Skip Navigation Links

Your browser may be very out of date -- consider upgrading!


GEOLOGY AND EVOLUTION OF THE COPPER FLAT PORPHYRY SYSTEM, SIERRA COUNTY, NEW MEXICO

Virginia McLemore, New Mexico Bureau of Mines and Mineral Resources, February 1, 2001

see related abstracts

ABSTRACT

The Hillsboro district, in central New Mexico, is an example of the typical geologic style of the development of Laramide porphyry copper deposits in southwestern United States. New geochemical, geochronological, and geological data, combined with earlier studies, have provided a refinement of the evolution of mineralization in the district. Past production has been predominantly from the Laramide veins and placer gold deposits, although minor production has occurred from the porphyry copper and carbonate-hosted Pb-Zn and Ag-Mn replacement deposits. The geology of the Hillsboro district is dominated by Cretaceous andesite flows (75.4±3.5 Ma, 40Ar/39Ar), breccias, and volcaniclastic rocks that were erupted from a volcano. The Copper Flat quartz monzonite porphyry (CFQM, 74.93±0.66 Ma, 40Ar/39Ar) intruded the vent of the volcano. The unmineralized Warm Springs quartz monzonite (74.4±2.6 Ma, 40Ar/39Ar) and a third altered, unmineralized quartz monzonite intruded along fracture zones on the flanks of the volcano. Younger latite and quartz latite dikes intruded the andesite and CFQM and radiate outwards from the CFQM. The igneous rocks are part of a differentiated comagmatic suite. Alteration of the igneous rocks consists of locally intense biotite-potassic, potassic, sericitic, phyllic, and argillic alteration. Large jasperoid bodies as well as smaller skarns and marbles have replaced limestones belonging to the El Paso Formation, Fusselman Dolomite and Lake Valley Limestone in the southern part of the district. The porphyry copper deposit is a low-grade hypogene deposit that is concentrated within a breccia pipe in the CQFM stock and contains pyrite, chalcopyrite, chalcocite, molybdenite, azurite, malachite, and cuprite. The CFQM deposit forms the center of the Hillsboro district. Trending outward radially from the CFQM are Laramide Au-Ag-Cu veins hosted by many of the latite/quartz latite dikes. Carbonate-hosted replacement deposits (Ag, Pb, Mn, V, Mo, Zn) are found in the southern and northern parts of the district, distal from the CFQM deposit. Collectively, the evidence suggests that the mineral deposits found in the Hillsboro district were formed by large, convective hydrothermal systems related to the Copper Flat volcanic/intrusive complex. The CFQM porphyry copper deposit exhibits very little supergene alteration and enrichment, in contrast to the extensive supergene alteration and enrichment found in the porphyry copper deposits at Santa Rita and Tyrone, New Mexico and Morenci, Arizona. This is most likely a result of less pyrite (<2%) at Copper Flat and burial of the CFQM deposit from 75 to 24 Ma, preventing any supergene enrichment from occurring.

LOCATION AND MINING HISTORY

The Hillsboro or Las Animas district lies in the Animas Mountains and was discovered in 1877. The town of Hillsboro, first known as Hillsborough, was also established in 1877. A tent city named Gold Dust was founded in 1881 in the district and was home to numerous prospectors looking for placer gold deposits. In 1884, Hillsboro was the Sierra County seat, but by 1938, mining and subsequently, the population of Hillsboro diminished and the county seat was moved to T or C (then known as Hot Springs). Sporadic minor production has occurred since (Table 1).

The first gold production was recovered by arrastras and then by stamp mills in the district prior to 1881 (Burchard, 1881). A 10-stamp mill operated at the Bobtail mine on the Snake vein from about 1881 to 1884 and had a capacity of 20-25 tons per day (Burchard, 1883). Placer deposits in Snake Gulch were also mined by hydraulic mining (Burchard, 1882). Mills operated at the Richmond (1890-1892), Bonanza (1890-1910), Ready Pay/Porter (1898-1913), Snake (1910), and Wicks mines. The copper-matte smelter in the town of Hillsboro was built in 1892 and operated until it closed in the early 1900s. Capacity was approximately 30 tons per day. Manganese was first produced and used in the Hillsboro smelter as flux during the early operation of the Hillsboro smelter (Wells, 1918).

TABLE 1. Metals production from the Hillsboro district, Sierra County (U. S. Geological Survey, 1902-1926; U. S. Bureau of Mines, 1927-1990). *Includes production from Tierra Blanca district in 1939 and from the Caballo district in 1957.
YEAR ORE (SHORT TONS) COPPER (lbs) LODE GOLD (oz) PLACER GOLD (oz) SILVER (oz) LEAD (LBS) VALUE ($)
1877-1904 6,750,000
1933 272 3,000 239 221 1,277 600 10,177
1934 761 14,100 462 1,139 4,647 700 60,109
1935 666 22,000 1,098 1,761 2,561 18,400 104,481
1936 983 34,980 1,638 1,620 4,571 120,788
1937 469 17,400 357 1,234 2,587 70,309
1938 268 13,900 425 2,073 2,104 90,138
1939* 1,160 29,900 868 2,271 3,427 100 115,306
1940 1,084 25,000 684 1,688 2,219 3,300 87,588
1941 4,581 20,000 432 989 1,562 1,100 53,269
1942 11 11 582 79 20,811
1943 2 70
1944 5 175
1946 12 400 7 83 377
1948 6 4 65 199
1949 11 1,000 35 338 1,728
1950 111 3,600 121 491 5,428
1951 1,214 289 52 0,162
1952 563 125 30 4,402
1953 1,230 265 51 9,426
1955 10 400 2 3 11 2,259
1957* 304 3,300 4 58 4 1,138
TOTAL 1933-1957 13,716 188,980 7,066 13,671 26,159 24,200 758,340
SUBTOTAL 1902-1961 34,403 384,042 77,916 153,387
1982 7,000,000
ESTIMATED TOTAL 1877-1982 24,000,000 150,000 120,000 78,000 153,387 8,500,000

The Copper Flat porphyry-copper deposit in the northern part of the Hillsboro district was discovered in 1975 (Castellano et al., 1977; Dunn, 1982, 1984), although alteration and mineralization in the area suggested to earlier geologists that a porphyry-copper deposit should occur in the district (Kuelmer, 1954). Approximately 200 short tons of copper oxide were mined from the oxide cap in 1911-1931 (Sternberg shaft; Hedlund, 1974). A copper leach plant operated in the mid-1950s, but production figures are unknown. Quintana Minerals Corp. produced approximately 7 million pounds of copper in March through June 1982, prior to closure of the open-pit mine (Ohl and Eveleth, 1984). Alta Gold Co. applied for mining permits to reopen the Copper Flat mine, but the company went bankrupted before the permits were issued. The future of the mine is unknown. Mineable reserves were estimated in 1984 as 60 million short tons of 0.42% Cu (504 million lbs Cu) and 0.012% Mo (14.4 million lbs Mo)(Dunn, 1984). Current reserves of the deposit are estimated as 60 million tons of ore containing 487 million lbs Cu, 251,000 oz Au, 3.2 million oz Ag, and 15.7 million lbs Mo (Dillard, 1995). The gold grade is reported to be 0.004 oz/ton.

GEOLOGIC SETTING

The Hillsboro mining district lies on the eastern edge of the Laramide Arizona-Sonora-New Mexico porphyry copper belt. It is the oldest porphyry copper deposit in the state; although the Piños Altos pluton is ca. 74.4 Ma (McDowell, 1971) and a Georgetown monzonite dike has been dated as ca. 71 Ma (McLemore, 1998), both of which have associated Cu-Au-Ag skarn or Ag carbonate-hosted replacement deposits. The Twin Peaks monzonite porphyry in the Burro Mountains is 72.5 Ma (Hedlund, 1980) and a hornblende andesite in the Hidalgo Formation in the Little Hatchet Mountains is 71.4 Ma (Lawton et al., 1993). Polymetallic veins and alteration suggests that a porphyry may underlie the Lordsburg district (57.4 Ma, McLemore et al., 2000a). Porphyry copper deposits are not known to occur in these areas, but certainly the possibility exists that deposits may occur undiscovered in the subsurface.

LOCAL GEOLOGY

The Hillsboro district is dominated by Cretaceous andesite flows, breccias, and volcaniclastic rocks that were erupted from an andesite volcano. The Copper Flat quartz monzonite porphyry intruded the vent of the volcano. The unmineralized Warm Springs quartz monzonite and a third altered, unmineralized quartz monzonite intruded along fracture zones on the flanks of the volcano. Latite and quartz latite dikes intruded the andesite and Copper Flat porphyry and radiate outwards from the porphyry; the vein deposits are associated with these dikes.

AGE OF IGNEOUS ROCKS

The relatively high uncertainty of the ages does not permit resolution of individual intrusive events, but it appears that the andesite (HILL 5, 75.4±3.5 Ma), Copper Flat quartz monzonite (HILL 15, 19; 74.93±0.66 Ma), and Warm Springs quartz monzonite (HILL 11, 74.4±2.6 Ma) are all about 75 Ma. Since the quartz monzonite intruded the andesite, the andesite cannot be younger than 74.93±0.66 Ma.

CHEMISTRY OF IGNEOUS ROCKS

The igneous rocks are part of a differentiated comagmatic suite. The andesites are metaluminous and alkaline; the quartz monzonites and latites are metaluminous to peraluminous and alkaline to subalkaline.The samples exhibit varying degrees of alteration, as shown in the data scatter in various element plots. However, despite the alteration, the linear variation in Nb/Zr, Zr/TiO2, V/ TiO2, and various major elements suggests that the igneous rocks are comagmatic. The near linear trend in the Nb/Zr plot suggests that removal of Nb and Zr from the magma occurred as a result of crystallization of magnetite, sphene, and zircon. Pearce element plots of Na/Zr vs. Al/Zr and (K + Na)/Mg vs. Al/Mg (molar concentrations) indicate that differentiation can be explained by feldspar fractionation. These plots also indicate that the quartz latite dikes are closely related to the intrusion of the quartz monzonite porphyry.

TYPES OF MINERAL DEPOSITS

PORPHYRY COPPER DEPOSIT

LARAMIDE (POLYMETALLIC) VEINS

CARBONATE-HOSTED REPLACEMENT DEPOSITS

PLACER GOLD DEPOSITS

SUMMARY OF FLUID INCLUSION DATA

(Fowler, 1982; Norman et al., 1989)

DISTRICT ZONING

Many workers in the district have recognized district zoning (Harley, 1934; Fowler, 1982; Hedlund, 1985; McLemore et al., 1999, 2000). The CFQM porphyry-copper deposit forms the center of mineralization and is characterized by Cu, Mo, and minor Au (McLemore et al., 1999) and depleted in Ag, As, Pb, Zn, Ba, Bi, Mn, and V. Trending outward radially from the CFQM are Laramide Au-Ag-Cu veins hosted by many of the latite and quartz latite dikes. The veins are variable in chemical composition, but consist predominantly of Cu, Au, and Ag with relatively high values of Pb, Zn, Sb, As, and Bi (McLemore et al., 1999, table 3). Carbonate-hosted replacement deposits are found in the southern and northern parts of the district, distal from the center and contain Ag, Pb, Mn, V, and Mo and relatively high values of Sb, Ba, and Zn (McLemore et al., 1999, table 3). They are lower in Au and Cu concentration relative to the CFQM and vein deposits. Placer gold deposits were formed by erosion of the Laramide polymetallic veins and occur in the drainages and alluvial fans emanating from the Laramide vein deposits.


ENVIRONMENTAL GEOLOGY

Munroe et al. (2000; Munroe, 1999) examined the mine waste piles in the Hillsboro district. Their work concluded that the minerals in the Laramide veins were more reactive relative to the carboanate-hosted replacement samples, probably because more pyrite is found in the veins. Pyrite is the predominant mineral that causes acid rock drainage. Munroe et al. (2000) also concluded that secondary oxidation rinds may "armor" sulfides (such as galena coated by angelsite) from further oxidation and release of metals into the environment. Acid rock drainage is found in some areas of the district, but the lack of intense rainfall minimizes the effect to ground and surface waters (Munroe, 1999).

Water in the Copper Flat pit varies from acidic to neutral; ground water is neutral to alkaline (Table 2). Chemical composition also varies (Table 2; U. S. Bureau of Land Management, 1996; Castellano et al., 1977; Munroe, 1999). Mining at Copper Flat was expected to have no or minimal adverse effects on water quality in the area.

TABLE 2. Range of chemical analyses of selected metals in water collected from the Copper Flat open-pit and ground water in the Hillsboro district, in mg/L (from U. S. Bureau of Land Management, 1996). 1 From National Research Council (1980).
ELEMENT RANGE IN PIT WATER RANGE IN GROUND WATER TOLERABLE LEVELS FOR DOMESTIC LIVESTOCK1
pH 1.9-7.8 7.0-9.5
F 1.46-8.10 <0.3-4.77 40
Cu <0.01-684 <0.01-3.21 25
Mn <0.01-142 <0.02-4.90 400
Zn <0.03-51 <0.01-2.41 300
Ni <0.01-0.03 <0.01 50
Cd <0.005-0.035 <0.005-0.030 0.5
Al <0.01-2.0 <0.01-2.00 200
As <0.004-.010 <0.005-0.010

CONCLUSIONS

REFERENCES

  1. Anderson, E. C., 1957, The metal resources of New Mexico and their economic features through 1954: New Mexico Bureau of Mines and Mineral Resources, Bulletin 39, 183 pp.
  2. Castellano, J., Custer, T., Marsh, G., and Way, K., 1977, Environmental assessment record on Quintana Minerals Corporation’s proposed open pit copper mine at Copper Flat, Sierra County, New Mexico: U.S. Bureau of Land Management, Report, 150 p.
  3. Dillard, G., 1995, Alta Gold gets funds, prepares to restart Copper Flat: Southwestern Pay Dirt, February, p. 11A.
  4. Dunn, P. G., 1982, Geology of the Copper Flat porphyry copper deposit, Hillsboro, Sierra County, New Mexico; in Titley, S. R. (ed.), Advances in geology of the porphyry copper deposits: Univ. of Arizona Press, p. 313–326.
  5. Dunn, P. G., 1984, Geologic studies during the development of the Copper Flat porphyry deposit: Mining Engineering, v. 36 (2), p. 151–160.
  6. Fowler, L. L., 1982, Brecciation, alteration, and mineralization at the Copper Flat porphyry copper deposit, Hillsboro, New Mexico (M. S. thesis): Univ. of Arizona, Tucson, 133 p.
  7. Hedlund, D. C., 1977a, Mineral resources of the Hillsboro and San Lorenzo quadrangles, New Mexico: U. S. Geological Survey, Miscellaneous Field Studies Map MF-900B, scale 1:48,000.
  8. Hedlund, D. C., 1977b, Geologic map of the Hillsboro and San Lorenzo quadrangles, Sierra and Grant Counties, New Mexico: U. S. Geological Survey Miscellaneous Field Studies Map 900-A, scale 1:48,000
  9. Hedlund, D. C., 1985, Economic geology of some selected mines in the Hillsboro and San Lorenzo quadrangles, Grant and Sierra Counties, New Mexico: U.S. Geologic Survey, Open-file Report 85-456, 76 p.
  10. Keith, S. B and Swan, M. M., 1996, The great Laramide porphyry copper cluster of Arizona, Sonora, and New Mexico: the tectonic setting, petrology, and genesis of a world class porphyry metal cluster; in Coyner, A. R. and Fahey, P. L. (eds.), Geology and ore deposits of the American Cordillera: Geological Society of Nevada symposium Proceedings, Reno/Sparks, Nevada, April 1995, p. 1667-1747.
  11. Korzeb, S. L., and Kness, R. F., 1994, Mineral resources in areas of critical environmental concern in the Caballo Resource Area, Otero County, New Mexico: U.S. Bureau of Mines, Open-file Report MLA 20-94, 72 p.
  12. Korzeb, S. L., Kness, R. F., Geroyan, R. I., and Ward, D. A., 1995, Mineral resource assessment of the Caballo Resource Area, Sierra and Otero Counties, New Mexico: U.S. Bureau of Mines, Open-file Report MLA 5–95, 177 p.
  13. Lawton, T. F., Basbilvazo, G. T., Hodgson, S. A., Wilson, D. A., Mack, G. H., McIntosh, W. C., Lucas, S. G., and Kietzke, K. K., 1993, Laramide stratigraphy of the Little Hatchet Mountains, southwestern New Mexico: New Mexico Geology, v. 15, p. 9-15.
  14. Lovering, T. G., 1972, Jasperoid in the United States-its characteristics, origin, and economic significance: U. S. Geological Survey, Professional Paper 710, 164 p.
  15. McDowell, F. W., 1971, K-Ar ages of igneous rocks from the western United States: Isochron/West, v. 2, p. 1-16.
  16. McLemore, V. T., 1994, Placer gold deposits in New Mexico: New Mexico Geology, v. 16, pp. 21-25.
  17. McLemore, V. T., 1996, Copper in New Mexico: New Mexico Geology, v. 18, pp. 25-36.
  18. McLemore, V. T., 1998, Insights into origin of carbonate-hosted Ag and Pb-Zn replacement deposits in the Black Range, Sierra and Grant Counties, New Mexico (abstr.): New Mexico Geology, v. 20, p. 49.
  19. McLemore, V. T., Heizler, M., and Munroe, E. A., 1999, Geochemistry of host rocks, veins, replacements, and jasperoids in the Hillsboro district, Sierra County, New Mexico, USA (abstr.): New Mexico Geological Society, Spring Meeting Program; New Mexico Geology, v. 21, p. 45.
  20. McLemore, V. T., McIntosh, W. C., and Pease, T. C., 1996, 40Ar/39Ar age determinations of four plutons associated with mineral deposits in southwestern New Mexico: New Mexico Bureau of Mines and Mineral Resource, Open-file Report 410, 36 p.
  21. McLemore, V. T., Munroe, E. A., Heizler, M. T. and McKee, C., 1999, Geochemistry of the Copper Flat porphyry and associated deposits in the Hillsboro mining district, Sierra County, New Mexico, USA: Journal of Geochemical Exploration, v. 66, p. 167-189.
  22. McLemore, V. T., Munroe, E. A., Heizler, M. T. and McKee, C., 2000, Geology and evolution of the Copper Flat Porphyry-Copper and associated mineral deposits in the Hillsboro mining district, Sierra County, New Mexico; in Cluer, J. K., Price, J. G., Struhsacker, E. M., Hardyman, R. F. and Morris, C. L. eds., Geology and Ore Deposits 2000, The Great Basin and Beyond: Geological Society of Nevada, Symposium Proceedings, pp. 643-659.
  23. McLemore, V. T., Peters, L. and Heizler, M. T., 2000, 40Ar/39Ar geochronology of igneous rocks in the Lordsburg district, northern Pyramid Mountains, Hidalgo County, New Mexico; in Lawton, T. F., McMillan, N. J., McLemore, V. T., Austin, G., and Barker, J. M. eds., Southwest Passage, A Trip through the Phanerozoic: New Mexico Geological Society Guidebook 51, pp. 6-8.
  24. Munroe, E. A., 1999, Geochemistry and characterization of waste rock piles to complement an evaluation of metal mobility in an arid environment: A study of the Hillsboro district, New Mexico: M. S. thesis, New Mexico Institute of Mining and Technology, 144 p.
  25. Munroe, E. A., and McLemore, V. T., 1998, Characterization and sampling of four mine waste rock piles in the Hillsboro mining district, Sierra County, New Mexico (abstr.): National Association of Abandoned Mine Land Programs, Meeting, Sept. 28-Oct.1, 1998.
  26. Munroe, E., Thompson, R., and McLemore, V. T., 1998, Geology and geochemical characteristics of the Hillsboro mining district, Sierra County, New Mexico; A preliminary study (abstr.): New Mexico Geological Society, Spring Meeting Program; New Mexico Geology, v. 20, p. 49.
  27. Munroe, E. A. and McLemore, V. T., 1999, Waste rock pile characterization, heterogeneity and geochemical anomalies in the Hillsboro mining district, Sierra County, New Mexico (abstr.): 19th IGES, Geochemical Exploration Symposium, Symposium Program and Abstract Volume, pp. 41-43.
  28. Munroe, E. A. and McLemore, V. T., 1999, Waste rock pile characterization, heterogeneity and geochemical anomalies in the Hillsboro mining district, Sierra County, New Mexico: Journal of Geochemical Exploration, v. 66, p. 389-405.
  29. Munroe, E. A., McLemore, V. T., and Dunbar, N., 1999, Mine waste rock pile mineralogy and geochemistry in select areas of the Hillsboro mining district, New Mexico: Insights into metal mobility (abstr.): New Mexico Geological Society, Spring Meeting Program; New Mexico Geology, v. 21, p. 33-34.
  30. Munroe, E. A., McLemore, V. T., and Dunbar, N. W., 2000, Mine waste rock pile geochemistry and mineralogy in southwestern New Mexico, USA; in ICARD 2000-Proceedings from the 5th international conference on acid rock drainage: Society for Mining, Metallurgy, and Exploration, Inc., Littleton, Colo., pp. 1327-1336.
  31. Munroe, E. A., McLemore, V. T., and Kyle, P., 1999, Sampling protocol for mine waste rock pile characterization in the Hillsboro mining district, Sierra County, New Mexico (abstr.): New Mexico Geological Society, Spring Meeting Program; New Mexico Geology, v. 21, p. 33.
  32. Munroe, E. A., McLemore, V. T., and Dunbar, N. W., 2000, Mine waste rock pile geochemistry and mineralogy in southwestern New Mexico, USA; in ICARD 2000-Program from the 5th international conference on acid rock drainage: Society for Mining, Metallurgy, and Exploration, Inc., Littleton, Colo., pp. 58.
  33. Norman, D. I., Kyle, P. R., and Baron, C., 1989, Analysis of trace elements including rare earth elements in fluid inclusion liquids: Economic Geology, v. 84, p. 162-166.
  34. Northrop, S. A., 1959, Minerals of New Mexico: University of New Mexico Press, Albuquerque, New Mexico, 665 pp.
  35. Northrop, S. A., 1996, Minerals of New Mexico: University of New Mexico Press, Albuquerque, New Mexico, 356 pp.
  36. Pearce, J. N., Harris, N. B. W., and Tindle, A. G., 1984, Trace element discrimination diagrams for the tectonic interpretation of granitic rocks: Journal of Petrology, v. 25, p. 956-983.
  37. Schilling, J. H., 1965, Molybdenum resources of New Mexico: New Mexico Bureau of Mines and Mineral Resources, Bulletin 76, 76 p.
  38. Segerstrom, K., and Antweiler, J. C., III, 1975, Placer-gold deposits of the Las Animas district, Sierra County, New Mexico: U. S. Geological Survey, Open-file Report 75-206, 39 pp.
  39. Sierra County Historical Society, Inc., 1979, History of Sierra County: Windmill Publications, Inc., Mt. Vernon, In., 360 pp.
  40. U. S. Bureau of Land Management, 1996, Environmental Impact Statement, Copper Flat project: U. S. Bureau of Land Management, Caballo Resource Area, draft environmental impact statement, 350 pp.
  41. Reeves, C. C., 1963, Economic geology of a part of the Hillsboro, New Mexico, mining district: Economic Geology, v. 58, pp. 1278-1285.
  42. Wells, E. H., and Wootton, T. P., 1940, Gold mining and gold deposits in New Mexico: New Mexico Bureau of Mines and Mineral Resources, Circular 5, 25 pp.
  43. Wilt, J. C., 1995, Correspondence of alkalinity and ferric/ferrous ratios of igneous rocks associated with various types of porphyry copper deposits; in Pierce, F. W. and Bolm, J. G. (eds.), Porphyry copper deposits of the America Cordillera: Arizona Geological Society, Digest 20, p. 180-200.
  44. U. S. Bureau of Mines, 1927-1990, Mineral yearbook: Washington, D.C., U.S. Government Printing Office, variously paginated.
  45. U. S. Geological Survey, 1902-1927, Mineral resources of the United States (1901-1923): Washington, D.C., U.S. Government Printing Office, variously paginated.  

Terms of Use | Accessibility

Revised: 27 June, 2012

© 2009 NMBGMR
or as specified


Copyright © 2009 New Mexico Bureau of Geology & Mineral Resources unless otherwise specified.