OVERVIEW OF THE MINING INDUSTRY IN NEW MEXICO, WITH EMPHASIS ON CRITICAL MINERALS

Virginia T. McLemore

New Mexico Bureau of Geology and Mineral Resources, New Mexico Tech, Socorro, NM
ACKNOWLEDGEMENTS

• New Mexico Energy, Minerals and Natural Resource Department
• Company annual reports
• Personal visits to mines
• Historical production statistics from U.S. Bureau of Mines, U.S. Geological Survey, N.M. Energy, Minerals and Natural Resource Department (MMD), DOE, company annual reports
• Students at NM Tech, many part of the current Economic Geology Group
New Mexico Bureau of Geology and Mineral Resources

• A non-regulatory governmental agency (the state’s geological survey) that conducts scientific investigations leading to responsible economic development of the state’s mineral, water, and energy resources.

• We are a research division of New Mexico Tech.

• Founded in 1927 through state legislation.

• Currently 66 full and part time staff with a range of expertise. Active emeritus staff. Mentor and employ around 40 graduate and undergraduate students.
OUTLINE

• What, where, and how much minerals are produced in New Mexico?
 • Where are potential future resources?
 • What are the minerals used for?
• What critical minerals are found in New Mexico?
 • Briefly describe some of the ongoing research
• What are the Mining Issues Facing New Mexico?
• Education outreach
WHAT, WHERE, AND HOW MUCH MINERALS ARE PRODUCED IN NEW MEXICO?
INTRODUCTION

• NM has some of the oldest mining areas in the United States
• Native Americans mined turquoise from Cerrillos Hills district more than 500 yrs before the Spanish settled in the 1600s
• One of the earliest gold rushes in the West was in the Ortiz Mountains (Old Placers district) in 1828, 21 yrs before the California Gold Rush in 1849
MINING DISTRICTS IN NEW MEXICO

274 mining districts and prospect areas
173 metals,
40 industrial minerals
33 uranium districts
28 coal fields
Value of mineral production in 2021 was $1.75 billion (up from 2020) (does not include oil and gas)—ranked 23rd in the US (18th in 2017)

Employment in the mining industry is 3,757

Exploration for garnet, gypsum, limestone, nepheline syenite, agate, specimen fluorite, gold, silver, iron, beryllium, uranium, copper, potash, rare earth elements, humate, clays, lithium

MINERALS PRODUCTION IS DECREASING, ESPECIALLY COAL
Value of mineral production in New Mexico 2000-2020

Value in millions of dollars

Years

- 2000
- 2001
- 2002
- 2003
- 2004
- 2005
- 2006
- 2007
- 2008
- 2009
- 2010
- 2011
- 2012
- 2013
- 2014
- 2015
- 2016
- 2017
- 2018
- 2019
- 2020

Value in millions of dollars
FIGURE 3 New Mexico Mineral Industry Employment, Payroll, and Capital Improvements: 2002-2021
ACTIVE MINES 2023

- ~355 active registered mines (NMMMD)
- 2 coal, 1 electrical generating station
- 3 potash, 4 potash plants
- 2 copper open pits, 1 concentrator (mill), 2 solvent/electro-winning (SX-EW) plants
 - 1 additional mine in permitting stage
 - Several exploration projects
- 2 gold mines and 1 mill (active but not producing)
- 1 iron mine
- 31 industrial minerals mines, 18 mills
- ~302 aggregate/stone

Not all aggregate mines are shown

From NM Mining and Minerals Div. database
SELECTED ACTIVE EXPLORATION SITES IN NEW MEXICO 2019-2023 (EXCLUDING U)

Most of these exploration sites have been known for >20 yrs

Industrial minerals deposits sometimes can be permitted within a few years but not metal mines

From NM Mining and Minerals Div. and NMBGMR databases, company web sites
COAL

- Fuels 1 electrical generating plant in NM and others in Az
 - Also used in chemical, metallurgical, and pharmaceutical industries
- 2 surface mines in San Juan Basin
- Resources at Raton, Carrizozo
- 12th in production in U.S. in 2021
 - 15th in estimated reserves
 - 65 million short tons of recoverable reserves
- San Juan generating station in the Farmington closed in 2022
- **Coal production is expected to continue to decrease in the near future**
COAL PRODUCTION IN NEW MEXICO 2000-2020

FIGURE 6 New Mexico Coal Production and Value: 2001-2020

- Production (short tons)
- Production Value ($)

<table>
<thead>
<tr>
<th>Year</th>
<th>Production</th>
<th>Value ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>20,000,000</td>
<td>$250,000,000</td>
</tr>
<tr>
<td>2002</td>
<td>25,000,000</td>
<td>$300,000,000</td>
</tr>
<tr>
<td>2003</td>
<td>22,000,000</td>
<td>$275,000,000</td>
</tr>
<tr>
<td>2004</td>
<td>23,000,000</td>
<td>$250,000,000</td>
</tr>
<tr>
<td>2005</td>
<td>20,000,000</td>
<td>$200,000,000</td>
</tr>
<tr>
<td>2006</td>
<td>18,000,000</td>
<td>$175,000,000</td>
</tr>
<tr>
<td>2007</td>
<td>15,000,000</td>
<td>$150,000,000</td>
</tr>
<tr>
<td>2008</td>
<td>12,000,000</td>
<td>$125,000,000</td>
</tr>
<tr>
<td>2009</td>
<td>10,000,000</td>
<td>$100,000,000</td>
</tr>
<tr>
<td>2010</td>
<td>8,000,000</td>
<td>$75,000,000</td>
</tr>
<tr>
<td>2011</td>
<td>6,000,000</td>
<td>$50,000,000</td>
</tr>
<tr>
<td>2012</td>
<td>4,000,000</td>
<td>$25,000,000</td>
</tr>
<tr>
<td>2013</td>
<td>2,000,000</td>
<td>$0</td>
</tr>
<tr>
<td>2014</td>
<td>0</td>
<td>$0</td>
</tr>
<tr>
<td>2015</td>
<td>0</td>
<td>$0</td>
</tr>
<tr>
<td>2016</td>
<td>0</td>
<td>$0</td>
</tr>
<tr>
<td>2017</td>
<td>0</td>
<td>$0</td>
</tr>
<tr>
<td>2018</td>
<td>0</td>
<td>$0</td>
</tr>
<tr>
<td>2019</td>
<td>0</td>
<td>$0</td>
</tr>
<tr>
<td>2020</td>
<td>0</td>
<td>$0</td>
</tr>
</tbody>
</table>
Uses of Copper

• Building construction, 46%; electrical and electronic products, 21%; transportation equipment, 16%; consumer and general products, 10%; and industrial machinery and equipment, 7%

• Approximately 4.7 tons of copper are needed in a 3 MW wind turbine (for cable, wiring, turbines, and transformers)

• 5.5 tons of copper are needed in solar panels (for heat exchangers, wiring, and cables)

• Hybrid car uses 88 lbs of copper and a fully electric car uses 183 lbs of copper, compared to 48 lbs of copper needed in a regular car run by an internal combustion engine

• Copper demand is expected to increase in the future
Copper—3rd in copper production in 2021 (Chino, Tyrone)
CHINO MINE

• In operation since 1910
• 36,000 metric ton-per-day concentrator and 150 million pound-per-year SX/EW plant
• Closed in April 2020 in response to COVID
• Reopened in January 2021
• Production was 92 million pounds in 2020, 175 million pounds in 2019
• Mine life is 2039
• Updating of permits for planned expansion underway
TYRONE MINE

- In operation since 1967
- 100 million pound-per-year SX/EW plant
- Production 45 million pounds in 2020, 48 million pounds in 2019
- Mine life is 2027
- Updating of permits for planned expansion underway
- Exploration at the Emma deposit
COPPER RESERVES—2021

- Reserves are decreasing
- Chino (incl. Hanover, Cobre, Continental)
 - milling reserves are 213 million metric tons of 0.51% copper, 0.05 g/t gold, 0.9 g/t silver and 0.01% molybdenum
 - leaching reserves are 100 million tons of 0.28% Cu
- Tyrone (incl. Little Rock)
 - leaching reserves are estimated as 33 million metric tons of ore grading 0.27% Cu
1. Copper Flat (98.1 million short tons at 0.31% Cu, 0.009% Mo, 0.003 oz/short ton Au, and 0.07 oz/short ton Ag)

2. Orogrande

3. Hanover Mountain (80 million short tons reserves at 0.38% Cu)

4. Copper Hill, Picuris district (46.5 million short tons ore at 0.42% Cu)

5. Lone Mountain (7.5 million short tons 2-3% Cu, 1.2% Pb, 4-5% Zn, 203 opt Ag, .01-.02 opt Au)

6. McGhee Peak, Peloncillo Mountains

7. Mimbres, Grant Co

8. Oak Grove, Grant Co
Copper Flat, Themax Resources

Planned production per year for ~15 yrs
50.76 mill lbs Cu
1.01 mill lbs Mo
12,750 oz Au
455,390 oz Ag

Start in 2020s?
GOLD AND SILVER PRODUCTION

- In 2004-2022 as a byproduct of copper production from the Ivanhoe concentrator (Freeport-McMoRan)
- 9th in gold production
- 10th in silver production
1804-2015 >3.3 million troy ounces Au worth >$487 million
GOLD AND SILVER

1. Vera Cruz, Lincoln Co
2. Carache Canyon, Santa Fe Co
3. Lukas Canyon, Santa Fe Co
4. San Lazarus, Santa Fe Co
5. Jicarilla Au placers
6. Steeple Rock district
7. Mogollon, Catron Co
8. Magdalena, Socorro Co
9. Rosedale, Socorro Co
10. Terrero, Santa Fe

USES
- Currency (Coinage, Bullion, Backing)
- Jewelry
- Electronic products like computers, telephones, and home appliances, industries, medical field, etc.
- Glassmaking (red or purple colors in glass, thin film of gold in windows in tall buildings, airplanes, space craft, reflects much of the very intense solar radiation, mirrors)
- Dentistry
- Drug to treat a small number of medical conditions
INDUSTRIAL MINERALS

Any rock, mineral, or other naturally occurring material of economic value, excluding metals, energy minerals, and gemstones, generally nonmetallic.

Many critical minerals are considered industrial minerals.
Every American Born Will Need...

3.02 MILLION POUNDS of minerals, metals, and fuels in their lifetime

55,461 lbs. CEMENT
10,685 lbs. CLAYS
251,998 lbs. COAL
1,018 lbs. COPPER
1.34 Troy oz. GOLD
18,317 lbs. IRON ORE
814 lbs. LEAD
1 lb. LITHIUM
12,720 lbs. PHOSPHATE ROCK
27,476 lbs. SALT
4 lbs. SILVER
1.36M lbs. STONE, SAND & GRAVEL
468 lbs. ZINC
+1.03M lbs. OTHER MINERALS, METALS & FUELS

Learn more: MineralsEducationCoalition.org
Potash Production
1st in US
1951-2021 123 million tons worth
>$17 billion

Reserves in Carlsbad District
Potash (>553 million tons)
Potash is used in fertilizers among other uses
Intrepid closed one mine

Competition from Canadian deposits
Intercontinental Potash Corp. (IPC) plans are on hold to mine polyhalite at the Ochoa deposit SE of the district.

Intrepid Mining NM LLC is using solution mining techniques at the HB Solar Solution mine (old potash workings).
• 1st in zeolite (St. Cloud, Sierra County)
• 5th in pumice (6 operations)
• 1st in perlite (4 operations)
• 11th in salt (4 operations, Carlsbad)
• Humate is important and expanding
OTHER INDUSTRIAL MINERALS DEPOSITS

- Aggregates
- Gypsum for wallboard
- Brick and clay in El Paso, Albuquerque areas
- Cement in Tijeras Canyon
- Humate in the San Juan Basin
- Sulfur, helium, carbon dioxide
- Travertine (dimension stone), Meso del Oro, west of Belen
 - 477.6 million tons of travertine
URANIUM IN NEW MEXICO
2023

- 2nd in uranium resources 15 million tons ore at 0.277% U₃O₈ (84 million lbs U₃O₈) at $30/lb (DOE estimates in 2002)

- Numerous companies have acquired properties (Strathmore, Energy Minerals, Laramide Resources, among others)

- Energy Fuels acquired Strathmore in 2013 and is now permitting the Roca Honda mine

- HRI, Inc. awaiting permits for in situ leach in Church Rock, Ambrosia Lake areas

- Several exploration permits approved or in progress

- Mt. Taylor mine changed status from active to reclamation
Deposits with uranium resources in New Mexico (McLemore and Chenoweth, 2019). Only major mines and deposits are included here.

Associated critical minerals include V, REE, possibly Re.
CRITICAL MINERALS IN NEW MEXICO

Critical minerals change with time and country.
In the United States, a critical mineral is a nonfuel mineral commodity that is essential to the economic and national security of the United States, and is from a supply chain that is vulnerable to global and national disruption.

Critical Minerals in New Mexico

- **Red**: Element currently producing in NM
- **Blue**: Element once produced from NM
- **Green**: Element found in NM
- **Yellow**: Element not found in NM

Note: Any element or commodity can be considered critical in the future depending upon use and availability. Coal contains several of these critical elements.

U, Re, He, and K (potash) were removed from the critical minerals list in 2022 and Zn and Ni were added.
Why isn’t copper a critical mineral in the U.S.?

- Ready availability of copper
- Import only 41% of our consumption
- Abundant reserves

Salient Statistics—United States:

<table>
<thead>
<tr>
<th>Year</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mine, recoverable copper content</td>
<td>1,220</td>
<td>1,260</td>
<td>1,200</td>
<td>1,230</td>
<td>1,300</td>
</tr>
<tr>
<td>Primary (from ore)</td>
<td>1,070</td>
<td>985</td>
<td>874</td>
<td>922</td>
<td>960</td>
</tr>
<tr>
<td>Secondary (from scrap)</td>
<td>41</td>
<td>44</td>
<td>43</td>
<td>49</td>
<td>40</td>
</tr>
<tr>
<td>Copper recovered from old (post-consumer) scrap</td>
<td>141</td>
<td>166</td>
<td>160</td>
<td>*170</td>
<td>160</td>
</tr>
<tr>
<td>Imports for consumption:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ore and concentrates</td>
<td>32</td>
<td>27</td>
<td>2</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>Refined</td>
<td>778</td>
<td>653</td>
<td>676</td>
<td>919</td>
<td>810</td>
</tr>
<tr>
<td>Exports:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ore and concentrates</td>
<td>253</td>
<td>356</td>
<td>383</td>
<td>347</td>
<td>330</td>
</tr>
<tr>
<td>Refined</td>
<td>190</td>
<td>125</td>
<td>41</td>
<td>48</td>
<td>30</td>
</tr>
<tr>
<td>Consumption:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reported, refined metal</td>
<td>1,820</td>
<td>1,810</td>
<td>1,770</td>
<td>1,770</td>
<td>1,800</td>
</tr>
<tr>
<td>Apparent, refined and old scrap</td>
<td>1,820</td>
<td>1,820</td>
<td>1,660</td>
<td>1,960</td>
<td>1,900</td>
</tr>
<tr>
<td>Price, annual average, cents per pound:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. producer, cathode (COMEX + premium)</td>
<td>298.7</td>
<td>279.6</td>
<td>286.7</td>
<td>432.3</td>
<td>410</td>
</tr>
<tr>
<td>COMEX, high-grade, first position</td>
<td>292.6</td>
<td>272.3</td>
<td>279.9</td>
<td>424.3</td>
<td>400</td>
</tr>
<tr>
<td>London Metal Exchange, grade A, cash</td>
<td>296.0</td>
<td>272.4</td>
<td>279.8</td>
<td>422.5</td>
<td>400</td>
</tr>
<tr>
<td>Stocks, refined, held by U.S. producers, consumers, and metal exchanges, year-end</td>
<td>244</td>
<td>110</td>
<td>118</td>
<td>117</td>
<td>120</td>
</tr>
<tr>
<td>Employment, mine and plant, number</td>
<td>11,700</td>
<td>12,000</td>
<td>11,000</td>
<td>11,400</td>
<td>12,000</td>
</tr>
<tr>
<td>Net import reliance (as a percentage of apparent consumption)</td>
<td>33</td>
<td>37</td>
<td>38</td>
<td>44</td>
<td>41</td>
</tr>
</tbody>
</table>

thousand metric tons of contained copper
But should copper be a critical mineral?

- Copper is mostly produced from Chile, Peru, Congo and other countries
- However, most of the world's refinery production of copper is from China and Chile
- The opening of several large copper mines (Resolution, Mission, and Pumpkin Hollow) are continued to be delayed by technical, political, and social issues
- Peru has been in political unrest since December, which will affect the supply of copper from that country
- Labor disputes are common throughout the world, which also affects the supply chain
- Other critical minerals are produced from copper deposits
CRITICAL MINERALS

- Over 50 critical minerals are identified
- New Mexico has many of these critical minerals
 - Copper deposits in Grant County contain rhenium, indium, gallium, germanium, and zinc
 - Uranium deposits in the Grants district contain Se, REE, V, Mo
 - Exploration for other critical minerals include REE, tellurium, lithium, beryllium, cobalt
 - Other critical minerals were once produced from New Mexico (tin, vanadium, manganese, fluorspar, barite, graphite, zinc)

Selected exploration sites of critical minerals in New Mexico
Rare earth elements (REE) are a group of critical minerals that are used to manufacture most of our electronic devices, wind turbines, solar panels, magnets, electric and hybrid cars, and many other products. New Mexico has an abundance of REE deposits, although none are currently in production.
Occurrences of Rare Earth Elements (REE) in New Mexico
Tellurium in New Mexico

- Alloying additive in steel to improve machining characteristics
- Processing of rubber
- As a component of catalysts for synthetic fiber production
- As pigments to produce various colors in glass and ceramics
- Thermal imaging devices
- Thermoelectric cooling devices, such as summertime beverage coolers
- Thermoelectronics
- Solar panels/cells

Mining districts in New Mexico with tellurium minerals or chemical assays >20 ppm Te
Beryllium In New Mexico

- Defense
- Telecommunications
- Nuclear energy industries
- Shielding in some of our nuclear, medical, and other equipment
- Many of our electronic devices
Lithium in New Mexico

TYPES OF LITHIUM DEPOSITS IN NM

More than 13,000 short tons of lepidolite ore and several hundred short tons of spodumene ore have been produced from pegmatites in New Mexico in 1920-1950.

Lithium is used in batteries, lubricants, pharmacinals, glass, chemical industry
BRINE, HYDROTHERMAL (GEOTHERMAL), AND PLAYA DEPOSITS

- Closed basins
- Derived from weathering of lithium-enriched rhyolite and other volcanic rocks
- Locally associated with geothermal springs and wells
5th year we have received funding

- Funds graduate and undergraduate students
 - Published papers on some of this work (with extra funding from other sources)

Some of our accomplishments
- State-wide geochemical database of rocks and mineralized deposits containing critical minerals
- Depth to Precambrian basement
- Long range plan to evaluate critical minerals in New Mexico
- Comprehensive database of critical minerals and other minerals deposits (New Mexico Mines Database)
- Photograph and describe drill core with critical minerals potential
- Inventory and storage of samples from areas containing critical minerals
- Identify districts with critical minerals in New Mexico
EARTH MRI AND DOE CORE-CM PROJECTS IN NEW MEXICO
Brick-red episyenites are metasomatic in origin, possibly related to alkaline or carbonatite intrusions at depth.

REE minerals are associated with altered amphiboles, magnetite, secondary chlorite, hematite, zircon, and fluorite.

Samples have low-moderate TREE, Th, and U; but some samples have relatively high HREE.
USGS Earth MRI Project
Mapping REE in Gallinas
Mountains, Lincoln County, NM
(2019-2021, continuing)

Virginia McLemore, Shari Kelley, Matt Zimmerer, Evan Owen, Alex Gysi and many students

- REE breccia and vein deposits are mostly along minor faults with small displacements and short lengths, and fracture zones, as much as 8% TREE
- Positive correlation between TREE, F, Ba, and Sr
- Possible carbonatite at depth
- Industry provided chemical analyses

Yellow bastnäsite [(Ce,La)(CO₃)F] in purple fluorite breccia from the Red Cloud mine (length is ~8 mm). Bastnäsite is the most common REE mineral mined in the world today.
New mapping identified numerous mines and prospects, veins, faults, and subdivided the igneous intrusions.

Summary of new (red) and published (blue; from Robison 2017) 40Ar/39Ar ages.

Historic geologic map of the Gallinas Mountains, Lincoln and Torrance Counties, New Mexico (Perhac, 1970)

New geologic map of the Gallinas Mountains, Lincoln and Torrance Counties, New Mexico
USGS Earth MRI Project
Mapping REE in Cornudas
Mountains, Otero County, NM
(2020-2023)

Virginia T. McLemore, Nels Iverson, Evan Owen, Snir Attir, and several students
IN COOPERATION WITH TEXAS

- Finishing up the GIS geologic map
- Differential cooling of the magma resulted in the textural variations at Wind Mountain
 - 36.32±0.15 Ma
- Eudialyte is primary REE mineral
- Chemical analyses—3790 ppm total REE, 2332 ppm Nb, 92 ppm Be, and 3137 ppm F
- Industry provided core, chemistry

Map of the anomalous magnetic field (AMF) of the Cornudas Mountains (Bultman, 2021, 2022) showing intrusive laccoliths and plugs (red anomalies) that extend deep into the subsurface, with additional intrusions potentially buried in the subsurface.

Pink eudialyte in black phonolite dike in contact with skarn

Wind Mountain laccolith
DOE CORE-CM project—San Juan River-Raton Basin, New Mexico DOE contract (Oct 2021-Sept 2023, extension requested)

Virginia T. McLemore, Navid Mojabai, Shari Kelley, Evan Owen, many students and staff

- CORE-CM=Carbon Ore, Rare Earth and Critical Minerals
- Identify and quantify the distribution of REE and CM in coal beds and related stratigraphic units in the San Juan and Raton basins
- Identify, sample, and characterize coal waste stream products
- Sandia: Microscale characterization techniques to identify where REEs and critical metals are hosted
- LANL: Field-portable, in situ LIBS/RAMAN analysis

Industry provided access to mines

Laramide porphyry copper deposits in southwestern United States and northern Mexico. The Copper Flat porphyry copper deposit is in the Hillsboro district.

Districts with Laramide deposits and plutons (black) in southwestern New Mexico.

Laramide porphyry copper deposits in southwestern United States and northern Mexico. The Copper Flat porphyry copper deposit is in the Hillsboro district.

Virginia T. McLemore, Evan Owen, Nels Iverson, Shari Kelley, and many students IN COOPERATION WITH ARIZONA GEOLOGICAL SURVEY

• What are the ages
• Where in the porphyry copper deposits are there critical minerals
• Cooperate with industry
USGS EARTH MRI PROJECT
CRITICAL MINERALS FROM MINE WASTES
(AUGUST 2022-JULY 2024)

Virginia T. McLemore, Bonnie Frey, Evan Owen, Dan Jones, and students

• Test USGS protocols for sampling mine wastes
• Characterize mine wastes for critical minerals potential
• Includes tailings, mine waste rock piles, stockpiles, pit lakes
• Acid-base accounting to determine acid generating potential
• Industry provided access to sites

Sampling stockpile at Copper Flat

Pit in Copper Flat tailings

Acid rock diagram for mine waste rock piles in NM
Five-element vein deposits contain Ag, As, Bi, Ni, and Co ± U, Sb, Zn, Cu, Pb

These deposits are unusual and not well understood

Like other worldwide example of five-element veins, the Black Hawk district contains silver (Ag) and various critical minerals including nickel (Ni), cobalt (Co), bismuth (Bi), arsenic (As) and local uranium (U), zinc (Zn), and antimony (Sb)

Industry provided access

Colloform growths of native Ag, Ni-Co arsenides, anduraninite
USGS EARTH MRI PROJECT
GEOCHEMICAL REANALYSIS OF
NURE SAMPLES FROM THE
COLORADO PLATEAU, NEW
MEXICO, UTAH, COLORADO,
AND ARIZONA (AUGUST 2023-
JULY 2026)

Virginia T. McLemore, Evan Owen, and
several students

IN COOPERATION WITH ARIZONA,
UTAH, AND COLORADO GEOLOGICAL
SURVEYS

Stephanie Mills, Jake Alexander, Taylor Boden,
Mike O’Keeffe, Andrew Giebel, and Carson
Richardson

• Reanalysis of a select group of existing NURE sediment pulps by the USGS using
 modern geochemical methods where critical minerals are found
• Resample additional areas
• New Mexico will use this as part of a graduate course (Exploration Geochemistry)

NURE=National Uranium Resource Evaluation
Ore Deposits and Critical Minerals Research Group

Alexander Gysi
NM Bureau of Geology and Mineral Resources, Department of Earth and Environmental Science, NMIMT

- Research
- Ore deposits and critical minerals experimental laboratory
- Development of the MINES thermodynamic database
- Field observations in critical mineral deposits
- Funding of ~ $3M from DOE and NSF-EAR/-CAREER
- Team: 3 PhD and 2 MS students, 1 undergraduate students and 2 Postdoctoral Fellows
- New U.S. geoscience critical minerals experimental – thermodynamic research hub
 NMT-LANL-IUB plus search for 3 new PhD and 3 Postdocs
Ore Deposits and Critical Minerals Experimental Lab

- Hydrothermal fluid-mineral experiments
 - Synthesis/dissolution of REE minerals (xenotime, monazite)
 - REE incorporation into calcite, fluorite, apatite

- Thermodynamic properties of critical minerals and their solid solutions
 - Hydrothermal solution calorimetry (enthalpy of mixing), heat capacity measurements, and mineral stability

- UV-vis spectrophotometry
 - High temperature complexation of aqueous REE species
 - Flow-through experiments

- NEW Raman laser – hydrothermal diamond anvil cell facility – NSF MRI/DOE research hub
MINING ISSUES FACING NEW MEXICO

• Many inactive mines still have the potential to contaminate the environment or present a hazard to health and safety
 • Gold King spill
 • AML sites (Abandoned mine lands)
 • Grants uranium district
MINING ISSUES FACING NEW MEXICO

• Some current mines are reaching the end of their life and will close over the next decade=decreasing minerals production
• There are not many new mines to replace them
• Mining requires water and their environmental effects must not impact water supplies
• Results in unemployment and decrease in revenues
 • Affects rural economies
 • Affects state revenues
• Legacy issues of past mining activities form negative public perceptions of mining
 • Abandoned or legacy mines, especially Grants uranium district and Questa mine
 • Gold King spill
 • Not in my backyard!!!!!!
MINING ISSUES FACING NEW MEXICO—CONTINUED

- Global competition is closing some of our mines
- Exploration for new deposits often results in drill targets based upon regulatory minimal impact regulations rather than optimum geological criteria
- Permitting for exploration can take longer than exploration funds are available
- Lower prices = closed mines, little exploration
- In some areas conflicts arise between mining and other activities
 - Grants uranium district
 - Otero Mesa
 - Pecos/Tererro mine
 - Water, don’t want a mine in their backyard
- Shortage of young geologists and engineers to explore for, develop, mine, permit these commodities and evaluate their effect on the environment—math, science skills critical
Mining is viewed as favorable by only 27% of New Mexicans.
Number of thesis and dissertations on non-energy economic geology has decreased

EDUCATION OUTREACH
This program has served teachers for 25 years!

The location of RANM changes annually.

Each year up to 30 K-12 teachers attend.

All costs for workshop materials and fees for K-12 teacher professional development are covered by our rockin’ DHSEM (division of homeland security and emergency management) grant.

The theme of RANM generally focuses on hazard and hazard mitigation to qualify for DHSEM funding.

NMBGMR Mineral Museum Curator Kelsey McNamara teaches educators about morphological elements during Rockin’2018.
Lite Geology is an online education outreach publication produced biannually by the New Mexico Bureau of Geology and Mineral Resources for K-12 teachers.

An edition of Lite Geology will be dedicated to the collaborative research and results from the REE Project.

Pictured are the covers of some of our latest editions of Lite Geology. These editions discussed the Permian Basin, Rocks of New Mexico and Water. You can read this online publication at https://geoinfo.nmt.edu/publications/periodicals/litegeology/home.cfm
SUMMARY

• New Mexico has a wealth of mineral resources
• The New Mexico Bureau of Geology and Mineral Resources has a long history in critical minerals research
 • We have a number of ongoing research projects in the broad field of critical minerals, with strong field and laboratory components
 • Archiving samples for future studies
• Exploration and permitting takes many years before a deposit can be mined in NM, >10 yrs
• Legacy issues are being addressed
• Negative public perceptions are major issue as is funding
• Global competition is a major challenge
• NMBG/NMT research is addressing some of these issues, as well as actively training future geologists and engineers
IMPORTANCE OF MINING REE AND CRITICAL MINERALS IN NEW MEXICO

• Future mining of REE and Critical Minerals will directly benefit the economy of New Mexico
 • Will delineate favorable geologic terranes and priority areas containing potential REE and CM deposits

• Mineral resources must be identified before land use decisions are made by government officials

• Crucial to re-establish a domestic source of REE and Critical Minerals minerals in the U.S. to help secure the nation’s clean energy future, reducing the vulnerability of the U.S. to material shortages related to national defense, and to maintain our global technical and economic competitiveness

• Training of the future workforce because students at New Mexico Tech and San Juan College will be hired to work on this project and outreach activities train high and middle school students as well as their teachers
MORE INFORMATION

• NM Mines and Minerals Division
 http://www.emnrd.state.nm.us/MMD/

Virginia McLemore web page
 http://geoinfo.nmt.edu/staff/mclemore/home.html

• New Mexico Bureau of Geology and Mineral Resources
 http://geoinfo.nmt.edu/
NMBGMR ECONOMIC GEOLOGY GROUP RESEARCH