape is susceptible to landsliding. 
The training data is compiled by collecting the values of landscape parameters at locations where 
landslides are known to have occurred, as well as collecting a set of values for landscape 
parameters where landslides have not occurred. The training data is then processed by regression 
analysis to determine the best values of coefficients B0, B1, B2, …, Bn to fit the function P(Z) to 
the known occurrence or absence of landslides at each point sampled. The function P(Z) can then 
be evaluated at any point in the landscape where the values of the indicator variables are known 
to determine a probability that the given location is susceptible to landsliding. Typically, 
probability thresholds are defined to transform raw probability values into susceptibility classes. 
Over the past few decades, this general method has been used in several studies for the purpose 
of landslide susceptibility mapping (cf., Dai et al., 2003; Lee, 2005; Lei and Jing-feng, 2006). 

The popularity of the logistic regression technique is the product of its several advantages 
over similar regression techniques. For one, logistic regression can directly incorporate 
categorical variables without mapping the categorical variable to a continuous quantity. For 
example, a variable such as geologic unit can be directly entered into the model without 
somehow converting the geologic unit category to a numerical value. This avoids the issue of 
determining an appropriate quantification of qualitative variables whose relationship to landslide 
susceptibility is not necessarily known a priori. The model is thus free to objectively determine 
the relationship. The logistic regression technique is also less sensitive to the distributions of 
both dependent and independent variables, as compared to other regression techniques. 

We considered a variety of topographic, geographic, climatic, and geologic factors as 
potential indicators of landslide susceptibility. The input data collected is described in the 
following section. 



Figure 2.7: The logistic function with one indicator variable. The 
threshold value separating model prediction of occurrence versus 
absence (1 versus 0) is often assumed to be 0.5, but can be set to any 
value between 0 and 1.
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3 Input Data 
We collected several statewide datasets for potential inclusion in the logistic regression 

models. Data processing, as well as assessment for inclusion in the final models, is described in 
the following section. 

3.1 Statewide map of deep-seated landslides and escarpments 
The existence of a statewide map of deep-seated landslides, compiled by Cardinali et al. 

(1990), was one of the impetuses for this project. This map has a scale of 1:500,000 and 
categorizes the mapped landslides into rotational slides; translational slides (i.e., rock-block 
slides and combined rock slide or debris slide); Toreva block slides; “unclassified deep-seated 
landslides;” “unclassified complex landslide or slump-earth flows;” or “hummocky topography 
probably related to deep-seated landsliding.” The specific category of landslide was not 
considered in our analyses. Cardinali et al. (1990) also produced maps of topographic 
escarpments, which we considered a potential indicator for predicting landslide susceptibility. 
Both Cardinali et al. (1990) maps were digitized by the Earth Data Analysis Center at the 
University of New Mexico and provided to us as GIS files for this project. Our assessment of the 
locational accuracy of these maps is described in the following section. 

3.2 Geologic map 
We considered that the mechanical properties of the underlying geology may be an 

indicator of landslide susceptibility. Geologic information was extracted from the 1:500,000-
scale, statewide geologic map of New Mexico (NMBGMR, 2003). In addition, we considered 
that the distance to a mapped fault may also be an indicator variable; fault locations were 
extracted from the same statewide geologic map. Our experience with this dataset is that it is 
accurate to approximately 200 to 500 m. 

3.3 Topographic data 
We considered that elevation, slope angle, slope curvature, slope aspect, and “slope 

roughness” may be indicators of landslide susceptibility. We used a proprietary high-resolution 
(4.5 m pixel resolution) digital terrain model (Intermap, 2008) provided to the NMBGMR by the 
U.S. Army Corps of Engineers for research purposes, which we downsampled to 28 m pixel 
resolution, as a basis for all topography-related variables. Our experience with this dataset is that 
the limit of accuracy is below the 28 m pixel resolution. We processed the digital elevation 
model for slope angle, slope curvature, and slope aspect using Esri ArcGIS Spatial Analyst tools 
(Esri, Inc., 2016). Slope curvature was split into two inputs, positive slope curvature and 
negative slope curvature, each of which recorded only the magnitude of curvature as a positive 
value irrespective of the direction of convexity of the slope curvature. We also calculated “slope 
roughness” factors, in this case calculated as the standard deviation in elevation, slope angle, and 
slope curvature values occurring over any given 5 pixel by 5 pixel square area. 

3.4 Precipitation data 
We downloaded the 30-year average (“normal”) annual precipitation model data at 800 m 

pixel resolution from the PRISM Climate Group at Oregon State University (PRISM Climate 
Group, 2016). 
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3.5 Hydrographic data 
We considered that the distance to a major stream may be an indicator of landslide 

susceptibility. We used the National Hydrography Dataset available from the U.S. Geological 
Survey (USGS, 2013) for stream locations, keeping only the following major rivers: Canadian 
River, Cimarron River, Gila River, Jemez River, Mimbres River, Pecos River, Red River, Rio 
Chama, Rio Grande, Rio Puerco, San Juan River, and Zuni River. However, we also considered 
that the lateral extent of influence on landslide susceptibility may vary with valley width along 
each river. To capture this varying extent, we approximated the extent of each river’s floodplain 
by extracting the extents of “young alluvium” and “young river alluvium” (map units A, Ay, AR, 
and ARy) from the surficial geologic map of Hawley et al. (2005) that occurred along each river. 
Where no alluvial deposit was found on the surficial geologic map, we gave the river segment an 
arbitrary 50 m width. Distance to stream was subsequently determined from the edges of the 
resulting floodplain polygons. 
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4 Methods 

4.1 Modeling approach 

4.1.1 Physiographic provinces 
In a state as diverse as New Mexico, we anticipated that no single model could accurately 

portray the landslide susceptibility across the entire state. The rocky, rugged mountains of the 
basement-cored Sangre de Cristo Mountains or volcanic and volcaniclastic rock-dominated Gila 
Wilderness area are unequivocally different settings from the mesas and interbedded sedimentary 
rocks of the Colorado Plateau, and we anticipated that these characteristically different settings 
would each need their own regression model. Based on similarities in geomorphic and 
underlying geologic elements, the state is typically divided into four or more physiographic 
provinces (e.g., Pazzaglia and Hawley, 2004, and references therein), and we used the 
physiographic province concept as a guideline for dividing the state into six regions. Our regions 
were adapted from Hawley (2005), with the exception that we differentiated a northern Rio 
Grande rift province within his southern Rocky Mountains province. Our six physiographic 
provinces are: Colorado Plateau, Southern Rocky Mountains, northern Rio Grande rift (“North 
Rift”), Basin and Range, and Mogollon-Datil highlands (which Hawley called the "Transition 
Zone"); these provinces are shown in Figure 4.1.  The Colorado Plateau is characterized by 
interbedded sedimentary strata of varying strengths, where stronger layers commonly form mesa 
tops and softer strata may underlie the mesa flanks. The Great Plains province also is underlain 
largely by sedimentary strata that create mesas or escarpments, particularly in its northern part. 
However, it is overall flatter than the Colorado Plateau and has a slightly denser grass cover. The 
Southern Rocky Mountains ranges from 6,000 to 13,000 ft elevation, has more abundant steep 
slopes but less common mesas than the aforementioned provinces, and is underlain by a wide 
variety of rock types (igneous, metamorphic, and sedimentary). The northern Rio Grande rift is 
characterized by mesas and low-gradient slopes underlain by either volcanic flows or weakly 
consolidated Cenozoic rift basin fill. Locally, the basin fill is highly dissected to produce locally 
high topographic relief. Vegetation ranges from semi-arid grassland to pinon-juniper to 
sagebrush. Located in the southern part of the state, the Basin and Range is mostly a low-relief, 
arid (sparsely vegetated Chihuahuan desert fauna) landscape sporting a diverse array of geologic 
formations and structures. Lastly, the Mogollon-Datil province was designated for the high-
elevation landscape between the cities of Socorro and Silver City, including the Gila Wilderness 
area. It has a slightly less diverse array of rock types compared to the Basin and Range, with 
volcanic rocks being particularly common, and it is more hilly. The higher elevation of the 
Mogollon-Datil physiographic province allows it to receive more precipitation than the Basin 
and Range province. 

4.1.2 Training areas and validation areas 
It is desirable to have two distinct datasets of landslide occurrence or absence and 

associated landscape parameters in regression modeling, as one set can be used for training the 
model while the other provides an independent evaluation of the efficacy of the model. Multiple 
methods exist for deriving separate training and validation datasets; we chose to designate two 
non-overlapping areas within each province to serve as training and validation areas, from which 
the landslide occurrence and landscape parameter values would be extracted. Each area was 
chosen so as to be >2000 km2 in areal extent, to contain a relatively high number of mapped 
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landslides, and to be representative of the physiographic province as a whole. Training and 
validation areas are shown in Figure 4.1. 

4.1.3 Logistic regression modeling 
We developed a data sampling, model generation, and model validation strategy that 

collects and processes the landscape parameters associated with mapped deep-seated landslide 
deposits to estimate landslide susceptibility across the state. The validity of using landslide 
deposits to characterize susceptibility is addressed in the Discussion section. 

4.1.3.1 Data sampling 
In order to characterize the landscape parameters associated with known landslide 

deposits, we first converted all landslide points to small circles with 150 m radius to generate 
small polygons of comparable size to the accuracy of the adjusted landslide deposit map 
(regarding adjustments: see “Input assessments and processing – Landslide map accuracy 
improvements”). We added these to the adjusted landslide deposit polygons, then densely point-
sampled the combined landslide deposit polygons using a square grid geometry. The grid spacing 
was varied to provide even coverage of the landslide polygons in the training area with 100,000 
landslide training points, with a minimum allowable spacing of 28 m (the resolution of the input 
topography-related rasters). As a consequence of the minimum allowable grid spacing, the 
Mogollon-Datil and Southern Rocky Mountain provinces, which have comparatively little total 
landslide area, collected fewer than 100,000 landslide training points, while the remaining four 
provinces collected the full number. We then collected an equal number of non-landslide area 
points. These points were randomly located throughout the remainder of the training area. Non-
landslide points were not permitted to be located within a 300 m buffer around any landslide 
polygon, in order to accommodate the accuracy of the adjusted landslide map. A minimum point 
spacing for non-landslide points was set at 7 m; ideally, we would have used a 28 m minimum 
spacing (equal to the resolution of the topography-related rasters), but initial sampling 
experiments with a 28 m minimum spacing resulted in frequent crashing of the point-generating 
GIS tool, when the point density became too great to locate additional points. The data sampling 
procedure is illustrated in Figure 4.2. 

We collected two validation datasets for each province: an internal validation set 
collected from the training area and an external validation set collected from the validation area. 
For the internal validation dataset, we collected twice as many sample points as were collected 
for the training dataset; for the external validation dataset, 400,000 points total were collected 
across the validation area. Points were located randomly with a minimum point spacing of 7 m 
(similar to the non-landslide training points). No restrictions on point locations were imposed. 

At all training and validation points, the presence or absence of a landslide polygon 
(inclusive of the 150 m-radius circles about landslide points) was recorded as a 1 or 0, 
respectively. All specified indicator landscape parameter values were also recorded. These 
records were screened for null values, and any point with any null values was removed; this 
process removed less than a tenth of a percent of the points collected. Final training point totals 
ranged from 73,280 (36,734 landslide, 36,546 non-landslide) for the Mogollon-Datil area, to 
158,678 (79,338 landslide, 79,340 non-landslide) in the Southern Rocky Mountains, to at least 
199,884 (roughly evenly divided) in all other provinces. Training and validation data was then 
exported to shapefiles and text files as needed for the LAND-SE script, discussed below. 



Figure 4.1: Map of physiographic provinces and associated training and validation areas. Southern Rocky Mountains province 
consists of three disconnected regions.
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Figure 4.2: Illustration of the data sampling strategy. Landslide points are expanded to 150 m radius circles, and the 
combined extent of these circles and the mapped landslide polygons is grid-sampled for landslide data points. 
No-landslide data points are collected at random from the area outside a 300 m bu�er zone around the landslide 
sampling area. Illustration extracted from a portion of the Colorado Plateau training area.
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4.1.3.2 Model generation 
We used a modified version of the LAND-SE script (version 1, release 0, build 32) 

written by Rossi and Reichenbach (2016) to generate and preliminarily evaluate the logistic 
regression models. This script was written in the R programming language, an open source 
programming language with a particular niche in statistical computing (R Development Core 
Team, 2015). The LAND-SE (“LANDslide Susceptibility Evaluation”) script was written to 
generate, evaluate, and map the results of multiple multivariate classification models specifically 
for landslide susceptibility. The script is designed to take two sets of inputs, one training dataset 
and another validation dataset, typically collected from the same area. The script outputs include 
tables of model coefficient estimates, coefficient estimate standard deviations, and coefficient 
Wald test statistics; tables of model evaluation results from evaluations performed at all training 
and validation points; and receiver operating characteristic (ROC) curves (described below) for
both training and validation dataset evaluations. Our modifications to the script were minor, 
removing the multivariate classification models we were not using as well as removing some 
time-consuming processing and map generation steps that were not useful for our purposes. 

4.1.3.3 Model evaluation methods 
We found three model evaluation methods particularly useful: the ROC curve, the 

distribution of model probabilities determined for known landslide areas, and qualitative review 
of model probability maps. 

The ROC curve graphs the false alarm rate against the hit rate for a validation dataset as a 
function of the threshold used to separate the prediction of landslide occurrence from absence 
(Figure 4.3). The false alarm rate is defined as the total number of non-landslide points for which 
the model predicted a landslide occurrence divided by the total number of non-landslide points, 
while the hit rate is the total number of landslide points for which the model predicted a landslide 
occurrence divided by the total number of landslide points. As the prediction threshold is raised 
from 0 to 1, the fraction of model probabilities that predict the occurrence of a landslide 
decreases from 100% to 0%, resulting in a decline in both the false alarm rate and hit rate. 
However, a model with good predictive ability will see a more rapid decline in the false alarm 
rate relative to the hit rate, resulting in a curve that bends toward the upper left corner (0% false 
alarm rate, 100% hit rate; Figure 4.3a). A model with poor predictive ability will lie close to the 
straight line from the lower left to the upper right (from 0% false alarm and hit rate to 100% false 
alarm and hit rate; Figure 4.3b); a model with this shape is little better than guessing. Since the 
area beneath the ROC curve increases as the model is bent toward the upper left corner, a 
commonly-used single-value measure of the discriminatory capacity of a model is simply the 
area beneath the ROC curve, which will be 0.5 for a poor model and will increase toward 1 as 
the model predictive ability increases. 

A related measure of model efficacy is the distribution of model probabilities calculated 
for known landslide areas (Figure 4.4). An ideal model will result in high model probabilities in 
all known landslide areas (Figure 4.4a), while poorer models will show a greater percentage of 
low model probabilities in landslide areas (Figure 4.4b). These histograms were evaluated 
principally qualitatively, although the model probability distribution percentiles were calculated 
for each histogram. These histograms also proved useful in determining appropriate probability 
thresholds for defining susceptibility classes, as the distribution provides a measure of what 
fraction of known landslide areas would be captured in each class given various thresholds. This 
is discussed further in the “Final model results – Synthesis of province results” section. 
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Figure 4.3: Example ROC curves. In each case, the threshold separating predicted landslide occurrence from 
absence is varied from 0 to 1, and the hit rate and false alarm rate calculated at each threshold. Points 
corresponding to thresholds at every tenth (0.1, 0.2, etc.) are plotted and labelled. The bi-normal ROC curve is a 
smooth curve �tted to the empirical results. Both curves are from external validations. ROC plots generated by the 
LAND-SE script (Rossi and Reichenbach, 2016). (a) Example good model. (b) Example poor model.
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Figure 4.4: Example landslide-area model probability histograms. In each, red lines and labels locate distribution 
percentiles, where each percentage reports the percent of landslide-area sample points occurring above the 
threshold line. Both histograms are from external validations. Note the changing scales. (a) Example good 
distribution, showing a concentration of landslide area in the higher model probabilities, and more than 75% of 
the landslide areas have model probabilities greater than 0.5. (b) Example poor distribution, showing a 
concentration of landslide areas in the mid-range of model probabilities, and only a little more than 50% of the 
landslide areas have model probability greater than 0.5.
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Qualitative review of model probability maps focused on map sensibility. For example, 
flat areas should not display high model probabilities, as a flat area should not be susceptible to 
landsliding (cf., Figure 4.5a). Maps of model probability were evaluated and landscape 
parameters associated with unusual probabilities were identified. This lead to some refinements 
in the treatment of geology and slope angle for some provinces. 

4.2 Input preparation 

4.2.1 Landslide map accuracy improvements 
The Cardinali et al. (1990) landslide maps are a critical input to the logistic regression 

model. We evaluated the accuracy of the landslide maps by importing the GIS data into Google 
Earth (Google, Inc., 2015) and comparing the Cardinali et al. mapping to landslides interpreted 
from the Google Earth imagery. Based on this assessment, we determined lateral inaccuracies 
commonly in the range of 300 to 1,000 m, and locally >1 km (e.g., Figure 4.6). Given that this 
imprecision would be a limiting factor on the quality of the logistic regression models, we chose 
to manually improve the landslide mapping in all training and validation areas. We used Google 
Earth imagery and the digital elevation dataset to adjust landslide line and point data to achieve 
inaccuracies of <150 m (estimated 95% of adjusted linework locales) to <200 m (estimated 99% 
of adjusted linework locales). The scale used in adjustments ranged from 1:20,000 to 1:60,000. 
Adjoining polygons were lumped together if they were the same type of landslide. Locally, new 
polygons were drawn that were not on the original Cardinali et al. landslide map. 

Improving the accuracy of point data proved more difficult than improving the accuracy 
of polygons, namely because the polygon shape allowed us to better constrain its location on the 
Google Earth imagery. With landslide points depicted in the original Cardinali et al. (1990) map, 
it was often difficult to know where the corresponding landslide was located in on the Google 
Earth imagery. For example, a landslide point from the Cardinali et al. map inaccurately located 
on flat ground could correlate to zero, one, or two landslides on the imagery, and sometimes it 
was difficult to know which one to choose. As much as possible, if two or more points were 
clustered within a radius of 3 km, then our correction-related movement of points within that 
cluster was kept consistent in terms of direction. In some locations, however, one was left with 
little choice but to have inconsistency within the correction-related movements. Occasionally, 
landslides depicted as points were >1 km2. In these cases, new landslide polygons were mapped 
and the associated point deleted. 

4.2.2 Indicator variable data binning and categorization 
An advantage of the logistic regression modeling technique is its capacity to directly 

incorporate categorical variables as indicator inputs and its relative insensitivity to the 
distribution of indicator variable values. As a result, it would be possible to simply sample the 
actual values of all indicator variables, such as geologic unit, slope angle, and slope aspect, 
without any processing and use these values directly in the model generation. However, with 
over 150 separate geologic units on the statewide geologic map, and very unequal distributions 
of some continuous variables (e.g., low slopes are far more common than steep slopes), there is a 
risk of under-sampling the less common units and less frequent ends of continuous variable 
distributions. This becomes a particular problem when considering our methodology of defining 
certain regions of each province as training and validation areas, then subsequently applying the 
model from the training area to the remainder of the province; these training and validation 
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regions may not capture and adequately characterize the influence of less common elements of 
the province as a whole, resulting in an unreliable model. 

4.2.2.1 Binning assessments 
Binning strategies were assessed iteratively: initially by examining the area of each bin 

occurring in the training areas to ensure adequate representation; a second time through the 
spatial subsampling routine described later; and finally refined as a result of model evaluation. In 
the initial test, for each proposed bin, the percent of the province and the training area covered by 
that bin was determined, and the ratio between the training area proportional coverage and the 
province-wide proportional coverage was calculated (e.g., Table 4.1). This ratio defined whether 
the proposed bin was under-represented (<1) or over-represented (>1) in the training area relative 
to the province. Common under-representation of initial bins, particularly for initial geologic unit 
groupings, led to binning refinements. These ratios also supported the use of equal-frequency 
binning (described below) for continuous variables, as the ratios for the equal-frequency bins, 
particularly for the variables used in the final models, commonly averaged ~1 to 1.5 (Table 4.2). 

The second binning assessment was performed with the spatial subsampling routine 
described below. Slope aspect and geologic unit grouping were particularly scrutinized during 
this procedure. For each variable, certain initial groupings were found to perform poorly in the 
later-described tests, resulting in grouping refinements. 

Finally, geologic unit groupings were further refined as a part of final model evaluation. 
In some provinces, we found that certain geologic unit categories were consistently associated 
with under predicting landslide occurrence, indicating the need to refine the geologic unit 
grouping for that province. 

Our final binning strategies are described below. 

4.2.2.2 Continuous variables – Topography-related data, precipitation 
For continuous variables (slope angle, curvature, elevation, precipitation, roughness, 

etc.), we used an equal-frequency binning strategy, with each bin nominally holding 1% of the 
total pixel counts, but with restrictions on the minimum bin width (must be at least 1% of the 
value’s range) and minimum bin pixel count (must be >0.1% of the total pixel count). The 
minimum size restrictions were implemented to prevent disproportionate binning. For example, 
in the Colorado Plateau province, there are as many pixels in the slope angle range of 0 to 0.5° as 
in the range 19 to 77°, such that an unrestricted binning would result in numerous bins in the 
very low slope range and few bins in the steep range. Minimum bin width restrictions prevented 
the creation of disproportionately numerous low-slope bins. 



Figure 4.5: Example model probability maps used for qualitative review of model performance. Both maps are from 
the Southern Rocky Mountains area. (a) Example map showing poor sensibility. Note the relatively high model 
probabilities in low-relief areas along valley �oors along the east (right) side of the map, and relatively low 
probabilities through the high-relief terrain in the south-central of the map. This results from models with negative 
coe�cients for the slope parameter. (b) Example map showing the same area with a sensible parameterization. Note 
the low-relief valley �oors show low model probabilities, while relatively high probabilities are determined for the 
high-relief areas in the south-central of the map. The lower map was produced using the alternative slope treatment 
applied to the Southern Rocky Mountains and Mogollon-Datil areas, described later.

26



Figure 4.6: Example of landslide mapping adjustments, from the Colorado Plateau training area circa Mount Taylor. 
Note, in blue boxes: landslide points mapped on nearly �at ground (north-central of map); map errors locally >1 km 
(south-central); and landslide points given the same shift directions (south-central), as described in the text.
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Table 4.1: Example bin coverage assessment - Preliminary geologic unit bins for the North Rift province

Geo. Unit 1 Area (km 2 ) Fraction 2 Area (km 2 ) Fraction 2 Coverage Ratio 3

M1 123                0.006 1 0.000 0.056
S1 7,890            0.383 1,078           0.266 0.695
S2a 7,480            0.363 2,026           0.500 1.377
S2b 63 0.003 20 0.005 1.618
St1 4,510            0.219 911               0.225 1.027
St2 519                0.025 12 0.003 0.117
Totals 20,584          4,049           
Notes:

   1: Geologic unit: see Table 4.4 for brief descriptions of units and final unit binning

   2: Fraction of total area covered by unit

   3: Ratio of training area fraction to province-wide fraction

   Underrepresented units highlighted in orange.

Training AreaProvince-wide
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Table 4.2: Summary of training area to province-wide bin coverage ratios

Variable Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean
Neg. Curv. 0.99 1.23 1.16 0.98 1.31 1.21 0.94 2.79 2.28 0.91 2.43 1.69 0.93 1.57 1.47 0.95 1.62 1.42
Pos. Curv 0.98 1.30 1.18 0.98 1.24 1.17 0.94 3.79 2.64 0.89 2.55 1.82 0.93 1.72 1.54 0.93 1.49 1.37
Curv. Std. Dev. 0.89 1.23 1.15 0.92 1.26 1.18 0.78 3.67 2.61 0.28 3.03 1.89 0.50 1.70 1.51 0.54 1.60 1.33
Elev. 0.30 3.53 2.02 0.07 3.40 1.48 0.02 2.99 1.48 0.42 5.21 1.45 0.01 3.18 1.42 0.08 3.15 1.48
Elev. Std. Dev. 0.81 1.67 1.35 0.84 1.56 1.29 0.60 3.39 1.96 0.12 3.95 2.01 0.42 1.55 1.27 0.21 1.98 1.41
Geology1 0.76 1.74 1.32 0.60 3.12 1.66 0.24 2.96 1.31 0.55 1.24 0.90 0.69 1.36 1.00 0.70 1.18 0.93
Slope Aspect2 0.93 1.08 1.01 0.92 1.09 1.00 0.99 1.01 1.00 0.99 1.01 1.00 0.92 1.09 1.00 0.96 1.05 1.00
Precipitation 0.41 5.45 2.09 0.31 3.96 1.15 0.01 3.25 1.10 0.03 7.26 2.90 0.03 2.86 1.43 0.02 1.68 0.98
Slope 0.75 1.65 1.32 0.83 1.51 1.28 0.55 3.59 1.88 0.11 3.64 1.79 0.41 1.52 1.29 0.21 1.94 1.35
Slope Std. Dev. 0.80 1.30 1.18 0.86 1.53 1.26 0.70 3.96 2.40 0.09 2.35 1.55 0.45 1.48 1.35 0.24 1.41 1.21
Notes:

   1: Assesses province-specific geologic units, as shown in Table 4.4.

   2: Does not include flat aspect.

Abbreviations:

   BR: Basin and Range, CP: Colorado Plateau, GP: Great Plains, MD: Mogollon-Datil, NR: North Ri t, SRM: Southern Rocky Mountains 

Curv.: Curvature, Elev: Elevation, Pos.: Positive, Neg.: Negative, Std. Dev.: Standard Deviation

Variables used in final models highlighted in orange

SRMBR CP GP MD NR
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4.2.2.3 Categorical variables – Slope aspect, geology 
Slope aspect was incorporated into final models categorized into north (azimuths from 

247.5° through 0° to 67.5°), south (azimuths from 67.5° through 180° to 247.5°), and flat. These 
groupings resulted from assessments of initial binning trials. In the initial trials, slope aspect was 
grouped into 8 cardinal directions plus flat, and these bins were assessed through the spatial 
subsampling routine described below. These assessments determined that using 8 cardinal 
directions resulted in under-sampling of some directions and model coefficients that could be 
either positive or negative depending on the location of the subsample. However, within each 
province, coefficients for west through north to northeast were often similar, while coefficients 
for east through south to southwest were often similar (Table 4.3), leading us to use the 
aforementioned categorization scheme. This later categorization performed better in a 
subsequent spatial subsampling test. 

Categorization of geologic units was defined and refined iteratively throughout the 
project. Initially, each geologic unit in the statewide geologic map was placed in one of 6 groups 
based on inferred mechanical properties (Table 4.4). However, binning tests, described above, 
determined that in each province there were groups that were under-represented in the training 
area (e.g., Figure 4.7), or performed poorly in the spatial subsampling tests. In addition, initial 
models for the Southern Rocky Mountains, Mogollon-Datil, and North Rift areas identified unit 
categories that were frequently associated with low model probabilities in known landslide areas, 
prompting us to further refine these groupings. These tests and assessment led to the province-
specific unit categorizations shown in Table 4.4. 

4.2.2.4 “Distance to” variables 
We considered the potential indicator variables “distance to stream,” “distance to fault,” 

and “distance to escarpment.” In deciding how to incorporate these variables into the logistic 
models, we considered: 1) the reasonable lateral extent of influence of each element from a 
mapped element location; 2) the locational uncertainty of each map element, in particular for the 
escarpments and geologic maps (described above); and 3) the large scale of the investigation. 
Given these considerations, we chose to incorporate each as a simple binary “close or not” 
variable. For escarpments and faults, the “close to” distance was chosen as 1 km, while for rivers 
the “close to” distance was 500 m from the edge of the floodplain. Each variable was sampled as 
either a 1 (if within the buffer distance of a feature) or a 0 (outside the buffer distance of all 
features). 

4.3 Input assessment tests 
After controlling for spatial accuracy and determining binning strategies for each 

potential indicator variable, we assessed the applicability of each input through a sequence of 
tests described below. 



Table 4.3: Summary of aspect category coefficients from the spatial subsampling routine using 9 and 3 category binning

Cardinal Azimuth
9-cat. 
coef.

3-cat. 
coef.

9-cat. 
coef.

3-cat. 
coef.

9-cat. 
coef.

3-cat. 
coef.

9-cat. 
coef.

3-cat. 
coef.

9-cat. 
coef.

3-cat. 
coef.

North 337.5° - 22.5° Ref. Ref. Ref. Ref. Ref.
Northeast 22.5° - 67.5° -0.194 -0.269 -0.273 0.022 -1.005

East 67.5° - 112.5° -0.878 -0.386 -0.267 0.584 -0.682
Southeast 112.5° - 157.5° -0.938 -0.389 -0.465 0.917 -0.543

South 157.5° - 202.5° -0.379 -0.352 -0.523 0.848 -0.281
Southwest 202.5° - 247.5° -0.040 -0.137 -0.324 0.288 0.568

West 247.5° - 292.5° 0.224 0.068 -0.229 -0.243 1.177
Northwest 292.5° - 337.5° 0.278 0.227 -0.123 -0.124 1.106

Notes:

   Cat.: category; coef.: coefficient; ref.: reference direction.
   Coefficient reported is the average of all non-outlier, well-constrained subsample coefficients.

   Mogollon-Datil area was combined with Basin and Range for the earlier 9-category trials, and hence is not reported here as a separate province.

Province abbreviations:

   BR: Basin and Range, CP: Colorado Plateau, GP: Great Plains, MD: Mogollon-Datil, NR: North Rift, SRM: Southern Rocky Mountains

-0.606

Ref. Ref. Ref. Ref. Ref.

-0.385 -0.237 -0.148 0.644

SRM

Ref. Ref. Ref. Ref. Ref.

BR CP GP NR
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Table 4.4: Summary of geologic unit groupings

elpmaxEselpmaxEnoitpircseDtinU  MRSRNDMPGPCRBstinu

S1 Young sediment Stream alluvium; eolian sands mostly unnamed Quaternary deposits S1 S1 S1 Su S1 S1

S2a
Compacted, poorly 
cemented sediment

Rift basin atnaSllif  Fe Grp, Gila Grp, Ogallala Fm. S1 S2 S2a Su S2M S2M

S2b Weak sedimentary rocks
Shale-, mudstone-, and evaporite-rich 
units

Mancos Shale, Chinle Grp, Artesia Grp S2b S2 S2b Su S2M S2M

M1
Interbedded weak and 
strong layers

Interbedded sandstones/limestones 
and shales/mudstones

Crevasse Canyon Fm, interbedded 
Dakota-Mancos and Gallup-Mancos, 
San Rafael Grp

M1 M1 M1 StM S2M S2M

St1 Strong, tabular rocks
Basalt flows, ignimbrites; thick 
sandstone/limestone units

Bandelier Tuff, San Andres Limestone St St1 St StM St St

St2 Strong, massive rocks
Intrusive rocks; thick sections of 
volcanic rocks

Granitic plutons; caldera-fill pyroclastics 
and ring-fracture rhyolite domes

St St2 St StM St St

Notes:

   BR: Basin and Range; CP: Colorado Plateau; GP: Great Plains; MD: Mogollon-Datil; NR: North Rift; SRM: Southern Rocky Mountains

   Grp.: Group, Fm.: Formation

General ecnivorPstinu -specific units
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Figure 4.7: Comparison of the coverage ratios of preliminary geologic unit groups (a) and �nal 
province-speci�c groups (b). Coverage ratios are the ratio of the proportion of each province training 
area lying on a given geologic unit to the proportion of the province as a whole lying on that geologic 
unit. Grouping of preliminary bins into province-speci�c bins is given in Table 4.4.
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4.3.1 Independence of indicator variables 
The logistic regression technique assumes that the indicator parameters are independent 

of each other. Independence can be tested for by assessing the linear correlation between any two 
variables. We determined correlation coefficients between all combinations of continuous 
variables in each province (Table 4.5), which overall varied from 0 to 0.96. Values over 0.4 were 
considered too correlative and defined two groups of variables: 

1) Slope group – Slope angle, slope standard deviation, elevation standard deviation, and
curvature standard deviation; and

2) Elevation group – Elevation and precipitation

We decided that no more than one variable from each group should be allowed in 
subsequent models. From the slope group, we decided to subsequently only incorporate the slope 
angle, as this variable should be the most immediately related to landslide occurrence. From the 
elevation group, we chose to use only precipitation, as between the two choices the precipitation 
dataset provides the more independent complement to the slope angle. 

Although not adequately quantified, we also considered that the distance to stream 
variable may not be independent of the elevation group variables, as major streams occur at the 
lowest elevations. 

4.3.2 Disproportionately influential indicator variables 
We considered indicator variables or elements of indicator variables to be 

disproportionately influential if high model probabilities only occurred in conjunction with these 
elements. Disproportionate influence results from particularly common colocation of mapped 
landslide deposits from the Cardinali et al. (1990) map and the influential element. 
Quantitatively, influence could manifest as a particularly large model coefficient as compared to 
similar indicator elements. Qualitatively, influence manifests in model evaluation map patterns 
as high model probabilities directly overlying only this element. Models including elements with 
strong influence are not necessarily “wrong,” as they may very accurately model the distribution 
of landslides occurring within the training area, but such models will carry a risk: that landslide 
occurrence away from the influential element may be under predicted. This can be particularly 
problematic if the locational accuracy of the mapping of the influential element is questionable.  

In initial models, we identified two elements that disproportionately affected model 
results: the geologic map unit Qls (landslide deposits) and the distance to escarpments variable. 
The influence of neither element is surprising; it should be expected that landslide deposits 
would be independently mapped by Cardinali et al. (1990) and New Mexico-area geologists in 
similar locations, while landslide deposits often lie along the base of and near to escarpments. 
Models incorporating either of these elements commonly only determined high model 
probabilities in areas overlying map unit Qls or in the vicinity of escarpments. We determined 
that this influence is problematic for two reasons: 1) the locational uncertainty of the mapping of 
these two elements (e.g., inaccuracies locally greater than 1,000 m in the Cardinali et al. maps); 
and 2) since the Qls map unit and, in many cases, the escarpments are the product of a previous 
landslide occurrence, such models would be useful for predicting where landslides have occurred 
in the past but may have little use in predicting where landslides may occur in the future. We 
thus eliminated both elements from subsequent models. We removed map unit Qls by using 
aerial imagery and expert knowledge to make “best guesses” as to the nature of the geologic map 
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unit lying beneath, deleting the Qls polygons and replacing them with polygons of grouped 
geologic map units, i.e. those listed in Table 4.4. 

4.3.3 The ability of a training area to represent the province as a whole 
In order to assess the ability of each province training area to accurately model the 

province as a whole, we considered 1) the range of landscape attributes occurring within the 
training area as compared to the province, and 2) the sensitivity of determined model coefficients 
to training area location. The first of these elements was addressed in the “Input data binning and 
categorization” section. The second of these was a particular concern, as our method is 
inherently extrapolatory and hence relies on the relationship between all indicator variables and 
landslide susceptibility being constant throughout the province. If the model coefficient for an 
indicator variable varies with training area location, it would imply that the effect of this 
indicator variable is not constant and the model coefficient should not be extrapolated throughout 
the province. We addressed the sensitivity of model coefficients to training area location through 
a spatial subsampling and subsample modeling routine. 

4.3.3.1 Spatial subsample evaluation 
Our spatial subsampling routine was designed to evaluate several elements of our 

methodology: 
1) How sensitive are model coefficients to the training area location? Can we trust that

coefficients created from a given training area location can be applied to another
location?

2) Is our model binning strategy reliable?
3) What is a reasonable range of model coefficients for each indicator variable?
4) Which variables have significant effects on the models? That is, is the coefficient of the

variable statistically significantly different from zero?

We decided that we wanted to exclude from our modeling efforts variables whose 
relationship to landslide occurrence varies with space, that is, whose model coefficient varies 
significantly with the location from which training data was acquired and the model was derived. 
We also sought to remove variables that had no significant effect on the model, which in this 
case we chose to mean variables whose coefficients were not significantly different from zero. 
To address these concerns, we created multiple models trained on spatial subsamples of the 
combined training and validation areas, which was the total area for which we had corrected 
landslide location data. We then compared the coefficients derived from each subsample model 
to each other. 

We created subsample areas by randomly locating points in the combined training-
validation area, then growing circles about each point until they were one tenth (±5%) of the 
total area of the training-validation area (e.g., Figure 4.8). Subsample areas were invalidated if 
they contained less than a specified area of landslide polygons. For most provinces, this 
minimum was 15.68 km2, twice the nominal amount of area needed to grid-sample 10,000 points 
(one tenth the number collected in a full model) at 28 m spacing (the resolution of the 
topography-related raster datasets). For the Basin and Range and Mogollon-Datil areas, however, 
this restriction proved too limiting, and hence was relaxed to 7.84 km2 and 3.92 km2, 
respectively. For each province, 100 valid subsample areas were created. In each, landslide-area 
and non-landslide area points were located as described in the “Logistic regression – Data 
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sampling” section above, except that only one tenth as many points were collected, and the 
minimum point spacing restriction on randomly located non-landslide points was removed (due 
to frequent script crashes). Point-sampled data was exported to text files and processed in an R 
script using the same functions as used in the LAND-SE script to determine model coefficient 
estimates and coefficient estimate uncertainties. For each independent variable, the coefficient 
estimates and coefficient estimate uncertainties were collected and compared. 

Our coefficient estimate assessment was based on the following hypotheses: 
1) most coefficient estimates should be consistent (few outliers);
2) most coefficient estimates should be well constrained (low coefficient uncertainties);
3) most coefficient estimates should be statistically different from 0 (pass the Wald statistic

test);
4) the coefficient distribution should not show systematic variability, such that the

differences between coefficient estimates should be the result of random error, and hence
the coefficient estimates should be normally distributed;

5) the mean of the coefficient distribution should be statistically different from 0; and
6) coefficient estimates should show a consistent relationship with landslide occurrence (be

consistently positive or consistently negative, and relatively consistent in magnitude).

We tested these hypotheses using the following methods: 
1) Counting the number of outliers in the coefficient distribution, with outliers defined by

two criteria: the model coefficient itself must be outside the (1.5 X interquartile range of
coefficients) outlier criteria and the model coefficient uncertainty must be outside the (1.5
X interquartile range of coefficient uncertainties) outlier criteria. Coefficient results were
considered outliers only if they fell outside both ranges. Outliers were removed from the
distribution prior to performing later tests.

2) Counting the number of estimates that had an uncertainty (standard deviation) greater
than the total range of coefficient estimates in the distribution (after outliers had been
removed). This was an arbitrary-yet-useful criteria for determining poorly-constrained
coefficients, which was justified by examining the distribution of coefficient estimate
standard deviations and recognizing that a large gap separated “well-constrained” and
“poorly-constrained” coefficient estimates. Our criteria, although somewhat arbitrary,
successfully and consistently identified coefficient estimates at the “poorly-constrained”
end. Poorly-constrained coefficient estimates were removed from the distribution for later
tests.

3) Counting the number of coefficient estimates for which the p-value of the Wald test
statistic was less than 0.01. The Wald test statistic is calculated by R for each coefficient
as a part of the model creation process, based on the coefficient estimate and the
coefficient estimate uncertainty. The statistic, in this instance, tests if the coefficient
estimate is significantly different from zero, and we set the criteria for that significance at
the 0.01 level. Coefficients that failed this test were counted but were kept in the
distribution for later tests.

4) We determined the Shapiro-Wilk test statistic as a test of the normality of the coefficient
estimate distribution. We also fitted a normal distribution to each coefficient estimate
distribution, and determined the Kolmogorov-Smirnov one-sample test statistic for
goodness-of-fit. For each test, we flagged variables with statistic p-values <0.01 (i.e.,
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those that were statistically different from the normal distribution at the 0.01 significance 
level). 

5) We used the T-test on the coefficient distribution to assess whether the mean of the
distribution was significantly different from zero, and flagged variables with T-test p-
values >0.01 (i.e., those that were not statistically different from zero at the 0.01
significance level).

6) We evaluated graphs of the distribution of coefficient estimates to qualitatively assess the
consistency of coefficient estimates (e.g., Figure 4.9).

Of these tests, the most crucial proved to be the last. For several variables, the coefficient 
estimates were well distributed to either side of zero, indicating that the relationship between the 
variable and landslide occurrence would switch polarity depending on the location on which the 
model was trained. This was a disconcerting observation, as it suggested that the variable could 
not be reliably trained in one location then applied to another. The coefficient thus could not be 
reliably extrapolated from the training area to the remainder of the province. Coefficient 
distributions with at least 25% of well-constrained, non-outlier values to both sides of zero were 
flagged as potentially unreliable. The precipitation and distance to fault variables, in particular, 
commonly spanned zero in this sense (Table 4.6). The T-test was useful as well, particularly in 
the sense that the test often identified coefficient distributions that spanned zero but also in 
identifying parameters with potentially insignificant influence on the model. 

The first three tests we found useful in determining what variables were well-sampled 
and whose coefficients were well-constrained. This was particularly useful for evaluating the 
geology and slope aspect categorizations, as we discovered that many preliminary geologic unit 
groups and the preliminary 9-category slope aspect groups were undersampled and poorly-
constrained. This led to refinements in these categorizations. These tests were also useful in 
determining the provinces for which the distance to major river variable was well-sampled and 
had a well-constrained coefficient. We flagged those entries where less than 50 (half of the total 
number of subsamples processed) model runs produced well-constrained, non-outlier results. 

The tests for normality (fourth test above) proved least useful. Failure of the Shapiro-
Wilk test for normality was fairly common, while failure of the Kolmogorov-Smirnov test for 
goodness-of-fit was fairly rare. The precipitation and distance to fault parameters most 
commonly failed the Shapiro-Wilk test across all provinces, as did some of the mechanically 
stronger geologic unit parameters. No reason for this pattern was established. 

No single test was used unequivocally to discriminate between acceptable and 
unacceptable parameters. In the interest of having comparable models for each province, we 
sought to minimize the differences between the indicator variables used, and hence considered 
the test results for each parameter across provinces. We typically tried to use those parameters 
that showed good test results across the majority of provinces, while excluding parameters that 
showed poor results across the majority. Some exceptions were made, however, to improve 
individual model fits. 



Table 4.5: Summary of correlation coefficients between all continuous variables across all provinces
Variable:

Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.
Elevation 0.00 0.29 0.07 0.00 0.02 0.01 0.00 0.01 0.01 0.00 0.30 0.08 0.00 0.20 0.04 0.00 0.13 0.04 0.47 0.81 0.66
Slope angle 0.04 0.07 0.06 0.02 0.08 0.04 0.88 0.96 0.93 0.22 0.61 0.43 0.26 0.64 0.45 0.01 0.23 0.07
Pos. slope curv. 0.01 0.32 0.13 0.05 0.08 0.07 0.08 0.13 0.10 0.10 0.14 0.13 0.00 0.02 0.00
Neg. slope curv. 0.03 0.08 0.06 0.08 0.13 0.11 0.09 0.20 0.15 0.00 0.01 0.00
Elev. std. dev. 0.24 0.76 0.53 0.26 0.74 0.50 0.02 0.24 0.08
Slope std. dev. 0.47 0.79 0.61 0.00 0.15 0.03
Curv. std. dev. 0.00 0.10 0.03
Notes:

   Avg.: average; curv.: curvature; elev.: elevation; max.: maximum; min.: minimum; neg.: negative; pos.: positive; std. dev.: standard deviation

   Variables correlating with slope angle highlighted in green

   Variables correlating with elevation highlighted in orange

Curv. std. dev. PrecipitationSlope angle Pos. curvature Neg. curvature Elev. std. dev. Slope std. dev.

38



Figure 4.8: Example set of subsample areas, from the Colorado Plateau area. Each colored circle 
or circle outline is another subsample. Adjusted known landslide polygons are also shown.
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Figure 4.9: Example subsample parameter coe�cient estimate variability evaluation plots. K-S: 
Kolmogorov-Smirnov goodness-of-�t test; S-W: Shapiro-Wilk test for normality. Individual coe�cient estimates 
are shown as purple circles, while the uncertainty in each estimate is expressed as small green Gaussian 
distributions centered on the estimate. SlopeBin is the binned slope angle variable, PRISMBin is the binned 
precipitation variable. (a) Example evaluation plot for a variable with consistent relationship with landslide 
occurrence. (b) Example evaluation plot for a variable with inconsistent relationship with landslide occurrence.
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Table 4.6: Summary of final subsampling routine results Part 1: Continuous variables
Precipitation

No. valid 1 S.W. P-v 2 Avg. 3 Std. dev. 4 K.S. p-v 5 T-test p-v 6 Cons. Pol. 7 Comments
BR 100 0.000 0.001 0.125 0.002 0.920 No Estimates are 40% positive, 60% negative
CP 98 0.000 0.087 0.238 0.031 0.001 No Estimates are 62% positive, 38% negative
GP 100 0.000 0.041 0.462 0.128 0.379 No Estimates are 63% positive, 37% negative
MD 99 0.000 -0.129 0.155 0.006 0.000 Yes
NR 92 0.000 -0.002 0.305 0.023 0.949 No Estimates are 42% positive, 58% negative
SRM 100 0.000 -0.050 0.083 0.000 0.000 No Estimates are 38% positive, 62% negative
Slope angle

No. valid 1 S.W. P-v 2 Avg. 3 Std. dev. 4 K.S. p-v 5 T-test p-v 6 Cons. Pol. 7 Comments
BR 100 0.000 0.094 0.067 0.038 0.000 Yes
CP 100 0.104 0.154 0.042 0.648 0.000 Yes
GP 96 0.035 0.149 0.048 0.520 0.000 Yes
MD 100 0.000 -0.050 0.056 0.000 0.000 Yes Consistently negative coefficients
NR 99 0.397 0.100 0.041 0.593 0.000 Yes
SRM 100 0.027 -0.047 0.037 0.250 0.000 Yes Consistently negative coefficients
Negative slope curvature

No. valid 1 S.W. P-v 2 Avg. 3 Std. dev. 4 K.S. p-v 5 T-test p-v 6 Cons. Pol. 7 Comments
BR 100 0.000 0.162 0.116 0.020 0.000 Yes
CP 100 0.248 0.201 0.069 0.841 0.000 Yes
GP 100 0.002 0.174 0.057 0.295 0.000 Yes
MD 100 0.012 -0.079 0.065 0.472 0.000 Yes
NR 99 0.000 0.118 0.100 0.029 0.000 Yes
SRM 97 0.188 -0.063 0.089 0.411 0.000 Yes
Positive slope curvature

No. valid 1 S.W. P-v 2 Avg. 3 Std. dev. 4 K.S. p-v 5 T-test p-v 6 Cons. Pol. 7 Comments
BR 100 0.000 0.097 0.128 0.034 0.000 No Estimates are 68% positive, 32% negative
CP 100 0.989 0.135 0.064 0.994 0.000 Yes
GP 99 0.002 0.216 0.106 0.177 0.000 Yes
MD 100 0.393 -0.151 0.119 0.856 0.000 Yes
NR 99 0.000 0.067 0.064 0.031 0.000 Yes
SRM 97 0.040 -0.204 0.142 0.178 0.000 Yes41



Table 4.6: Summary of final subsampling routine results (continued) Part 2: "Distance to" variables
Proximal to a fault

No. valid 1 S.W. P-v 2 Avg. 3 Std. dev. 4 K.S. p-v 5 T-test p-v 6 Cons. Pol. 7 Comments
BR 100 0.004 -0.058 0.975 0.123 0.559 No Estimates are 46% positive, 54% negative
CP 87 0.008 -0.566 1.219 0.357 0.000 No Estimates are 34% positive, 66% negative
GP 23 0.133 -0.890 1.245 0.547 0.003 No Estimates are 30% positive, 70% negative
MD 92 0.000 0.779 0.741 0.001 0.000 Yes
NR 78 0.000 1.516 2.473 0.010 0.000 Yes
SRM 96 0.003 0.042 1.118 0.173 0.713 No Estimates are 56% positive, 44% negative
Proximal to a river floodplain

No. valid 1 S.W. P-v 2 Avg. 3 Std. dev. 4 K.S. p-v 5 T-test p-v 6 Cons. Pol. 7 Comments
BR 0 N/A N/A N/A N/A N/A N/A
CP 8 0.391 -1.153 0.351 0.784 0.000 Yes
GP 77 0.001 -0.239 1.203 0.040 0.087 No Estimates are 38% positive, 62% negative
MD 25 0.002 0.774 0.779 0.109 0.000 Yes
NR 89 0.025 3.000 1.219 0.193 0.000 Yes
SRM 40 0.596 4.122 1.165 0.847 0.000 Yes

42



Table 4.6: Summary of final subsampling routine results (continued) Part 3: Slope aspect
Note that north aspect is used as a reference unit.
Flat aspect

No. valid 1 S.W. P-v 2 Avg. 3 Std. dev. 4 K.S. p-v 5 T-test p-v 6 Cons. Pol. 7 Comments
BR 0 N/A N/A N/A N/A N/A N/A
CP 2 N/A N/A N/A N/A N/A N/A
GP 9 0.587 0.907 0.743 0.779 0.009 Yes
MD 0 N/A N/A N/A N/A N/A N/A
NR 0 N/A N/A N/A N/A N/A N/A
SRM 9 0.275 -1.290 0.721 0.627 0.000 Yes
South aspect

No. valid 1 S.W. P-v 2 Avg. 3 Std. dev. 4 K.S. p-v 5 T-test p-v 6 Cons. Pol. 7 Comments
BR 100 0.004 -0.333 0.262 0.381 0.000 Yes
CP 100 0.034 -0.218 0.498 0.266 0.000 No Estimates are 26% positive, 74% negative
GP 100 0.162 -0.140 0.247 0.255 0.000 Yes Estimates are 25% positive, 75% negative
MD 99 0.000 -0.644 0.797 0.010 0.000 Yes
NR 98 0.206 0.878 0.413 0.652 0.000 Yes
SRM 100 0.016 -0.591 0.511 0.567 0.000 Yes

43



Table 4.6: Summary of final subsampling routine results (continued) Part 4: Geologic units
Headings are general geologic unit, equivalent province-specific units are in parantheses. Note that unit S1 (or Su) is used as a reference
Unit S2a

No. valid 1 S.W. P-v 2 Avg. 3 Std. dev. 4 K.S. p-v 5 T-test p-v 6 Cons. Pol. 7 Comments
BR (S1) Combined with reference unit
CP (S2) 92 0.121 2.518 0.960 0.718 0.000 Yes
GP 42 0.130 -2.724 1.871 0.537 0.000 Yes
MD (Su) Combined with reference unit
NR (S2M) 86 0.000 2.729 2.192 0.016 0.000 Yes
SRM (S2M) 78 0.048 3.166 1.873 0.527 0.000 Yes
Unit S2b

No. valid 1 S.W. P-v 2 Avg. 3 Std. dev. 4 K.S. p-v 5 T-test p-v 6 Cons. Pol. 7 Comments
BR (S2) 48 0.000 1.839 2.018 0.009 0.000 Yes
CP (S2) 92 0.121 2.518 0.960 0.718 0.000 Yes
GP 91 0.000 1.236 1.994 0.035 0.000 Yes
MD (Su) Combined with reference unit
NR (S2M) 84 0.000 2.729 2.192 0.016 0.000 Yes
SRM (S2M) 78 0.048 3.166 1.873 0.527 0.000 Yes
Unit M1

No. valid 1 S.W. P-v 2 Avg. 3 Std. dev. 4 K.S. p-v 5 T-test p-v 6 Cons. Pol. 7 Comments
BR 60 0.000 2.610 1.522 0.121 0.000 Yes
CP 90 0.044 0.021 1.778 0.346 0.910 No Estimates are 53% positive, 47% negative
GP 82 0.049 -0.410 2.361 0.680 0.122 No Estimates are 49% positive, 51% negative
MD (StM) 43 0.001 2.717 1.577 0.146 0.000 Yes
NR (S2M) 84 0.000 2.729 2.192 0.016 0.000 Yes
SRM (S2M) 78 0.048 3.166 1.873 0.527 0.000 Yes
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Table 4.6: Summary of final subsampling routine results (continued) Part 4: Geologic units (continued)
Unit St1

No. valid 1 S.W. P-v 2 Avg. 3 Std. dev. 4 K.S. p-v 5 T-test p-v 6 Cons. Pol. 7 Comments
BR (Stu) 60 0.112 -0.341 1.704 0.841 0.130 No Estimates are 42% positive, 58% negative
CP 93 0.089 -0.400 1.320 0.878 0.005 No Estimates are 35% positive, 65% negative
GP (Stu) 90 0.000 -0.374 2.425 0.050 0.149 No Esimates are 52% positive, 48% negative
MD (StM) 43 0.001 2.717 1.577 0.146 0.000 Yes
NR (St) 86 0.000 2.168 2.039 0.237 0.000 Yes
SRM (St) 83 0.015 1.634 2.644 0.304 0.000 No Estimates are 69% positive, 31% negative
Unit St2

No. valid 1 S.W. P-v 2 Avg. 3 Std. dev. 4 K.S. p-v 5 T-test p-v 6 Cons. Pol. 7 Comments
BR (Stu) 60 0.112 -0.341 1.704 0.841 0.130 No Estimates are 42% positive, 58% negative
CP 34 0.019 -1.523 1.647 0.652 0.000 Yes
GP (Stu) 90 0.000 -0.374 2.425 0.050 0.149 No Esimates are 52% positive, 48% negative
MD (StM) 43 0.001 2.717 1.577 0.146 0.000 Yes
NR (St) 86 0.000 2.168 2.039 0.237 0.000 Yes
SRM (St) 83 0.015 1.634 2.644 0.304 0.000 No Estimates are 69% positive, 31% negative
Notes:

   1: Number of non-outlier, well-constrained subsamples

   2: P-value of the Shapiro-Wilk test for normality

   3: Average of the distribution of coefficient estimates

   4: Standard deviation of the distribution of coefficient estimates

   5: P-value of the Kolmogorov-Smirnov test for goodness-of-fit

   6: P-value of the T-test for the mean of the distribution of coefficients being different from zero

   7: Evaluation of distribution for constant polarity (positive or negative) relationship with landslide occurrence

   Test failures are highlighted in orange

Province abbreviations:

   BR: Basin and Range; CP: Colorado Plateau; GP: Great Plains; MD: Mogollon-Datil; NR: North Rift; SRM: Southern Rocky Mountains
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4.3.4 Treatment of slope in Mogollon-Datil and Southern Rocky Mountains areas 
Models created for the Mogollon-Datil and Southern Rocky Mountains provinces 

consistently determined negative coefficients for the slope variable (e.g., Table 4.6), suggesting 
that in these areas landslide susceptibility decreases with increasing slope angle, and resulting in 
susceptibility maps where the highest susceptibilities were determined for flat areas and the 
lowest susceptibilities for steep areas (e.g., Figure 4.5). This is physically unrealistic, and likely 
the result of our use of landslide deposit locations as training data for modeling landslide 
susceptibility (see “Discussion” section for further assessment). These two provinces are 
characterized by common steep, high-relief topography, but contain relatively few mapped deep-
seated landslides. The landslides that are found commonly slid or rotated down to relatively 
shallow slope angles. As a consequence, as compared to other province training areas, the 
Mogollon-Datil and Southern Rocky Mountains training areas sample a greater proportion of 
steeper slope bins overall (Figure 4.10a) and a lower proportion of landslide areas in the steeper 
slope bins (Figure 4.10b). This apparently resulted in the logistic regression process determining 
a negative coefficient for the slope angle parameter. 

Since this model coefficient result is physically unrealistic and qualitatively resulting in a 
poor representation of susceptibility, we chose to modify the treatment of slope angle in these 
two provinces. Since a landslide deposit is where a moving landslide came to rest, we reasoned 
that the slope angle of the deposit itself is a representation of a stable slope angle, and that 
stability should not increase with increasing slope angle above the dominant slope angle of the 
deposits. To incorporate this hypothesis in the logistic regression models, we first assessed the 
distributions of landslide deposit slope angles for each province training and validation area, and 
identified the slope bin associated with the peak of each distribution (Figure 4.11). We then used 
the slope angle parameter in subsequent logistic regression models as a categorical variable, with 
each slope bin as a separate category, and determined a coefficient for each slope bin category. 
Following the hypothesis that slope angles above the dominant slope angle of landslide deposits 
cannot be more stable than the dominant slope angle of the deposits, we applied the coefficient 
associated with the peak of the slope angle distribution as a minimum coefficient to all slope 
angles above that angle (e.g., Table 4.7). The end result is that model probability is prohibited 
from decreasing as a result of increasing slope, regardless of the coefficients determined for 
steeper slopes. Figure 4.5 displays the effect; the result is more physically realistic as model 
probabilities are higher for steeper slopes and lower for shallow slopes. 

4.4 Summary of final input parameters 
The results of the above data processing and indicator variable tests are summarized 

below. Note that a reference category needs to be defined for the categorical variables used in the 
regression model; the reference categories used are given below. Table 4.8 summarizes the 
indicator variables used. 

4.4.1 Statewide map of deep-seated landslides 
The linework and point data from the Cardinali et al. (1990) deep-seated landslide map 

were adjusted to reduce map inaccuracies to <200 m, and often <150 m, in the training and 
validation areas of all provinces. The adjusted lines and points were used to build the landslide 
deposit polygons that were subsequently used in the data sampling procedure to locate landslide 
points and non-landslide points for training and validating the regression models. 



(a)

(b)

Figure 4.10: Proportions of training data sample points in each slope angle bin by province. BR: 
Basin and Range; CP: Colorado Plateau; GP: Great Plains; MD: Mogollon-Datil; NR: North Rift; SRM: 
Southern Rocky Mountains. The Mogollon-Datil and Southern Rocky Mountains lines are shown 
solid, all others are shown dashed. (a) Proportion of all training points in each bin. (b) Proportion in 
each bin that were from landslide points.
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Figure 4.11: Distributions of slope angle bins in known landslide areas for the Mogollon-Datil (MD) and Southern Rocky Mountain (SRM) provinces. 
Data is counts of all landslide deposit pixels in both the training and validation areas of each province.
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Table 4.7: Final slope angle coefficients for the Mogollon-Datil and Southern Rocky Mountains models
Mogollon-Datil Southern Rocky Mtns

Slope angle bin Coefficient Coefficient Comments
1 (Reference bin) (Reference bin)
2 -0.129 -0.297
3 0.157 -0.048
4 0.535 0.432
5 0.991 0.699
6 1.310 1.016
7 1.560 1.275
8 1.861 1.324
9 1.959 1.325
10 2.127 1.379 Peak bin for SRM
11 2.102 1.379 Uses peak bin coefficient (SRM)
12 2.204 1.379 Uses peak bin coefficient (SRM)
13 2.166 1.379 Uses peak bin coefficient (SRM)
14 2.156 1.379 Peak bin for MD
15 2.226 1.379 Uses peak bin coefficient (SRM)
16 2.161 1.379 Uses peak bin coefficient (SRM)
17 2.194 1.379 Uses peak bin coefficient (SRM)
18 2.186 1.379 Uses peak bin coefficient (SRM)
19 2.156 1.379 Uses peak bin coefficient (SRM, MD)
20 and greater 2.156 1.379 Uses peak bin coefficient (SRM, MD)
Notes:

   MD: Mogollon-Datil; SRM: Southern Rocky Mountains

49



Table 4.8: Summary of indicator variables considered
stnemmoC?desUgninniBepyTelbairaV

Escarpments map Proximity variable 1 if within 1 km of an escarpment,
0 otherwise

No Disproportionately influential variable

Geology Categorical Province- gninniBseYcificeps  iteratively optimized throughout
Fault map Proximity variable 1 if within 1 km of a fault,

0 otherwise
No Poor subsampling test performance

Elevation Continuous Restricted equal frequency No Colinear with precipitation variable
Slope angle Continuous

(BR, CP, GP, NR)
Restricted equal frequency Yes

Modified categorical
(MD, SRM)

Restricted equal frequency Yes

Slope curvature Continuous Restricted equal frequency Yes Divided into two separate inputs,
negative and positive curvature

Elevation std. dev.1 Continuous Restricted equal frequency No Colinear with slope angle variable

Slope angle std. dev.1 Continuous Restricted equal frequency No Colinear with slope angle variable

Slope curv. std. dev.1 Continuous Restricted equal frequency No Colinear with slope angle variable
Slope aspect Categorical North, south, dedulcxEseYtalf  from final North Rift model
Precipitation Continuous Restricted equal frequency No* Poor subsampling test performance;

*used in final Mogollon-Datil models
Stream map Proximity variable 1 if within 500 m of a river floodplain,

0 otherwise
No Poor subsampling test performance;

potentially not independent of elevation
Notes:

   1: std. dev.: standard deviation within a 5 pixel by 5 pixel area

   Curv.: curvature
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4.4.2 Map of escarpments 
The distance-to-escarpment parameter was tested as a simple dichotomous parameter: a 

point recorded a value of 1 if within 1 km of an escarpment or a 0 if not. The parameter was 
determined to be disproportionately influential on model results, however, as high model 
probabilities generally only occurred within the region next to the mapped escarpments. The 
parameter was therefore not used in final models. 

4.4.3 Geologic map 
The geologic map was incorporated as a set of categorical variables, grouped according 

to Table 4.4. These units passed the above tests, and were used in final models. For consistency, 
the unit S1 (unconsolidated/uncompacted sediment deposits), which occurs in almost all 
provinces, was used as the reference category. In the Mogollon-Datil area, the lumped unit Su 
was used. 

The distance-to-fault parameter was tested as a simple dichotomous parameter: a point 
recorded a value of 1 if within 1 km of a fault or a 0 if not. This parameter was assessed as a part 
of the spatial subsampling routine described above, which determined that for the Basin and 
Range, Colorado Plateau, Great Plains, and Southern Rocky Mountains areas the coefficient for 
the parameter varies between positive and negative with subsample location. In addition, the 
mean of the distribution of coefficients was not statistically different from 0 at the 0.01 
significance level according to the T-test for the Basin and Range and Southern Rocky 
Mountains areas. Finally, less than 50% of subsamples provided well-constrained, non-outlier 
coefficient estimates in the Great Plains area. The parameter was therefore not used in 
subsequent models. 

4.4.4 Topographic data 

4.4.4.1 Elevation 
Elevation was binned as a continuous variable, but not used due to collinearity with the 

precipitation data. 

4.4.4.2 Slope angle 
Slope angle was binned as a continuous variable and used in all provinces. For the Basin 

and Range, Colorado Plateau, Great Plains, and North Rift provinces, binned slope angle was 
incorporated into the logistic regression models directly as a continuous variable. For the 
Mogollon-Datil and Southern Rocky Mountains areas, binned slope was incorporated as a 
categorical variable, with the coefficient of the peak of the landslide area slope bin frequency 
distribution used as a minimum coefficient for all steeper slope bins, as described above. In each, 
the reference category was the shallowest slope bin. 

4.4.4.3 Slope curvature 
Curvature was divided into positive and negative curvatures, each was binned as a 

continuous variable, and each was used in all provinces. 

4.4.4.4 Elevation standard deviation 
The standard deviation of the elevation dataset was binned as a continuous variable, but 

not used due to collinearity with the slope angle data. 
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4.4.4.5 Slope angle standard deviation 
The standard deviation of the slope angle dataset was binned as a continuous variable, but 

not used due to collinearity with the slope angle data. 

4.4.4.6 Slope curvature standard deviation 
The standard deviation of the slope curvature dataset was binned as a continuous 

variable, but not used due to collinearity with the slope angle data. 

4.4.4.7 Slope aspect 
Slope aspect was categorized as north, south, or flat, with the division between north and 

south placed at 67.5° and 247.5°, as described above. Slope aspect was evaluated using the 
spatial subsampling method described above, which found that the coefficient for the south 
aspect parameter varies somewhat between positive and negative depending on subsample 
location, but only for the Colorado Plateau area did the distribution of parameters fail our 25% 
guideline. Also, for all provinces the mean of the distribution of coefficients was statistically 
different from 0 at the 0.01 significance level according to the T-test, and for all provinces 99-
100% of subsamples returned well-constrained, non-outlier coefficient estimates. We therefore 
chose to include the aspect parameter. Initially, we used aspect as an input for all provinces, but 
subsequent model results found that removing the aspect parameter from the North Rift model 
improved model fit significantly. For all provinces, the north aspect direction was used as the 
reference category. 

4.4.5 Precipitation data 
The precipitation dataset was binned as a continuous variable. The binned precipitation 

data was evaluated using the spatial subsampling method described above, which determined 
that in the Basin and Range, Colorado Plateau, Great Plains, North Rift, and Southern Rocky 
Mountains areas the coefficient for the precipitation parameter varies between positive and 
negative with subsample location. In addition, the mean of the distribution of coefficients was 
not statistically different from 0 at the 0.01 significance level according to the T-test for the 
Basin and Range, Great Plains, and North Rift areas. The precipitation parameter was therefore 
generally excluded. Incorporation of the precipitation parameter in the Mogollon-Datil area 
improved model performance, however, and hence the dataset was used in that province. 

4.4.6 Hydrographic data 
Distance-to-stream was incorporated as a simple dichotomous parameter: a point 

recorded a value of 1 if within 500 m of a major river floodplain or a 0 if not. This parameter was 
assessed as a part of the spatial subsampling routine described above, which determined that 
more than 50% of subsample models produced poorly-constrained or outlier coefficients in the 
Basin and Range, Colorado Plateau, Mogollon-Datil, and Southern Rocky Mountains areas. In 
addition, the distribution of parameter coefficients for the Great Plains area varied between 
positive and negative with subsample location, and the mean of the distribution was not 
statistically significantly different from 0 at the 0.01 significance level. We also were concerned 
that the distance-to-stream variable may not be independent of the elevation or precipitation 
variables. We therefore excluded the distance-to-stream parameter from subsequent models. 
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4.5 Model-driven refinements 
Semi-quantitative and qualitative reviews of model results at various stages led to model 

refinements. Model evaluation methods are described above. Refinements incorporated as a 
result of the input parameter tests are described above. Some additional refinements post-dated 
the indicator variable tests. For example, some geologic units in the Mogollon-Datil, North Rift, 
and Southern Rocky Mountains areas were further grouped as a result of poor sampling and unit-
specific poor model results. Also, for some provinces we experimented with training a model on 
the original validation area and validating on the original training area. This proved to provide 
better model performance in the Great Plains, Mogollon-Datil, and Southern Rocky Mountains 
areas. Finally, post-test models found better fits for the North Rift model when aspect was 
excluded, and better fits for the Mogollon-Datil model when precipitation was included. These 
changes were incorporated after indicator variable testing was completed. 
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5 Final Model Results 

5.1 Individual model results 
Individual logistic regression models were constructed for each province, using the 

indicator variables described above. Due to variable binning and model parameterization 
strategies, the coefficients of individual models (Table 5.1) are not strictly comparable. Some 
trends can be teased out, however, that appear to reflect the nature of the individual provinces. 
Some commonalities amongst the provinces: 

1) Coefficients for the stronger geologic units (St1, St2, Stu, St) are consistently less than
the coefficients for soft or interbedded units. Where split out, coefficients for interbedded
strong and weak layer units (M1) are typically less than those for soft units (S2a, S2b,
S2), except for in the Basin and Range. Where split out, soft sedimentary rocks (e.g.,
shales: unit S2b) have stronger positive relationship with landslide occurrence than
sediment and very weakly cemented sedimentary rocks (units S1, S2a). These trends
suggest that the most landslide-prone terrain is underlain by soft sedimentary rocks, while
the least landslide-prone terrain is that underlain by strong geologic units, as would be
expected.

2) Northerly slope aspects are somewhat more prone to landslide occurrence than southerly
slope aspects, as evidenced by the weak negative coefficients for the south slope aspect
direction across the five provinces that included aspect as a parameter.

3) Higher magnitude curvature, both positive and negative, is generally positively correlated
to landslide occurrence, but not in the Mogollon-Datil and Southern Rocky Mountains
areas. This may be a product of the topographic setting, as described in more detail in the
“Treatment of slope in Mogollon-Datil and Southern Rocky Mountains” section above. In
these two regions, common rugged topography may result in many non-landslide sample
points recording high curvatures, resulting in negative correlations between landslide
occurrence and magnitude of curvature. In the remaining provinces, landslide-covered
slopes are some of the more rugged topography, leading to positive coefficients.

5.1.1 Basin and Range 
As compared to other provinces, the Basin and Range model coefficients exhibit a 

relatively weak relationship between slope angle and landslide susceptibility and a relatively 
strong relationship between susceptibility and geologic unit (Table 5.1). The implication is that 
even relatively shallow slopes may be susceptible to landslide generation, provided the slope is 
underlain by a soft geologic unit or interbedded soft and weak rocks. This perhaps reflects the 
structural setting of the Basin and Range, in that many of the mountain ranges in this province 
are underlain by tilted fault blocks and dipping strata. Dipping sedimentary beds are perhaps 
particularly susceptible to landslide generation, as the inclined bedding planes can become slip 
surfaces for the landslide to fail along. A steep slope is then not necessary for slope failure, 
provided the underlying strata contain numerous inclined bedding planes. The strong relationship 
between geologic unit and landslide susceptibility appears to provide an excellent predictor for 
landslide occurrence, as the Basin and Range model has the highest area under the ROC curve of 
any province for both internal and external validations (Table 5.2, Figure 5.1). 



Table 5.1: Summary of coefficients for final models
BR CP GP MD NR SRM

Variable
(Model intercept) -2.714 -2.252 -2.843 -1.775 -2.200 -1.102
Precipitation -0.037
Slope angle 0.070 0.142 0.138 *** 0.091 ***
    Min*** -0.129 -0.297
    Max*** 2.226 1.379
Neg. Curv. 0.122 0.161 0.197 -0.041 0.089 -0.064
Pos. Curv. 0.087 0.098 0.292 -0.085 0.042 -0.172
Aspect
Flat -8.820 -5.192 -11.614 -8.704 1.707
North (Ref.) (Ref.) (Ref.) (Ref.) (Ref.)
South -0.400 -0.335 -0.078 -0.313 -0.182
Geology
S1 (Ref.) (Ref.) (Ref.) (Ref.) (Ref.) (Ref.)
S2a (Ref.) 1.747 -2.763 (Ref.) 1.268 1.217
S2b 2.689 1.747 1.123 (Ref.) 1.268 1.217
M1 3.121 0.858 0.413 1.325 1.268 1.217
St1 0.190 -0.522 0.265 1.325 -0.390 0.444
St2 0.190 -3.391 0.265 1.325 -0.390 0.444

uS1S
M2SM2S2S

Stu Stu StM St St
Notes:

   BR: Basin and Range; CP: Colorado Plateau; GP: Great Plains; MD: Mogollon-Datil; NR: North Rift; SRM: Southern Rocky Mountains

   ***: MD and SRM areas use a modified categorical binning for slope. See Table 4.7 for full coefficients

   Ref.: reference category

Province-specific 
groups:

(Colors indicate province-specific groupings)

Coefficients

A/NA/N

Not toNdesu  used

Not used
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Table 5.2: Summary of final model evaluation measures
BR CP GP MD NR SRM Avgs

Empirical 0.87 0.83 0.87 0.68 0.79 0.65 0.78
Binormal 0.86 0.81 0.86 0.68 0.79 0.66 0.78

100% 0.06 0.01 0.01 0.13 0.09 0.10 0.07
95% 0.17 0.26 0.31 0.33 0.25 0.40 0.29
90% 0.38 0.38 0.39 0.41 0.37 0.46 0.40
75% 0.69 0.54 0.56 0.52 0.48 0.56 0.56
50% 0.77 0.70 0.77 0.62 0.64 0.68 0.70

Empirical 0.91 0.87 0.83 0.66 0.76 0.64 0.78
Binormal 0.91 0.84 0.82 0.64 0.78 0.63 0.77

100% 0.09 0.02 0.00 0.11 0.10 0.14 0.08
95% 0.20 0.30 0.35 0.39 0.39 0.39 0.34
90% 0.27 0.44 0.42 0.52 0.44 0.49 0.43
75% 0.71 0.58 0.57 0.61 0.53 0.60 0.60
50% 0.84 0.71 0.75 0.67 0.65 0.74 0.73

Notes:

   1: ROC AUC: Receiver operator characteristic curve, area under the curve:

         Empirical: integrated based on actual results; binormal: best-fit smoothed curve

   2: Percentage refers to proportion of landslide area validation points with model probability above

         the given threshold probability

   BR: Basin and Range; CP: Colorado Plateau; GP: Great Plains; MD: Mogollon-Datil; NR: North Rift;

    SRM: Southern Rocky Mountains; Avgs: average results across provinces
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Figure 5.1: Model evaluation plots for the �nal Basin and Range model. ROC plots generated by the LAND-SE script (Rossi and Reichenbach, 2016). (a) Internal 
validation ROC plot. (b) Internal validation histogram of known landslide-area model probabilities. (c) External validation ROC plot. (d) External validation 
histogram of known landslide-area model probabilities.
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5.1.2 Colorado Plateau 
As compared to the other provinces, the Colorado Plateau model coefficients demonstrate 

a relatively strong relationship between slope angle and landslide susceptibility, and a relatively 
strong suppression of susceptibility by strong geologic units (St1, St2; Table 5.1). Steep slopes 
underlain by soft or interbedded-soft-and-hard rocks would show the highest susceptibilities 
given these coefficients. This is not surprising; the Colorado Plateau area is characterized by 
mesas and plateaus underlain by interbedded shales/mudstones and sandstones, and one would 
expect the soft shales and mudstones beneath mesa flanks to be particularly susceptible to 
landsliding. The strong geologic and topographic controls apparently result in an efficacious 
predictor of landslide occurrence, as the Colorado Plateau model has an above average area 
under the ROC curve for both internal and external validations (Table 5.2, Figure 5.2). 

5.1.3 Great Plains 
As compared to other provinces, the Great Plains model coefficients demonstrate a 

relatively strong relationship between slope angle and landslide susceptibility, and relatively 
weak relationship between geologic unit and susceptibility (Table 5.1). The range in coefficient 
values for soft sedimentary rocks, interbedded soft and hard rocks, and hard rocks (units S2b, 
M1, and Stu, respectively) is not as wide as for other provinces, suggesting that rock type is less 
a factor here. However, it should be noted that the coefficient for the consolidated sediment unit, 
unit S2a, is particularly strongly negative, indicating a suppression of landslide occurrence over 
this unit. The coefficient for slope angle, meanwhile, is one of the largest in magnitude. The 
province consists of broad plains and plateaus, and landslides typically occur only along the 
steep-sided flanks of plateaus, leading to this model parameterization. The relationship is 
apparently an efficacious predictor of landslide occurrence, as the Great Plains model has an 
above average area under the ROC curve for both internal and external validations (Table 5.2, 
Figure 5.3). 

5.1.4 Mogollon-Datil area 
The Mogollon-Datil area model is difficult to compare to the other provinces due to the 

unique parameterization, using a modified slope angle input and additionally incorporating 
precipitation data. The area also has the most simplified geologic binning. One difference that is 
apparent is the large, positive coefficient for the strongest geologic unit, a feature not seen in any 
other province. This observation is not a surprise, however, as the strong geologic unit underlies 
and upholds the majority of the high-relief terrain where landslides occur. The coefficients for 
the slope parameter show a greater range than those in the Southern Rocky Mountains province, 
suggesting a stronger relationship between slope angle and landslide occurrence in this province. 
This model appears to have below average discriminatory capacity versus other models, as 
demonstrated by the low area under the ROC curve (Table 5.2, Figure 5.4), but one cause for the 
low area may simply be the general lack of landslide deposits in this province, resulting in many 
false positives. 

5.1.5 North Rift 
As compared to other provinces, the North Rift model coefficients demonstrate a 

relatively weak relationship between slope angle and landslide occurrence, and relatively strong 
relationship between geologic unit and landslide occurrence (Table 5.1). The province has a 
relatively less diverse geologic categorization scheme, which was the result of the relative 
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homogeneity of the rock types found in the province. The North Rift area is underlain mainly by 
strong tabular volcanic rocks (basalts, tuffs) capping consolidated sediments or weakly cemented 
sedimentary rocks (combined into unit S2M), both of which are inset upon by young sediment 
(unit S1). Not surprisingly, the capping rocks tend to suppress model probabilities, while unit 
S2M, which often underlies steep hillsides flanking stream valleys where landslides occur, tends 
to increase model probabilities. The weak relationship with slope is surprising, but perhaps 
reflects the weak mechanical strength of the sediments within which landslides are occurring; 
particularly weak strata may not need as steep slopes to fail as landslides. In terms of 
discriminatory capacity, this model is one of the weaker models, but the area under the ROC 
curve for both internal and external validations is about average for the six models compared 
(Table 5.2, Figure 5.5). 

5.1.6 Southern Rocky Mountains 
The Southern Rocky Mountains area is difficult to compare to other provinces due to the 

alternative treatment of the slope angle parameter. The geologic unit coefficients suggest a 
relatively weak relationship between geologic unit and landslide occurrence, as the range in 
coefficients is relatively narrow. The range in slope coefficient values is also narrower than that 
for the Mogollon-Datil area. The implication is that landslide susceptibility through the Southern 
Rocky Mountains area is relatively constant, which would be a sensible result given the common 
high-relief terrain in the province. The consequence of a relatively invariant susceptibility model, 
however, is a lack of discriminatory capacity, as is reflected by the poor area under the ROC 
curve (Table 5.2, Figure 5.6). Another possible cause for the poor ROC curve may be the relative 
paucity of mapped landslide deposits, resulting in many false positives. 

5.1.7 Tableland vs mountainous provinces 
Several aspects of the final model results naturally group the provinces into “tableland” 

(Colorado Plateau, Great Plains, North Rift, and Basin and Range) and “mountainous” 
(Mogollon-Datil and Southern Rocky Mountains) provinces: 

1) The coefficient of a continuous slope parameter – positive for tableland, negative for
mountainous

2) The coefficient of the curvature parameters – positive for tableland, negative for
mountainous

3) Quantitative measures of model performance – consistently lower areas under the ROC
curve for mountainous versus tableland

Our hypothesis for these differences was touched on above in the “Treatment of slope in 
Mogollon-Datil and Southern Rocky Mountains,” namely that the more mountainous provinces 
have common rugged terrain with relatively low slope angle landslide deposits (Figure 4.10), 
resulting in non-landslide point samples often recording steeper slopes than the landslide deposit 
point samples. In tableland provinces, non-landslide areas are often low-slope benches, valley 
floors, or plateau tops, while landslide deposits blanket the intervening steep slopes. The result is 
positive correlations between slope angle and curvature and landslide occurrence. Because of 
this strong correlation between slope angle and landslide occurrence in tableland provinces, 
landslide occurrence can be well-predicted and model fits are generally good. In contrast, the 
abundance of steep terrain without landslides seen in the mountainous provinces results in 
difficulty determining a clear predictor of landslide occurrence and poorer model fits. 
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Figure 5.2: Model evaluation plots for the �nal Colorado Plateau model. ROC plots generated by the LAND-SE script (Rossi and Reichenbach, 2016). (a) 
Internal validation ROC plot. (b) Internal validation histogram of known landslide-area model probabilities. (c) External validation ROC plot. (d) External 
validation histogram of known landslide-area model probabilities.
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Figure 5.3: Model evaluation plots for the �nal Great Plains model. ROC plots generated by the LAND-SE script (Rossi and Reichenbach, 2016). (a) Internal 
validation ROC plot. (b) Internal validation histogram of known landslide-area model probabilities. (c) External validation ROC plot. (d) External validation 
histogram of known landslide-area model probabilities.
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Figure 5.4: Model evaluation plots for the �nal Mogollon-Datil model. ROC plots generated by the LAND-SE script (Rossi and Reichenbach, 2016). (a) Internal 
validation ROC plot. (b) Internal validation histogram of known landslide-area model probabilities. (c) External validation ROC plot. (d) External validation 
histogram of known landslide-area model probabilities.
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Figure 5.5: Model evaluation plots for the �nal North Rift model. ROC plots generated by the LAND-SE script (Rossi and Reichenbach, 2016). (a) Internal 
validation ROC plot. (b) Internal validation histogram of known landslide-area model probabilities. (c) External validation ROC plot. (d) External validation 
histogram of known landslide-area model probabilities.
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Figure 5.6: Model evaluation plots for the �nal Southern Rocky Mountains model. ROC plots generated by the LAND-SE script (Rossi and Reichenbach, 2016). 
(a) Internal validation ROC plot. (b) Internal validation histogram of known landslide-area model probabilities. (c) External validation ROC plot. (d) External 
validation histogram of known landslide-area model probabilities.
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5.2 Synthesis of province results 
Individual province-specific logistic regression model coefficients were applied to the 

remainder of each province using 28 m pixel resolution rasters to produce province-wide model 
probability maps. We then processed the province-wide maps to produce gradational boundaries, 
classify into susceptibility classes, and finally downsampled to a target 500 m pixel resolution 
raster, as described below. 

5.2.1 Province boundary mismatches 
A benefit of constructing separate models for separate physiographic provinces is better 

fitting models to each individual province; a consequence is disparity between model results at 
the boundaries between provinces. In particular, the weightings of different geologic units can 
change rapidly at the boundary, resulting in sharp discontinuities in model probabilities in a 
statewide map. Since susceptibility should not change sharply at arbitrary boundaries such as 
physiographic province boundaries, we chose to apply a smoothing process to provide 
gradational boundaries between model results at these boundaries. 

Our method was to apply the model coefficients for each province to the landscape 
characteristics of all surrounding provinces up to 10 km from the boundary, then use a distance-
weighted, row-standardized sum of overlapping boundary models to create 20 km-wide 
gradational zones centered on the boundary. The distance-weighting algorithm gave equal weight 
to all adjoining provinces at the boundary itself, then linearly varied weights such that at 10 km 
from the boundary into any single province the sum of weighted probabilities equaled the model 
probability of that single province. Weights were row-standardized, meaning the sum of weights 
applied at any single point would equal 1. In the instance where 3 or more 10 km boundary zones 
overlapped, all overlapping model results were weighted and summed for the purpose of creating 
a gradational boundary. An example of the effect is shown in Figure 5.7. 

5.2.2 Developing susceptibility classes 
Although model probabilities themselves are useful in estimating landslide susceptibility, 

a more categorical measure of potential for susceptibility is desired. In many cases, with logistic 
regression models it is assumed a priori that model probabilities above 0.5 imply the model 
predicts the occurrence of the model dependent variable, while probabilities below 0.5 imply 
absence; in the context of landslides, this would mean that 0.5 separates susceptible terrain from 
non-susceptible terrain. We consider this idealistic and not necessarily reflective of the precision 
of the model, and in fact our analysis of model probabilities determined for known landslide 
areas as a part of our model validation process determined that as much as 25% of known 
landslide areas had model probabilities less than 0.5 (e.g., Figure 5.5b). We therefore sought to 
determine less arbitrary thresholds for defining susceptibility classes. 

We chose to place susceptibility class thresholds based on the distribution of model 
probabilities occurring in known landslide areas. Our goal was to determine thresholds that 
accurately classified the known landslide areas, with the assumption that in doing so we would 
accurately classify landslide potential in the remainder of the map. This approach is 
conservative, in the sense that it maximizes accurately characterizing “true positives” with only 
implicit regard to preventing “false positives.” 

We collected the model probabilities of points that fell on known landslide areas from all 
validation results, both internal and external, for all six final models (Figure 5.8). Using R, we 
then fitted several curves to the distribution of landslide area model probabilities, fitting the 
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curves specifically to (1 – model probability) as this produces a right-tailed distribution that can 
be fitted by a larger range of functions. Of the three fitted curves, that belonging to a Weibull 
function best fit the actual distribution. This fitted curve has shape and scale parameters of 1.613 
and 0.352, respectively, and an estimated mean and standard deviation of 0.315 and 0.200 (in 
terms of 1 – model probability). As the mean and various standard deviations from the mean 
provide meaningful characteristics of the distribution itself, we chose to place thresholds at the 
mean (0.685), at 1 standard deviation from the mean (0.485), and at 2 standard deviations from 
the mean (0.285; Figure 5.8; Table 5.3). The statewide model probability map was subsequently 
classified into four susceptibility classes based upon these selected thresholds. An example of the 
effect of classification is shown in Figure 5.9. 

We define our susceptibility classes as follows. For areas with model probabilities 
between 0 and 0.285, the landscape and geologic setting is generally dissimilar to known 
landslide-affected areas, and these areas are not likely to encompass locations that are conducive 
to deep-seated landsliding. However, certain destabilizing activities such as excavations or 
certain driving events such as earthquakes could still cause these areas to either experience or be 
impacted by a deep-seated landslide. These areas are classified as ‘unlikely susceptible.’ 

 For areas with model probabilities between 0.285 and 0.485, the landscape and geologic 
setting is weakly comparable to known landslide-affected areas, and at the scale of the final 
product these areas may encompass some locations that are conducive to deep-seated 
landsliding. These areas are classified as ‘potentially susceptible.’ 

For areas with model probabilities between 0.485 and 0.685, the landscape and geologic 
setting is moderately comparable to known landslide-affected areas, and at the scale of the final 
product these areas are moderately likely to encompass locations that are conducive to deep-
seated landsliding. These areas do not necessarily encompass locations that are susceptible, 
however. These areas are classified as ‘moderately likely susceptible.’ 

For areas with model probabilities between 0.685 and 1, the landscape and geologic 
setting is comparable to known landslide-affected areas, and at the scale of the final product 
these areas likely encompass locations that are conducive to deep-seated landsliding. These areas 
are not necessarily susceptible in their entirety, however. These areas are classified as ‘likely 
susceptible.’ 

5.2.3 Low relief susceptibility classification 
Following Olsen et al. (2015), we suppressed model classifications in low relief areas 

with no known nearby landslide activity. Susceptibility classification was forced to the lowest 
susceptibility category if the following conditions were met: 

1) The pixel is not within 300 m of a mapped landslide deposit;
2) The elevation range is no more than 5 m in a 300 m by 300 m window, centered on the

pixel;
3) The slope angle range is no more than 2° in a 300 m by 300 m window, centered on the

pixel; and
4) The slope angle at the pixel is less than 2°.

This low relief filter changed some pixels classified as “potentially susceptible” to 
“unlikely susceptible.”  
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5.2.4 Downsampling 
Province-wide model probabilities were originally calculated at the resolution of the 

elevation dataset, that is, at a 28 m pixel resolution. Although this resolution provides excellent 
maps for model evaluation, it does not accurately portray the overall precision of the final map, 
as several datasets are at coarser scales. This resolution is also impractical for a statewide 
dataset. Given the level of precision of the geologic map, as well as the intended final product 
scale, we chose 500 m as the final pixel resolution. We downsampled to 500 m conservatively. 
First, we determined the maximum susceptibility class occurring in any given 250 m-radius 
circle, producing another 28 m-resolution raster with expanded regions of higher susceptibility, 
then we resampled this new raster to 500 m using the nearest neighbor method. The first process 
was used to ensure that small areas of high susceptibility class, such as narrow canyons, were not 
lost to the resampling process. We subsequently applied a 3 pixel by 3 pixel majority filter to the 
resampled raster to remove isolated single pixels of anomalous class. Figure 5.9 shows an 
example of the effect of downsampling on model results. 

5.3 Statewide results 
Plate 1 shows the final results of the classified and downsampled model results. Figure 

5.10 shows the histogram of susceptibility class pixels occurring in known landslide areas. A 
consequence of the conservative downsampling procedure was to expand the area of highest 
susceptibility, resulting in ~85% of known landslide area pixels lying in the “likely susceptible” 
classification (Table 5.4). This indicates that the downsampling procedure was successful in 
preserving small areas of high susceptibility classifications, and also indicates that the final 
susceptibility map accurately categorizes known landslide areas as susceptible to landslide risk. 

The final map classifies 26% of the state as “likely susceptible” to deep-seated landslides 
(Table 5.5). These areas are principally high-relief areas or the flanks of plateaus and stream 
valleys, as would be expected. Qualitative review of the final map shows the conservative 
downsampling procedure has expanded the area of this classification onto adjacent low relief 
areas, but we suggest this is an accurate reflection of the potential for landslide hazards as a 
deep-seated landslide could travel downslope or propagate upslope into adjacent low-relief 
terrain. About 13% of the state classified as “moderately likely susceptible,” and these appear to 
be high-relief areas with less susceptible underlying geologic units, or lower relief areas 
underlain by susceptible units. Another 14% classified as “potentially susceptible,” and these 
appear to reflect even lower relief areas underlain by susceptible geologies, and locally 
moderately high relief areas underlain by less susceptible geologic units. Qualitative review of 
the map shows that these later two categories locally extend into low relief zones that 
topographically do not appear at risk for landslide generation. However, these areas may be 
underlain by susceptible geologic units that could generate deep-seated landslide failure planes if 
subject to excavation. The final map classifies the remaining 48% as “unlikely susceptible.” 
These are dominantly valley floors. 



Figure 5.7: Boundary gradation example. (a) Mogollon-Datil/Basin and Range boundary 
without gradation applied. (b) Same boundary, with gradation applied.
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Figure 5.8: Histogram of model probabilities from known landslide areas, as plotted for �tting various distribution curves. Mean and standard 
deviations from the mean are those for the Weibull distribution.
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Table 5.3: Summary of Weibull distribution-based susceptibility classification

noitacifissalCnoitacifissalC  description

Parameter Value
terms of probability]

 Max 1.000

Shape 1.613
Scale 0.352
Est. mean 0.315
Est. std. dev. 0.200
Notes:

   Est.: Estimated

   Std. dev.: standard deviation

Min 0.000

Landscape setting is comparable to known landslide-affected areas; 'likely 
susceptible' areas likely include locations that are susceptible to deep-seated 
landsliding.

Landscape setting is generally dissimilar to known landslide-affected areas; 'unlikely 
susceptible' areas are unlikely to include locations that are susceptible to deep-
seated landsliding.

Weibull-based classification

Mean - 2σ -0.285-

Mean -0.685-

Mean - 1σ -0.485-

Likely 
susceptible

Moderately 
likely 

susceptible

Potentially 
susceptible

Unlikely 
susceptible

Landscape setting is weakly comparable to known landslide-affected areas; 
'potentially susceptible' areas may include locations that are susceptible to deep-
seated landsliding.

Landscape setting is moderately comparable to known landslide-affected areas; 
'moderately likely susceptible' areas are moderately likely to include locations that 
are susceptible to deep-seated landsliding.

Weibull parameters
[in terms of 

(1 - probability)]
Thresholds [in 
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Figure 5.9: Susceptibility classi�cation and downsampling example. Example area is the Zuni Mountains-Mount 
Taylor area of the Colorado Plateau. (a) Map of �nal merged model probabilities. (b) Map of susceptibility 
classi�cations at 28 m pixel resolution. (c) Map of susceptibility classi�cations following the conservative 
downsampling to 500 m pixel resolution. 
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Figure 5.10: Histogram of pixel counts of landslide susceptibility classes from �nal map in 
known landslide areas.
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Table 5.4: Summary of known landslide area susceptibility classifications in final susceptibility map

Susceptibility class Pixel count Areal coverage (sq. km) Perc. of total Pixel count Areal coverage (sq. km) Perc. of total
Unlikely susceptible 1167 291.75 3% 1619 404.75 3%
Potentially susceptible 1267 316.75 3% 1896 474.00 4%
Mod. likely susceptible 2791 697.75 7% 4340 1085.00 9%
Likely susceptible 32086 8021.50 86% 40470 10117.50 84%
Totals 37311 9327.75 100% 48325 12081.25 100%
Notes:

   Mod.: Moderately; perc.: percent; sq. km: square kilometers

   Area determined by multiplying pixel count by nominal pixel dimensions

Landslide areas with reviewed and adjusted locations All landslide areas, including unreviewed locations
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Table 5.5: Summary of final map susceptibility class coverage
Susceptibility class Pixel count Areal coverage (sq. km) Perc. of total
Unlikely susceptible 884498 221124.50 48%
Potentially susceptible 258656 64664.00 14%
Mod. likely susceptible 239954 59988.50 13%
Likely susceptible 476641 119160.25 26%
Totals 1859749 464937.25 100%
Notes:

   Mod.: Moderately; perc.: percent; sq. km: square kilometers

   Area determined by multiplying pixel count by nominal pixel dimensions
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6 Discussion 

6.1 Methodology 

6.1.1 Predicting landslide susceptibility by assessing landslide deposits 
Our method relies on using the landscape characteristics of landslide deposits to create 

models for predicting landslide susceptibility. This is non-ideal, as the characteristics of a 
landslide deposit are the characteristics of material moved and deposits by a landslide failure and 
not necessarily the characteristics of a slope that is about to fail. Thus the efficacy of our method 
hinges on the similarity between the landslide deposits and the slopes that generated the 
landslide. This may be a contributing factor to the issues described above pertaining to tableland 
versus mountainous provinces. In the tableland provinces, particularly the Colorado Plateau, 
Great Plains, and North Rift areas, the landslide deposits are often found blanketing the very 
slopes that failed to produce the deposits. Many of the landslides occur along the flanks of mesas 
and plateaus where strong, broad, tabular cap rocks overlie soft mesa-flank rocks, and the 
landslide deposits are broad masses of cap rock material sliding down the mesa flank. The slide 
deposits have thus not traveled far from their origin and the characteristics of the deposit reflect 
the characteristics of the susceptible slope that underlies them. In contrast, many of the landslide 
deposits in the more mountainous Southern Rocky Mountains and Mogollon-Datil areas appear 
to have slid to notably lower slope angle positions, and the deposit characteristics may not be as 
representative of the characteristics of susceptible slopes. Thus, the efficacy of our method 
appears to be a function of the geomorphic setting to which it is applied, and is possibly more 
accurate for tableland-like settings than for high-relief mountainous settings. 

In addition, the method requires us to adapt the concepts of “true negatives” and “false 
positives,” as our validation datasets are also landslide deposits, despite our actual interest in 
landslide susceptibility. The model validation would register a false positive error in any area 
where the model predicted a landslide but found no landslide deposit, even though the area may 
still be susceptible to future landslide occurrence, and hence the prediction would actually be a 
success. Likewise, the model validation would register a true negative success in any area where 
the model did not predict a landslide and found no landslide deposit, even though the area may 
actually be susceptible to future landslide occurrence, and hence the model result would actually 
be a false negative error. This potential issue means that strictly quantitative measures of model 
performance need to be checked against qualitative assessments. Indeed, the “poor model fits” of 
the mountainous provinces, as measured by the area under the ROC curves, may actually be a 
reflection of the validation process incorrectly classifying model results as false positives where 
high model probabilities are calculated for landslide-susceptible slopes but no landslide deposit 
is found.  

Our use of landslide deposit characteristics for training landslide susceptibility models is 
a major reason why we did not rely solely on quantitative measures of model performance in 
selecting model input parameters or for model optimization. In addition, the potential for false 
positives to actually be accurate model predictions was a major factor in our decision to use 
histograms of model probabilities in known landslide areas for defining susceptibility classes, 
rather than using the ROC plot. 

6.1.2 Accuracy of model extrapolation 
Our method relies on using a model trained on data from a select portion of a province to 

determine the susceptibility throughout the province. The accuracy of this extrapolatory 
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approach hinges on determining a set of indicator variables that have a consistent relationship 
with landslide occurrence throughout the province that can be well-characterized in the training 
area. Our main test for this was the spatial subsampling routine described above. By determining 
which variables have consistent relationships and are well characterized in subsamples of the 
training and validation area, we believe we were successful in identifying the most reliable input 
variables to use for extrapolation across the province.  

6.2 Model results 
At the regional scale of 1:750,000, there is a relative consistency of moderate 

susceptibility along steep slopes of mesas in the northwestern, north-central, and northeastern 
part of the state. In northwestern New Mexico, areas of relatively consistent moderate 
susceptibility include Mesa Chivato near the Grants area, steep slopes near the I-40 corridor west 
of Grants, and steep slopes flanking mesas south of Grants. To the north, in the Farmington area 
and south-southwest of Farmington, moderate susceptibility is mapped for steep slopes 
developed in weak rocks in the eastern San Juan basin. It is here that a slope failure occurred 
along approximately 300 m of the Farmers Mutual Ditch in San Juan County (Figure 2.6). Also 
of potential concern should be steep slopes near the Rio Chama valley, Rio Jemez, and the 
northern flanks of the Jemez Mountains. Near the Rio Grande valley, there is consistent 
moderate susceptibility mapped for steep slopes along the gorges of the Rio Grande, including 
White Rock Canyon and its tributaries, as well as the Rio Grande gorge near Taos. Planners wary 
of deep-seated slope failure should also take note of the steep slopes in the Española valley, 
where a small landslide occurred in the 1970s near the town of Rio Chiquito (located 17 km [10-
11 mi] east of Española). The Sangre de Cristo Mountains, especially where these mountains are 
underlain by Paleozoic strata (east and south of Taos), tend to have relatively consistent values of 
moderate susceptibility. The Sangre de Cristo Mountains west of Raton, which are underlain by 
low-strength sedimentary rocks of the Raton Basin, also have large areas of moderate 
susceptibility. In northeastern New Mexico, moderate susceptibility areas are prevalent in steep 
slopes along the Dry Cimmaron Valley and its tributaries; the northern, western, and 
southwestern sides of Johnson Mesa; the Canadian Gorge; and along the Canadian escarpment 
that runs east-northeast from the town of Anton Chico towards Clayton.  The east-trending bluffs 
located ~30 km south of Tucamcari, known as The Caprock and which extend eastwards to the 
Texas boundary, also have moderate susceptibilities. The flanks of mesas between Santa Rosa 
and Tucumcari exhibit moderate susceptibilities, including Luciano Mesa and Mesa Rica. 

In southern New Mexico, deep-seated landslide susceptibility is overall lower because of 
large regions with very low slopes. Basin and Range mountains, which tend to have steep slopes, 
are generally associated with moderate susceptibilities, especially where sedimentary strata are 
present. For example, the western San Andres Mountains, the mountains northeast of Carrizozo, 
and the Sacramento Mountains have moderate susceptibilities. The Mogollon-Datil plateau has 
landslides mostly on its southern flanks. Extending the resulting logistic regression model 
throughout the province resulted in low to moderate susceptibilities. 

6.3 Use of map and associated limitations 
The resulting deep-seated landslide susceptibility map (Plate 1), combined with mapped 

locations of preexisting landslides, should be a useful planning tool for regional endeavors 
related to land use, public safety, transportation and utility corridors, and construction projects. 
Examples of study sizes suitable for using this map (at a scale 1:750,000 and with a raster pixel 
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resolution of 500 m) include the entire state, counties, the larger Indian reservations, or large 
municipalities (e.g., Albuquerque, Santa Fe, Las Cruces).  The final map indicates areas where 
deep-seated landslide potential is not negligible and where reasonable probabilities may exist for 
deep-seated landsliding. Given the broad-brush methodology and low-scale of these maps, they 
are not a substitute for a site-specific geologic or geotechnical study.  

Limitations mainly involve issues of scale and time-based risk assessment. The map 
should not be utilized for projects involving relatively small areas (<10 km2), except to alert 
planners where a site-specific study may be warranted. Furthermore, this map does not convey 
information regarding frequency of occurrence. Interpretations regarding frequency would 
require detailed mapping of multiple-aged landslides over an appreciable area in addition to age 
control for landsliding events. This susceptibility map does not contain such information. Nor 
does this map contain information pertaining to societal costs (including human injury or death) 
that might arise in a future landslide event. Lastly, it should be reiterated that this map only 
interprets relative susceptibility for deep-seated landslides, rather than shallow landslides 
involving only surficial material or debris flows. 

6.3.1 Land use 
Our landslide susceptibility map could play a role in regional land use studies. For future 

residential or commercial development, regional zoning maps (e.g., county level) could stipulate 
that detailed site studies be conducted in areas of likely susceptibility. In National Forests, these 
maps could guide where to potentially allow such commercial operations as ski resorts or 
intensive logging.  

6.3.2 Public safety 
The lack of temporal data precludes reasonable estimations of recurrence intervals of 

landslide events. This inhibits these maps being used directly for risk assessment. These maps 
could be used to compare relative landslide hazard in different parts of the state, however. For 
example, New Mexico has been subdivided into Preparedness Areas for the purposes of 
emergency planning (NMDHSEM, 2013). The susceptibilities shown on Plate 1 could be used to 
compare the relative differences in landslide hazards between Preparedness Areas. Consequently, 
this susceptibility map would have notable value in updating the Hazard Identification/Risk 
Assessment Section and Vulnerabilities Section in the New Mexico State Hazard Mitigation 
Plan. 

6.3.3 Transportation and utility corridors 
Our deep-seated landslide susceptibility map could be an asset in the planning of long-

distance transportation or utility corridors across New Mexico. Specifically, this map could be 
used to identify large regions that are likely susceptible to deep-seated landsliding, which could 
be avoided in various planning scenarios. If a higher susceptibility area must be crossed by the 
corridor, then a site-specific study employing an engineering geologist would be warranted. 

6.3.4 Construction Projects 
Most construction projects involve areas less than <10 km2, and so this susceptibility map 

would not be useful except for alerting planners where a site-specific study should be conducted. 
However, this map would be useful in long-distance construction projects, as explained in the 
preceding sub-section. In addition to site-specific studies, extra vigilance may be warranted in 
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areas of moderately likely to likely susceptibility. Features such as ground fissures, leaning trees 
or fence posts, or bulges of the ground surface could signal landslide activation or reactivation. 
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8 Descriptions of Digital Appendices 
A) Input GIS files (Esri geodatabase)

Geodatabase containing adjusted landslide location feature classes, modified geologic map unit 
polygons (with Qls and water removed), geologic map unit look-up table, province extents, 
training and validation area extents, major rivers with floodplains feature class, and the extent of 
“low-relief” ground as defined by the criteria given in the text (after Olsen et al., 2015). 

B) Continuous data binning tables (Esri geodatabase)

Geodatabase of reclassification tables for converting continuous raster datasets to the bins used 
in this project. 

C) Individual province model probability results (Esri geodatabase)

Geodatabase of province-specific model probability map rasters, as well as rasters of model 
probabilities in the gradational zones between provinces. 

D) Statewide deep-seated landslide susceptibility (Esri geodatabase)

Geodatabase with statewide deep-seated landslide susceptibility map as a raster. 

E) Scripts used for data processing (folder)

Scripts used during the course of this project. Includes a copy of the LAND-SE script of Rossi 
and Reichenbach (2016) and copies of various project-specific Python- and R-based scripts. 

F) Indicator variable training area coverage assessment (folder)

Excel tables of indicator variable coverage in training areas relative to province-wide extents. 

G) Indicator variable independence evaluation (folder)

Excel tables and graphs of results from the evaluation of indicator variable independence. 

H) Spatial subsampling full results (folder)

Data tables and pdf plots of the results of the final spatial subsampling tests. 

I) Individual province models (folder)

Data tables and pdf plots of the final province-specific regression models and their evaluations. 
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