40Ar/39Ar geochronology of magmatic activity, magma flux
and hazards at Ruapehu volcano, Taupo Volcanic Zone,
New Zealand

John A. Gamble a,b,* , Richard C. Price c, Ian E.M. Smith d,
William C. McIntosh e, Nelia W. Dunbar f

a School of Earth Sciences, Victoria University of Wellington (VUW), Wellington, New Zealand
b Department of Geology, University College Cork, Cork, Ireland
c School of Science and Technology, University of Waikato, Hamilton, New Zealand
d Department of Geology, University of Auckland, Auckland, New Zealand
e New Mexico Geochronological Research Laboratory, New Mexico Institute of Mining and Technology, Socorro, NM, USA
f New Mexico Bureau of Mines and Mineral Exploration, Socorro, NM, USA

Received 18 December 2001; accepted 8 July 2002

Abstract

We have determined precise eruption ages for andesites from Ruapehu volcano in the Tongariro Volcanic Centre
of the Taupo Volcanic Zone (TVZ) using 40Ar/39Ar furnace step-heating of separated groundmass concentrates. The
plateau ages indicate several eruptive pulses near 200, 134, 45, 22 and < 15 ka and, based on our and previous field
mapping confirm the lavas of the Te Herenga Formation as the oldest exposed part of the volcanic edifice. The pulse
at 134 ka includes an entire > 300-m section of lavas in Whangaehu gorge as well as some lavas in Ohinepango
and Waihianoa catchments on eastern Ruapehu, and this suite of lavas belongs to the Waihianoa Formation. This
pulse of activity is not represented on nearby Tongariro volcano, indicating that the two volcanoes have independent
magmatic systems. A younger group of lavas yields dates between 50 and 20 ka and includes lava flows from the
Turoa skifield and in the Ohinepango and Mangatoetoenui catchments and is consistent with two pulses of
magmatism around the time of the last glacial maximum, relating it broadly to the Mangawhero Formation. Syn- and
post-last glacial activity lavas, with ages < 15 ka are assigned to the Whakapapa Formation, and include the
voluminous flows of the Rangataua Member on southern Ruapehu. Magma flux, integrated over 1000-yr periods,
averages 0.6 km³ ka⁻¹ assuming a volcano lifespan of 250 ka. Fluxes for the Te Herenga, Waihianoa and
Mangawhero Formations are consistent at 0.93, 0.9 and 0.88 km³ ka⁻¹, respectively. These fluxes are broadly
comparable with those measured at other modern andesite arc volcanoes (e.g. Ngauruhoe, 0.88; Merapi, 1.2 and
Karymsky 1.2 km³ ka⁻¹). The relatively low flux (0.17 km³ ka⁻¹) calculated for the Whakapapa Formation may
derive from underestimates of erupted volume arising from an increase in phreatomagmatic explosive eruptions in
postglacial times. However, using volume estimates for the 1995–1996 eruptions and a recurrence interval of 25 yr has
yielded an integrated 1000-yr flux of 0.8 km³ ka⁻¹ in remarkable agreement to estimates for the prehistoric eruptions.
Overall, Ruapehu shows consistency in magma flux, but at time scales of the order of one hundred to some thousands

* Corresponding author. Fax: +64-4-4955-186.
E-mail address: john.gamble@vuw.ac.nz and j.gamble@ucc.ie (J.A. Gamble).
of years, field evidence suggests that short bursts of activity may produce fluxes up to twenty times greater. This is significant from the perspective of future activity and hazard prediction.

Keywords: Ruapehu Arc volcano; \(^{40}\text{Ar}/^{39}\text{Ar}\) dating; pulsatory growth; magmatic flux; natural hazards

1. Introduction

Ruapehu volcano (2797 m) is the largest (\(~110 \text{ km}^3\)) active andesite-dacite volcano in the onshore part of the Taupo Volcanic Zone (TVZ) of New Zealand. It has been studied extensively (Clark, 1960; Cole et al., 1986; Graham and Hackett, 1987; Houghton et al., 1987; Hackett and Houghton, 1989) and on the basis of detailed geological mapping Hackett (1985) established a stratigraphy comprising four major formations. From the oldest to the youngest, these are the Te Herenga, Waihianoa, Mangawhero and Whakapapa Formations. Until recently (Tanaka et al., 1997; this work) there were very few (e.g. Stipp, 1968) radioisotopic age data upon which to base the chronology of the past eruptive history or to calculate the magma flux to the volcano. The combined palaeomagnetic and K–Ar dating study by Tanaka et al. (1997) focussed on the Whakapapapiui valley on the northwest slopes of the volcano, but details of the sampling are not recorded. Results from this work confirm the ages of the Te Herenga Formation and those of the younger overlying Whakapapa Formation. In this paper we report results from a \(^{40}\text{Ar}/^{39}\text{Ar}\) dating study of key sections through each of the four formations on the Whakapapa and Turoa ski-fields and Whangaehu and Waihianoa valleys.

A number of recent studies of andesitic to dacitic arc volcanoes, including Mount Adams in the USA (Hildreth and Lanphere, 1994); Mount Tongariro in New Zealand (Hobden et al., 1996, 1999, 2002) and the Tatara–San Pedro Complex in Chile (Singer et al., 1997; Dungan et al., 2001), have shown that much useful information can be gained by integrating high precision dating studies with detailed field observations and geochemical measurements. This information can be used to understand the longevity, periodicity of activity, and magma flux rates on a volcano, and therefore has an important bearing on hazard mitigation strategies and prediction models.

2. Field relations

Mount Ruapehu (2797 m) is the highest mountain in the North Island of New Zealand forming an eroded active strato-volcano at the southern extremity of the TVZ (Wilson et al., 1995; Bibby et al., 1995; Fig. 1). In a benchmark study of the geology of Ruapehu volcano, Hackett (1985) distinguished four chronostratigraphic units (see also Hackett and Houghton, 1989), which, from the oldest to the youngest, were named the Te Herenga, Waihianoa, Mangawhero, and Whakapapa Formations (Fig. 1). Nowhere on the volcano, are all four formations juxtaposed, and until recently only three radioisotopic (conventional K–Ar, two of which were imprecise) age determinations by Stipp (1968) were available to form the basis of chronostratigraphy and magma flux calculations.

The proximal cone-building volcanic rocks include variably dipping lava flow sequences, autclastic breccias, reworked slope-wash and glacial deposits (Smith et al., 1999). On Pinnacle Ridge (Northwest Ruapehu) these units are cut by dykes and shallow intrusives that were feeder systems to early conduits. Zones of propylitic alteration and disseminated sulphide mineralisation accompany these intrusions. Pyroclastic deposits are rare on the proximal cone. They include welded deposits of the Whakapapa Formation which drape the Te Herenga Formation lavas on Pinnacle Ridge (Hackett and Houghton, 1985, 1989), welded deposits in the Mangatoetenui catchment (Hackett, 1985; Chapman, 1996) and adjacent to Mangaturuturu Shelter, and localised unconsolidated, re-worked pumiceous deposits above 1500 m.

Extensive pyroclastic fall, laharc deposits, re-
worked sheet flow deposits and rare pyroclastic flows blanket the ring plain surrounding the volcano (Hackett and Houghton, 1989; Donoghue et al., 1995a, 1997, 1999). Here, well dated and intercalated rhyolitic tephras, sourced from the Taupo, Whakamaru and Okataina calderacentres to the north (Wilson, 1993), permit correlation with events elsewhere in the TVZ. Importantly, these distal rhyolitic tephras provide a useful and underpinning chronological framework, based on radiocarbon dating, extending back to around 26 ka. Over the past 2 ka volcanic activity at Ruapehu has been largely focussed through a vent system presently located beneath the Crater Lake. As a result, most recent activity has been phreatomagmatic in character and the record is preserved in the Tufa Trig tephras on the ring plain (Donoghue et al., 1997).

The dynamic erosional environment on the proximal cone has resulted in deep dissection, at various times, through a number of the cone building episodes. As a result, deep gorges have been cut through the volcano flanks, and these offer the potential to sample deep into the internal stratigraphy of the volcano. Of these gorges, the Whangaehu and Waihianoa gorges on the east and southeast flanks (Figs. 1 and 2) are the deepest, the former being the pathway for most lahars during the 1995–1996 eruption (Cronin et al., 1997) and the route of the lahar which caused the Tangiwai rail disaster of Christmas Eve 1953 (Houghton et al., 1987).
For this work samples were collected from mapped and documented sections in the Whangaehu River gorge, the Turoa and Whakapapa skifields and from other localities in Ohinegango, Mangatoetoenui and Waihianoa valleys (Fig. 1).

3. Mineralogy and petrology

Lavas and pyroclastic rocks from Ruapehu volcano are variably porphyritic basalts and andesites and rare dacites in which the phenocryst assemblage is dominated by plagioclase, with lesser clinopyroxene and orthopyroxene and Fe–Ti oxides. Olivine is a rare constituent of some lavas and is generally jacketed by Ca-poor pyroxene. Amphibole is also rare, but not entirely absent from Ruapehu lavas and tephras (Graham and Hackett, 1987; Gamble et al., 1999; Donoghue et al., 1997; Nakagawa et al., 1999). In a detailed study of the petrogenesis of the volcano, Graham and Hackett (1987) identified six distinctive magma types based upon a combination of petrography and geochemistry, of which the plagioclase+ clinopyroxene+orthopyroxene+Fe–Ti oxide assemblage was most common. These authors identified long-term geochemical evolution in the volcano, based on crustal assimilation with fractional crystallisation (AFC). Later, more detailed work on measured stratigraphic sections (Price et al., 1997, 2000; Gamble et al., 1999) has modified this to include open system processes operating on a periodically flushed, continuously fractionating, periodically mixing magma system. Interaction of these processes at various levels in a dispersed magmatic system fed through a plexus of dyke- and sill-like magma reservoirs has led to non-systematic trends on Harker-type geochemical plots as batches of melt were displaced and overwhelmed by new influxes of magma.

4. Sample selection and \(^{40}\text{Ar}/^{39}\text{Ar}\) analytical methods

Accurate and precise K–Ar or \(^{40}\text{Ar}/^{39}\text{Ar}\) dating
of young (<1 Ma) volcanic rocks, particularly those low in K as are typical of arc volcanoes, has proven a difficult challenge to geochronologists, demanding careful sample selection and preparation and optimum analytical procedures (Hildreth and Lanphere, 1994; Singer et al., 1997). In the course of this study, we have tried several strategies to obtain reproducible, precise data. We first analysed whole rock samples, with limited success. Next we tried pure plagioclase separates, in the belief that melt inclusions (occult in plagioclase phenocrysts from Ruapehu) or plagioclase phenocryst rims would contain high K. The imprecise results obtained from this experiment led us to search for alternative procedures and to eventually select crystalline groundmass separates for dating experiments.

In general, samples selected for analysis were collected from the central parts of relatively thick (up to 10 m) lava flows. Hildreth and Lanphere (1994) adopted similar strategies in their study of Mount Adams. Thin sections were studied to select samples with crystalline groundmass and polished and carbon-coated sections of selected samples were then surface mapped for K-content by electron microprobe analysis. In the most crystalline samples most of the K was found to be held in glass or groundmass μ-scale sanidine crystals formed during late stage groundmass crystallisation. This approach permitted a quantitative estimate of the proportions of groundmass glass to crystalline material, and led us to classify groundmass samples into four categories: glassy, moderately glassy, moderately crystalline, and crystalline (Table 1). In the moderately crystalline to crystalline samples, crystallisation of groundmass glass resulted in a vermicular intergrowth of quartz, sanidine (~Or65) and Fe-Ti oxides, where individual grains measured 1–20 μ across. The traces of residual interstitial glass in the moderately crystalline samples had rhyolitic (>70% SiO2, ~4–5% K2O) compositions.

Groundmass concentrates were prepared from selected samples by crushing, sieving, washing, drying and hand picking a 0.3–1-mm size fraction under a stereo microscope. Great care was taken to ensure that the hand picked grains were both phenocryst- and xenolith-free.

Samples were irradiated at the Ford Research Reactor in Lansing, MI, and analysed by the 40Ar/39Ar incremental-heating resistance-furnace method at the New Mexico Geochronology Research Laboratory in Socorro, NM. Details of irradiation and analytical procedures are in the footnotes to Table 1, which also summarises the analytical results. Complete analytical data are in McIntosh and Gamble (2002).

5. Results

Table 1 summarises results from a total of 33 analyses of 28 samples; replicate analyses were made of five samples. Representative spectra are shown in Fig. 3, along with plots of radiogenic yield (percent of non-atmospheric 40Ar), K/Ca ratios (calculated from K-derived 39Ar and Ca-derived 37Ar), and K/Cl ratios (calculated from K-derived 39Ar and Cl-derived 38Ar). The quality of the age spectra varied widely among samples. Groundmass concentrates from samples with fully crystallised groundmass, as well as some of the samples with small amounts of groundmass glass, yielded generally flat spectra having relatively precise individual step ages, radiogenic yields as high as 20%, K/Ca ratios near 1.0, and high K/Cl ratios (e.g. Fig. 3a–c). Groundmass concentrates from glassier samples tended to yield age spectra that were slightly to strongly discordant, with less precise individual step ages, low radiogenic yields, similar K/Ca ratios, and lower K/Cl ratios than crystalline groundmass (e.g. Fig. 3d). For 30 analyses, plateau ages were calculated for flat portions of the age spectra (selected using the criteria of Fleck et al., 1977). Total gas or preferred ages were calculated for the remaining three more discordant age spectra. Calculated ages for all analyses are summarised in Table 1. We have rejected results from eight analyses (seven samples and one replicate analysis) because of low-precision or strongly discordant age spectra (Table 1). We have accepted results from 25 analyses (21 samples and four replicate analyses). For each of the four accepted pairs of replicate analyses, plateau ages agree within 2σ uncertainty (Table 1). As detailed below, none of the accepted age determi-
nations conflicts with established stratigraphic relationships. The incremental heating results were also plotted on isotope correlation diagrams. In all cases, isochron intercept ages agree with plateau ages, and 40Ar/36Ar intercepts are near-atmospheric, suggesting that groundmass concentrates from our samples of Ruapehu volcano do not contain significant extraneous 40Ar. The plateau

<table>
<thead>
<tr>
<th>Table 1</th>
<th>40Ar/39Ar age determinations from Mount Ruapehu lavas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample number</td>
<td>Location</td>
</tr>
<tr>
<td>R97-37</td>
<td>Sunset Ridge (young lava)</td>
</tr>
<tr>
<td>X1/2A</td>
<td>Mangatoetoenui</td>
</tr>
<tr>
<td>X1/16</td>
<td>Mangatoetoenui</td>
</tr>
<tr>
<td>X1/16</td>
<td>Mangatoetoenui</td>
</tr>
<tr>
<td>X1/6</td>
<td>Ohinepango</td>
</tr>
<tr>
<td>X1/6</td>
<td>Ohinepango</td>
</tr>
<tr>
<td>R99-3</td>
<td>Waihianoa, north side</td>
</tr>
<tr>
<td>R97-39</td>
<td>Mangatururuturu ‘D’</td>
</tr>
<tr>
<td>R99-1</td>
<td>Mangatoetoenui, below X1/2A</td>
</tr>
<tr>
<td>R97-52</td>
<td>Turoa</td>
</tr>
<tr>
<td>R97-51</td>
<td>Turoa</td>
</tr>
<tr>
<td>R-S44-10</td>
<td>Mangaehuehue/ Wahianoa</td>
</tr>
<tr>
<td>R-S42-10</td>
<td>Mangaehuehue/ Wahianoa</td>
</tr>
<tr>
<td>T5-11</td>
<td>Whakapapaiti (lower)</td>
</tr>
<tr>
<td>T5-12</td>
<td>Whakapapaiti (lower)</td>
</tr>
<tr>
<td>T5-15</td>
<td>Whakapapaiti (upper)</td>
</tr>
<tr>
<td>T5-15</td>
<td>Whakapapaiti (upper)</td>
</tr>
<tr>
<td>X1/10</td>
<td>Ohinepango</td>
</tr>
<tr>
<td>R95/22</td>
<td>Whangaehu</td>
</tr>
<tr>
<td>R96/20</td>
<td>Whangaehu</td>
</tr>
<tr>
<td>R96/20</td>
<td>Whangaehu</td>
</tr>
<tr>
<td>R95/20</td>
<td>Whangaehu</td>
</tr>
<tr>
<td>R95/26</td>
<td>Whangaehu</td>
</tr>
<tr>
<td>R95/27</td>
<td>Whangaehu</td>
</tr>
<tr>
<td>R95/28</td>
<td>Whangaehu</td>
</tr>
<tr>
<td>R96/17</td>
<td>Whangaehu</td>
</tr>
<tr>
<td>R96/16</td>
<td>Whangaehu</td>
</tr>
<tr>
<td>R96/5</td>
<td>Wahianoa</td>
</tr>
<tr>
<td>R96/9</td>
<td>Wahianoa</td>
</tr>
<tr>
<td>R97-50</td>
<td>Turoa</td>
</tr>
<tr>
<td>T6-27</td>
<td>Te Herenga (top)</td>
</tr>
<tr>
<td>T6-24</td>
<td>Te Herenga (middle)</td>
</tr>
<tr>
<td>T6-8</td>
<td>Te Herenga (base)</td>
</tr>
</tbody>
</table>
ages for the 21 best-behaved samples are considered to be accurate estimates of eruption ages. These data are summarised in Fig. 4 together with the published data of Tanaka et al. (1997) and the unpublished analyses of Stipp, 1968. The combined data sets are consistent with major pulses of volcanism around 200, 160–115, 55–45, 30–15, and less than 15 ka (Fig. 4). The 200, 160–115, and < 15 ka are broadly consistent with the Te Herenga, Waihianoa, and Whakapapa Formations of Hackett and Houghton (1989). The data also indicate that the Mangawhero Formation (Hackett and Houghton, 1989) comprises two events, i.e. at ~ 50 and ~ 23 ka. This is consistent with mapping in the Turoa–Mangaturuturu catchments (Waight et al., 1999).

For the Te Herenga Formation, we dated selected lavas from the type section (Hackett and Houghton, 1989) on Te Herenga Ridge. The ages of the three samples range from 205±27 to 183±13 ka. This ridge marks an erosional remnant of Te Herenga Formation lavas that confine the Whakapapa Formation lavas on Northwest Ruapehu. Tanaka et al. (1997) dated samples collected from the Whakapapanui gorge and Te Herenga Ridge but precise sample locations are not given. The ages overlap with those of Tanaka et al. (1997), but with significantly lower errors (± 13–27 ka or better as distinct from ± > 30 ka). We conclude that our dated samples are likely to be representative of the youngest Te Herenga Formation. The data of Tanaka et al. (1997) suggest that the age of the Te Herenga Formation may extend back to around 250 ka. Combining our data set with Tanaka et al. (1997) suggests the best estimate for the duration of the eruption of the Te Herenga Formation is 250–180 ka.

More than half of the samples dated in this study are assigned to the Waihianoa Formation of Hackett and Houghton (1989). Results from 11 samples, including two samples from the Waihianoa Formation type section and seven samples from the 300-m section of lavas and pyroclastic rocks exposed in the south face of Whangaehu gorge (Fig. 2), fall into a narrow interval ranging from 154±12 to 119±12 ka. The ages of samples from the Whangaehu gorge show remarkable agreement with stratigraphic position through the section (Fig. 2). The lowest stratigraphic samples (Figs. 2 and 5d) give ages (R96/20 154±12 and 132±14 ka for replicate analyses) which are measurably older than the uppermost samples (e.g. R95/22 119±12 ka) suggesting that the entire sequence erupted between 150 and 120 ka. These ages are similar to the ages of samples from the Ohinepango (XI1/10 138±14 ka), Wahia-
noa (R96/5 129 ± 15 ka; R96/9 147 ± 12 ka) and Turoa catchments (R97/50 147 ± 10 ka), indicating that this time window produced a laterally extensive, voluminous lava flow sequence on the volcano. Sample R95/20 is from the upper part of the section and major and trace element data suggest that the flow represented by this sample may in fact be part of the younger Mangawhero Formation. The imprecise, but young age for R95/20 (74 ± 37 ka) is permissive of this interpretation.

The plateau ages of samples assigned to the Mangawhero Formation form two tight clusters, i.e. near 50 and 23 ka. For most of these plateau ages, 2σ errors are less than ± < 10 ka. Reproducible replicate analyses from two samples (21 ± 6 and 23 ± 10 ka, Sample X1/6; and 22 ± 7 and 29 ± 3 ka, Sample X1/16) from the Ohinepango and Mangatoetoenui catchments are consistent with stratigraphy and the juxtaposition of overlying lavas. Similarly, samples R97/39 (23 ± 8 ka) and R99/1 (23 ± 4 ka) from the well mapped Turoa skifield area (Waight et al., 1999) overlie and are consistent stratigraphically with the older age (147 ± 10 ka) for the underlying sample R97/50. Furthermore, to the northeast of the Turoa skifield, samples R44/10 (47 ± 4 ka) and R42/10 (53 ± 3 ka) are from erosional inliers of a flow sequence bounding the younger lavas of the Tu-
Fig. 4. 40Ar/39Ar data from this study and published K–Ar age determinations from Mount Ruapehu and Mount Tongariro. Upper panels show individual dates with $\pm 1\sigma$ errors and lower panels show age-probability curves, which are uncertainty weighted histograms constructed by summing probability distributions of individual analyses (Deino and Potts, 1992). The better precision and accuracy of the 40Ar/39Ar method reveals four discrete eruptive intervals at Mount Ruapehu.
roa skifield area. Based on these results and local field relationships in the Turoa skifield area, we concur with Waight et al. (1999) that temporally and geochemically distinct subdivisions exist within the Mangawhero Formation. Based on a clustering of the age data we identify the Mangawhero A (\(\sim 50 \) ka) and Mangawhero B (\(\sim 23 \) ka) groups.

Our efforts (see also Tanaka et al., 1997) to date samples younger than 20 ka have met with limited success despite care in sample selection and particular attention to analytical strategy. One sample (R97-37) with a crystalline groundmass gave a highly discordant age spectrum with an imprecise and total gas age, possibly related to incomplete removal of reactive gases during argon analysis. A second sample (X1/2A) with a glassy groundmass yielded an age of \(\sim 17 \) ka, which is too imprecise to be useful. As a result, our chronology for the Whakapapa Formation lavas remains sketchy and the detail is still best resolved by correlating data from tephra sections on lavas with those of the surrounding ring plain (see Donoghue et al., 1995a) which are generally well constrained by radiocarbon dating.

6. Discussion

Our results demonstrate the potential of dating young andesitic volcanic rocks by the \(^{40}\)Ar/\(^{39}\)Ar method. With the high precision achieved through careful sample selection, microprobe characterisation, sample preparation and step-heating, new insights into the growth history of an arc volcano are now possible. Sections below consider some of the implications of the \(^{40}\)Ar/\(^{39}\)Ar chronology established by this study for Ruapehu volcano.

6.1. Inception of volcanism at Tongariro Volcanic Centre

Although the oldest lavas dated in this study are the \(\sim 200 \) ka Te Herenga flows, there is evidence for older volcanism at Ruapehu volcano. Some of the Te Herenga Formation lavas dated by Tanaka et al. (1997) were collected from outcrops in Whakapapanui gorge and are demonstra-

bly lower stratigraphically than the Te Herenga lavas dated herein. Results from these samples extend the age of Te Herenga lavas to at least 300 ka. Moreover, the occurrence of andesite clasts (\(> 90\% \)) in conglomerates (O'Leary Conglomerate) of the Kai-iti Group (Fleming, 1953) near Wanganui, 100 km southwest of Ruapehu (Parish, 1994) also are directly relevant. These conglomerates are part of the cover bed sequence of the Brunswick Terrace, dated at \(\sim 310 \) ka (by a combination of strandline reconstruction, tephrochronology palynology and amino acid racemisation dating; Pillans, 1990; Bussell and Pillans, 1992). Clast petrography and geochemistry match those of andesites from the Te Herenga and Waihianna Formations of Ruapehu (Parish, 1994). As such they testify to the existence of volcanism in the Tongariro Volcanic Centre prior to our measured radioisotopic record. Furthermore, rare partially welded plagioclase+quartz+hornblende+biotite+Fe–Ti oxide-bearing rhyolitic ignimbrite clasts in the same deposit are petrologically and geochemically similar to Whakamaru Group ignimbrites, dated at \(\sim 340 \) ka (Brown et al., 1998; Wilson et al., 1995), giving a maximum age to the deposit. We therefore suggest that 340 ka is a reasonable maximum age for the inception of volcanism at Ruapehu and Tongariro volcanoes.

6.2. Implications for magma flux

Hackett and Houghton (1989) estimated a volume of 147.6 km\(^3\) for Ruapehu volcano. Using this volume and 250 ka for the duration of activity yields an average magma flux of 0.6 km\(^3\) ka\(^{-1}\) (Table 2). Using a volume of 300 km\(^3\) as representative of the cone plus the reworked deposits and tephras of the ring - plain, yields an average flux of 1.2 km\(^3\) ka\(^{-1}\) (using 300 km\(^3\) and a maximum age of 340 ka gives 0.88 km\(^3\) ka\(^{-1}\)). These estimates are broadly similar to the flux (0.9 km\(^3\) ka\(^{-1}\)) that produced the 2.2 km\(^2\) cone of Ngauruhoe volcano in the past 2.5 ka (Hobden and Houghton, 2000; Hobden et al., 2002).

When we compare the chronologies for Ruapehu and Tongariro volcanoes (Fig. 4), it can be seen that the two have grown in parallel, but
with distinct pulses (time windows) of enhanced magma production. For Ruapehu these pulses occurred at ~10, 20, 50, 115–160, and 180–250 ka. For Tongariro, the pulses occurred at ~2.5 ka (Ngauruhoe cone), 10, 25, 70–130, 180–230, and 260–280 ka (Hobden et al., 1996). With the volume estimates of Hackett and Houghton (1989) for the various stages of growth of Ruapehu (Table 2) we can use our Ar–Ar data to calculate fluxes of magmatism over the history of the volcano. Thus for Te Herenga Formation we calculate a flux of 0.93 km3 ka$^{-1}$; for Waihianoa Formation we calculate 1.0 km3 ka$^{-1}$ and for Mangawhero Formation 0.88 km3 ka$^{-1}$. Our calculated flux for the Whakapapa Formation (0.17 km3 ka$^{-1}$) is significantly lower than the other formations. We note that this may be related to the relatively short time span (15 ka) and to the fact that over a significant portion of this time, activity has been pyroclastic, with poor preservation on the cone. However, using the small volume of the 1995–1996 eruptions (0.02 km3) and a 25-yr repeat interval yields a 1000-yr flux of 0.8 km3, within the limits of our calculated time averaged fluxes of 0.59 and 1.2 km3 ka$^{-1}$ (see above and Table 2). Overall we note that our calculated fluxes will be underestimates because we have not considered the associated pyroclastic and re-worked deposits or magmas trapped in the crust below the volcano. For Ruapehu our mapping and radioisotopic dating suggest that maximum growth occurred during the Waihianoa stage (115–160 ka) of activity. Within the limitations of the dating precision and field sampling, Tongariro appears to have been relatively quiet during the Waihianoa stage on Ruapehu.

Also relevant to this discussion, Nairn et al. (1998) have documented a short, intense period of activity around 10 ka (the Pahoka–Mangamate event) from a multiple vent system located between Tongariro and Ruapehu volcanoes. This activity is suggested to have occurred over a time period of only a few hundred years. Using the isopach constrained pyroclastic deposit volumes and 400-yr duration (Nairn et al., 1998), a magma flux of ~14 km3 ka$^{-1}$ can be calculated. This is more than an order of magnitude greater than our estimates for the Waihianoa ‘pulse’ (see above) and nearly two orders greater than the present average. Several lines of evidence suggest a major, and probably short-lived, episode on southern Ruapehu about the same time: (1) the Murimoto debris avalanche and lahar deposits (Palmer and Neall, 1989) were emplaced about this time (9.8 ka); (2) the pyroclastic flow and tephra deposits of the Pourahu Formation (Donoghue et al., 1995a,b) were erupted at this time; (3) tephrochronology associated with the voluminous Rangatau flows to the southeast of the Turoa skifield (Fig. 1) suggest that these were emplaced at this time (R.B. Stewart, pers. commun.; Luther, 1999); and (4) partially consolidated fall deposits have been preserved in the proximal vent region (Lockett, 2001). These short pulses of greatly increased activity are outside the resolving power of our Ar–Ar method (typically ±10 ka). Nevertheless, they serve as a reminder that future predictive models must consider possibilities of

<table>
<thead>
<tr>
<th>Formation</th>
<th>Volumea (km3)</th>
<th>Age Rangeb</th>
<th>Duration (ka)</th>
<th>Magma flux</th>
</tr>
</thead>
<tbody>
<tr>
<td>Te Herenga</td>
<td>65</td>
<td>250–180 ka</td>
<td>70</td>
<td>0.93 km3 ka$^{-1}$</td>
</tr>
<tr>
<td>Waihianoa</td>
<td>45</td>
<td>160–115 ka</td>
<td>45</td>
<td>1.0 km3 ka$^{-1}$</td>
</tr>
<tr>
<td>Mangawhero</td>
<td>35</td>
<td>55–45 ka</td>
<td>35</td>
<td>0.88 km3 ka$^{-1}$</td>
</tr>
<tr>
<td>Whakapapa</td>
<td>2.6</td>
<td>< 15 ka</td>
<td>15</td>
<td>0.17 km3 ka$^{-1}$</td>
</tr>
<tr>
<td>Average flux 1c</td>
<td>147.6</td>
<td>250–0</td>
<td>250</td>
<td>0.59 km3 ka$^{-1}$</td>
</tr>
<tr>
<td>Average flux 2d</td>
<td>300</td>
<td>250–0</td>
<td>250</td>
<td>1.2 km3 ka$^{-1}$</td>
</tr>
</tbody>
</table>

a Based on Hackett and Houghton (1989).
b Based on 39Ar/39Ar, this work.
c Based on Formation volume estimates of Hackett and Houghton (1989).
d Based on cone volume estimates (above), plus equivalent volume ring plain.
eruptions of short duration that are orders of magnitude greater than those of historic times.

Table 3 allows comparison with fluxes at other arc volcanoes. Our estimates for Ruapehu are larger than the maximum flux of 0.33 km3 ka$^{-1}$ for Volcan Tatara–San Pedro, in Chile (Singer et al., 1997), but within the ranges of 0.05–5.0 km3 ka$^{-1}$ for Mount Adams in the Cascades Ranges of the western USA (Hildreth and Lanphere, 1994); 1.2 km3 ka$^{-1}$ for Merapi, Indonesia (based on the 100-yr record between 1890–1992, Siswowidjoyo et al., 1995); 1.2–1.5 km3 ka$^{-1}$ for Tungurahua Stage III, Ecuador (Hall et al., 1999); and 1.2 km3 ka$^{-1}$ for Karymsky, Kamchatka (Braitseva and Melekestev, 1990). Significantly, these fluxes are all greater than the average present-day global fluxes for arc volcanoes of 0.2 km3 km$^{-1}$ ka$^{-1}$ (Arculus, 1996) or 0.08 km3 km$^{-1}$ ka$^{-1}$ (Cosca et al., 1998). However, these comparisons are tempered by differences in the calculation procedures, where fluxes for discrete volcanoes can be calculated with greater precision than global averages, that are averaged over a global arc length of $\sim 3.7 \times 10^4$ km (Arculus, 1999). Taken in a global context our calculated magma flux rates are high but comparable to many other arc volcanoes worldwide (Table 3). Moreover, perhaps this should not be surprising given that central TVZ has been identified as ‘the most frequently active and productive rhyolitic system on Earth’ (Houghton et al., 1995).

When viewed in comparison with fluxes for some basalt–basaltic andesite dominated arc volcanoes such as Fuji and Klyuchevskoy (Table 3), which are comparable to oceanic island volcanoes such as Mauna Loa (30 km3 ka$^{-1}$) (Lockwood and Lipman, 1987), the Tongariro Volcanic Centre fluxes are an order of magnitude less.

In summary, our calculations show average magma flux rates of ~ 1.0 km3 km$^{-1}$ ka$^{-1}$ for the andesite volcanoes of the Tongariro Volcanic Centre. During periods of peak magmatic activity, which may be of short duration (hundreds of years), this figure may vary by more than an order of magnitude, but typically by a factor of two times. These rates are high by comparison with global averages and confirm that the andesite volcanoes of the Tongariro Volcanic Centre are among the most productive on Earth.

6.3. Relations between magma type and age

In their study of Ruapehu lavas Graham and Hackett (1987) identified overall increases in 87Sr/86Sr with increasing SiO$_2$ content and with time. These variations were related to a progressive increase in AFC with time as a crustal magmatic plumbing system became established. Using a much larger and more comprehensive data base, Price et al. (1997, 2000) confirmed the general nature of these observations (Fig. 5a–d). In Fig. 5a,b the plots of K$_2$O content vs. SiO$_2$ and MgO

Table 3

<table>
<thead>
<tr>
<th>Volcano</th>
<th>1000-yr magma flux (km3 ka$^{-1}$)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mount Adams, 1994, USA</td>
<td>0.05–5.0</td>
<td>Hildreth and Lanphere, 1994</td>
</tr>
<tr>
<td>Tatara San Pedro, Chile</td>
<td>0.06–0.29</td>
<td>Singer et al., 1997</td>
</tr>
<tr>
<td>Tungurahua, Ecuador</td>
<td>1.2–1.5</td>
<td>Hall et al., 1999</td>
</tr>
<tr>
<td>Merapi, Indonesia</td>
<td>1.2</td>
<td>Siswowidjoyo et al., 1995</td>
</tr>
<tr>
<td>Karymsky, 1990, Kamchatka</td>
<td>1.2</td>
<td>Braitseva and Melekestev, 1990</td>
</tr>
<tr>
<td>Shiveluch, Kamchatka</td>
<td>5.0</td>
<td>Crisp, 1984; Khrenov et al., 1991</td>
</tr>
<tr>
<td>Avachinsky, Kamchatka</td>
<td>1.7</td>
<td>Crisp, 1984</td>
</tr>
<tr>
<td>San Juan, Cerro Ato, Mexico</td>
<td>1.8</td>
<td>Luhr, 1999</td>
</tr>
<tr>
<td>Hakone, Japan</td>
<td>0.37</td>
<td>Crisp, 1984</td>
</tr>
<tr>
<td>Sakurajima, Japan</td>
<td>1.8</td>
<td>Crisp, 1984</td>
</tr>
<tr>
<td>Klyuchevskoy, Kamchatka</td>
<td>27.0</td>
<td>Crisp, 1984</td>
</tr>
<tr>
<td></td>
<td>36.0</td>
<td>Kersting and Arculus, 1994</td>
</tr>
<tr>
<td>Fuji, Japan</td>
<td>5.0</td>
<td>Crisp, 1984</td>
</tr>
<tr>
<td></td>
<td>8.0</td>
<td>Togashi et al., 1991</td>
</tr>
</tbody>
</table>
abundances show the distinctive character of lavas from the main stratigraphic formations. The MgO vs. K2O plot (Fig. 5b) shows four overlapping, but distinctive, groups with K5 (K2O content at 5% MgO) contents of 0.69, 1.12, 1.81 and 1.42%, respectively, for the Te Herenga, Waihianoa, Mangawhero and Whakapapa lavas. Importantly, Price et al. (1997, 2000) also noted that when geochemistry was studied at a flow by flow scale in time-related sequences, the picture of simple geochemical change with time became increasingly blurred (Fig. 5d). In detail, within a 300-m measured section of lavas from Whangaehu gorge, which is now precisely dated, Price et al. (1997, 2000) and Gamble et al. (1999) identified a series of hiatuses where abrupt reversals in chemical trends occurred. These were interpreted as replenishment events in an open, fractionating and mixing magmatic system. At nearby Tongariro volcano Hobden et al. (1999, 2002) identified
similar non-systematic shifts in the chemical composition of lavas from Ngauruhoe and Red Crater cones. Similarly, Nakagawa et al. (1999) and Gamble et al. (1999) identified shifts in the compositions of the 1995–1996 and 1945–1996 eruptions from Ruapehu, which suggested chemical changes on time-scales in the order of hours to years.

Collectively, these data appear to support a model where temporally and chemically distinctive batches of melt aggregate and ascend from a mantle source and experience variable and non-systematic mixing and contamination events during transit through the lithosphere. At the surface this produces compositions which may be distinctive (e.g. with distinct K, Rb, 87Sr/86Sr, etc.) for a given time window, but with non-systematic trends between successive eruptives. This process highlights the dynamic and continuously evolving nature of processes beneath arc volcanoes.

6.4. Implications for hazard assessment on Ruapehu volcano

Through an ever-widening use of the internet and non-technical reports, such as the IAVCEI Crisis Protocols Subcommittee (1999), the IAVCEI is endeavouring to promote the key role of communication between scientists, emergency coordinators, media and the general public. However, past experience tells us that the time intervals between volcanic eruptions are commonly much longer than the human lifespan so that within several generations communal memory and awareness decline and areas and regions that volcanologists consider to be high risk areas are reoccupied and, in some cases, intensively resettled. In New Zealand, the last andesitic volcanic eruptions of significance were the 1995–1996 and 1945 eruptions from Ruapehu and the 1949–1954 series of eruptions from Ngauruhoe. Prior to these events, the most significant eruption was the 1886 basaltic eruption of Mount Tarawera. Major eruptions such as Tarawera 1886 are now part of history and therefore relevant to past generations. Consequently, few people now living in New Zealand have any appreciation of the effects of a large-scale volcanic eruption. It is up to the scientists to work with the community to build rational models that provide accurate predictions and workable risk management plans. In evaluating the hazard and working towards a plan for hazard mitigation, volcanologists need precise information about magma flux rates, patterns of eruption style and explosivity, and factors such as physiography and hydrology.

From our detailed geochronology we now have reliable estimates for magma fluxes and eruption recurrence times for Ruapehu volcano. These show overall fluxes that are amongst the highest on Earth. Over the last two millenia activity has been characterised by more or less continuous small volume, phreatomagmatic, explosive eruptions (Donoghue et al., 1997) but past history also incorporates large volume pulses of short (< 1 ka) duration (e.g. Nairn et al., 1998; Nakagawa et al., 1998). From a hazard perspective we need to know what may happen in the future and how we can use past events to predict future activity. For Ruapehu, a key question is whether we can anticipate a future Waihianoa-scale or Pahoka–Mangamate-scale event.

A remarkable aspect of Ruapehu magma production is the consistency measured in the major time windows. On average, these are roughly half as much again as the average flux (0.6 km3 ka$^{-1}$). For example, the flux estimated for the Te Herenga Formation (0.93 km3 ka$^{-1}$) compares closely with the rate for the last 50 years integrated over 1 ka (0.86 km3 ka$^{-1}$). Also of interest is the periodicity of eruptions. For example, volcanoes such as Unzen (1990–1992), Pinatubo (1991) and Soufrière Hills (1997–present), which have erupted andesite–dacite magmas during their recent phases of activity, show eruption recurrence times in the order of hundreds of years (e.g. Unzen 198 yr, Pinatubo ~ 500 yr; Soufrière Hills 350–400 yr). Petrologic studies of these volcanoes (e.g. Nakada et al., 1999; Pallister et al., 1992; Murphy et al., 2000) have, in each case, implicated injection of mafic magma as the trigger for eruptions. As such, they contrast with the andesite volcanoes of Tongariro Volcanic Centre, which, with recurrence times of 25–30 yr, are more or less continually active and would appear to involve more
open magmatic systems where replenishment events involve reinjection of fresh andesite magma (Gamble et al., 1999). In Unzen, Pinatubo and Soufrière Hills volcanoes relatively long-lived crustal magma reservoirs are reactivated by injections of fresh mafic magma from deeper levels. At Ruapehu the system appears to have remained open with continuous fluxing of magma through the lithosphere. This model is supported by the geochemical data (Price et al., 1997, 2000, 2001; Gamble et al., 1999) and is also consistent with U–Th disequilibrium data (Hughes, 1999).

Our flux calculations and petrological observations lead us to conclude that the Ruapehu magmatic system has operated in much the same fashion throughout the volcano’s life span. The last major event producing voluminous lava flow sequences occurred around 10 ka (Price et al., 2000). Our 40Ar/39Ar geochronology does not enable us to resolve events at time scales less than this interval; we have no means of determining, for example, how rapidly the Whakapapa Formation was emplaced. It is therefore reasonable to predict that eruptions at Ruapehu will continue in much the same mode as they have for the past 2–3 ka but the possibility of future Wahianoa- or Pahoka–Mangamate-scale events cannot be discounted. It is also worth noting that the style of eruptive activity over the past 2–3 ka has been dominated by the effects of Ruapehu’s crater lake (Donoghue et al., 1997). The disappearance of the lake at some time in the future would substantially change the eruptive style. One might expect a switch from phreatic, surtseyan and phreatomagmatic tephra producing eruptions to lava flows and dome emplacement, bringing a new array of potential hazards.

Acknowledgements

We acknowledge the pioneering work of Bill Hackett in establishing a stratigraphy for Mount Ruapehu. Also, we acknowledge the important input from our colleagues Jim Cole, Barbara Hobden, Kate Hodgson, Brad Pillans, Bob Stewart, Sue Donoghue and Colin Wilson, a host of students from VUW and La Trobe University, and the participants in SOTA 2000. Kurt Knessel, Jun-Ichi Kimura and Steve Weaver are thanked for valuable input through the formal review process. Much of this research was supported by grants from the Australian Research Council and small grants from VUW and Waikato University. Logistical assistance from the New Zealand Department of Conservation, where Harry Keys proved a vital and supportive link, has been significant. J.A.G. thanks New Mexico Tech, Socorro, NM, USA, for a visiting professorship, where the Ar–Ar dating was undertaken in the geochronology laboratory with the assistance of Rich and Lisa.

References

Kersting, A.B., Arculus, R.J., 1994. Klyuchevskoy Volcano, Kamchatka, Russia: The role of high flux, recharged, tapped and fractionated magma chamber(s) in the genesis of high-Al2O3 from high-MgO basalt. J. Petrol. 35, 1–41.

