Geology of the Cambrian-Ordovician Lemitar Carbonatites, Socorro County, New Mexico: Revisited
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Carbonatites are 1igneous rocks of magmatic origin that are composed of more than
50% carbonate minerals, less than 20% S10,, and they can form economic deposits
containing significant amounts of rare earth elements (REE), barite, fluorite, and
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niobium. REE are critical minerals and are essential to the functioning of i 0 0.5 1 2 Kilometers g Calciocarbonatite
information-age technologies because of their unique properties, i.g., high electric = —_—
conductivity, strong magnetism, fluorescence, and luminescence. In this respect, “
carbonatites serve as the principal source of REE on Earth. Carbonatites in the Lemitar
Mountains are light REE enriched and contain as much as ~1.1 wt.% 1n total. While
previously described, new analytical techniques have allowed for additional and more ;
precise description, age, and model of their origin. The age of Lemitar carbonatites has =
been newly established at ~515 Ma using *°Ar/*’Ar and U/Pb geochronological 3
methods. Petrographic observations combined with whole-rock geochemical and
1sotope data indicate the Lemitar carbonatites are mantle-derived and that their origin 1s
related to the Cambrian-Ordovician belt of alkaline 1igneous rocks and carbonatites in z
southern Colorado and New Mexico. The Lemitar carbonatites are not economic at the =
present time because of small tonnage and low grades. Nevertheless, further drilling 1s &
required to determine if the carbonatites increase in REE and Nb concentrations at
greater depth (1.1% total REE 1n a surface sample 1s significant). Detailed geophysical
surveys are required to determine 1f the Lemitar Mountains could contain a larger 7 Magnesiocarbonatite EarGaaTGRATHIE
carbonatite body emplaced in the subsurtace. %
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gabbro, metasediments, arkoses, and pegmatites, Pennsylvanian limestone, Oligocene * | Pennsylvanian Limestone S
tuff and andesite, and Oligocene-Pleistocene fluvial and piedmont sediments. Rift H Green Schist i :
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Fig. 1: Location of areas with Cambrian and Ordovician Fig. 2: A model proposed by Ackerman and others (2021)
Secondary carbonatite and sovite vein, Lemitar Mountains, Socorro County, New Mexico. carbonatites, episyenites, and syenites in New Mexico and  Details the separation of a mantle-derived CO,-H,O-F melt
southern Colorado (from McLemore et al., 1999; 2018; that fractionates to “wet” phlogopite-bearing carbonatites,
McLemore, 2017). “dry” aegirine carbonatites, and nephelinite/jolite (i.e.
ME THODS —— e . syenite) alkaline rocks. Different magma compositions
- Compilation of previously published and unpublished data o sl e e §8 depend upon 51-Na-K-Mg contents, water activity, and melt
AAre s ey vl diid ascent rate. More work is required to test this model.
. Existing mines and prospects (This study; legacy mine land inventory) [l LTS T _____(from Ackerman et al. 2021)
1 Previous reported chemical analyses. (McLemore, Ackerman) S | | A |
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4 Whole-rock channel and select sampling. @
. . . . . . o
d Geochemically quantified with inductively coupled plasma atomic 5

emission spectroscopy (ICP-AES).
d Optical and reflected-light petrographic observations.
4 Characterization of thin sections and polished sections.
d Electron microprobe analyzer (EMPA) for mineralogy. (NMBGMR)
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40 19 ' M e s Primary carbonatite fenitizing diorite, note red phenocrysts.
l Ar/”7 Ar geochronology. (NMB GMR AI’gOIl laboratory) Primary carbonatite and white sovite intruding Proterozoic Plagioclase turned microcline+white phyllosilicate.
. . diorite, over a meter wide and elevated in REE, U, and Th. Lemitar Mountains, Socorro County, New Mexico.
I:I Zircon uranlum/ lead (U/ Pb) geOChl'OHOIOgY- (UC SB) Lemitar Mountains, Socorro County, New Mexico. Fenitization: NaAlSi3O8 + K+(aq) > KAISi3O8 + Na+(aq)

REE values from Nakamura (1974). Note enrichment in primary and calciocarbonatites.
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YAr/*Ar spectral line plot indicating age of 516.7+0.7 Ma for Lemitar carbonatite.
Captured from a primary carbonatite phlogopite crystal.
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Wetherill Plot of U-Pb isotopic data collected from Lemitar carbonatite zircons.
All analyses are concordant with an age of 514.06 = 2.73 Ma (2 SD).
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13C and 130 stable isotope scatter plot of Lemitar carbonatite.
Includes new data and recently reported data from Ackerman and others (2021).
Radiogenic 1sotope systems provide a means of differentiating carbonatite types.

13C normalized to Pee Dee Belemnite (PDB)
130 normalized to standard mean ocean water (SMOW).
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Diagram showing the initial Nd isotope composition of the Lemitar carbonatites compared with the
Mountain Pass carbonatite (Verplanck and others, 2016; Poletti and others, 2016). DM i1s the depleted mantle
of DePaolo (1981), with Nd shown at the two times of interest, CHUR 1s the Chondritic Uniform Reservoir
of DePaolo and Wasserburg (1976). Error bars are 2 SD external

DISCUSSION

Jd Primary carbonatites were emplaced first, followed by secondary

carbonatites, ankerite-dolomite carbonatites, and finally calciocarbonatites
(sovite). Perry (2019) reported that at least four generations of calcite are
present, therefore further studies on paragenesis are needed.

d Actinolite, sillimanite, titanite, and C — O 1sotope systematics in primary

carbonatites indicate a mantle-derived magmatic origin with a
crystallization temperature at or above 700°C (Hayden, 2008).

Jd Secondary (replacement) and ankerite-dolomite carbonatites (rauhaugites)

reflect the most oxidized conditions of the Lemitar carbonatite system as
hematite 1s the majority iron-oxide phase over magnetite.

Jd A hydrothermal environment persisted after initial carbonatite

emplacement; indicated by alteration of biotite to hematite and chlorite.
Nd 1sotopic data corroborates an open hydrothermal environment in
comparison to the ‘closed’ Mountain Pass carbonatite in California.

CONCLUSIONS

- The Lemitar carbonatites are approximately 515Ma.
Corroborated by **Ar/°’ Ar geochronology and U/Pb age dating.

Jd While not economic at this time, further drilling i1s required to

determine 1f Lemitar carbonatites increase in REE grade at depth.
(1.1wt % total REE 1n surface sample LEM2000 1s significant)

d The Lemitar carbonatites are magmatic, mantle-derived rocks that are
enriched in REE and Nb (as shown by mineralogy, whole-rock
chemistry and Sm — Nd 1sotopic systematics).

d Primary carbonatites and calciocarbonatites (sovites) contain the most
REE and critical and energy minerals (Zr, F, Ba, Nb, U, Th)
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