GEOLOGY AND MINERAL DEPOSITS OF THE GALLINAS MOUNTAINS REE DEPOSIT,
LINCOLN AND TORRANCE COUNTIES, NM; PRELIMINARY REPORT

V. T. McLeod, New Mexico Bureau of Geology and Mineral Resources, Socorro, NM

ABSTRACT

Rare earth elements (REE) are becoming more important in our society. REE deposits are found throughout NM. Some REE past production (1950s), as bastnaesite, came from the Gallinas Mountains district, Lincoln County, NM. Several companies and the U.S. Bureau of Mines (USBM) have conducted exploration programs to identify REE potential. Four types of deposits are found in the district: epithermal REE-F veins, Cu-REE-F veins, REE-F breccia pipe and iron skarn deposits; all are associated with Tertiary peraluminous, alkalic-calcic volcanic rocks. District zonation is defined by base metals (REE-F-Cu veins) that form center of the district, surrounded by REE-F veins. The magmatic-hydrothermal breccia pipe deposits form a belt partially surrounding the veins. Iron skarns formed at the top and edge of the trachyte intrusion and are likely the earliest stage of mineralization. In 1991-1992, USBM calculated an inferred resource of 0.487 million metric tons with a grade of 2.95% total REE. With the projected increase in demand of REE, areas such as the Gallinas Mountains district in New Mexico are being re-examined for additional REE potential.

INTRODUCTION

Rare earth elements (REE) include the 15 lanthanide elements (atomic number 57-71), yttrium (Y, atomic number 39), and scandium (Sc; Table 1) and are commonly divided into two chemical groups, the light REE (La through Eu) and the heavy REE (Gd through Lu, Sc, and Y). REE are lightphile elements (or elements enriched in the crust) that have similar physical and chemical properties (Table 1), and, therefore, occur together in nature. However, REE are not always concentrated in easily mined economic deposits and only a few deposits in the world account for current production (Committee on Critical Mineral Impacts of the U.S. Economy, 2008; Hedrick, 2009). Thorium (Th), uranium (U), niobium (Nb) and other elements typically are found with REE. Most deposits are radioactive because of their Th and U content. Numerous deposits are found in New Mexico, but none are currently in production (McLeod et al., 1988a, b).

REE have many highly specialized applications in our industry, especially in our electronic devices, and for many applications there is no other known substitute (Naumov, 2008; Hedrick, 2009). Approximately 35% of the REE produced are used as catalysts in the refining of crude oil to improve cracking and in automobiles to improve oxidation of pollutants, although use of REE as catalysts is declining (Committee on Critical Mineral Impacts of the U.S. Economy, 2008). Europium is the red phosphor used in color cathode-ray tubes and liquid-crystal displays in computer monitors, cell phones, and televisions, with no known substitute (Committee on Critical Mineral Impacts of the U.S. Economy, 2008). Permanent magnets utilize Nd, Sm, Gd, Dy and Pr, which are used in appliances, audio and video equipment, computers, automobiles, communication systems, and wind turbines. All of the REE are used in manufacturing computer chips. The U.S. once produced enough REE for U.S. consumption, but since 1987 more than 90% of the REE required by U.S. industry have been imported from China (Haxel et al., 2002). However, the projected increase in demand for REE in China, India, U.S., and other countries has resulted in increased exploration and ultimate production from future deposits in the U.S. and elsewhere.

Table 1. Description of rare earth elements (REE) (from Taylor and McElhinny, 1985; Samson and Wood, 2005; Rudnick and Gao, 2005; Castor and Hedrick, 2006; and Hedrick, 2009). * Promethium does not occur naturally.

<table>
<thead>
<tr>
<th>Rare Earth Element</th>
<th>Symbol</th>
<th>Oxide</th>
<th>Conversion factor (% element x conversion factor - % oxide)</th>
<th>Atomic Number</th>
<th>Abundance in the upper crust (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scandium</td>
<td>Sc</td>
<td>Sc2O3</td>
<td>21</td>
<td>21</td>
<td>14</td>
</tr>
<tr>
<td>Yttrium</td>
<td>Y</td>
<td>Y2O3</td>
<td>1.269</td>
<td>39</td>
<td>21</td>
</tr>
<tr>
<td>Lanthanum</td>
<td>La</td>
<td>La2O3</td>
<td>1.173</td>
<td>57</td>
<td>31</td>
</tr>
<tr>
<td>Cerium</td>
<td>Ce</td>
<td>Ce2O3</td>
<td>1.171</td>
<td>58</td>
<td>63</td>
</tr>
<tr>
<td>Praseodymium</td>
<td>Pr</td>
<td>Pr2O3</td>
<td>1.17</td>
<td>59</td>
<td>7.1</td>
</tr>
<tr>
<td>Neodymium</td>
<td>Nd</td>
<td>Nd2O3</td>
<td>1.166</td>
<td>60</td>
<td>27</td>
</tr>
<tr>
<td>Promethium</td>
<td>Pm</td>
<td>*</td>
<td></td>
<td>*</td>
<td>61</td>
</tr>
<tr>
<td>Samarium</td>
<td>Sm</td>
<td>Sm2O3</td>
<td>1.16</td>
<td>62</td>
<td>4.7</td>
</tr>
<tr>
<td>Europium</td>
<td>Eu</td>
<td>Eu2O3</td>
<td>1.158</td>
<td>63</td>
<td>63</td>
</tr>
<tr>
<td>Gadolinium</td>
<td>Gd</td>
<td>Gd2O3</td>
<td>1.153</td>
<td>64</td>
<td>4.0</td>
</tr>
<tr>
<td>Terbium</td>
<td>Tb</td>
<td>Tb2O3</td>
<td>1.151</td>
<td>65</td>
<td>0.7</td>
</tr>
<tr>
<td>Dysprosium</td>
<td>Dy</td>
<td>Dy2O3</td>
<td>1.148</td>
<td>66</td>
<td>3.9</td>
</tr>
<tr>
<td>Holmium</td>
<td>Ho</td>
<td>Ho2O3</td>
<td>1.146</td>
<td>67</td>
<td>0.83</td>
</tr>
<tr>
<td>Erbium</td>
<td>Er</td>
<td>Er2O3</td>
<td>1.143</td>
<td>68</td>
<td>2.3</td>
</tr>
<tr>
<td>Thulium</td>
<td>Tm</td>
<td>Tm2O3</td>
<td>1.142</td>
<td>69</td>
<td>0.30</td>
</tr>
<tr>
<td>Ytterbium</td>
<td>Yb</td>
<td>Yb2O3</td>
<td>1.139</td>
<td>70</td>
<td>2.2</td>
</tr>
<tr>
<td>Lutetium</td>
<td>Lu</td>
<td>Lu2O3</td>
<td>1.137</td>
<td>71</td>
<td>0.31</td>
</tr>
<tr>
<td>Thorium</td>
<td>Th</td>
<td>ThO2</td>
<td>1.138</td>
<td>90</td>
<td>10.5</td>
</tr>
<tr>
<td>Zirconium</td>
<td>Zr</td>
<td>ZrO2</td>
<td>1.351</td>
<td>40</td>
<td>193</td>
</tr>
<tr>
<td>Niobium</td>
<td>Nb</td>
<td>Nb2O5</td>
<td>1.431</td>
<td>41</td>
<td>12</td>
</tr>
</tbody>
</table>

The Gallinas Mountains are in northern Lincoln County and southern Torrance County where a series of alkaline igneous bodies, including porphyritic latite, trachyte/syenite, andesite, and rhyolite laccoliths, flows, dikes, and plugs, have intruded Permian sedimentary rocks belonging to the Abo, Yeso, and Glorieta Formations (Perhac, 1961, 1970). A small amount of bastnaesite, a REE mineral, was recovered during processing for fluorite from the Gallinas Mountains. Alteration includes brecciation, silicification, chloritization, and oxidation of pollutants, although use of REE as catalysts is declining (Committee on Critical Mineral Impacts of the U.S. Economy, 2008). Permanent magnets utilize Nd, Sm, Gd, Dy and Pr, which are used in appliances, audio and video equipment, computers, automobiles, communication systems, and wind turbines. All of the REE are used in manufacturing computer chips. The U.S. once produced enough REE for U.S. consumption, but since 1987 more than 90% of the REE required by U.S. industry have been imported from China (Haxel et al., 2002). However, the projected increase in demand for REE in China, India, U.S., and other countries has resulted in increased exploration and ultimate production from future deposits in the U.S. and elsewhere.

The Gallinas Mountains are in northern Lincoln County and southern Torrance County where a series of alkaline igneous bodies, including porphyritic latite, trachyte/syenite, andesite, and rhyolite laccoliths, flows, dikes, and plugs, have intruded Permian sedimentary rocks belonging to the Abo, Yeso, and Glorieta Formations (Perhac, 1961, 1970). A small amount of bastnaesite, a REE mineral, was recovered during processing for fluorite from the Gallinas Mountains. Alteration includes brecciation, silicification, chloritization, and oxidation of pollutants, although use of REE as catalysts is declining (Committee on Critical Mineral Impacts of the U.S. Economy, 2008). Permanent magnets utilize Nd, Sm, Gd, Dy and Pr, which are used in appliances, audio and video equipment, computers, automobiles, communication systems, and wind turbines. All of the REE are used in manufacturing computer chips. The U.S. once produced enough REE for U.S. consumption, but since 1987 more than 90% of the REE required by U.S. industry have been imported from China (Haxel et al., 2002). However, the projected increase in demand for REE in China, India, U.S., and other countries has resulted in increased exploration and ultimate production from future deposits in the U.S. and elsewhere.
LORZEB AND KNES (1992), METHODS OF STUDY

Published and unpublished data were inventoried and compiled on existing mines and prospects within the Gallinas Mountains. Mineral databases were examined, including the Mineral Resource Data System (MRDS) of the U.S. Geological Survey (Mason and Arndt, 1996), the Minerals Industry Location System (MILS) of the U.S. Bureau of Mines (U.S. Bureau of Mines, 1995), U.S. Forest Service Abandoned and Inactive Mines database, AMLIS (U.S. Bureau of Land Management), and unpublished files at the New Mexico Bureau of Geology and Mineral Resources (NMBGMR). Using these data, mineral occurrences, deposits, mines, prospects, and mills were identified, plotted on base maps, and compiled in the New Mexico Mines Database (McLemore et al., 2005a, b). More details are in McLemore (2010); Mineralized areas were examined and sampled in 2009 and 2009-2010 by the author and in 1991-1992 by the U.S. Bureau of Mines (Korzeb and Kness, 1992; Schreiner, 1993). Mineral production by commodity and year since the late 1880s is in McLemore (2010).

A geologic map was compiled in ARCMAP® using U.S. Geological Survey topographic maps as the map base and by modifying Kelley et al. (1946), Perhac (1961, 1970), Fulp and Woodward (1991), Korzeb and Kness (1992), Schreiner (1993), and field reconnaissance by the author (1980, 2009-2010). Samples were collected and analyzed and compared with published data (McLemore, 2010). Igneous rock lithologies were identified on the basis of mineralogy and chemistry as defined by LeMaitre (1989).

Any resource or reserve data presented here are historical data and are provided for information purposes only and do not conform to Canadian National Instrument NI 43-101 requirements.

MINING AND EXPLORATION HISTORY AND PREVIOUS INVESTIGATIONS

The Gallinas Mountains mining district is in the central Gallinas Mountains, mostly in Lincoln County and also is known as the Corona, Iron Mountain, Red Cloud, and Gallinas districts (File and Northrop, 1966). The Gallinas Mountains were first examined for base and precious metals about 1881 when the Red Cloud, Buckhorn, Deadwood, and Summit mining claims were established; production started around 1885 for copper, silver, and lead (File and Northrop, 1966). Small quantities of ore were sent to Socorro for smelting (Jones, 1904), but there are no early production records remaining. The first recorded production for base metals was in 1909, which continued until 1955 (McLemore, 2010). By 1920, the ore was shipped to El Paso for refining at the smelter. Iron ore was found by 1904 (Jones, 1904) and in 1942-1943, iron ore was produced from the American Iron and Red Cliff mines (Kelley, 1949). Kelley et al. (1946) and Kelley (1949) mapped the geology and described the iron resources.

Fluorite was discovered in the Gallinas Mountains before the 1930s (Johnston, 1928; Perhac, 1970). In 1951-1954, fluorite was produced from the Red Cloud and Conqueror mines. Bastnaesite was discovered in the area about 1943 (Glass and Smalley, 1943; Dean, 1944; Soulé, 1943, 1946) and approximately 142,000 lbs of bastnaesite was produced from the Red Cloud mine in the 1950s (Zandra et al., 1952). Between 1954 and 1956, the New Mexico Copper Corp. set up a small mill facility near Carrizozo, NM and produced 55,000 lbs of bastnaesite. Phelps Dodge drilled a 532-ft deep hole at the Rio Tinto mine in 1980 and Molycorp, Inc. conducted a more extensive exploration program in 1980-1981, including a geochemical survey, geophysical survey, and two drill holes on a magnetic high anomaly (Schreiner, 1993). Other companies examined the area in 1989-1992, including Canyon Resources (in 1989), Hecla Mining Co. (in 1991-1992), American Copper and Nickel, Inc. and Romana Resources (in 1992). Woodward and Fulp (1991) reported gold assays as high as 183 ppb in brecciated trachyte/syenite sills that intruded Yeso sandstone in Sawmill Canyon. The U.S. Bureau of Mines conducted extensive mapping and sampling of the REE deposits in 1991-1992 (Schreiner, 1993). Williams-Jones et al. (2000) and associates (Gagnon et al., 2003; Salvi and William-Jones, 2005; Samson and Wood, 2005) examined the geochemistry of selected deposits in the Gallinas Mountains. Strategic Resources, Inc. staked claims in 2009 and began exploration activities (http://www.strategicresourcesinc.ca/index.php, accessed 5/14/2010).

REGIONAL GEOLOGIC AND TECTONIC SETTING

Lindgren (1915, 1933) was one of the first geologists who noted that a belt of alkaline-igneous rocks extends from Alaska and British Columbia southward into eastern New Mexico, Trans-Pecos Texas, and eastern Mexico (Fig. 1) and that these rocks contain relatively large quantities of fluorine (F), zirconium (Zr), REE, and other elements. Since then, the North American Cordilleran alkaline-igneous belt has been explored and exploited for numerous types of mineral deposits, especially gold and silver (Mutschler et al., 1985, 1991; Clark, 1989), fluorite (Van Alstine, 1976), and REE (Woolley, 1987).

In New Mexico, the North American Cordilleran alkaline-igneous belt extends from the Sangre de Cristo Mountains near Raton, southward to the Cornudas Mountains, east of El Paso, Texas (North and McLemore, 1986, 1988; McLemore, 1996, 2001). Significant mineral production, especially gold and silver, has come from deposits spatially associated with Tertiary alkaline-igneous rocks in the New Mexico alkaline-igneous belt (McLemore, 1996, 2001). These mineral deposits in New Mexico have been referred to as Great Plains Margin (GPM) deposits by North and McLemore (1986, 1988) and McLemore (1996, 2001). Alternative classifications by other workers include alkalic-gold or alkaline-igneous related gold deposits (Fulp and Woodward, 1991; Thompson, 1991a, b; Bonham, 1988; Mutschler et al., 1985, 1991; Richards, 1995), porphyry gold deposits, and Rocky Mountain gold province.

The Lincoln County porphyry belt (LCPB) in central New Mexico is part of the North American Cordilleran alkaline-igneous belt and is at the intersection of the north-trending Pedernal arch and the east-west-trending Capitan lineament in Lincoln County, which appears to have localized magmatic and volcanic activity in the LCPB (Kelley and Thompson, 1964; Kelley, 1971; Allen and Foord, 1991; McLemore and Zimmerer, 2003; McLemore, 2010). Alkaline to subalkaline igneous
rocks are found in all districts in the LCPB, but mineralization is locally associated with silica-saturated (monzonite) or oversaturated (quartz monzonite) rocks (Seagerstrom and Ryberg, 1974; McLemore and Phillips, 1991; Thompson, 1991a, b, c). K-Ar and sparse 40Ar/39Ar dating suggests the LCPB likely represents two stages of magmatism, an early alkaline belt emplaced along a N-S trend (Pedernal uplift) between 38 and 30 Ma and a younger bimodal suite emplaced along an E-W trend between 30 and 25 Ma (Fig. 2; Allen and Foord, 1991). Although the Gallinas Mountains rocks were reported as belonging to the older magmatic event by Allen and Foord (1991), a K-Ar date of 29.9 Ma (Perhac, 1970) suggests that the igneous rocks in the Gallinas Mountains represent a transition between the two magmatic events or are part of the younger magmatic event. More dating is required.

Figure 2. Ideogram of K/Ar, Rb/Sr, and Ar40/Ar39 ages of igneous rocks in the LCPB area. 40Ar/39Ar ages have been recalculated using the new decay constant (modified from McLemore and Zimmerer, 2009). References are cited in McLemore (2010). The Gallinas Mountains trachyte/syenite was dated by K/Ar methods as 29.9 Ma (Perhac, 1970).

LOCAL STRATIGRAPHY

The oldest rocks in the Gallinas Mountains are altered Proterozoic gneisses and granites exposed in Red Cloud Canyon that are overlain by arkoses, quartz sandstones, shales and limestones of the Permian Abo, Yeso and Glorieta Formations. Proterozoic granite and granitic gneiss are exposed by faulting in three places in the Gallinas Mountains (Fig. 3). Permian Abo Formation consists of a basal arkosic conglomerate, a middle arkose, siltstone, and shale sequence, and an upper shale unit. Most of the Abo rocks are a distinctive brick-red color. The Yeso Formation unconformably overlies the Abo Formation and consists of 1500 ft of tan to orange, thinly-bedded sandstone, siltstone, shale, limestones, and dolomites. The gypsum facies, commonly found in the Yeso Formation elsewhere in central New Mexico, is absent in the Gallinas Mountains (Kelley, 1949; Perhac, 1961, 1970). The more resistant Glorieta Sandstone, is as much as 250 ft thick, overlies the Yeso Formation, and caps many of the mesas and ridges in the Gallinas Mountains. The igneous rocks intrude the Proterozoic and Permian rocks.

Tertiary igneous rocks

The nomenclature of igneous rocks in this report conforms to the International classification proposed by LeMaitre (1989), where the primary classification of igneous rocks is based upon mineralogy and, if too fine-grained to determine mineralogy, by the use of whole-rock geochemical analyses using the TAS (Le Bas et al., 1986) and R1-R2 (de la Roche et al., 1980) diagrams. According to the definition of volcanic and plutonic rocks proposed by LeMaitre (1989), the igneous rocks in the Gallinas Mountains are mostly volcanic (i.e. aphantic texture) and not plutonic (i.e. coarse-grained rock), except for portions of the trachyte/syenite. Kelley et al. (1946), Poe (1965), Perhac (1961, 1970), and Schreiner (1993) used the volcanic terminology, which is used in this report. Allen and Foord (1991) and Williams-Jones et al. (2002) used the plutonic terminology for these rocks; i.e. syenogabbro, quartz syenite, syenodiorite, and alkali rhyolite. The volcanic rocks are mostly extrusive or shallow intrusive as interpreted from their texture.

The igneous rocks are generally poorly exposed and the contacts are generally covered and not well exposed. Cougar Mountain, in the northeastern portion of the Gallinas Mountains, consists of a porphyritic latite stock (Kelley et al., 1946; Poe, 1965; Perhac, 1970). The northern portion of the Gallinas Mountains consists of a rhyolite stock. The southern portion of the Gallinas Mountains consists of porphyritic trachyte (trachytic texture) to syenite (equigranular texture). These igneous rocks have intruded Permian Yeso and Abo Formations. Poe (1965) determined from thermal states of feldspar that the latite is the oldest, followed by the trachyte/syenite, and the youngest is the rhyolite. This requires confirmation by isotopic age dating.

The age of the igneous rocks is mid-Tertiary and likely similar in age to other igneous rocks in the LCPB. A sample of trachyte/syenite has been dated as 29.2 Ma by K-Ar dating methods on feldspar (Perhac, 1970), but Allen and Foord (1991) believed the igneous rocks in the Gallinas Mountains are older than 32 Ma on the basis of chemical data. Additional age dating is required.

The mineralized area of the Gallinas Mountains lies in a magnetic low surrounded by magnetic high anomalies (Fig. 4). Similar magnetic anomalies are characteristic of some alkaline complexes associated with mineral deposits (Woolley, 1987).
and hematite. Hematite and limonite) and trace amounts of apatite, quartz, zircon, of albite and K-feldspar pheno crysts in an aphanitic groundmass porphyritic-holocrystalline syenite with equigranular texture. It consists consisting of albite, K-feldspar, biotite or hornblende (now altered to gray holocrystalline-porphyritic trachyte with trachytic texture to mineral deposits. The trachyte/syenite consists of tan to pinkish gray to white, fine-grained to aphanitic to porphyritic and contains small milariotic cavities (few millimeters in diameter) containing small crystals of quartz and feldspar. The groundmass consists of orthoclase, quartz, albite, and trace biotite, aegirine-augite, apatite, titanite, magnetite, ilmenite, zircon, and muscovite. Albite phenocrysts form the local porphyritic texture.

Andesite

An altered andesite dike intruded the Yeso sandstone near the Sky High prospect. The andesite is dark gray to dark brown, porphyritic and consists of hornblende, pyroxene, plagioclase, K-feldspar, and trace amounts of sericite, calcite, apatite, and biotite.

Magmatic-hydrothermal breccia pipes

Several breccia pipes are hosted in the trachyte/syenite and Yeso Formation and consist of angular to subrounded fragments of sandstone, shale, limestone, granite, granitic gneiss, and trachyte/syenite that are as much as 1 m in diameter. The contacts are covered and are not well exposed, but the pipes appear to be roughly elliptical in shape. Most of the breccia pipes are matrix-supported and are cemented by quartz, feldspar, fluorspar, and hematite along with small crystals of other minerals and rock fragments. The matrix locally has a trachytic or porphyritic texture (Schreiner, 1993). Two breccia pipes at the M and E No. 13 prospect are clast-supported. The magmatic-hydrothermal breccia pipes form a north-east-trending belt, approximately 2-3 miles long and 0.5 mile wide (Fig. 3). Most of the breccia pipes are strongly altered and weathered to hematite and locally carbonate. Fenitization of mineralized breccia pipes was identified by Schreiner (1993).

PETROCHEMISTRY OF THE IGNEOUS ROCKS

The igneous rocks in the Gallinas Mountains are metaluminous to peraluminous, alkaline volcanic rocks (Frost et al., 2001; McLemore, 2010), and have chemical compositions similar to A-type granitoids (Whalen et al., 1987; McLemore, 2010). A-type (anorogenic or anhydrous) granitoids typically are found along rift zones and within stable continental blocks and the identification of A-type granitoids is based upon both tectonic setting and chemical characteristics. Many ore deposits are associated with A-type granitoids (Lindgren, 1933; Mutschler et al., 1985, 1991; McLemore, 1996). The trachyte/syenite and latite samples plot within the within-plate granite tectonic field of Pearce et al. (1984; WPG, Fig. 5), whereas the rhyolite sample plots within the volcanic-arc granite field (VAG, Fig. 5). Trachyte/syenite and latite are possibly related, but the rhyolite could be a separate magmatic event (McLemore, 2010). Detailed dating and geochemical analyses are required to confirm this hypothesis. The rocks exhibit typical light REE enriched chondrite-normalized REE patterns of alkaline rocks (Fig. 6). The geochemical characteristics of the Gallinas Mountains are consistent with a crustal source for the igneous rocks.

DESCRIPTION OF MINERAL DEPOSITS

Introduction

Four types of deposits have been identified in the Gallinas Mountains (Fig. 7; McLemore, 2010), as defined by mineralogy and chemistry:

1. GPM iron skarn deposits
2. GPM breccia pipe deposits
3. GPM REE-F hydrothermal veins
4. GPM Cu-REE-F (±Pb, Zn, Ag) hydrothermal veins

A fifth type of deposit, carbonatites (Cox and Singer, 1986), could be in the subsurface as suggested by previous drilling, but no samples have been obtained for precise determination of the lithology. Carbonatites are inferred at depth by the presence of fenitization, carbonatization of the breccias, presence of REE, and similarity of the intrusive rocks and mineralization to areas with carbonatites.
Figure 5. Tectonic classification of igneous rocks from the Gallinas Mountains, i.e. within plate granites. Chemical analyses are in McLemore (2010).

Figure 6. Enriched light-REE chondrite-normalized patterns (with no Eu anomaly) of igneous rocks in the Gallinas Mountains. Key is in Fig. 5. Chemical analyses are in McLemore (2010).

The mineralogy in the Gallinas Mountains is diverse and includes fluorite, quartz, barite, pyrite, iron oxides and accessory bastnaesite, calcite, chalcedony, galena, bornite, chalcocite, pyromorphite, anglesite, chrysocolla, malachite, and azurite and rare agardite (yttrium-arsenic oxide), mimetite, wulfenite, vanadinite, mottramite, cerussite, among others (Perhac, 1964, 1968, 1970; Perhac and Heinrich, 1964; McAnulty, 1978; DeMark, 1980; DeMark and Hlava, 1993; McLemore, 2010). Geothermometric fluid-inclusion studies indicate a temperature of formation of 250-400°C with salinities of approximately 15 NaCl eq. wt% at pressures of 1-2 kbar (Perhac, 1970; Williams-Jones et al., 2000). Nb2O5 ranges from 8-148 ppm (Moore, 1965; Schreiner, 1993).

Great Plains Margin-iron skarn (or pyrometasomatic iron) deposits
The GPM iron skarn deposits are spatially associated with the igneous rocks and typically consist of magnetite, hematite, limonite, and martite in a gangue of calcite, quartz, fluorite, tremolite, actinolite, pyrite, fluorite, phlogopite, and locally bastnaesite. The iron ore grade is typically less than 50% (Harrer and Kelly, 1963).

Great Plains Margin-breccia pipes
Many GPM breccia pipe deposits are circular or oval in plan view and possibly formed by intrusion, gaseous explosions, or collapse (Griswold, 1959). Schreiner (1993) calls the Gallinas breccia pipes intrusive breccias, but they are better described as magmatic-hydrothermal breccias (Sillitoe, 1985; McLemore, 2010).

Cu-REE-F (±Pb, Zn, Ag) hydrothermal vein deposits
The Cu-REE-F (±Pb, Zn, Ag) hydrothermal vein deposits were first developed and mined in the Gallinas Mountains and consist of fissure and fracture filling brecciated hydrothermal veins. Fluorite, barite, and quartz are major minerals along with many copper and lead minerals (McLemore, 2010).

REE-F hydrothermal vein deposits
The REE-F hydrothermal vein deposits were developed and mined for fluorite and consist of fissure and fracture filling brecciated hydrothermal veins. Fluorite, barite, and quartz are major minerals (McLemore, 2010). veins, similar to the Cu-REE-F (±Pb, Zn, Ag) hydrothermal vein deposits. Fluorite, barite, and quartz are major minerals; only trace amounts, if any, base and precious metals are found (McLemore, 2010).

ALTERATION
Schreiner (1993) described the alteration associated with the mineralization in the Gallinas Mountains in detail. The trachyte/syenite, Proterozoic granite and granitic gneiss, and magmatic-hydrothermal breccia pipes have been altered locally by two separate periods of fenitization; sodic followed by potassic fenitization. Sodic fenitization is characterized by replacement of feldspars, including older albite, and other minerals by K-feldspar. Temperatures ranging from 400 to 700°C are estimated for fenitization (Eckerman, 1966; Kresten and Morgan, 1986; Haggerty and Mariano, 1983; Le Bas, 1987).

GEOCHEMISTRY OF THE GALLINAS REE DEPOSITS
Geochemical data for this area consists of 279 rock and mineralized samples that were collected and analyzed for various elements by Schreiner (1993) and the author for this report (McLemore, 2010). Geochemical anomaly maps were constructed using ARCMAP® and indicate that the higher concentrations of REE, Cu, Pb, and Au are found along faults filled with Cu-REE-F and REE-F
MINERAL ZONATION, SEQUENCE OF EVENTS AND PARAGENESIS OF THE MINERAL DEPOSITS

The mineral zonation for the Gallinas Mountains was determined by mineralogy and chemistry of the individual deposits (McLemore, 2010) and is shown in Figure 8. The sequence of events in the Gallinas Mountains is summarized as:

- Emplacement of the trachyte/syenite about 30 Ma
- Sodic fenitization
- Deposition of the iron skarns
- Faulting and brecciation
- Formation of the magmatic-hydrothermal breccia pipes
- Potassic fenitization
- Additional brecciation
- Deposition of the REE-F and Cu-REE-F veins
- Late stage deposition of quartz and calcite

PRELIMINARY CONCLUSIONS

- The REE deposits in the Gallinas Mountains are among the highest potential for REE in New Mexico. Chemically, samples from the Gallinas Mountains are similar in REE chemistry to Bayan Obo, Lemhi Pass, and Olympic Dam deposits and are different from Capitan REE deposits (McLemore, 2010).
- The Gallinas Mountains deposits are similar in size and grade to small- to medium size deposits found elsewhere in the world (Fig. 10). Estimated resources amount to at least 537,000 short tons of 2.95% total REE (not NI-43-101 compliant; Jackson and Christiansen, 1993; Schreiner, 1993). Drilling is required identify a better resource estimate. However, the Gallinas Mountains has not been extensively drilled and future exploration could identify additional resources.

The igneous rocks in the Gallinas Mountains are metaluminous to peraluminous, alkaline volcanic rocks, and have chemical compositions similar to A-type granitoids (McLemore, 2010). Trachyte/syenite and latite are possibly related, but the rhyolite could be a separate magmatic event. Detailed dating and geochemical analyses are required to confirm this hypothesis. These data suggest a crustal source for the igneous rocks.

- District zonation is defined by Cu-REE-F (±Pb, Zn, Ag) hydrothermal veins that form center of the district, surrounded by REE-F hydrothermal veins (Fig. 8). The magmatic-hydrothermal breccia pipe deposits form a belt partially surrounding the veins. Iron skarns formed at the top and edge of the trachyte/syenite body and are likely the earliest stage of mineralization. The iron skarns are probably related to the REE-F and REE-F-Cu veins and breccias because they typically contain bastnaesite and fluorite and are similar in trace element geochemistry (McLemore, 2010).
- Most fenites are more enriched in REE than unaltered igneous rocks (McLemore, 2010).
• Sequence of events:
 o Emplacement of the trachyte/syenite about 30 Ma
 o Sodic fertilization
 o Deposition of the iron skarns
 o Faulting and brecciation
 o Formation of the magmatic-hydrothermal breccia pipes
 o Potassic fertilization
 o Additional brecciation
 o Deposition of the REE-F and Cu-REE-F veins
 o Late stage deposition of quartz and calcite
 • The paragenesis is defined by four stages of brecciation and faulting with three stages of fluorite deposition. REE minerals were deposited during the 1st and 2nd stage of fluorite deposition (McLemore, 2010).
 • A genetic model is summarized by intrusion/extrusion of crustal-derived igneous source rock in an extensional terrain possibly related to alkaline-carbonatite complex with mineralization related to mixing of magmatic-hydrothermal and formation fluids (Fig. 9).

ACKNOWLEDGMENTS

This work is part of ongoing research of the economic geology of mineral resources in New Mexico at NMBGMR, Peter Scholle, Director and State Geologist. Mark Mansell and Charles Knowles provided technical assistance. Charles Knowles and Malcomb Bucholtz reviewed an earlier version of this manuscript. This work was funded by the NMBGMR. Some geochemical analyses were funded by Strategic Resources, Inc. (http://www.strategicresourcesinc.ca/), accessed 5/14/2010). Matt Zimmerer provided the geochronology summary. Finally, I would like to thank Russ Schreiner for his prior work in the area and sharing his insights and information over the years.

REFERENCES

25. Kelley, V.C., 1949, Geology and economics of New Mexico iron ore deposits: University of New Mexico, Publications in Geology, no. 2, 246 p.

