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Definitions



Critical Minerals

* Minerals needed for military, industrial or commercial purposes that
are essential to renewable energy, national defense equipment,
medical devices, electronics, agricultural production and common
household items

* Minerals that are essential for use but subject to potential supply
disruptions

* Minerals that perform an essential function for which few or no
satisfactory substitutes exist

* The absence of which would cause economic, national security, or
social consequences

e 33-50% minerals are classified as such
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Note that any element or commodity can be considered critical in the future depending upon use and availability.

Coal contains several of these critical elements.

. . Element not found in NM B

Critical Minerals in New Mexico

B Element currently producing in NM
B Element once produced from NM

Rb

Cs

. C=graphite F=fluorite | He

B Element found in NM
“oa o
. S Cl Ar
“.%..“.... [
aooEeE |1 HE
Re || Os Ir . Au || Hg . At Rn

Fr

Ba=barite ..............

Note that any element or commodity can be considered critical in the future depending upon use and availability.

Coal contains several of these critical elements.

U, Re, He, and K (potash) were removed from the critical minerals list in 2022 and Zn and Ni were added.

DOE recently added Copper (Cu) to their list of critical minerals




Critical minerals change with time and
country

e Salt was once a critical mineral, but is now abundant with low
supply disruptions

« Copper is considered critical mineral by Japan

SALT

» NaCl
» table salt

minerals ﬁu\nfy
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Episyenites

* The term episyenite was originally used to describe
metasomatic syenites whose magmatic protolith was not
certain (Lacroix, 1920)

« Episyenites are quartz-depleted, K-feldspar-rich altered
rocks that were desilicified and metasomatized by alkali- e s
rich fluids Dike-like episyenite in

Longbottom Canyon area

R TR e
i

« Episyenites are similar to altered rocks formed by
fenitization and would be called fenites by some
geologists

* Fenitization is the alkali-metasomatism associated with
carbonatites or alkaline igneous activity

« However, we are reluctant to use the term fenite for these & g :
rocks studied here because there is no definitive spatial Fractures filled with episyenite

association with carbonatite or alkaline igneous rocks in beneath an episyenite body on
some areas the Sevilleta Wildlife range



Carbonatites

e Carbonate-rich rocks
contain >50%
magmatic carbonate
minerals (calcite,
dolomite, siderite,
ankerite), apatite,
barite

* Less than 20% SiO,
(silicate minerals)

 Enriched in REE, U,
Th, Nb, Ta, Zr, Hf,
Fe, Ti, V, Cu, Sr




Carbonatites are — . . -
important because Mountain Pass Carbonatite, California
they are an

economic source
of REE

e v

* 1.3 Mt in reserves with a grade of 7.98%
» Bastnaesite (light REES)
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Field Relationships
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Quarry, South Red Hills, Caballo
Mountains
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Jack Creek Rapakivi Granite, Ramsey The rapakivi texture is preserved within
Saddle area, Wild Horse Mesa area, the episyenite, suggesting a
northern Burro Mountains metasomatic origin
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Episyenites South Palomas Gap, Caballo Mountains are
unconfqrmably gverlaln by the Cambrian-Ordovician Bliss conglomerate of the Bliss Formation
Formation (looking west) — ’ » e & 1000000
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Backscatter electron image of K-feldspar

The feldspars to be
dated must be
selected carefully




Zuni Mountains

Spider plot— REE chondrite (Nakamura 1974)
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Geology from Goddard (1966), Lambert (1983)



Lemitar Mountains

 More than 100
carbonatite dikes intruded
a complex Proterozoic
granitic and metamorphic
terrain in the Lemitar
Mountains, central New
Mexico

 Dikes are a few
centimeters to more than
a meter wide and up to
600 m long, and contain
anomalously high
concentrations of REE, U,
Th, and Nb
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Chemistry and Mineralogy



Episyenites have complex mineralogy

Synchysite (63 wt.%
LREE)

Aeschynite (9 wt.%
HREE)

Xenotime (16 wt.%
HREE)

Thorite
Uranophane
Bastnhaesite

K-feldspar
Brecciation
Chlorite
Calcite
Fluorite
Uranophane
Xenotime
Thorite
Synchysite
Fe oxides
Ti oxides

Dissolution of
quartz

Apatite

Quartz veining
Kasolite

Mn oxides

Paragenesis South Red Hills




Composition of episyenites

» K-feldspar rich (>16% K,O) and quartz poor
« Anomalous in U (2,329 ppm), Th (9,721 ppm ),

TREE (1,378 ppm), Yb (130 ppm ) and ppm Dy

(180 ppm)
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Chondrite values from Sun & McDonough, 1989

Granite samples typically contain more silica and less
K,0O, episyenite endmember orthoclase at 15.60 wt. %
K,O (K-feldspar
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Composition of Lemitar Carboqatites

* As much as 11,327 ppm
total REE (bastnasite,
but more mineralogy is

Sample/ REE chondrite

needed)
* As much as 1550 ppm
° AS mUC.h aS 4244 ppm 100000 e —. | .Cle, I”"’I II S:m & & &
Ba (barite) ol s o
O ° Granite REE-123

 These concentrations
are elevated but are not
economic at the present
time = Y S

Rock/Chondrite




@ Chico Hills

p- Lemitar

& Monte Largo
@ Chupadera

sovite and
alkvikite

p Lobo Hill

>
beforsite and )
rauhaugite ferrocarbonatite
\/ \ \ \ \/ AV \/ \/
Fe:0 ;+FeO+VNO

Geologists like to classify rocks. Here are

examples of the international

classification.

These diagrams show that carbonatites in
NM have similar compositions to other
carbonatites in the world. Each symbol is
from different location in New Mexico.

CaO

sovite and
alkvikite

@® Chico Hills
p Lemitar
4 Monte Largo

@ Chupadera

p Lobo Hill

natrocarbonatite
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Figure 3 .4: CL photomicrographs of Calcite L1-L4 in the Lemitar Mountams carbonatite. a b)
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Perry (2019) found at least 4 stages of
calcite with varying REE compositions in
the Lemitar carbonatites



Geochronology

* Annelise M. Riggins, Adam Smith thesis, 40Ar/39Ar dating
» Jonas Kaare-Rasmussen, UC Santa Barbara, U/Pb dating



Caballo Mountains—4 individual K-feldspar fragments from

an episyenite from the Northern Red Hills and the Palomas
Gap Granite

L 500
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- 400 -

350 -

300 7

- 250 1

- 200 -

Apparent Age (Ma)

3_150-

[ 100

Palomas Gap granite REE-132

Cumulative % 3°Ar Released

My interpretation is that altered original feldspar was dated instead of the new metasomatic feldspar.



Zuni Mountains (Strickland, 2000)

Apparent age (Ma)
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0
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90
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My interpretation is that an
altered original feldspar was
dated instead of the new
metasomatic feldspar.




Florida Mountains — magmatic syenite
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Lobo Hill — episyenites
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Lobo Hill — episyenites

fLowerIntercept: \
5 520.77 + 13.82 Ma
0.8 Upper Intercept:
0.85 + 0.01
MSWD =4.6
0.6 - 4500
207pb
Pb 0.4-
0.2 -
o 2 4 6 8 10 1 518 + 6.7 Ma (°Ar/3%Ar — biotite in
238 monzonite) (McLemore et al., 1999)



Burro Mountains
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Burro Mountains yields a 4°Ar/3%Ar plateau age at
approximately 540 Ma (feldspar)

Eveningstar
Canyon,
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Lemitar — carbonatites
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Neodynium isotopic data

By O. Tapani Ramo



Lemitar carbonatite is from a relatively strongly

ENg (at 520 Ma)

+10
depleted mantle (eNd at 520 Ma +4.8, depleted
=1 S \_ oMats20ma - mantle model age 678 Ma) and different source
' then the episyenites
0 CHUR
ST ; L oo’ 1 Caballo episyenites are much less radiogenic
Rezor1— g8 (eNd at 520 Ma ca. -5 to -8, model ages ca.
or — i 1480-1780 Ma) and record a drastically different,
/ but enriched source (probably cratonic
*l L e | subcontinental lithosphere)
e _ scatter probably implies source variation and
= open-system processes subsequent to
25 . . . . . . crystallization, especially for REES6
0 01 0.2 0.3 04 0.5 0.6 0.7

14TSm/144Nd

Initial epsilon values (calculated at 520 Ma) for the Caballo and Burro
episyenites (in total, 8 samples) and the Lemitar carbonatite. Also
shown is depleted mantle composition at 520 Ma, as well as CHUR.



CONCLUSIONS



C

ONCLUSIONS

Episyenites and carbonatites in NM and CO are Cambrian-Ordovician and
associated with Proterozoic granitic and metamorphic rocks

Episyenites are metasomatic in origin, whereas carbonatites are
magmatic, mantle-derived igneous rocks

Limited isotopic data suggests that in terms of source, episyenites are
probably not related to carbonatites, even though both episyenites and
carbonatites are present locally and of similar age

Episyenites have low-moderate REE (as much as 3167 ppm TREE), Th
(as much as 9721 ppm), and U (as much as 2329 ppm), and some
samples have relatively high heavy REE (as much as 133 ppm Yb and 179
ppm Dy), which are important economic commaodities

 Hypothesis—Metasomatism may be a mechanism to concentrate heavy REE
Carbonatites contain as much as 1.1% TREE

The episyenites and carbonatites in NM are not economic at the present
time, but drilling is required to determine if they increase in REE and Nb
concentrations at depth. The 570 Ma Iron Hill carbonatite in CO is a
economic resource for niobium (1.21 kt of 0.057% Nb20s5)
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