ME551/GEO551 Geology of Industrial Minerals Spring 2018

Commodities, Part 4 Nepheline Syenite, Silica, Niobium, Zeolites, Zircon, REE

Reminders

Midterms

- April 13 NMGS Spring Meeting
- April 14 Field trip
- April 28 AIPG meeting and Field trip in afternoon (perlite mine or carbonatites)
- Commodity presentation in April
- Research Projects presentations April 30
- Finals, Project written report due May 4
- No class May 7

Field trip schedule, Saturday, April 14

- Leave Socorro at 7:30
- Monticello Point diatomite mine (inactive)
- St. Cloud zeolite mine (active but we will not get an official mine tour)
- Lunch at Cuchillo (Bring your own lunch), visit museum
- Kline clay mine
- Taylor Creek tin deposits (if time)
- Home at Socorro 6 PM

 \bullet

۲

Nepheline syenite

 Light-colored, silica-deficient feldspathic igneous rock

- Sodium and potassium feldspars
- Nepheline, no quartz
- Not mined in US but in Canada

Nepheline syenite—properties

- In glass, alumina from nepheline syenite improves product hardness, durability, and resistance to chemical corrosion
- In ceramics, nepheline syenite is used as a flux, melting at an early stage in the firing process and forming a glassy matrix that bonds together the other components of the system

Nepheline syenite

- Alumina acts as a matrix of stabilizser, enhancing the workability of molten glass, and increasing the resistance for scratching, breaking and chemical protection
- Alkali acts as a flux agent, lowering the melting temperature of the batch (no need for soda ash)

Uses

- Glass
- Ceramics
- Fillers, extenders, paint, coatings, roofing granules
- Dimension stone, aggregate, abrasive
- Alumina source

Russia produces most of its alumina from nepheline syenite

۲

•

Table 3. Production of nepheline syenite, by country, t

Year	Russia	Canada	Norway	Turkey	South Africa
1980	na [†]	599,699	217,000	na	na
1981	na	587,565	223,000	na	na
1982	no	552,838	224,000	na	na
1983	na	523,249	219,565	na	na
1984	no	520,640	225,731	na	na
1985	na	467,186	227,465	na	na
1986	no	467,491	218,421	na	na
1987	no	506,415	240,000	na	na
1988	na	539,835	287,000	na	na
1989	no	555,728	na	6,000	na
1990	na	na	306,000	6,000	na
1991	na	486,000	292,000	6,000	20,966
1992	1,500,000	566,000	340,000	6,000	na
1993	1,390,000	549,000	315,000	6,000	na
1994	1,500,000	602,000	279,000	18,000	98,667
1995	1,500,000	616,000	294,000	35,000	145,459
1996	1,300,000	606,000	300,000	na	137,706
1997	940,000	647,000	310,000	114,201	114,201
1998	889,000	636,000	319,835	11,500	104,000
1999	772,000	676,000	304,592	na	82,000
2000	814,000	717,000	330,000	na	na
2001	no	734,000	330,362	na	na
2002	no	724,000	330,461	na	na

Adapted from Guillet 1994; Bolger 1995; Levine 1995, 1996; Minister of Industry 1999, 2001; Levine and Wallace 2000; British Geological Survey 2002; Gurmendi 2002; Kuo 2002; Natural Resources of Canada 2003; Taylor et al. 2003; Chapman et al. 2004.

* Production from South Africa was for crushed and broken stone. † na = not available.

•

- •
- •

Oxide	Khibiny, Russia	York River (Nepheline Gneiss), Ontario	Obedjiwan, Quebec	Mount Copeland, British Columbia	livaara (Ijolite), Finland	Loch Borolan, Scotland	Norra Karr, Sweden	Jabal Sawda, Saudi Arabia	Jabal Abu Khuruq, Egypt
SiO ₂	54.01	41.73	54.65	56.9	46.15	48.19	56.37	50.3	63.49
TiO ₂	1.20	0.29	1.07	0.55	0.38	1.75	0.01	0.07	0.03
Al ₂ O ₃	21.05	27.48	20.91	21.0	15.7	18.52	24.95	25.8	20.56
Fe ₂ O ₃	2.60	1.84	2.38	2.6	6.59	4.51	0.31	1.39	1.2
FeO	1.80	4.52	3.79	2.6	na*	1.68	0.20	0.46	na
MgO	0.77	1.24	1.11	0.7	5.52	1.12	0.07	0.18	0.18
CoO	1.80	6.78	0.56	1.6	14.16	10.29	0.25	1.46	0.64
K2O	5.30	3.16	7.21	6.1	2.61	8.05	5.20	4.48	5.99
No ₂ O	9.50	11.05	6.25	7.5	7.24	3.44	11.73	9.38	7.48
MnO	0.17	trace	0.06	0.24	0.18	na	0.05	0.06	0.24
P ₂ O ₅	0.09	0.14	0.05	0.02	0.77	na	0.01	0.03	0.04
CO ₂	na	0.93	0.64	0.2	na	na	na	na	na
Loss on ignition (LOI)	1.14	0.52	1.14	0.5	0.93	3.45	0.1	5.93	na
Tota	99.43	99.68	99.82	100.51	100.23	101.00	99.25	99.54	99.85

Table 5. Comparison of chemical compositions of nepheline syenite, %

Adapted from Shand 1939; Baragar 1953; Tilley 1953; Lehijarvi 1960; Currie 1976; Liddicoat, Ramsay, and Hedge 1985; Hosterman, Patterson, and Good 1990; Landoll, Foland, and Henderson 1994; Industrial Minerals 2003.

۲

۲

 \bullet

۲

۲

* na = not available.

- •

Chemical Composition	Unimin Canada A Grade	Unimin Canada B Grade	North Ca	pe
\$iO ₂	60.2	60.1	55.9	
Al ₂ O ₃	23.5	23.4	24.2	
Fe ₂ O ₃	0.08	0.35	0.1	
MgO	trace	trace	trace	
CoO	0.3	0.3	1.3	
K ₂ O	5.1	4.9	9.0	
No ₂ O	10.6	10.5	7.9	
P ₂ O ₅			0.1	
LOI	0.4	0.3	1.0	
Sieve Analyses, %	U.S. Sieve No.	U.S. Sieve No.	Tyler Sieve No.,	%
On 25 mesh	0.0	0.0	On 28 mesh	0.0
30	0.1	0.1	32	0.1
40	14.5	14.0	53	4.9
50	48.0	46.0	48	30.0
100	86.0	84.0	65	52.0
200	98.0	97.2	200	89.0
Pan	2.0	2.8	Pan	11.0

Table 13.	Typical glass-grade compositions of nepheline syenite,
wt %	

Properties	MATRIX Glassy Phase Promoters (Fiberglass) 131	MATRIX Glassy Phase Promoters (Fiberglass) 134	SPECTRUM Ceramic Fluxes
SiO2, wt %	60.00	59.70	60.20
Al ₂ O ₃ , wt %	23.40	23.40	23.60
Fe ₂ O ₃ , wt %	0.1	0.34	0.08
CoO, wt %	0.44	0.56	0.35
MgO, wt %	0.02	0.03	0.02
Na ₂ O, wt %	10.30	10.30	10.50
K ₂ O, wt %	5.20	5.10	4.80
loi, %	0.51	0.61	0.42
Free-silica content	<0.1%	<0.1%	<0.1%
рН	10.1	10.1	10.1
Melting point	1,868°F/1,020°C	1,868°F/1,020°C	1,868°F/1,020°C
Bulk density, loose	83-87 lb/fr ³	83-87 lb/fr ³	38–55 lb/fr ³
Specific gravity	2.61 g/cm ³	2.61 g/cm ³	2.61 g/cm ³

Table 14. Chemical analyses and physical properties of products from Nephton, Ontario

Adapted from Minnes, Lefond, and Blair 1983; Guillet 1994.

Adapted from Unimin Corp.

۲

۲

 \bullet

Mine	Company	Mining Method	Startup Date	Capacity, tpy	Comments
Khibiny, Kola, Russia	Apatit Production Association	3 open pit, 2 underground	1929	1,500,000	Apatite with by-product nepheline syenite produced
Lovozero massif, Kola, Russia	na*	na	na	na	By-product of REEs production from syenite, urtite
Kiya-Shaltyr and Goryachegorsk, Siberia	na	na	na	na	Aluminum production from urtite and ijolite
Blue Mountain, Havelock, Ontario	Unimin Corporation	Open pit	1955	700,000	Crush, magnetic separation, sizing, fine grinding
Blue Mountain, Nephton, Ontario	Unimin Corporation	Open pit	1936	Included with Havelock Mine	Crush, magnetic separation, sizing, fine grinding
North Cape, Stjernoya, Norway	North Cape Minerals AS (owned by Unimin)	Underground	1961	330,000	Nepheline syenite
Fourche Mountain, Arkansas, United States	3M Company	Open pit	1947		Roofing granules, construction aggregates
Canaan, Rio de Janeiro, Brazil	Unimin Corporation		1980	134,000	Litchfieldite
Sichuan, Shuiye, Anyang, Henan Province, China	Fineton Industrial Minerals Ltd.	Under development	1994	35,000	100,000 t of ore
Bursa Orhaneli, Turkey	Matel Hammade San ve Tic AS	Open pit	na	na	40 Mt of nepheline syenite
South Africa		Quarries	na	na	Crushed stone, nepheline syenite

Table 1. Major worldwide nepheline syenite mines and deposits

Adapted from Woolley 1987; Industrial Minerals 2003.

* na = not available.

 \bullet

 \bullet

 \bullet

۲

Figure 1. Nepheline syenite mines and deposits worldwide

•

•

۲

• • • • • •

Silica

- Quartz
- Citrine—yellow to brown color, similar to topaz

۲

- Tridymite
- Cristobalite
- Coesite
- Stishovite
- Melanophlogite
- Lechatelierite
- Agate—banded, multicolored
- Flint—gray to black, opaque
- Chalcedony—fine grained chert
 Carnelian—red to reddish brown

Silica—introduction

- SiO₂
- Industrial sand and gravel
- Silicon
- Quartz crystals
- Special silica stone products
- Tripoli (microcrystalline silica)
 - Rottenstone
- Novacullite (whetstones, microcrystalline silica)
- Spiculite

ł		١	
	-	1	

Table 2	-Common products containing 0.1% or more crysta	lline silica
At Work	At Home	Everywhere
(in the process of manufacturing or using the following items)	(as a consumer of the following items)	(exposure could be on the job or at home)
Asphalt filler-is usually composed of quartz and stone aggregate.	Art days and glazes-contain day, and sometimes crystalline silica.	Caulk and putty-contain clay, which can have a low to moderate crystalline silica content, as a filler.
Bricks-have a high concentration of sand. Contains quartz and possibly cristobalite.	Cleansers-contain pumice and feldspar as abrasives. Cosmetics-contain tale and clay.	Dust-(whether household or industrial) contains crystalline silica.
Concrete-like asphalt filler, contains stone aggregate.	Pet litter-is composed priarily of clay.	Fill dirt and topsoil-contain sand. Because the crystalline silica content of common soil is so high, agricultural workers represent the occupational
Jeweler's rouge-contains cryptocrystalline silica.	Talcom powder-contains talc.	group most at risk for exposure to respirable crystalline silica.
Jewelry and crystals-amethyst and quartz are crystalline silica.	Unwashed root vegetables (such as potatoes and carrots) are coated with soil, which has a high crystalline silica content.	Foam in formiture and on rug backings-contain talc and silica.
Mortar-contains sand.	Pharmaceuticals-contain clays and tale as filler.	Paint-contains clay, tale, sand, and diatomite.
Municipal water filter beds-are constructed from both sand (crystalline silica) and diaternite (amorphous silica).	Often the desage of active ingredient in a medication is so minute that filler (listed as an inert ingredient) must be added to make the substance manageable to	Paper and paper dust contain kaolin and clay.
Plaster-is made from gypsum but sometimes contains silica.	take. Sand-is crystalline silica. Beach sand, play sand for sandboxes, and the sand used on golf courses are no	
Plastic in appliaces-can contain clay, tale, crushed limestone, and silica as fillers.	different than industrial sand used for construction, in sandblasting, or on icy roads. All are largely crystalline silica.	
Roting granules-are made from sand and aggregate.	si yaannaa annaa.	
Wallboard-is made from gypsum.		

http://minerals.usgs.gov/minerals/pubs/commodity/silica/780292.pd

f•

•

Industrial sand and gravel—introduction

- Silica
- Silica sand
- Quartz sand
- Sand and gravel with a high SiO₂ content

Industrial sand and gravel—uses

- Glassmaking sand, 38%
- Foundry sand, 22% (molds, cores, castings)
- Abrasive sand, 5%
- Hydraulic fracturing sand, 5%
- 30% for other uses (flux)

Not more than 0.6% iron oxide

ullet

TABLE 1 SALIENT U.S. SILICA STATISTICS 1/

		1997	1998	1999	2000	2001
Industrial sand and gravel: 2/						
Sold or used:						
Sand:						
Quantity	thousand metric tons	26,300	26,400	26,900	26,800	26,900
Value	thousands	\$485,000	\$491,000	\$510,000	\$532,000	\$559,000
Gravel:						
Quantity	thousand metric tons	2,170	1,790	1,940	1,660	1,060
Value	thousands	\$26,300	\$22,200	\$28,400	\$24,400	\$17,600
Total:						
Quantity	thousand metric tons	28,500	28,200	28,900	28,400	27,900
Value	thousands	\$511,000	\$513,000	\$538,000	\$556,000	\$576,000
Exports:						
Quantity	thousand metric tons	980	2,400	1,670	1,660	1,540
Value	thousands	\$134,000	\$148,000	\$133,000	\$179,000	\$163,000
Imports for consumption:						
Quantity	thousand metric tons	39	44	211	247	172
Value	thousands	\$3,200	\$2,750	\$5,590	\$11,800	\$11,000
Processed tripoli: 3/						
Quantity	metric tons	81,300	79,600	84,900	72,000	60,500
Value	thousands	\$16,400	\$16,900	\$20,200	\$15,900 e/	\$15,000
Special silica stone:						
Crude production:						
Quantity	metric tons	843	649	697	553	705
Value	thousands	\$224	\$184	\$183	\$158	\$234
Sold or used:						
Quantity	metric tons	445	438	475	312	393
Value	thousands	\$2,560	\$3,440	\$3,060	\$4,610	\$4,040
Electronic and optical-grade qua	rtz crystals, production:	-	-	-		-
Mine	thousand kilograms	450				
Cultured	do.	355	185	192	189	W

 \bullet

۲

 \bullet

e/Estimated. W Withheld to avoid disclosing company proprietary data. -- Zero.

1/ Data are rounded to no more than three significant digits; may not add to totals shown.

2/ Excludes Puerto Rico.

3/ Includes amorphous silica and Pennsylvania rottenstone.

USGS Commodity Reports

Industrial sand and gravel—uses

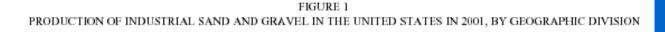
- Glassmaking (high specifications, no Fe)
- Foundry (98% SiO2, low CaO, MgO, grain size and shape)
- Abrasive, blasting sand (clean metal, concrete' angular shape)
- Hydraulic fracturing (frac) applications (well rounded)

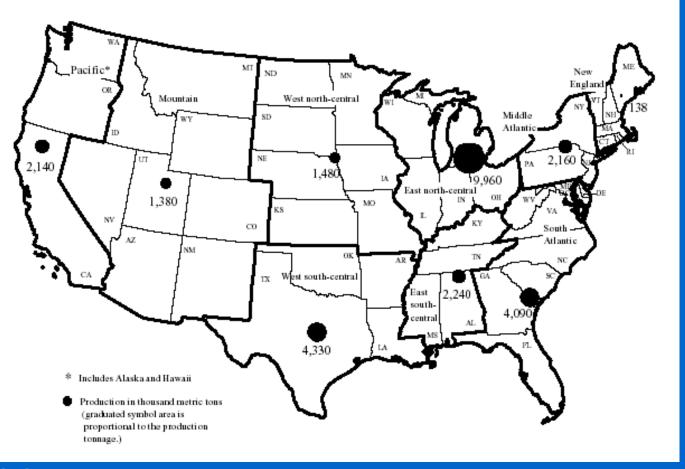
- Ceramics
- Chemicals
- Ground silica (fillers, extenders; bright, reflective)
- Filtration (pure)
- Roofing granules
- Flux
- Optical fiber

Industrial sand and gravel—regions

TABLE 2 INDUSTRIAL SAND AND GRAVEL SOLD OR USED IN THE UNITED STATES, BY GEOGRAPHIC REGION 1/

		20	00			2001				
	Quantity				Quantity					
	(thousand	Percentage	Value	Percentage	(thousand	Percentage	Value	Percentage		
Geographic region	metric tons)	of total	(thousands)	of total	metric tons)	of total	(thousands)	of total		
Northeast:										
New England	104	(2/)	\mathbf{W}	W	138	(2/)	W	\mathbf{W}		
Middle Atlantic	2,400	8	\$51,500	9	2,160	8	\$49,600	9		
Midwest:										
East north-central	10,100	35	170,000	31	9,960	36	170,000	2.9		
West north-central	1,420	5	28,700	5	1,480	5	31,200	5		
South:	_									
South Atlantic	4,270	15	92,400	17	4,090	15	86,300	15		
East south-central	2,260	8	43,100	8	2,240	8	43,200	8		
West south-central	4,440	16	96,400	17	4,330	16	118,000	20		
West:	_		-							
Mountain	1,360	5	22,600	4	1,380	5	24,100	4		
Pacific	2,090	7	51,300	9	2,140	8	54,600	9		
Total	28,400	100	556,000	100	27,900	100	576,000	100		


W Withheld to avoid disclosing company proprietary data; included with "Middle Atlantic."


1/ Data are rounded to no more than three significant digits; may not add to totals shown.

2/ Less than 1/2 unit.

USGS Commodity Reports

Industrial sand and gravel—regions

USGS Commodity Reports

TABLE 6 INDUSTRIAL SAND AND GRAVEL SOLD OR USED BY U.S. PRODUCERS IN 2001, BY MAJOR END USE 1/

		Northeast			Midwest			South	
	Quantity	Value	Value 3/	Quantity	Value	Value 3/	Quantity	Value	Value 3/
	(thousand	(thousand	(dollars per	(thousand	(thousand	(dollars per	(thousand	(thousand	(dollars p
Major use	metric tons)	dollars)	metric ton)	metric tons)	dollars)	metric ton)	metric tons)	dollars)	metric to
and:									
Glassmaking:									
Containers	W	W	18.70	1,200	13,800	11.47	1,570	25,100	15.9
Flat (plate and window)	W	W	17.14	1,290	14,000	10.92	1,730	28,100	16.2
Specialty	W	W	26.23	W	W	16.60	311	7,080	22.7
Fiberglass (unground)				397	5,520	13.88	w	W	16.1
Fiberglass (ground)				W	W	46.55	w	W	45.9
Foundry:									
Molding and core	w	W	18.75	4,850	65,900	13.58	627	10,600	16.9
Molding and core (ground)				W	W	80.66	W	W	97.3
Refractory	W	W	27.86	W	W	23.74	W	W	34.3
Metallurgical:									
Silicon carbide				W	W	18.91			
Flux for metal smelting							W	W	5.3
Abrasives:									
Blasting	36	2,800	78.51	205	6,080	29.61	1,070	30,300	28.2
Scouring cleansers (ground)	W	W	63.80	W	W	10.92	W	W	116.5
Sawing and sanding	w	W	22.33						
Chemicals (ground and unground)	w	W	20.60	w	W	13.46	315	8,920	28.3
Fillers (ground), rubber, paints, putty, etc.	W	W	13.43	146	10,200	69.47	W	W	108.
Whole grain fillers/building products	221	6,710	30.29	515	12,700	24.56	1,120	21,100	18.9
Ceramic (ground), pottery, brick, tile, etc.	W	Ŵ	56.86	W	Ŵ	74.05	116	5,680	48.9
Filtration:								ŕ	
Water (municipal, county, local, etc.)	34	1,430	41.77	73	3,180	43.71	186	5,410	29.0
Swimming pool, other	31	1,330	43.13	w	Ŵ	79.48	47	686	14.6
Petroleum industry:									
Hydraulic fracturing				1,030	33,900	32.98	W	W	54.9
Well packing and cementing				w	W	730.40	W	W	65.7
Recreational:									
Golf course (greens and traps)	w	w	16.35	254	3,620	14.24	415	4,430	10.0
Baseball, volleyball, play sand, beaches	72	1,260	17.64	w	W	34.98	W	W	10.3
Traction (engine)	33	603	18.10	79	921	11.64	47	686	14.6
Roofing granules and fillers	W	W	24.12	w	W	16.22	129	2,520	19.
Other (ground silica)	w	w	49.10	130	7.510	57.71	442	27,000	61.
Other (whole grain)	1,870	35,400	19.05	1,160	22,100	19.04	1,840	57,200	29.
Total or average	2,290	49.600	21.61	11,300	199,000	17.60	9,970	235,000	23.5

USGS Commodity Reports

۲

۲

•

۲

•

۲

Industrial sand and gravel—geology

- Sedimentary, especially where multiple cycles of erosion and deposition has upgraded the deposits
 - What geologic environments are we looking at?

Silica sand—geology

 White Maddi sand is used in foundries, filters, and glass products, Gabal El Kahshab near Maadi, Cairo

Industrial sand and gravel—substitutions

۲

۲

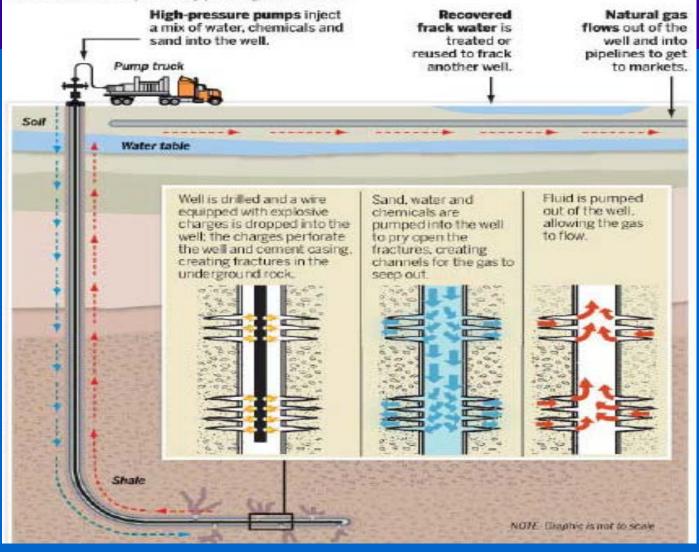
۲

- For glass, foundry, molding
 - Zircon
 - Olivine
 - Staurolite
 - Chromite sands

FRAC SAND

- A quartz sand of a specific grain size and shape used in the oil industry.
- Mixed with fluid and pumped into oil and gas wells during fracturing operation.
- The sand keeps the fracture opened to unlock the natural gas and oil that is trapped within the shale.
- Name (frac sand)-as a result of its use in the hydraulic fracturing process.
- The best frac sand is almost pure silica with very round, large grains of a uniform size.

- •



•

Hydraulic fracturing

Also known as "fracking," it unlocks natural gas from rock that would otherwise be uneconomical to tap. Sand keeps cracks open to allow the gas to escape. The chemicals used in the process have come under fire for potentially polluting air and water.

TYPES AND PROPERTIES

TYPES

- 1. White Sand (Ottawa or Ontario sand)
- 2. Brown or Brady Sand (Texas Brown Sand)

GENERAL PROPERTIES

- Silica minerals
- A common size of 20/40
- 40/140 Also used in the natural gas industry

TYPES AND PROPERTIES

WHITE FRAC SAND

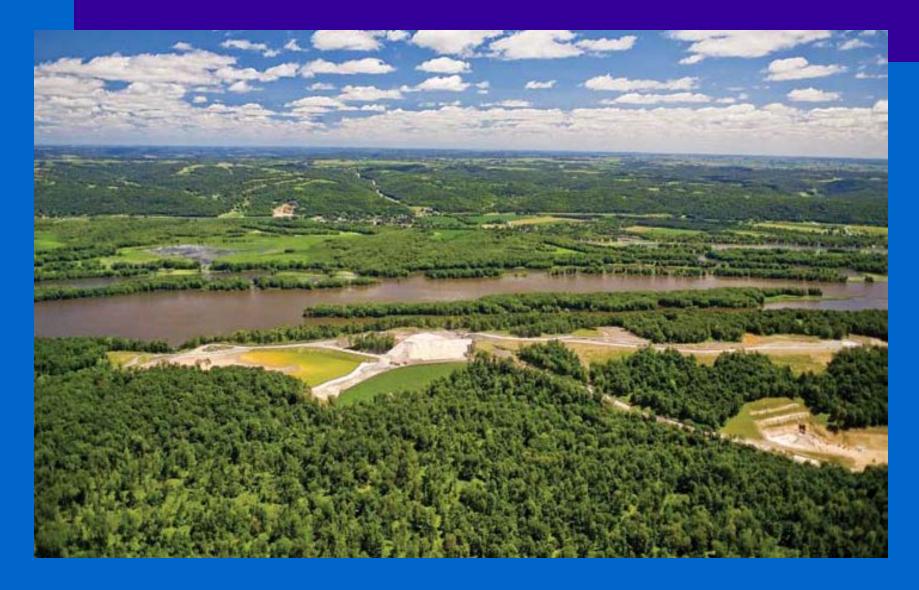
- White in color.
- Silica concentration around 95%.
- Spherical in shape and the size varies from 12 to 270 on the Tyler mesh scale.
- Sustain the openings in the rock layers better than the brown sand.

BROWN FRAC SAND

- Brown or pale yellow in color.
- 99% silica content
- Irregular in shape.

PROPERTIES

Sizes range from 8 to 100 on the Tyler mesh scale.


USES

- Used by the oil and gas industry during the exploration of new oil and gas reserves.
- For making glass.

GEOLOGIC DESCRIPTION

- Produced from sandstone deposits.
- Large resources throughout the world.
- Resources are locally uneconomic because of its geographic distribution and environmental restrictions.
- Geologically the white frac sand was deposited after the last ice age by glaciers.
- White sand is normally found at the northern part of America and the brown in southern part of America.

GEOLOGIC DESCRIPTION

DOMESTIC PRODUCTION (USA)

- Sand and gravels produced by 68 companies from 116 operations in 33 States was 30 million metric tons.
- In 2011, about 41% of the total sand tonnage (12.3 million Mt) was used as hydraulic fracturing sand.
- Leading States were Illinois, Texas, Wisconsin, Minnesota, Oklahoma, North Carolina, California, and Michigan.

PROCESSING

 Washed or scrubbed to remove silt and clay size particles, carbonate cement, iron coatings and other minerals.

 \bullet

۲

TRANSPORTATION

- Haulage truck
- Railway
- Shipping

 \bullet

 \bullet

۲

lacksquare

۲

- •
- •
- -
- •

Silicon—introduction

۲

۲

۲

- Silicon metal and alloys
- Ferrosilicon

Silicon—uses

- ferrous foundry
- steel industries
- aluminum and aluminum alloys
- chemical industry
- semiconductor industry, which manufactures chips for computers from high-purity silicon

Silicon—substitutions

- ferrosilicon
 - aluminum
 - silicon carbide
 - silicomanganese
- semiconductors and infrared
 - gallium arsenide
 - germanium

Silicon—production

Salient Statistics—United States:	2013	<u>2014</u>	2015	<u>2016</u>	<u>2017</u>
Production: Ferrosilicon and silicon metal ^{1, 2}	392	401	411	384	405
Imports for consumption:	332	401	411	304	405
Ferrosilicon, all grades ¹	157	186	162	155	150
Silicon metal	118	139	140	122	140
Exports:		100			
Ferrosilicon, all grades ¹	10	9	9	7	10
Silicon metal	38	45	37	60	62
Consumption, apparent: ³					
Ferrosilicon, all grades ¹	W	w	W	W	W
Silicon metal ²	<u>W</u> 631	W	<u>W</u> 661	W	W
Total	631	670	661	601	625
Price, average, cents per pound:					
Ferrosilicon, 50% Si ⁴	103	108	101	83	92
Ferrosilicon, 75% Si ⁵	94	98	88	71	83
Silicon metal ^{2, 5}	122	140	127	91	110
Stocks, producer, yearend:	<u></u>	~ 7	~~	~7	~~
Ferrosilicon and metal ^{1, 2}	25	27	33	27	25
Net import reliance ⁶ as a percentage					
of apparent consumption:	-50	-50	- 50	. 50	-50
Ferrosilicon, all grades ¹	<50	<50	>50	>50	<50
Silicon metal ²	<50	<50	<50	<50	<50
Total	39	42	38	36	35
Recycling: Insignificant.					
USGS Mineral Yearbooks	• •	•	• •	•	• •

- •

World Production and Reserves:

	Production ^{e, 7}	
	<u>2016</u>	<u>2017</u>
United States	⁹ 384	405
Bhutan ¹⁰	69	69
Brazil	110	110
Canada	51	51
China	5,000	4,800
France	120	120
Iceland ¹⁰	79	79
India ¹⁰	59	59
Malaysia ¹⁰	82	110
Norway	380	380
Russia	750	750
South Africa	85	85
Spain	81	75
Ukraine ¹⁰	66	61
Other countries	310	280
World total (rounded)	7,600	7,400

 \bullet

Reserves⁸

The reserves in most major producing countries are ample in relation to demand. Quantitative estimates are not available.

Silicon—production

 \bullet

- Norway, 27%
- South Africa, 15%
- Russia, 11%
- Canada, 10%

 \bullet

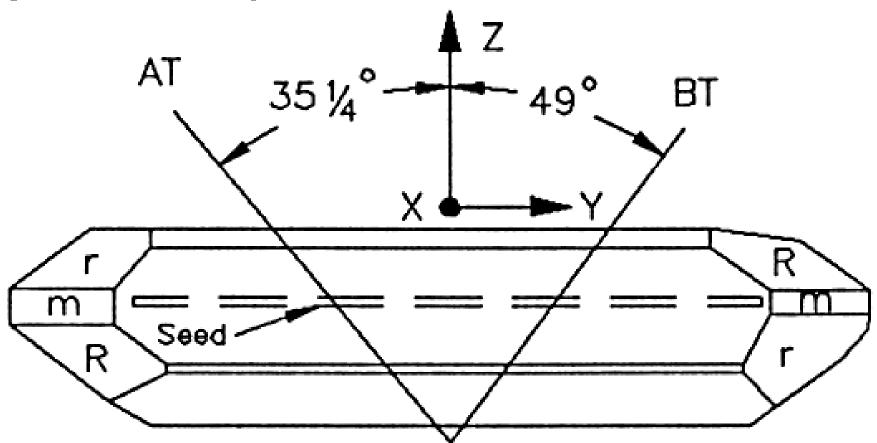
Quartz crystal—introduction

- Hardness 7
- any color
- common mineral
- cultured quartz crystals became important in 1971, no natural production

 \bullet

Quartz crystal—properties

- Piezoelectric effect
- when compressed or bent, it generates a charge or voltage on its surface
- if a voltage is applied, quartz will bend or change its shape very slightly
- hardness
- high electrical resistance
- dimensional stability


Growing quartz crystal

- Process in Germany 50 years ago
- grown in pressure vessels containing quartz dissolved in an aqueous alkaline solution at temperatures of 375 degrees centigrade and pressures of 800 to 2000 atmospheres
- Seed crystals are placed near the top of the container
- nutrient in the form of broken chunks of natural Brazilian quartz (lascas) as a nutrient are placed on the bottom
- Convection currents move dissolved material from the bottom of the chamber to the cooler upper section where it deposits on the seed crystals

http://www.itme.edu.pl/z18/syn...

Figure 3: Cultured Quartz Crystal

http://www.corningfrequency.com/library/qcao.html

Quartz crystal—uses

- single-crystal silica
- Electronic applications
- optical applications
- filters, frequency controls, and timers in electronic circuits

- carvings
- gem stone

Quartz crystal—geology

- Pegmatites
- in Arkansas veins filled cavities or fractures in the Crystal Mountain and Blakely Sandstones
 - 5 feet long and weighing over 500 pounds and clusters up to 15 feet long by 10 feet wide, weighing over 10 tons
 - end of the Ouachita Mountain orogenic cycle in Late Pennsylvanian to Early Permian (Ar/Ar)

Quartz—production

TABLE 11

SALIENT U.S. ELECTRONIC- AND OPTICAL-GRADE QUARTZ CRYSTAL STATISTICS 1/

(Thousand kilograms and thousand dollars)

	1997	1998	1999	2000	2001
Production:					
Mine	450				-
Cultured e/	355	185	192	189	W
Exports (cultured): 2/					
Quantity	74	63	90	74	38
Value	31,100	24,300	25,400	22,800	10,600
Imports (cultured): 2/					
Quantity	63	47	26	31	14
Value	11,700	12,200	11,000	14,300	8,390
Consumption, apparent e/	343	169	128	146	W

e/ Estimated. W Withheld to avoid disclosing company proprietary data. -- Zero.

1/ Data are rounded to no more than three significant digits.

2/ Excludes mounted piezoelectric crystals.

USGS Commodity Reports

Special silica stone products

 \bullet

۲

 \bullet

۲

Special silica stone products—introduction

 \bullet

- abrasive tools
 - deburring media
 - grinding pebbles
 - grindstones,
 hones,
 - oilstones
 - stone files
 - tube-mill liners
 - whetstones

- Fillers
- extenders

۲

۲

• flux

Special silica stone products—introduction

- Sandstone
- quartzite
- vein quartz
- silica pebble

- novaculite
- microcrystalline quartz
- speculite
- tripoli
- tripolite or diatomaceous earth
- amorphous silica

۲

Novaculite

- Sedimentary microcrystaline quartz
- homogeneous
- more compact than porous tripoli
- whetstones
- dense, hard, white to grayish-black in color, translucent on thin edges, and has a dull to waxy luster
- resistant to erosion, it forms prominent ridges
- Dev to Miss Novaculite Formation in Ark
 250-900 ft thick

Rottenstone

lacksquare

۲

۲

- Common variety of tripoli
- Penn--weathering of siliceous shale

Spiculite

۲

۲

۲

- Siliceous sponge spicules
- replacement of spicule-bearing limestone
- Texas

Tripoli

- 1 to 10 micrometers
- 98% to 99% silica, minor AI and Fe
- white to cream
- brown
- red
- yellow
- abrasive
- diatomaceous earth (different origin)

Tripoli—geology

- alteration of chert, chalcedony, or novaculite, or leaching of highly siliceous limestones
- Paleozoic chert bearing limestones in Arkansas and Oklahoma, Illinois
 - NE Ar cherty limestones of the Boone Formation (Mississippian)
 - Ouachita Mountains leaching of a limy phase within the Upper Division of the Arkansas Novaculite
- Arkansas tripoli is >99% SiO2

Special silica stone products—source

۲

- Arkansas
- Wisconsin

Special silica stone products—uses

 \bullet

۲

۲

- Craft
- household
- industrial
- leisure uses

Special silica stone products

TABLE 10 U.S. PRODUCERS OF SPECIAL SILICA STONE PRODUCTS IN 2001

Company and location	Type of operation	Product
B&C Abrasives, Inc., Hot Springs, AR	Stone cutting and finishing	Whetstones and oilstones.
Blue Mountain Whetstone Co., Hot Springs, AR	do.	Do.
Buffalo Stone Corp., Hot Springs, AR	Tumbling and sizing novaculite	Metal finishing media deburring media.
Dan's Whetstone Co., Inc., Hot Springs, AR	Stone cutting and finishing	Whetstones and oilstones.
Do.	Quarry	Crude novaculite.
Hall's Arkansas Oilstones, Inc., Pearcy, AR	Stone cutting and finishing	Whetstones and oilstones.
The Kraemer Co., Baraboo, WI	Crushing and sizing	Deburring media.
Do.	Quarry	Crude silica stone.
Norton Company Oilstones:		
Hot Springs, AR	do.	Do.
Littleton, NH	Stone cutting and finishing	Whetstones and oilstones.
Smith Abrasives, Inc., Hot Springs, AR	do.	Do.
Do.	Quarry	Crude novaculite.
Taylor Made Crafts Inc.:		
Hot Springs, AR	Stone cutting and finishing	Whetstones and oilstones.
Pearcy, AR	Quarry	Crude novaculite.

USGS Commodity Reports

Environmental regulations of quartz

- regulation of crystalline silica
 hours workers exposure
 water well monitoring
 - noise and dust control
 - water discharge
 - archaeological surveys
 - carcinogen

Niobium and tantalum

.

Niobium and tantalumintroduction

- Columbium
- Nb
- found with tantalum Ta

Niobium—uses

- Carbon steels, 33%
- Superalloys, 23%
- Stainless and heat-resisting steels,18%
- High-strength low-alloy steels, 16%
- Alloy steels, 9%
- Other, 1%

Tantalum—uses

۲

۲

- capacitors
 - automotive electronics
 - pagers
 - personal computers
 - portable telephones
- electrical applications

TABLE 4 REPORTED CONSUMPTION, BY END USE, AND INDUSTRY STOCKS OF FERROCOLUMBIUM AND NICKEL COLUMBIUM IN THE UNITED STATES 1/

End use	2000	2001
Steel:		
Carbon	1,370	1,300
Stainless and heat-resisting	682	660
Full alloy	(2/)	(2/)
High-strength low-alloy	1,090	1,030
Electric	(2/)	(2/)
Tool	(2/)	(2/)
Unspecified		
Total	3,140	2,990
Superalloys	942	1,230
Alloys (excluding alloy steels and		
superalloys)	(3/)	(3/)
Miscellaneous and unspecified	10	11
Grand total	4,090	4,230
Stocks, December 31:		
Consumer	NA	NA
Producer 4/	NA	NA
Total	NA	NA

(Metric tons of contained columbium)

NA Not available. -- Zero.

1/ Data are rounded to no more than three significant digits; may not add to totals shown.

۲

2/ Included with "Steel: High-strength low-alloy."

3/ Included with "Miscellaneous and unspecified."

4/ Ferrocolumbium only.

USGS Commodity Summaries

 \bullet

۲

۲

Niobium—uses (USGS OF01-348)

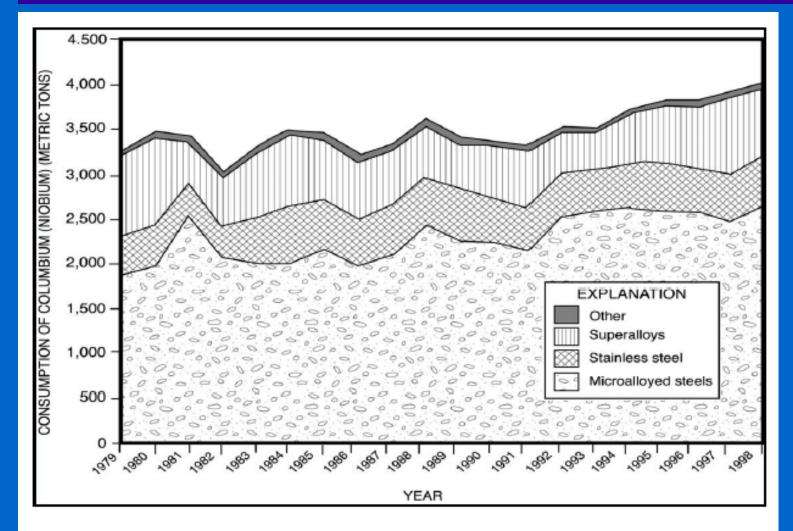


Figure 2. U.S. columbium end-use patterns, 1979-98, in metric tons contained columbium.

•

Production—niobium

Salient Statistics—United States:	2013	2014	2015	2016	2017°
Production, mine					
Imports for consumptione, 1	8,580	11,100	8,520	9,580	11,300
Exportse 1	435	1,110	1,430	841	1,500
Government stockpile releases ²	_	·	·		·
Consumption:					
Apparent ³	8,140	10,000	7,080	8,740	9,800
Reported ⁴	7,500	8,210	7,510	7,370	6,510
Unit value, ferroniobium, dollars per kilogram ⁵	27	26	24	21	18
Net import reliance ⁶ as a percentage of					
apparent consumption	100	100	100	100	100

<u>Recycling</u>: Niobium was recycled when niobium-bearing steels and superalloys were recycled; scrap recovery, specifically for niobium content, was negligible. The amount of niobium recycled is not available, but it may be as much as 20% of apparent consumption.

World Mine Production and Reserves:

Mine pr	roduction	Reserves ⁹
2016	2017°	
_		
57,000	57,000	4,100,000
6,100	6,000	200,000
800	800	NA
63,900	64,000	>4,300,000
	2016 57,000 6,100 800	57,000 57,000 6,100 6,000 800 800

۲

USGS Mineral Yearbooks Metric tons

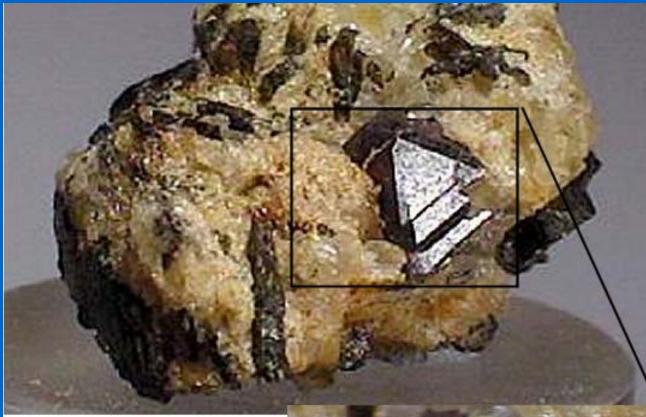
Production—tantalum

Salient Statistics—United States: Production:	<u>2013</u>	<u>2014</u>	<u>2015</u>	<u>2016</u>	<u>2017°</u>
Mine				_	
Secondary	NA	NA	NA	NA	NA
Imports for consumption ^{e, 1}	1,110	1,230	1,240	1,060	1,290
Exports ^{e, 1}	844	725	657	604	630
Government stockpile releases ^{e,2}					
Consumption, apparent ³	263	508	586	458	660
Price, tantalite, dollars per kilogram of Ta ₂ O ₅ content ⁴ Net import reliance ⁵ as a percentage	260	221	193	193	193
of apparent consumption	100	100	100	100	100

<u>Recycling</u>: Tantalum was recycled mostly from new scrap that was generated during the manufacture of tantalumcontaining electronic components and from tantalum-containing cemented carbide and superalloy scrap.

						1
Salient Statistics—United States: Production:	<u>2013</u>	<u>2014</u>	<u>2015</u>	<u>2016</u>	<u>2017</u> •	
Mine						
	NIA	NIA	NIA	NIA	NIA	
Secondary	NA	NA	NA	NA	NA	
Imports for consumption ^{e, 1}	1,110	1,230	1,240	1,060	1,290	
Exports ^{e, 1}	844	725	657	604	630	
Government stockpile releasese,2	_	_	_	_	_	
Consumption, apparent ³	263	508	586	458	660	
Price, tantalite, dollars per kilogram of Ta ₂ O ₅ content ⁴	260	221	193	193	193	
Net import reliances as a percentage						
of apparent consumption	100	100	100	100	100	

<u>Recycling</u>: Tantalum was recycled mostly from new scrap that was generated during the manufacture of tantalumcontaining electronic components and from tantalum-containing cemented carbide and superalloy scrap.

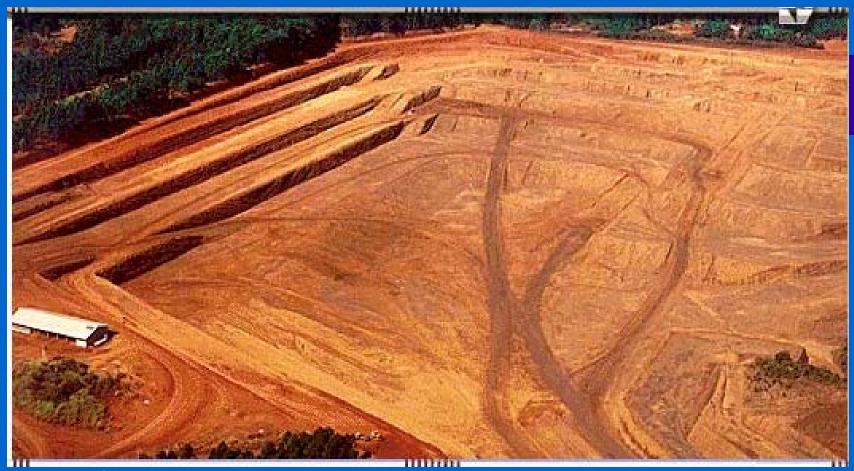

USGS Mineral Yearbooks

• • • • • • • •

Niobium—geology

http://www.tanb.org/niobium1.html

- pyrochlore [(Ca,Na)2 Nb2(O,OH,F)⁷] in carbonatite and alkaline igneous deposits
- pegmatites (Columbite and tantalite)
- alluvial deposits
- largest deposit in Araxá, Brazil, owned by Companhia Brasileira de Metalurgia e Mineração (CBMM) (460 million tons of 3.0% Nb2O5, or 500 yrs reserves)
- Niobec mine in Quebec
- tin slags produced from the smelting of cassiterite ores

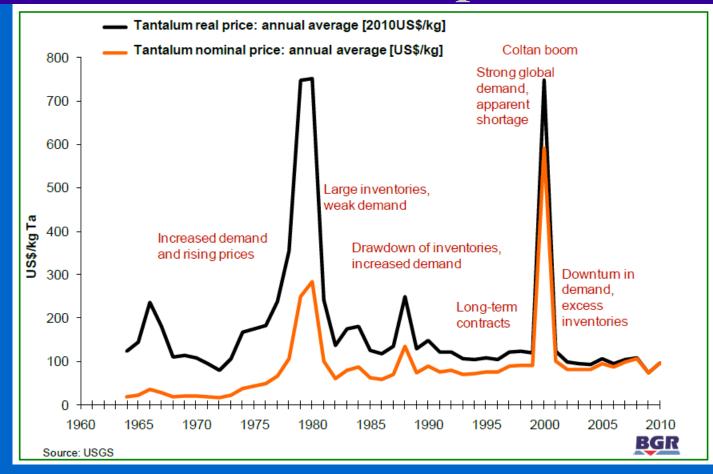


Closeup of rectangular area.

۲

Lauzon Farm, Oka, Quebec, Canada. 3.9 x 2.9 cm. http://www.webmi

Companhia Brasileira de Metalurgia e Mineração (CBMM), open pit mine for Nb, Minas Gerais, Brazil

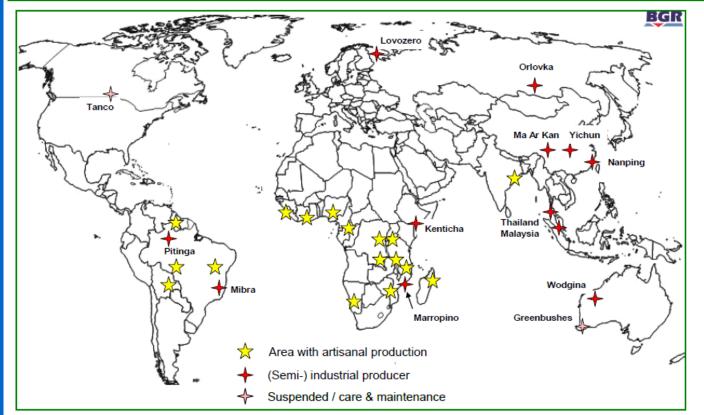

http://www.us.cbmm.com.br/english/sources/mine/operat/f_operat.htm

Tantalum

• Minerals--tantalite and columbite or niobite

- Best deposits--Granitic rare-metal pegmatites and rare-metal granites
- Grades--0.015 0.02 % Ta2O5

Tantalium—price


۲

http://www.polinares.eu/docs/d2-1/polinares_wp2_annex2_factsheet2_v1_10.pdf

•

Tantalium—deposits

Global Distribution of Tantalum Producers

http://www.polinares.eu/docs/d2-1/polinares_wp2_annex2_factsheet2_v1_10.pdf

• • • • • •

۲

What is a zeolite?

- A zeolite is a crystalline hydrated aluminosilicate whose framework structure encloses cavities (or pores) occupied by cations and water molecules, both of which have considerable freedom of movement, permitting ion exchange and reversible dehydration. This definition places it in the class of materials known as "molecular sieves."
- The pores in dehydrated zeolite are 6 Å in size, while those of a typical silica gel average about 50 Å, and activated carbon averages 105 Å.

Source of definition=http://palimpsest.stanford.edu/byorg/abbey/an/an20/an20-7/an20-702.html

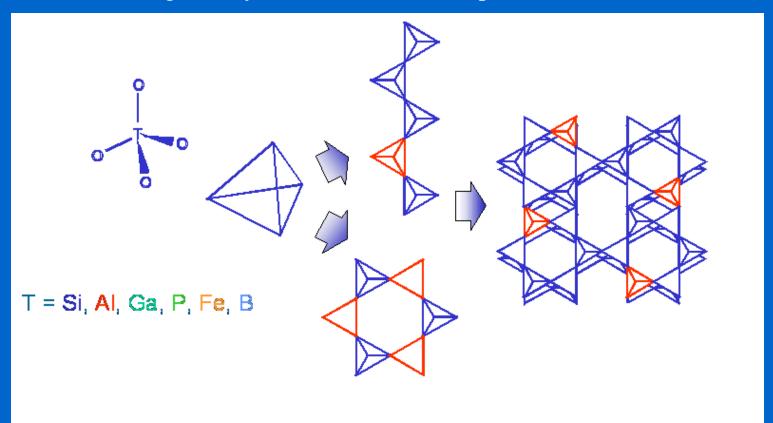
Zeolite facts

- Tektosilicates, networks of SiO4 tetrahedrons with some Al substituting for Si
- Strong bonds support framework
- Hydrated aluminosilicates with particularly open frameworks of (Si,Al)0₄ tetrahedrons
- Open cavities contain cations (Ca, K, Na, Ba)
- Cations balance negative charge of framework
- Ions are easily exchanged, move freely through framework
- Remain stable after losing water from structure
- Heating causes water loss at a continuous rate
- Form by chemical reaction between volcanic glass and saline water

Zeolite Physical Properties

- Soft to moderately hard, H=4-5
- Low density
- Transparent to translucent
- 48 natural Zeolites
- Over 120 synthetic Zeolites

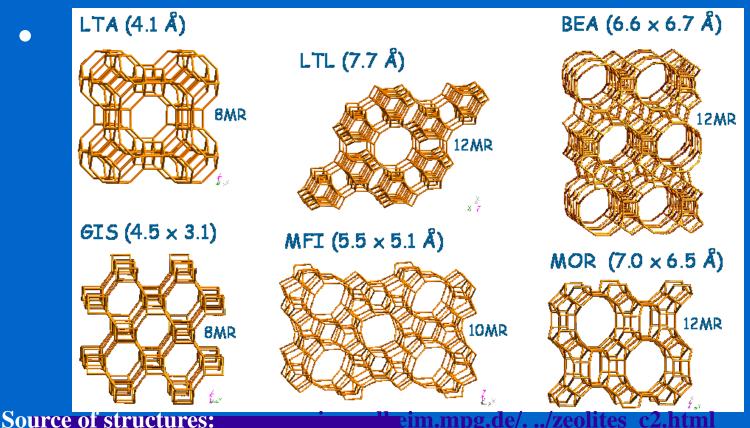
• Industrially speaking, the term zeolite includes natural silicate zeolites, synthetic materials, and phosphate minerals that have a zeolite like structure



Zeolite structure

• The primary building unit of zeolites are cations coordinated tetrahedrally by oxygen. These tetrahedra are connected via corners,

thus forming the crystal structure of the specific zeolite.


 $M_x M_y N_z [T_m T_n ... O_{2(m+n+..)-e} (OH)_{2e}] (OH)_{br} (aq)_p qQ$

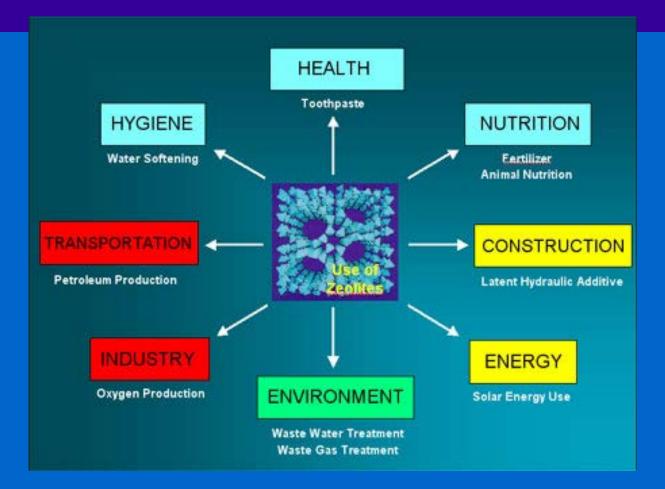
Source of diagram:

lheim.mpg.de/. ../zeolites_c2.html

Properties of Zeolites

• All commercially useful zeolites owe their value to one or more of three properties: adsorption, ion exchange, and catalysis

Formation of Zeolites


- Formed by alteration reactions
- Temperatures range from 27°C 55°C
- pH is typically between 9 and 10
- Nature requires 50 50,000 years to complete the reaction
- Mostly altered volcanic glasses
- Fine-grained volcanic ashes or pumice particles are especially susceptible to alteration
- Starting materials can also be minerals, like nepheline, leucite, and feldspars
- Alteration in different environments: hydrothermal, saline or alkaline lakes, and groundwater
- The alteration conditions of these three environments are completely different with respect to chemistry, concentration, and pH of the reacting solution, solid/liquid ratio, temperature, reaction in closed or open system.

۲

Uses of Zeolites

• Natural and synthetic zeolites are used commercially because of their unique adsorption, ion-exchange, molecular sieve, and catalytic properties. Major markets for natural zeolites are pet litter, animal feed, horticultural applications (soil conditioners and growth media), and wastewater treatment. Major use categories for synthetic zeolites are catalysts, detergents, and molecular sieves.

Uses of Zeolites

Source: <u>www.egam.tugraz.at/ app_min/sci_topics/zeolithe/</u>

 \bullet

۲

 \bullet

۲

Zeolite Applications: Gas Adsorption

- Zeolites adsorb many gases on a selective basis
- Specific channel size (2.5 to 4.3A) enables zeolites to act as molecular gas sieves
- Selectively adsorb ammonia, hydrogen sulfide, carbon monoxide, carbon dioxide, sulfur dioxide, water vapor, oxygen, nitrogen, formaldehyde, and others.
- Public toilets, horse stables, chicken houses, and feed lots, pet litter trays release ammonia fumes
- Adding zeolites can minimize odors

Zeolite Applications: Water Adsorption/Desorption

- Adsorbing and desorbing water without damage to the crystal structure, make excellent desiccants
- Low cost, efficient media for heat storage (to include storage of waste and/or off-peak heat energy like solar systems) and solar refrigeration applications.

Zeolite Applications: Ion Exchange

- Water Treatment uses include water softening, remove metals (Cu⁺², Pb⁺², Zn⁺²⁾, and radioactive waste treatment (Sr⁹⁰, Ce¹³⁷), and wastewater treatment (sequester pollutants)
- Remove ammonia in aquaculture tanks
- In agriculture, control high nitrogen levels and reduce pollution caused by field runoff.


. Which Zeolites have commercial value?

- Chabazite and clinoptilolite are the 2 out of the 48 minerals in the zeolite group which have the most commercial applications.
- Occur in Cenozoic age tuffaceous sediments principally in the Western US.
- Chabazite and Clinoptilolite formed over a long period of time are the end product of the chemical reaction between volcanic ash glass shards and alkaline water.
- Because of their high silica to alumina ratios ranging from 2:1 for chabazite to 5:1 for clinoptilolite, these minerals are stable and less likely to dealuminate in acidic solutions than are synthetic zeolites.

۲

Zeolites Deposits of the Western US

showing the location and mineral species of principal domestic economic deposits.

Source=http://books.smenet.org/Ind_Min_Rcks/imar-ch93-sc00-pt00-bod.cfm

ZeoliteProduction in the US

TABLE 1				
DOMESTIC ZEOLITE PRODUCERS AND SUPPLIERS IN 2003				
State and company	Type of zeolite			
Arizona:				
GSA Resources, Inc.	Chabazite.			
UOP Inc.	Do.			
California:				
Ash Meadows Zeolite, LLC	Clinoptilolite.			
KMI Zeolite, Inc.	Do.			
Steelhead Specialty Minerals, Inc.	Do.			
Idaho:				
Bear River Zeolite, LLC	Do.			
Steelhead Specialty Minerals, Inc.	Do.			
Nevada, Moltan Co.	Clinoptilolite/mordenite.			
New Mexico, St. Cloud Mining Co.	Clinoptilolite.			
Oregon, Teague Mineral Products Co.	Do.			
Texas, Zeotech Corp.	Do.			
Wyoming, Addwest Minerals International Ltd.	Do.			

Source= http://minerals.usgs.gov/minerals/pubs/commodity/zeolites/

۲

	١.	
L.	J	

Salient Statistics—United States:	2013	2014	2015	2016	2017°
Production, mine	69,500	62,800	75,100	73,400	79,000
Sales, mill	68,300	62,500	73,200	69,500	77,000
Imports for consumption ^e	<1,000	<1,000	<1,000	<1,000	<1,000
Exportse	<1,000	<1,000	<1,000	<1,000	<1,000
Consumption, apparent ^{e, 1}	68,300	62,500	73,200	69,500	77,000
Price, range of value, dollars per metric ton ²	50-800	110-440	110-950	100-400	100-400
Employment, mine and mille, 3	105	95	100	115	110
Net import reliance ⁴ as a percentage of					
estimated consumption	E	E	E	E	E

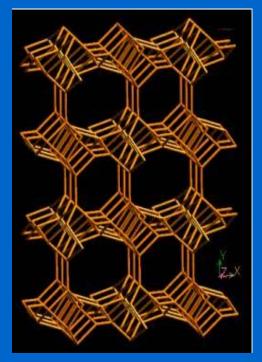
<u>Recycling</u>: Zeolites used for desiccation, gas absorbance, wastewater cleanup, and water purification may be reused after reprocessing of the spent zeolites. Information about the quantity of recycled natural zeolites was unavailable.

	Mine production ^e			
	2016	2017		
United States	⁶ 73,400	79,000		
China	300,000	300,000		
Cuba	51,000	55,000		
Jordan	13,000	13,000		
Korea, Republic of	191,000	200,000		
New Zealand	80,000	80,000		
Turkey	55,000	60,000		
Other countries	350,000	350,000		
World total (rounded)	1,100,000	1,100,000		

Reserves⁵

World reserve data are unavailable but are estimated to be large.

<u>World Resources</u>: Recent estimates for domestic and global resources of natural zeolites are not available. Resources of chabazite, clinoptilolite, erionite, mordenite, and phillipsite within the Basin and Range province in the United States are sufficient to satisfy foreseeable domestic demand.


USGS Mineral Yearbooks Metric tons

Zeolites in New Mexico

- Buckhorn clinoptilolite deposit 2 clinoptilolite– bearing ash–fall tuff and reworked tuff beds of Pliocene–Pleistocene age. Zeolitized ash–fall tuff 1 to 1.6 m and consisting of 60 to 90% clinoptilolite, with chabazite, heulandite and analcime locally, not mined (Eyde, 1982).
- Tertiary volcanic rocks near Winston in Sierra County comprise the Winston clinoptilolite deposit; ash–flow tuffs and related tuffaceous breccias; predominantly clinoptilolite–heulandite. St. Cloud Mining Company currently mines, processes, and markets Winston deposit zeolites

Clinoptilolite Studies at NMT

- NMT Hydrology study under Rob Bowman has focused on the natural zeolite clinoptilolite
- Formula (Ca,Na2,K2)(Al6 SiO)•24H2O.
- Clinoptilolite from the <u>St. Cloud Mining Company</u>
- Mine located near Winston, New Mexico
- St. Cloud is the largest producer of natural zeolite in North America.
- Mineralogy of St. Cloud material: 74% clinoptilolite 10% feldspar 10% quartz + cristobalite 5% smectite

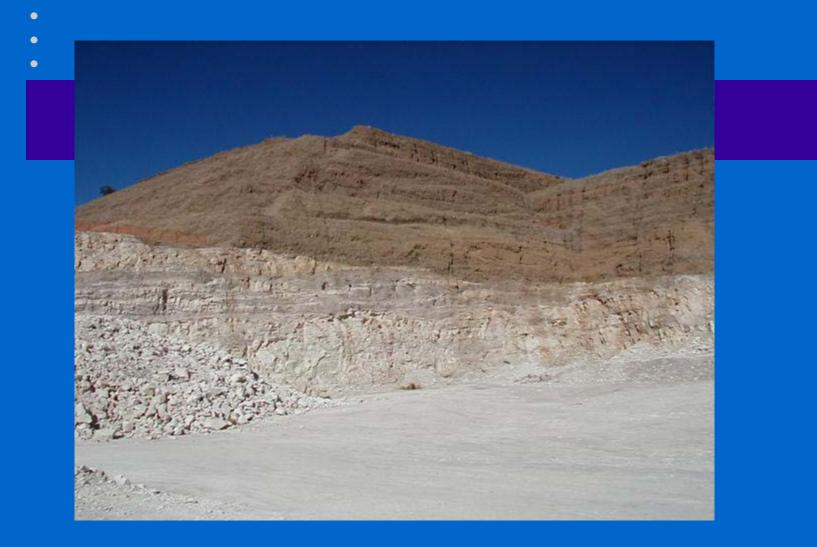
http://www.ees.nmt.edu/bowman/research/SMZ/ZeoProp.html

St. Cloud Zeolite Mine

The Cuchillo Negro clinoptilolite deposit mined by the St. Cloud campany is shown here.

St. Cloud Zeolite Plant

St. Cloud Mining Company has emerged as the largest producer of natural zeolite in North America. The zeolite mineral, clinoptilolite, is an absorbent volcanic ash with unique physical, chemical, and cation exchange properties used in agriculture, industrial and environmental applications.


Source=http://www.stcloudmining.com/

Mining St. Cloud Zeolite

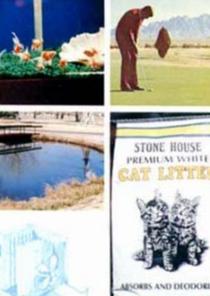
St. Cloud's zeolite deposit contains an estimated 18.3 million tons of clinoptilolite resources and the production facility has a capacity in excess of 100,000 tons per annum. The operation includes facilities for custom sizing, bagging, blending and manufacturing of added value products. St. Cloud sells zeolite primarily through a network of brokers, distributors and manufacturers.

Source=http://www.stcloudmining.com/

Lighter color is the altered volcanic ash with clinoptilolite at the St. Cloud zeolite mine

Source= http://www.ees.nmt.edu/~ranck/zeolite.html

Uses of St. Cloud Zeolite



Zeolites are used in many different applications including animal feed supplements, water and air filtration and pollution control media, animal hygiene, odor control, oil absorbing floor drying material, aquaculture and pond filtration, soil amendments, and industrial fillers.

Other applications for natural zeolites include paper and paint fillers, thermal storage, natural gas purification, ground water and sewage effluent treatment, removal of ammonia, heavy metals and radioactive ions from industrial and municipal effluents.

DUST FREE 100% NATURA

Zeolite Markets

- Relatively new, since1960s
- Most consumed within country produced
- Diverse markets
- Steady growth is anticipated for the rest of the 1990s for agricultural, industrial, and consumer applications. The strongest areas of market growth in North America are expected to be in sewage treatment, deodorants, pet litter, soil treatment, and nuclear waste treatment and containment.

Foreign Zeolite Sources

Antigua, Argentina©, Australia©, New South Wales, Bulgaria, Canada (Nova Scotia, British Columbia), Chile, China©, Czechoslovakia ©, France, Germany©, Hungary©, Iceland, Indonesia©, Italy©, Japan©, Korea©, Mexico©, New Zealand, Poland, S. Africa©, Romania©, Spain©, UK, USSR©, Yugoslavia©. (The © means commercial development)

Value of Zeolites

- Usually determined by cost of processing and added value
- Mining costs \$3-6/Ton
- Processed \$30-120/Ton
- Pet litter, fish tank, deodorant \$.50-4.50 kg
- Special apps = \$1000s /ton (radioactive waste filter media or catalysts in petroleum refining, etc)

Transporting Zeolites

- Generally transported by highway or rail carriers in bulk, in one-ton super-sacks or in multi-wall paper bags, usually palletized.
- Do not require special handling
- Costs affected by distance must transport
- Currently economical to ship from western US to eastern US for agricultural uses
- May change in future when imports from Cuba & Antigua become cheaper for eastern US to use
- Specialty zeolites worth shipping farther

Alternates

- Synthetic zeolites (customized molecular sieves) are the major alternate materials to natural zeolites.
- Synthetic zeolites can tailor physical and chemical characteristics to serve many applications more closely and they are more uniform in quality than their natural equivalents.
- Natural zeolites advantage over synthetic materials: Ce and Sr adsorption in radioactive waste cleanup, able to function at lower pH levels, much lower in cost than synthetic zeolite products.
- Activated carbon, silica gel, & similar materials are more effective than zeolites for many ion–exchange applications and are not disproportionately more expensive.
- Bentonite, attapulgite, and others show selective high absorbency, available in a competitive price range.

Problems with Zeolites

- The synthetic zeolites pose no problems, readily made from abundant raw materials, present no toxic or environmental problems.
- Naturally occurring zeolites are excluded from many important commercial applications where uniformity and purity are essential
- Natural zeolites must penetrate markets where other materials are already used and accepted
- Natural zeolites were over-marketed in the 70's, created stigma, must now overcome
- Some zeolites are fibrous, all are silicates
- No industrial standards exist for natural zeolites, harder to market, need ASTM or other standards published

Future of Zeolites

- A healthy, growing industry with continued expansion into new applications and steady demand in industrial markets
- Most of the activity and growth has been in the synthetic zeolite field.
- Natural zeolite market likely to continue on a slow and steady basis.
- Natural zeolites domestic market for catalysis and petroleum refining, nuclear waste treatment, and odor control, pollution control, and energy cost and efficiency issues will continue and expand.
- Higher energy costs and greater environmental demands will spur zeolite production and sales significantly.
- For the next decade, natural zeolites should emerge as a better-defined mineral commodity, and North America will become a leading producer.

• • •

lacksquare

Zircon—introduction

- ZrSiO₄
- Baddeleyte ZrO₂
- Highly resistant to weathering
- High specific gravity 4.6-4.7
- Other potential minerals
 - Eudialyte
 - Gittinsite

Zircon—introduction

- Zr resistant to corrosion by acids and other chemicals
- Alloyed with Nb it becomes superconductive (conduct electricity with very little loss of energy to electric resistance)
- Does not absorb neutrons

Zircon—uses

۲

- zircon ceramics
- opacifiers
- refractories
- foundry applications

- abrasives
- chemicals
- metal alloys
- welding rod
- coatings
- sandblasting

۲

Production

Salient Statistics—United States: Production, zircon (ZrO ₂ content) ¹ Imports:	<u>2013</u> W	<u>2014</u> W	2015 250,000	<u>2016</u> W	2017° 230,000
Zirconium, ores and concentrates (ZrO ₂ content) Zirconium, unwrought, powder, and waste and scrap Zirconium, wrought Hafnium, unwrought, powder, and waste and scrap	8,050 395 321 10	32,800 843 257 21	20,800 1,140 171 72	24,900 1,040 195 180	28,000 840 240 160
Exports: Zirconium ores and concentrates (ZrO ₂ content) Zirconium, unwrought, powder, and waste and scrap Zirconium, wrought	19,000 599 1,140	4,850 534 913	3,200 515 1,020	3,280 363 788	11,000 550 630
Consumption, apparent, zirconium ores and concentrates, (ZrO ₂ content) ³ Prices: Zircon, dollars per metric ton (gross weight):	W	w	²70,000	w	² 50,000
Domestic ⁴ Imported ⁵ Zirconium, unwrought, import, France, dollars per kilogram ⁶ Hafnium, unwrought, import, France, dollars per kilogram ⁶ Hafnium, unwrought, dollars per kilogram ⁸	1,050 996 75 578 NA	1,050 1,133 59 561 NA	1,025 1,061 50 607 NA	1,025 877 46 ⁷ NA 1,088	1,025 881 ⁷ NA 912
Net import reliance ⁹ as a percentage of apparent consumption: Zirconium Hafnium	ENA	<50 NA	<25 NA	<50 NA	<50 NA

<u>Recycling</u>: Companies in Oregon and Utah recycled zirconium from new scrap generated during metal production and fabrication and (or) from post-commercial old scrap. Zircon foundry mold cores and spent or rejected zirconia refractories are often recycled. Hafnium metal recycling was insignificant.

USGS Mineral Yearbooks metric tons

• • • • • •

Z		ntrates, mine productio ric tons, gross weight)	on Zirconium reserves ¹⁰ (thousand metric tons, ZrO ₂)
United States Australia China India Indonesia Mozambique Senegal South Africa Other countries World total (rounded	2016 W 450 140 40 110 68 53 360 <u>96</u> 1) ¹¹ 1.320	2017° 250 600 140 40 120 75 60 400 <u>110</u> 1.600	500 47,000 500 3,400 NA 1,800 NA 14,000 <u>7,200</u> 74,000

<u>World Resources</u>: Resources of zircon in the United States included about 14 million tons associated with titanium resources in heavy-mineral-sand deposits. Phosphate rock and sand and gravel deposits could potentially yield substantial amounts of zircon as a byproduct. World resources of hafnium are associated with those of zircon and baddeleyite. Quantitative estimates of hafnium resources are not available.

Zircon—geology

۲

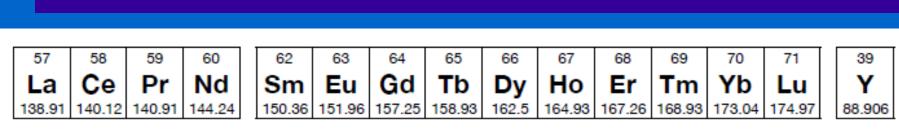
۲

 Beach sands in Florida, Virginia and South Carolina (with Ti) •

ullet

REE

1.01 2 13 14 15 16 17 3 4 4 5 6 7 8 9 11 12 11 12 13 14 15 16 17 11 12 13 14 15 16 17										18 2 He 4.00 10 Ne 20.18 18 Ar							
22.99	24.30 20	3	4	5 23	6	7	8	9	10 28	11 29	12 30	26.98 31	28.09 32	30.97 33	32.07 34	35.45 35	^{39.95}
K 30.10	Ca 40.08	SC 44.96	Ti 47.88	V 50.94	Cr 52.00	Mn 54.94	Fe 55.85	CO 58.93	Ni 58.69	Cu 63.55	Zn 65.39	Ga 69.72	Ge 72.61	AS 74.92	Se 78.96	79.90	Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 MO 95.94	43 TC (97.91)	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.75	52 Te	53 I 126.90	54 Xe 131.29
55 CS 132.91	56 Ba 137.33	57 La 138.91	72 Hf 178.49	73 Ta 180.95	74 W 183.85	75 Re 186.21	76 OS 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 200.59	81 TI 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (208.98)	85 At (209.99)	86 Rn (222.02)
87 Fr (223.02)	87 88 89 104 105 106 Fr Ra Ac Rf Ha Sg																
				58 Ce 140.12 90	59 Pr 140.91 91	60 Nd 144.24 92	61 Pm (144.91) 93	62 Sm 150.36 94	63 Eu ^{151.97} 95	64 Gd 157.25 96	65 Tb 158.93 97	66 Dy 162.50 98	67 HO 164.93	68 Er 167.26	69 Tm 168.93 101	70 Yb 173.04 102	71 Lu 174.97 103
				Th 232.04	Pa 231.04	U 238.03	Np (237.05)	Pu (244.05)	Am (243.06)	Cm (247.07)	Bk (247.07)	Cf (251.08)	ES (252.08)	Fm (257.10)	Md (258.10)	No (259.10)	Lr (262.11)


Figure 1. Periodic table of the elements. The rare earth elements comprise 15 elements, which range in atomic number from 57 to 71, including lanthanum (La) to lutetium (Lu). The elements are also commonly referred to as "lanthanides." Yttrium (Y, atomic number 39) is also typically included with the rare earth elements group because it shares chemical, physical, and application properties with the lanthanides.

REE

- Lithophile elements (or elements enriched in the crust)
- Similar physical and chemical properties
- Occur together in nature
- Classified as metals
- Soft, malleable, ductile and usually quite reactive metals

۲

• MP range from 798 to 1663 deg C

Light	rare	earths
-------	------	--------

Ce - Cerium

- Pr Praseodymium
- Nd Neodymium
- Sm Samarium

- Eu Europium
- Gd Gadolinium
- Tb Terbium
- Dy Dysprosium
- Ho Holmium

Er - Erbium Tm - Thulium Yb - Ytterbium Lu - Lutetium Y - Yttrium

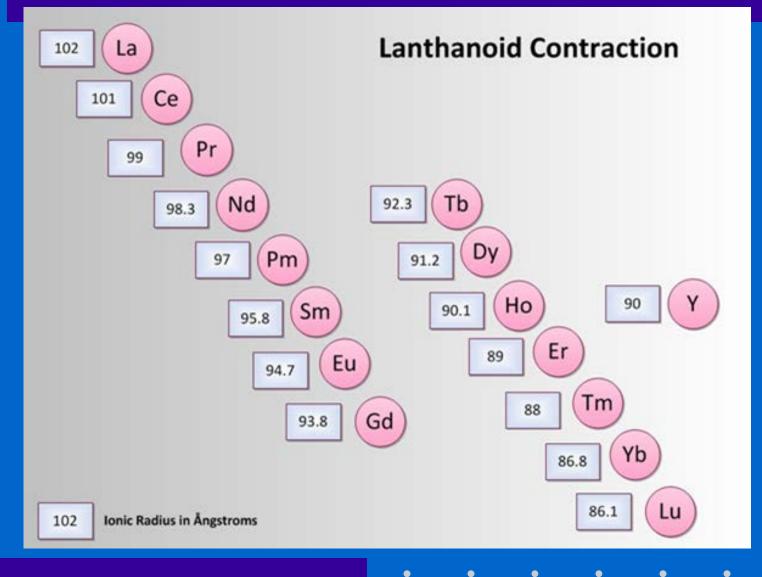
Heavy rare earths

 \bullet

۲

 \bullet

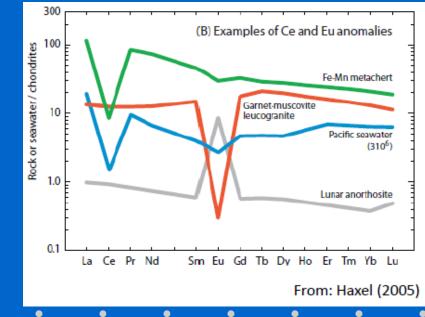
۲

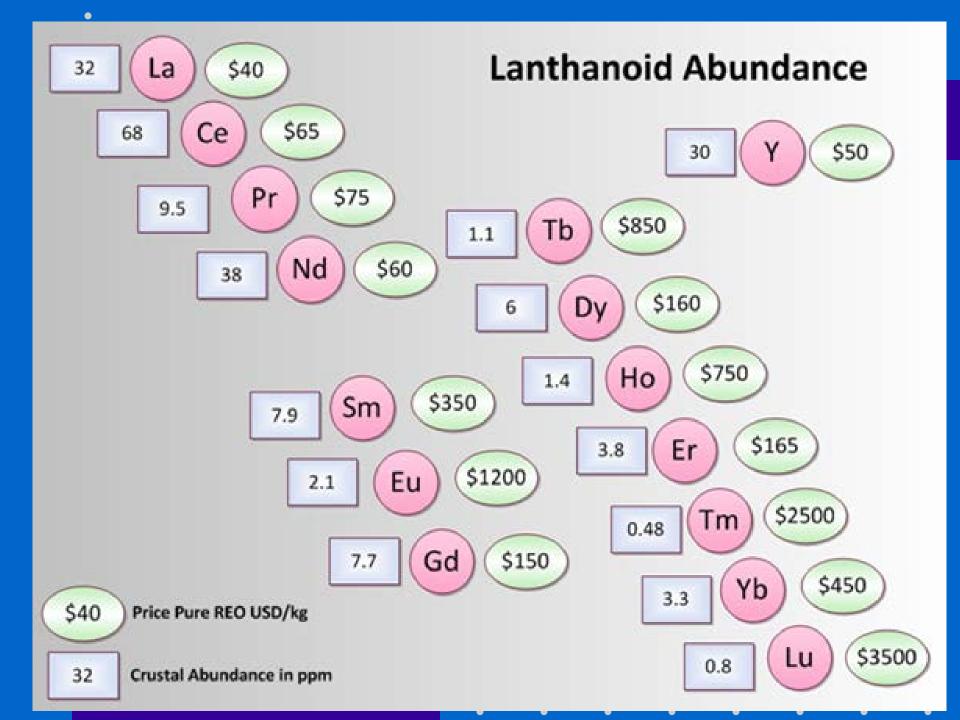

Figure 2.2: Sub-groups of the rare-earth metals, per industry (not scientific) norms (sources: TMR, industry sources).

ISSUE

- In 2010, China announced it would significantly restrict REE exports to ensure supply for Chinese domestic manufacturing
- 72% REE export reduction in 2010
- 35% REE export reduction in 2011
- Quota reduction officially to curb rampant and unregulated REE production over the last few years, which has caused significant environmental problems

Ionic radius decreases with •


increasing number



Oxidation state

- All REE occur in 3+ state
- Eu also occurs in 2+ state
 Substitutes for 2+ cations such as Ca2+

Ce also occurs in 4+ state – insoluble

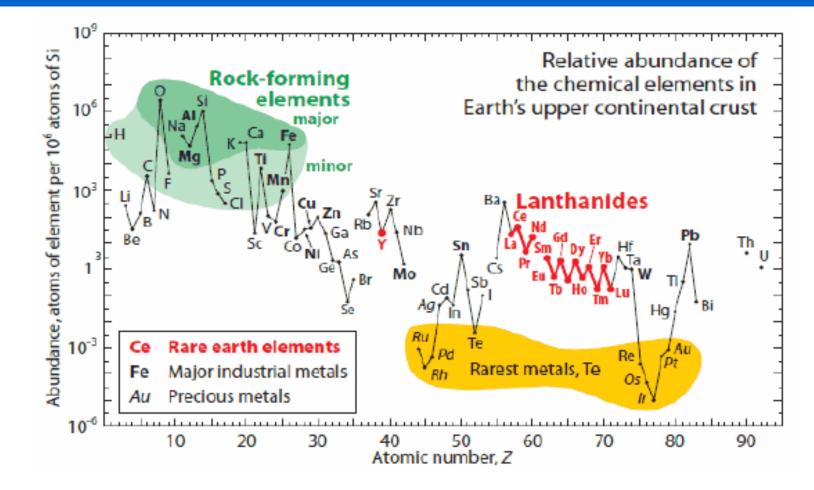


Figure 1 Relative abundance of rare earths (highlighted in red). Figure courtesy of Gordon Haxel, USGS.

 \bullet

- Less abundant than rock forming minerals
- More abundant than precious metals
- Oddo-Harkins rule
 - greater abundance of even-numbered elements relative to their odd-numbered neighbors
- easily smoothed out by "normalizing" the measured concentrations of REEs to some reference REE
 - REE abundances normalized to the primitive mantle values

chondritic meteorites

"The estimated average concentration of the rare earth elements in the Earth's crust, which ranges from around 150 to 220 parts per million (table 1), exceeds that of many other metals that are mined on an industrial scale, such as copper (55 parts per million) and zinc (70 parts per million)."

"Although rare earth elements are relatively abundant in the Earth's crust, they are rarely concentrated into mineable ore deposits."

(Long et al., 2010)

Table 1. Estimates of the crustal abundances of rare earth elements.

[Rare earth elements listed in order of increasing atomic number; yttrium (Y) is included with these elements because it shares chemical and physical similarities with the lanthanides. Unit of measure, parts per million]

Rare earth element	Mason and Moore (1982)	Jackson and Christiansen (1993)	Sabot and Maestro (1995)	Wedephol (1995)	Lide (1997)	McGill (1997)
Lanthanum	30	29	18	30	39	5 to 18
Cerium	60	70	46	60	66.5	20 to 46
Praseodynium	8.2	9	5.5	6.7	9.2	3.5 to 5.5
Neodymium	28	37	24	27	41.5	12 to 24
Samarium	6	8	6.5	5.3	7.05	4.5 to 7
Europium	1.2	1.3	0.5	1.3	2	0.14 to 1.1
Gadolinium	5.4	8	6.4	4	6.2	4.5 to 6.4
Terbium	0.9	2.5	0.9	0.65	1.2	0.7 to 1
Dysprosium	3	5	5	3.8	5.2	4.5 to 7.5
Holmium	1.2	1.7	1.2	0.8	1.3	0.7 to 1.2
Erbium	2.8	3.3	4	2.1	3.5	2.5 to 6.5
Thulium	0.5	0.27	0.4	0.3	0.52	0.2 to 1
Ytterbium	3.4	0.33	2.7	2	3.2	2.7 to 8
Lutetium	0.5	0.8	0.8	0.35	0.8	0.8 to 1.7
Yttrium	33	29	28	24	33	28 to 70
Scandium	22		10	16	22	5 to 10
Total	206.1	205.2	159.9	184.3	242.17	

(Long et al., 2010)

•

- •

Sc

At A Glance: Sc

Atomic Number:	21
Atomic Symbol:	Sc
Atomic Weight:	44.9559
Electron Configuration:	[Ar]4s23d1
Atomic Radius:	216 pm (Van der Waals)
Melting Point:	1541 °C
Boiling Point:	2836 °C
Oxidation States:	3

Sources: It is widely distributed on earth, occurring in very minute quantities in over 800 mineral species.Uses: High-intensity lights; tracing agent in refinery crackers for crude oil; highly efficient light source. Content provided by Los Alamos National Laboratory. Used with permission. • 20 kg/yr produce high-intensity lights

- 46Sc used in refinery cracking for crude oil
- Used in mercury vapor lamps (resembles sunlight)

• Recovered from thortveitite or a by-product of U mill tailings

At A Glance: Y

Atomic Number:	39
Atomic Symbol:	Υ
Atomic Weight:	88.9059
Electron Configuration:	[Kr]5s24d1
Atomic Radius:	219 pm (Var der Waals)
Melting Point:	1522 °C
Boiling Point:	3345 °C
Oxidation States:	3

Sources: Improves efficiency of fuels; microwave and cellular communications devices for defense, satellites and phones; jet engine turbines; laser crystals specific to spectral characteristics for military communications; red color in televisions and computer screens. Yttrium stabilized cubic zirconia produces simulated diamonds. Uses: While yttrium occurs in nearly all of the rare earth minerals, ion-adsorption ores provide the bulk of the world's Yttrium. Recovered commercially from monazite sand, which contains about 3%, and from bastnasite, which contains about 0.2%. Analysis of lunar rock samples obtained during the Apollo missions show a relatively high yttrium content.

Content provided by Los Alamos National Laboratory. Used with permission.

Y

• Yttrium Iron Garnets (YIG) are used as resonators for use in frequency meters, magnetic field measurement devices, tunable transistors Gunn oscillators, cellular communications devices

stabilizer and mold former for exotic light-weight jet engine turbines and other parts, and as a stabilizer material in rocket nose cones

• Other uses

• Recovered from monazite

At A Glance: La		At A Glance: Co	2	At A Glance: Pr		
Atomic Number:	57	Atomic Number:	58	Atomic Number:	59	
Atomic Symbol:	La	Atomic Symbol:	Ce	Atomic Symbol:	Pr	
Atomic Weight:	138.9055	Atomic Weight:	140.12	Atomic Weight:	140.9077	
Electron Configuration:	[Xe]6s25d1	Electron Configuration:	[Xe]6s24f15d1	Electron Configuration:	[Xe]6s24f3	
Atomic Radius:	240 pm (Van der Waals)	Atomic Radius:	235 pm (Van der Waals)	Atomic Radius:	239 pm (Van der Waals)	
Melting Point:	918 °C	Melting Point:	798 °C	Melting Point:	931 °C	
Boiling Point:	3464 °C	Boiling Point:	3,443 °C	Boiling Point:	3520 °C	
Oxidation States:	2	Oxidation States:	4,3	Oxidation States:	3	
Sources: Found in rare-earth minerals such as cerite, monazite, allanite, and bastnasite. Monazite and bastnasite are principal ores in which lanthanum occurs in percentages up to 25 percent and 38 percent respectively. Uses:hybrid vehicle batteries, fluid cracking catalysts, glass polishing, fuel cells.Content provided by Los Alamos National Laboratory. Used with permission.		Sources: Cerium is the most abundant rare earth element. Monazite and bastnasite ores are presently the more important sources of cerium. Uses: Pollution control technologies such as catalytic converters and fuel additives, glass polishing and UV shielding, water filtration, fluorescent lighting. <i>Content</i> <i>provided by Los Alamos National</i> <i>Laboratory. Used with permission.</i>		Sources: Monazite a are the two principal sources of praseody Paired with neodymi magnets, also used filters, airport signal in ceramic tile and gl control catalysts.Cor Los Alamos Nationa Used with permissio.	commercial mium. Uses: um in permanent in photographic lenses, pigment ass, pollution <i>itent provided by</i> <i>I Laboratory</i> .	

At A Glance: Nd		At A Glance: Pm		At A Glance: Sm			
Atomic Number:	60	Atomic Number:	61	Atomic Number:	62		
Atomic Symbol:	Nd	Atomic Sumboli	Dm	Atomic Symbol:	Sm		
Atomic Weight:	144.24	Atomic Symbol:	Pm	Atomic Weight:	150.4		
Electron Configuration:	[Xe]6s24f4	Atomic Weight:	145	Electron	[Xe]6s24f6		
-		Electron	[Xe]6s24f5	Configuration:			
Atomic Radius:	229 pm (Van der Waals)	Configuration:		Atomic Radius:	229 pm (Van der Waals)		
Melting Point:	1021 °C	Atomic Radius:	236 pm (Van der Waals)	Melting Point:	1074 °C		
Boiling Point:	3074 °C	Melting Point:	1042 °C	Boiling Point:	1794 °C		
Oxidation States:	3	Deiling Deint	2000 80	Oxidation States:	3, 2		
Sources: It is preser quantities in the ore		Boiling Point:	~3000 °C	Sources: Found alor	long with other rare		
monazite and bastna Uses: High powered	ásite.	Oxidation States:	3, 2	earth elements in many minerals, including monazite and bastnasite,			
iron-boron permanent magnets used in smartphones, computer hard drives, audio speakers, and many other consumer electronics, hybrid and electric vehicle motors, wind turbine generators, MRI machines, and defense equipment; also used in lasers and glass production. <i>Content provided by Los Alamos</i> <i>National Laboratory. Used with</i>		Sources: Promethium is man-made and does not occur in nature. Uses: Few known uses of promethium. Content provided by Los Alamos National Laboratory. Used with		 which are commercial sources. Samarium metal can be produced by reducing the oxide with lanthanum. Uses: Used in making permanent magnet material that maintains its performance at high temperatures, primarily used in defense-related equipment; also used in optical glass, infrared absorbing glass, and lasers. Content provided by Los 			
permission.		permission.		Alamos National Lat with permission.	ooratory. Used		

At A Glance: Eu		At A Glance: G	d		
	_	Atomic Number:	64	At A Glance: Tb	
Atomic Number:	63	Atomic Number.	04	Atomic Number:	65
Atomic Symbol:	Eu	Atomic Symbol:	Gd	Atomic Symbol:	Tb
Atomic Weight:	151.96	Atomic Weight:	157.25	Atomic Weight:	158.9254
Electron Configuration:	[Xe]6s24f7	Electron Configuration:	[Xe]6s24f75d1	Electron Configuration:	[Xe]6s24f9
Atomic Radius:	233 pm (Van der Waals)	Atomic Radius:	237 pm (Van der Waals)	Atomic Radius:	221 pm (Van der Waals)
	uei vvaais)	Melting Point:	1313 °C	Melting Point:	1356 °C
Melting Point:	822 °C	Boiling Point:	3273 °C	Boiling Point:	3230 °C
Boiling Point:	1529 °C	Oxidation States:	3	Oxidation States:	3
Oxidation States: 3, 2 Sources: Bastnasite and monazite are the principal ores containing europium.Uses: Phosphors in LCD screens, compact fluorescent lightbulbs, lasers. Content provided by Los Alamos National Laboratory. Used with permission.		States: Sources: Bastnasite and monazite are the principal ores containing gadolinium. Uses: Phosphors in television, microwave applications, heat resistant metals and alloys. Content provided by Los Alamos National Laboratory. Used with permission.		Sources: Terbium is never found in nature as a free element, but it is contained in many minerals, including cerite, gadolinite, monazite xenotime and euxenite. Uses: Energy efficient fluorescent lighting, magneto-optic recording of data, solid-state devices, and fuel cells. <i>Content provided by Los Alamos</i> <i>National Laboratory. Used with</i> <i>permission.</i>	
				• •	• •

At A Glance: Dy		At A Glance: Ho		At A Glance: Er		
Atomic Number:	66	Atomic Number:	67	Atomic Number:	68	
Atomic Symbol:	Dy	Atomic Symbol:	Ho	Atomic Symbol:	Er	
Atomic Weight:	162.50	Atomic Weight:	164.9304	Atomic Weight:	167.26	
Electron Configuration:	[Xe]6s24f10	Electron Configuration:	[Xe]6s24f11	Electron Configuration:	[Xe]6s24f12	
Atomic Radius:	229 pm (Van der Waals)	Atomic Radius:	216 pm (Van der Waals)	Atomic Radius:	235 pm (Van der Waals)	
	uel vvadis)	Melting Point:	1474 °C			
Melting Point:	1413 °C	Boiling Point:	2700 °C	Melting Point:	1529 °C	
Boiling Point:	2567 °C	Oxidation States:	3	Boiling Point:	2868 °C	
Oxidation States:	3	Sources: Holmium		Oxidation States:		
Uses: A key additive to NdFeB magnets to maintain their magnetic properties at high temperatures; consumer electronics. <i>Content</i> <i>provided by Los Alamos National</i> <i>Laboratory</i> . Used with permission.		minerals monazite and gadolinite, and is usually commercially extracted from monazite using ion exchange techniques. Uses: Holmium is one of the least abundant Rare Earth elements and has few commercial uses. <i>Content provided by Los Alamos</i> <i>National Laboratory. Used with</i>		Uses: Fiber optic data transmission, lasers for medical and dental uses, glass coloration used in sunglasses and decorative crystal glassware. <i>Content provided by Los Alamos</i> <i>National Laboratory. Used with</i> <i>permission.</i>		
		permission.				

At A Glance: Tm		At A Glance: Yb		At A Glance: Lu		
Atomic Number:	69	Atomic Number:	70	Atomic Number:	71	
Atomic Symbol:	Tm	Atomic Symbol:	Yb	Atomic Symbol:	Lu	
Atomic Weight:	168.9342	Atomic Weight:	173.04	Atomic Weight:	174.97	
Electron Configuration:	[Xe]6s24f13	Electron Configuration:	[Xe]6s24f14	Electron Configuration:	[Xe]6s24f145d1	
Atomic Radius:	227 pm (Van	Atomic Radius:	242 pm (Van der Waals)	Atomic Radius:	221 pm (Van der Waals)	
	der Waals)	Melting Point:	819 °C	Melting Point:	1663 °C	
Melting Point:	1545 °C	Boiling Point:	1196 °C	Boiling Point:	3402 °C	
Boiling Point:	1950 °C	Oxidation States:	3, 2	Oxidation States:	3	
Oxidation States: 3, 2 Sources: The element is never found in nature in pure form, but it is found in small quantities in minerals with other rare earths.Uses: Because of the relatively high price of the metal, thulium has not yet found many practical applications.Content provided by Los Alamos National Laboratory. Used with permission.		Sources: A soft silve element, ytterbium is element of the lanths is found in the miner monazite, and xenot Improves the grain r strength, and other r properties of stainle <i>Content provided by</i> <i>National Laboratory</i> <i>permission</i> .	s a rare earth anide series and rals gadolinite, ime. Uses: efinement, mechanical ss steel. / <u>Los Alamos</u>	Sources: Found with almost all other rare-earth metals but never by itself, lutetium is very difficult to separate from other elements. Uses: Catalysts in cracking, alkylation, hydrogenation, and polymerization; detectors in positron emission tomography (PET). Virtually no other commercial uses have been found yet for lutetium. <i>Content provided by Los Alamos</i> <i>National Laboratory. Used with</i> <i>permission.</i>		

Government documents

 \bullet

 \bullet

2014 Minerals Yearbook

RARE EARTHS [ADVANCE RELEASE]

U.S. Department of the Interior U.S. Geological Survey

December 2016

 \bullet

https://minerals.usgs.gov/minerals/pubs/commodity/rare_earths/myb1-2014-raree.pdf

 \bullet

 \bullet

- •

Energy Critical Elements:

						4.003
28		31	32		34	
Ni Nickel 58.6934		Gallium 69.723	Germanium 72.61		Selenium 78.96	
46	47	49			52	
Pd Palladium 106.42	Ag Silver 107.8682	In Indium 114.818			Te Tellurium 127.60	
78						
Pt Platinum 195.078						
65	66			70	71	
Tb Terbium 158.92534	Dy Dysprosium 162.50			Yb Ytterbium 173.04	LU Lutetium 174.967	

Securing Materials for Emerging Technologies

A REPORT BY THE APS PANEL ON PUBLIC AFFAIRS & THE MATERIALS RESEARCH SOCIETY

http://www.aps.org/policy/reports/popareports/loader.cfm?csModule=security/getfile&PageID=236337

• • •

He Helium

Rare Earth Elements: The Global Supply Chain

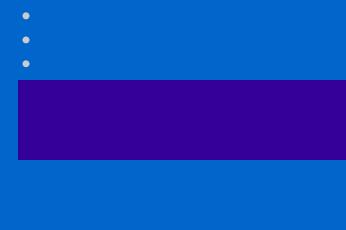
Marc Humphries Specialist in Energy Policy

June 8, 2012

Congressional Research Service 7-5700 www.crs.gov R41347

۲

CRS Report for Congress Prepared for Members and Committees of Congress


۲

۲

۲

۲

http://www.fas.org/sgp/crs/natsec/R41347.pdf

Spring 2010 Industry Study

Final Report Strategic Materials Industry

The Industrial College of the Armed Forces National Defense University Fort McNair, Washington, D.C. 20319-5062

۲

۲

۲

۲

۲

http://www.ndu.edu/es/programs/academic/industry/reports/201 0/pdf/icaf-is-report-strategic-mat-2010.pdf ۲

- •

Enclosure: Briefing Slides

<u>GAO</u>

Rare Earth Materials in the Defense Supply Chain

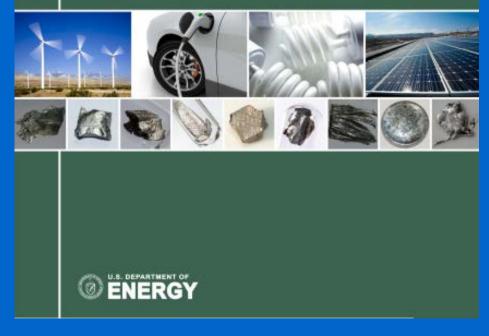
Briefing for Congressional Committees April 1, 2010

http://www.gao.gov/new.items/d10617r.pdf

۲

۲

۲


۲

- •

U.S. DEPARTMENT OF ENERGY

Critical Materials Strategy

December 2011

http://energy.gov/sites/prod/files/DOE_CMS2011_FINAL_Full.pdf

۲

Minerals UK

Geological Survey

British

NATURAL ENVIRONMENT RESEARCH COUNCIL

Rare Earth Elements

Definitions, mineralogy and deposits

Definitions and characteristics

The rare earth elements (REE) (sometimes referred to as the rare earth metals) are a group of 17 chemically similar metallic elements, including the 15 lanthanides, scandium and yttrium. The lanthanides are elements spanning atomic numbers 57 (lanthanum, La) to 71 (lutetium, Lu) (Table 1). The lanthanides all occur in nature, although promethium¹, the rarest, only occurs in trace quantities in natural materials as it has no long-lived or stable isotopes (Castor and Hedrick, 2006), Scandium and vttrium are considered REE as they have similar chemical and physical properties. Separation of the individual REE was a difficult challenge for chemists in the 18th and 19th centuries, and consequently it was not until the 20th century that they were all identified. On account of their chemical similarity the REE can very easily substitute for one another making refinement to pure metal difficult.

The term rare earth is a misnomer arising from the rarity of the minerals from which they were originally isolated (Figures 1 and 2). In contrast REEs are relatively plentiful in the Earth's crust having an overall crustal abundance of 9.2 ppm (Rudnick et al. 2003). The crustal abundance of individual REE varies widely, from cerium the most abundant at 43 ppm (exceeding other important metals including copper — 27 ppm and lead — 11 ppm) to 0.28 ppm for thulium (Taylor and McLennan, 1985; Rudnick et al. 2003).

The lanthanides are commonly divided into: lower atomic weight elements, lanthanum through to europium, referred to as the light rare earth elements (LREE) and the heavy rare earth elements (HREE) — gadolinium through to lutetium and ythrium (Table 1). Ythrium is usually grouped with the HREE because of its chemical similarity. The division is somewhat arbitrary and the term middle REE (MREE) is sometimes used to refer to those elements between europium to dysprosium (Samson and Wood. 2004). The relative abundance of the REE varies

Unless otherwise stated, copyright of materials contained in this report are vested in NERC. BGS © NERC 2011. All rights reserved.

	-							
1	Prof	លោ	i i nc	15 -	190	OACTING	element.	

Element	Symbol	Atomic number	Atomic weight	Density (gom ^{.a})	Melting Point (°C)	Vicker's hardness, (10 kg load, kg/mm ^a
Scandium	Sc	21	44.95	2.989	1541	85
Yttrium	Y	39	88.90	4.469	1522	38
Lanthanum	La	57	138.90	6.146	918	37
Cerium	Ce	58	140.11	8.160	798	24
Praseodymium	Pr	59	140.90	6.773	931	37
Neodymium	Nd	60	144.24	7.008	1021	35
Promethium ¹	Pm	61	145.00	7.264	1042	-
Semarium	Sm	62	150.36	7.520	1074	45
Europium	Eu	63	151.96	5.244	822	17
Gadolinium	Gd	64	157.25	7.901	1313	57
Terbium	ть	65	158.92	8.230	1358	46
Dysprosium	Dγ	66	162.50	8.551	1412	42
Holmium	Ho	67	164.93	8.795	1474	42
Erbium	Er	68	167.26	9.066	1529	44
Thulium	Tm	69	168.93	9.321	1545	48
Ytterbium	ΥЪ	70	173.04	6.966	819	21
Lutetium	Lu	71	174.97	9.841	1663	77

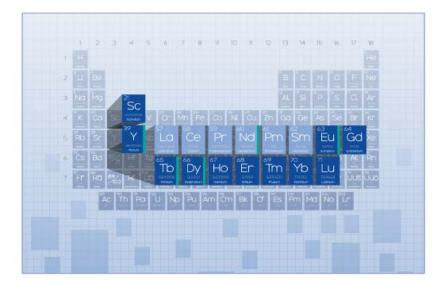
Table 1 Selected properties of the REE. Compiled from Gupta and Krishnamurthy (2005).

Figure 1 Elongate prismatic fergusonite in an open cavity associated with albite and quartz, Arran, Scotland. Photograph: Fergus MacTaggart, BGS © NERC.

http://www.google.c om/url?sa=t&rct=j& q=&esrc=s&source= web&cd=7&ved=0C HAQFjAG&url=http %3A%2F%2Fwww. bgs.ac.uk%2Fdownl oads%2Fstart.cfm% 3Fid%3D1638&ei=P bwvUd3IMOryigKg4DYAg&usg=AFQj CNHv3zX_vBeh3V CZkL5RYzQyWymv Bg&sig2=N4NSi7W Nik2vt XKY 2dfA

November 2011

The Principal Rare Earth Elements Deposits of the United States—A Summary of Domestic Deposits and a Global Perspective


Scientific Investigations Report 2010–5220

U.S. Department of the Interior U.S. Geological Survey

http://pubs.usgs.gov/sir/2010/5220/

Rare Earth Elements Program

https://www.netl.doe. gov/File%20Library/ Research/Coal/Rare %20Earth%20Eleme nts/REE-Project-Portfolio-2016.pdf

the ENERGY lab National Energy Technology Laboratory

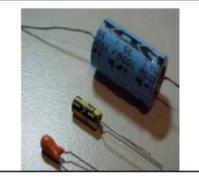
•

• • • • • • •

- 1970s: Rare earth mineral concentrates.
- 1980s: Mixed rare earth chemical concentrates.
- Early1990s: Separated rare earth oxides and metals.
- Late 1990s: Magnets, phosphors, polishing powders.
- 2000s: Electric motors, computers, batteries, LCDs, mobile phones.

Off Road Vehicles

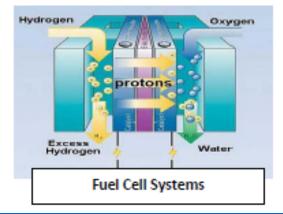
JSF and More Electric Aircraft


Maglev Trains

Electric Diesels

CHPS Future Combat Systems

High Energy Density Capacitors

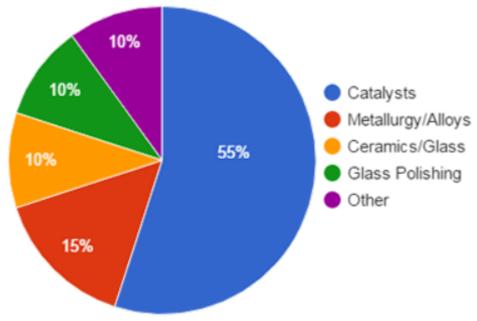

۲

Electric Motor Scooters

Zumwalt DDG 1000

۲

 \bullet


۲

 \bullet

 \bullet

REE are so important because each atom of these elements is able to readily give up or accept electrons, which is an important property required to allow magnets, optics, electronics and other applications to work.

Uses of Rare Earth Elements

Uses in the United States as reported by the United States Geological Survey Mineral Commodity Summary, 2017

Uses of rare earth elements: This chart shows the use of rare earth elements in the United States during 2013. Many vehicles use rare earth catalysts in their exhaust systems for air pollution control. A large number of alloys are made more durable by the addition of rare earth metals. Glass, granite, marble, and gemstones are often polished with cerium oxide powder. Many motors and generators contain magnets made with rare earth elements. Phosphors used in digital displays, monitors, and televisions are created with rare earth oxides. Most computer, cell phone, and electric vehicle batteries are made with rare earth metals.

• • • • • •

Table 2. Examples of common applications of rare-earth elements.

		Chemical element ¹															
Application	Sc	Y	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Alloys and metallurgical uses	х	х	х	х	х	х		х	х	х	х	х	х	х	х	х	х
Batteries			х	х	х	х	х				х						
Catalysts		х	х	х	х	х		х		х							х
Ceramics	х	х	х	х	х	х		х	х	х		х	х	х	х		х
Electronics		х	х	х	х	х					х	х		х			
Fertilizers			х	х		х											
Glass	х	х	х	х	х	х		х	х	х	х	х	х	х	х	х	х
Lamps	х	х	х	х	х			х	х		х	х	х	х	х		
Lasers	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
Magnets				х	х	х		х	х	х	х	х	х				
Medical and pharmaceutical uses			х	х		х		х	х	х			х	х			х
Neutron absorption		х		х				х	х	х		х	х	х			
Phosphors	x	x	x	х			х	х	х	х	х	х	х	х	х	х	x

¹The symbols used for chemical elements in this table include the following (in order of atomic number): Sc, scandium; Y, yttrium, La, lanthanum; Ce, cerium; Pr, praseodymium; Nd, neodymium; Pm, promethium; Sm, samarium; Eu, europium; Gd, gadolinium; Tb, terbium; Dy, dysprosium; Ho, holmium; Er, erbium; Tm, thulium; Yb, ytterbium; and Lu, lutetium.

https://pubs.usgs.gov/of/2013/1072/OFR2013-

USES

- Chemical—unique electron configuration
- Catalytic—O storage and release
- Magnetic—high magnetic anisotropy and large magnetic moment
- Optical—fluorescence, high refractive index
- Electrical—high conductivity
- Metallurgical—efficient H storage in REE alloys

REE can not be substituted in most applications

USES THAT DEPEND UPON VALENCE AND SIZE

Mixed rare earths Petroleum cracking catalyst (also La, Ce) Mischmetal lighter flints alloy additive

Individual rare earth elements Nickel-metal(La)-hydride batteries Alloying agent (La, Ce, Nd, Y)

USES THAT DEPEND ON 4f ELECTRONS

Permanent Magnets Nd, Pr, Sm, Dy

Phosphors Eu (red, blue) Tb (green) fluorescent lamps optical displays (TV, etc.)

۲

Fiber optics Er

USES THAT DEPEND ON THE ABSENCE **OF ELECTRONIC TRANSITIONS IN UV, OPTICAL AND IR WAVE LENGTHS Optical lenses** La, Gd, Lu Phosphor hosts Y, Gd Artificial gem stones

USES THAT DEPEND UPON VALENCE CHANGES

 $Ce^{3+} \leftrightarrow Ce^{4+} 4f^1 \leftrightarrow 4f^0$

Automotive 3-way emission catalysts

UV light absorption

Polishing compounds

Clean energy

Applications		Typical Quantity of REO per unit	
Traditional – disc drives, personal electronic devices, etc.		Grams	Compact Fluorescent Lights
Hybrid and electric vehicles – direct drives and electric assist motors	Chevy Volt	Kilograms	
Direct Drive Wind Turbines		Metric Ton	

http://www.reitausa.org/storage/Challenges%20Facing%20New%20Global%20Rare%20 Earth%20Separation%20Plants.pdf

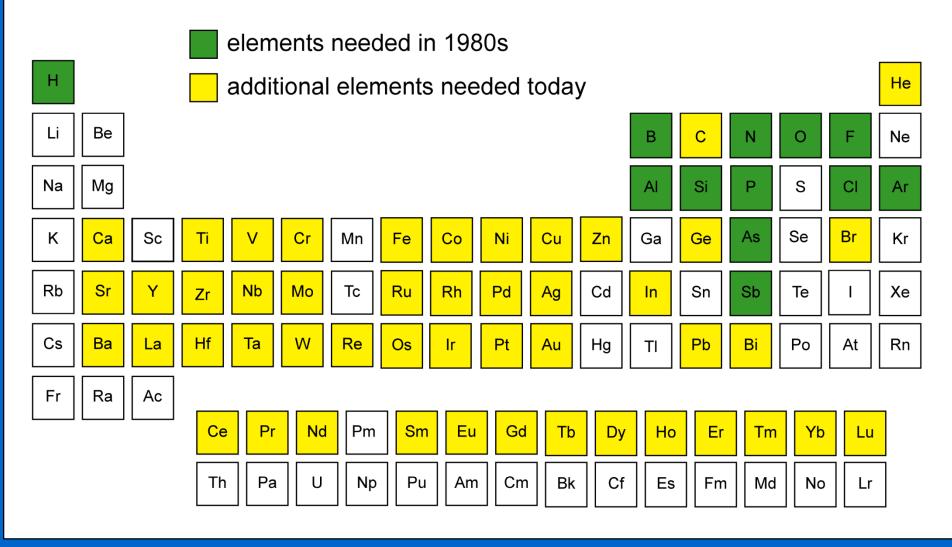
Toyota Prius 2.2 lbs Nd in magnets 22-33 lbs La in batteries

http://www.molycorp.com/hybrid ev.asp

Enabling digital technology

Demand of Rare Earths for Phosphors and Polishing Powders:

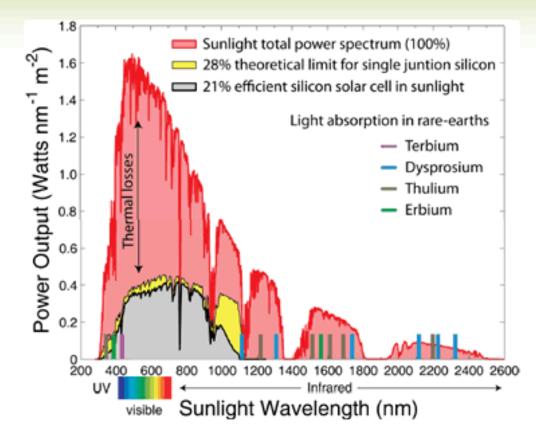
Tonnes per annum	2004	2005	AAGR% 2005-10	2010
Total REO Consumption Phosphors	3,652	4,007	13.0%	7,512
Total REO Consumption Polishing Powders	14,100	15,150	9.2%	23,500
AAGR is the Annu	ual Avera	iae Grow	th Rate	


http://www.lynascorp.com/Pages/what-arerare-earths.aspx

Elements in Computer Chips (National Research Council, 2007)

 \bullet

Improving energy efficiency


Fluid Cracking Catalysts (FCC) are used in the refining operation of crude oil and is the major contributor to "value-add" in the refining process. The process enables the transformation of heavy molecules into lighter compounds that make up gasoline and other fuels such as gas, jet fuel and diesel.

Compact Fluorescent Light

Application	Rare Earths	Demand Drivers
Magnets	Nd, Pr, Sm, Tb Dy	Drives for computers, mobile phones, mp3 players, cameras. Hybrid vehicle electric motors. Electric motors for luxury vehicles. Mag-lev trains.
LaNiH Batteries	La, Ce, Pr, Nd	Hybrid vehicle batteries. Hydrogen absorption alloys for re-chargeable batteries
Phosphors	Eu, Y, Tb, La, Dy, Ce, Pr, Gd	LCDs. PDPs. LEDs. Energy efficient fluorescent lights/lamps.
Fluid Cracking Catalysts	La, Ce, Pr, Nd	Petroleum production – greater consumption by 'heavy' oils and tar sands
Polishing Powders	Ce, La, Nd	Mechano-chemical polishing powders for TVs, monitors, mirrors and (in nano-particulate from) silicon chips.
Auto Catalysts	Ce, La, Nd	Tighter NOx and SO2 standards – platinum is re-cycled, but for rare earths it is not economic
Glass Additive	Ce, La, Nd, Er	Cerium cuts down transmission of uv light. La increases glass refractive index for digital camera lens.
Fibre Optics	Er, Y, Tb, Eu	Signal amplification

SOLAR POWER OUTPUT VS SOLAR SPECTRUM

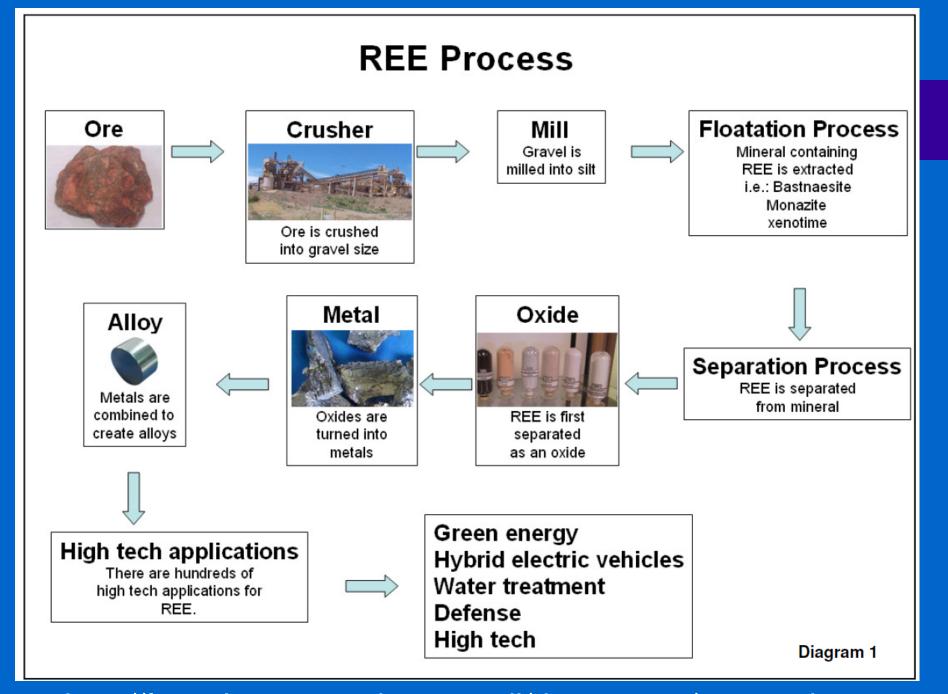
- Conventional Silicon solar cell conversion limited to a small window of solar photon energies close to the band-gap energy of silicon – single junction limitation
- Using patented 'rare earth oxide' materials → conversion efficiency increased by harnessing a far greater fraction of available energy in the solar spectrum

http://www.australianrareearths.com/what-are-rare-earths.html

China: world's leading consumer? (Brown, 2005).

Cell phones — 7 million (1996) to 269 million (2003) in China vs. 44 million (1996) to 159 million (2003) in the United States.

Personal computers and laptops in 2002 — 36 million in China vs. 190 million in the United States, but China's number doubles every 28 months.


Televisions — 374 million in China vs. 243 million in the United States in 2000.

Refrigerators — China surpassed the United States in 2000.

Cars — 24 million in China vs. 226 million in the United States in 2003.

 \bullet

۲

http://fmso.leavenworth.army.mil/documents/rareearth.p.

: How much REE are needed?

 Table 3.
 Estimated weight (in metric tons) of rare-earth oxides contained in selected manufactured products that entered service in the United States in 2010 and in material containing rare-earth metals that was imported into the United States in 2010.

[Estimates are rounded to two significant figures. t, metric tons; dashes (--), no data; Do., ditto.; LED, light-emitting diode; OEM, original equipment manufacturer. Rare-earth oxides: CeO₂, cerium oxide; Dy₂O₃, dysprosium oxide; Er₂O₃, erbium oxide; Eu₂O₃, europium oxide; Gd₂O₃, gadolinium oxide; La₂O₃, lanthanum oxide; Lu₂O₃, lutetium oxide; Nd₂O₃, neodymium oxide; Pr₆O₁₁, praseodymium oxide; Sm₂O₃, samarium oxide; Tb₄O₇, terbium oxide; Y₂O₃, yttrium oxide]

General application	Product	CeO ₂	Dy ₂ O ₃	Er ₂ O ₃	Eu ₂ O ₃	Gd ₂ O ₃	La ₂ O ₃	Lu ₂ O ₃	Nd ₂ O ₃	Pr ₆ O ₁₁	Sm ₂ O ₃	Tb ₄ O ₇	Y ₂ O ₃	Undetermined rare-earth oxides
	•		Mass of co	mpound i	n manufactu	red products	that ente	red servic	e in 2010,	in metric t	ons			•
Alloys	Zinc-based coatings for light- gage steel supports ¹	5.6					2.4							
Batteries	Electric and hybrid vehicles						4,000							
Catalysts	Automotive catalytic converters	1,400												
Do.	Fluid catalytic cracking (FCC) catalysts for petroleum refining	210					3,400		640					
Magnets	Automotive (general applications)		4.5						76					
Do.	Cell phone and other mobile devices								86	4.2				
Do.	Electric and hybrid vehicle motors		40						300					
Do.	Electronic power steering in vehicles								26	1.7				
Do.	External disc drives for servers								61	4.2				
Do.	Game consoles								64	4.5				
Do.	OEM speakers in vehicles								7	5				
Do.	Personal computers and laptops								440	30				

https://pubs.usgs.gov/of/2013/1072/OFR2013-1072.pdf

: How much REE are needed?

 Table 3.
 Estimated weight (in metric tons) of rare-earth oxides contained in selected manufactured products that entered service in the United States in 2010 and in material containing rare-earth metals that was imported into the United States in 2010.—Continued

[Estimates are rounded to two significant figures. t, metric tons; dashes (--), no data; Do., ditto.; LED, light-emitting diode; OEM, original equipment manufacturer. Rare-earth oxides: CeO₂, cerium oxide; Dy₂O₃, dysprosium oxide; Er₂O₃, erbium oxide; Eu₂O₃, europium oxide; Gd₂O₃, gadolinium oxide; La₂O₃, lanthanum oxide; Lu₂O₃, lutetium oxide; Nd₂O₃, neodymium oxide; Pr₆O₁₁, praseodymium oxide; Sm₂O₃, samarium oxide; Tb₄O₇, terbium oxide; Y₂O₃, yttrium oxide]

General application	Product	CeO ₂	Dy ₂ O ₃	Er ₂ O ₃	Eu ₂ O ₃	Gd ₂ O ₃	La ₂ O ₃	Lu ₂ O ₃	Nd ₂ O ₃	Pr ₆ O ₁₁	Sm ₂ O ₃	Tb ₄ O ₇	Y ₂ O ₃	Undetermined rare-earth oxides
		Mass o	f compou	nd in man	ufactured pro	oducts that e	ntered se	rvice in 20)10, in met	ric tons-	Continued			
Phosphors	Fluorescent bulbs ²	130			50		200					56	740	
Phosphors and diodes	LED televisions ³	0.0057			0.0049								0.11	
Solutions	Imaging contrast dye					23 to 70								
TOTAL	-	1,700	45		50	23 to 70	7,600		1,700	50		56	740	
				Mass of	compound i	n materials i	mported i	n 2010, in	metric ton	s				
Catalysts, electronics, fuel additives, glass, imaging contrast dyes, magnets, nuclear fuel rods, phosphors, polishing powders, and others	Imported refined metal and oxides, impure, and intermediate products ^{4, 5}	3,600	25	33	25	80	7,900	27	590	94	8.8	4.2	670	1,500 ⁶

¹Includes only GALFAN®, which contains approximately 0.1 percent rare-earth oxide in a hot-dip coat that makes up about 2 percent of the total weight of the steel.

²Includes phosphors used in tube-type and compact fluorescent lights.

³Estimates are based on the number of LED televisions sold in the United States in 2010 and assumes a 42-inch screen.

⁴Some material may be exported in various forms. Estimate does not include finished products, such as contrast dye.

⁵Based on United Business Media Global Trade Port Import/Export Reporting Service (PIERS) data for 2010.

⁶Based on limited data. The material was assumed to be bastnäsite and was estimated to contain 740 t CeO₂, 510 t La₂O₃, 170 t Nd₂O₃; 62 t Pr₆O₁₁, and a small amount of other rare-earth oxides.

https://pubs.usgs.gov/of/2013/1072/OFR2013-1072.pdf

 \bullet \bullet ۲ ۲ ۲

Salient Statistics—United States: Production, bastnäsite concentrates	<u>2013</u> 5,500	<u>2014</u> 5,400	<u>2015</u> 5,900	<u>2016</u>	<u>2017</u> •
Imports: ² Compounds:					
Cerium compounds	1,110	2,990	1,440	1,830	2,700
Other rare-earth compounds	7,330	9,260	7,720	9,650	9,300
Metals:	1,000	0,200	1,120	0,000	0,000
Ferrocerium, alloys	313	371	356	269	290
Rare-earth metals, scandium, and yttrium	n <u>393</u>	348	385	404	400
Exports:2					
Compounds:					
Cerium compounds	734	608	440	309	220
Other rare-earth compounds	5,570	3,780	4,540	281	420
Metals:					
Ferrocerium, alloys	1,420	1,640	1,220	943	1,300
Rare-earth metals, scandium, and yttrium		140	60	103	140
Consumption, apparent ³	5,870	12,200	9,550	10,500	11,000
Price, dollars per kilogram, yearend ⁴	5.0				
Cerium oxide, 99.5% minimum	5-6	4-5	2	2	3
Dysprosium oxide, 99.5% minimum	440-490	320-360	215-240	185-193	180-190
	950-1,000	680-730	90-110	62-70	75-80
Lanthanum oxide, 99.5% minimum	6	5	2 5-6	∠ 5–6	3
Mischmetal, 65% cerium, 35% lanthanum	9–10 65–70	9–10 56–60	5-0 39-42	5-0 38-40	0 56–59
Neodymium oxide, 99.5% minimum Terbium oxide, 99.99% minimum	800-850	590-640	410-470	410-425	470-480
Employment, mine and mill, annual average	380	391	351	410-420	4/0-400
Net import reliance ⁵ as a percentage of	300	331			
apparent consumption	6	56	38	100	100

Recycling: Limited quantities, from batteries, permanent magnets, and fluorescent lamps.

۲

USGS Mineral Commodities Yearbook metric tons

 \bullet

۲

۲

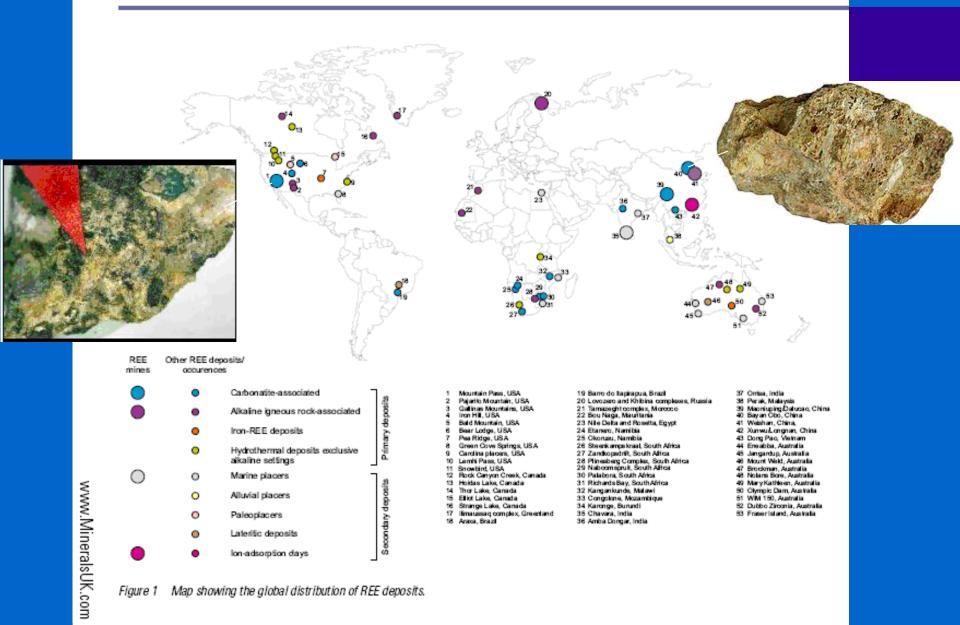
	Mine p	roductione	Reserves ⁷			
	2016	<u>2017</u>				
United States			1,400,000			
Australia	15,000	20,000	⁸ 3,400,000			
Brazil	2,200	2,000	22,000,000			
Canada	· _	· _	830,000			
China	⁹ 105,000	⁹ 105,000	44,000,000			
Greenland	· _	· _	1,500,000			
India	1,500	1,500	6,900,000			
Malawi	_	·	140,000			
Malaysia	300	300	30,000			
Russia	2,800	3,000	¹⁰ 18,000,000			
South Africa	· _	·	860,000			
Thailand	1,600	1,600	NA			
Vietnam	220	100	22,000,000			
World total (rounded)	129,000	130,000	120,000,000			

<u>World Resources</u>: Rare earths are relatively abundant in the Earth's crust, but minable concentrations are less common than for most other ores. Resources are primarily in four geologic environments: carbonatites, alkaline igneous systems, ion-adsorption clay deposits, and monazite-xenotime-bearing placer deposits. Carbonatites and placer deposits are the leading sources of production of light rare-earth elements. Ion-adsorption clays are the leading source of production of heavy rare-earth elements.

USGS Mineral Commodities Yearbook metric tons

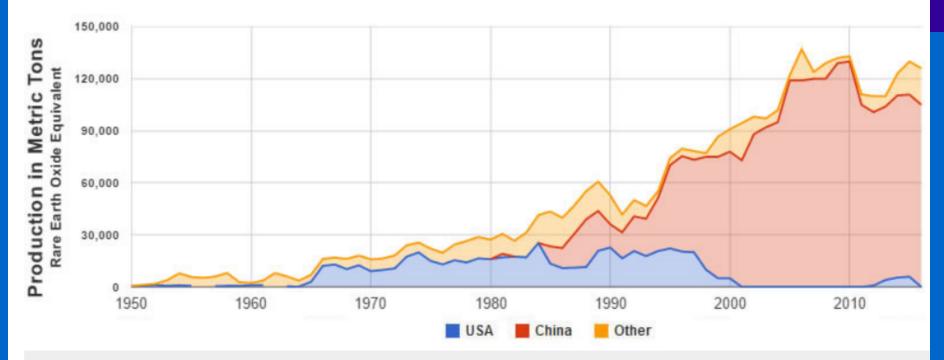
Operating REE Mines

China

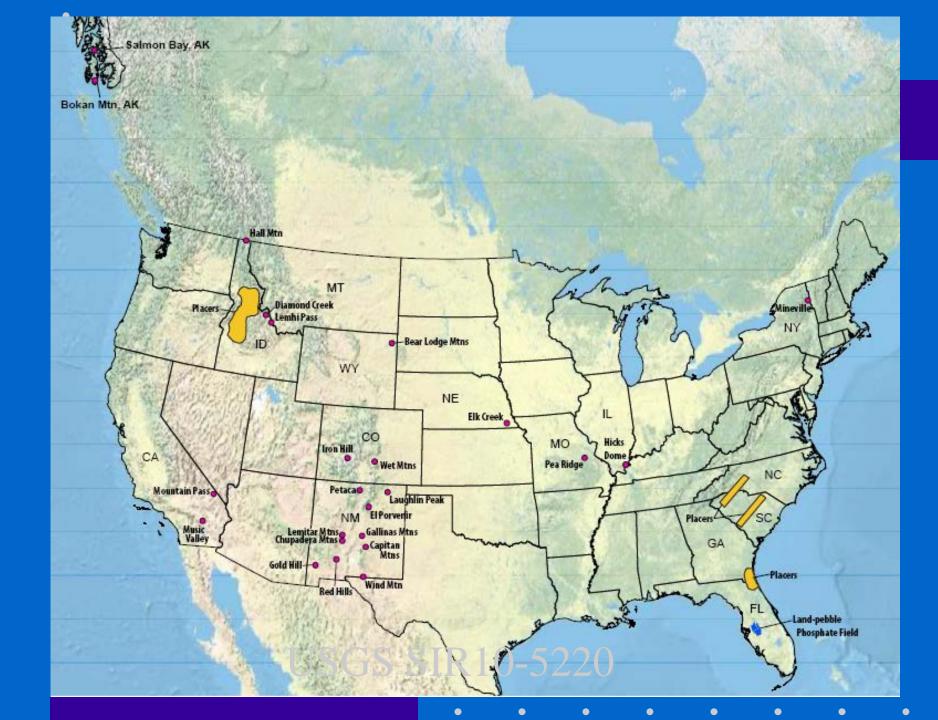

There are about 24 Chinese rare earth mining companies and 100 rare earth enterprises for separating, smelting and refining in China (Schüler et al. 2011). The Chinese industry is undergoing consolidation – mergers and acquisitions by large companies and the closing of small plants. Important rare earth mining companies in China are:

Companies in China	Share of world production [%]
Baotou Iron and Steel and Rare Earth Co. (Baogang Group)	~ 40
Minmetals Ganzhou Rare Earth Co. Ltd.	~ 25
Guangdong Zhujiang Rare Earths Co., Ltd.	~ 4
Hezhou Jinguang Rare Earth New Materials	~ 2
Shanghai Yaolong Nonferrous Metals Co.	~ 1.5
Jiangxi Rare Earths Co. (<1%)	< 1
Aluminum Corporation of China Limited (Chinalco)	

Important rare earth mining companies apart from China are:

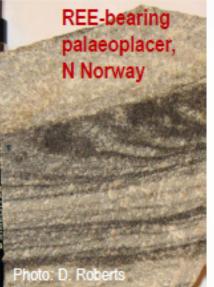

Companies	Share of world production [%]
Molycorp Minerals LLC (Rare Earths Acquisitions LLC) (USA)	1.4
Lovozerskaya GOK (Russia)	1.4
Indian Rare Earths Limited (India)	< 1
Indústrias Nucleares do Brasil (INB) (Brazil)	

Rare Earth Elements



REE - Rare Earth Elements and their Uses

The demand for rare earth elements has grown rapidly, but their occurrence in minable deposits is limited.



Rare Earth Element Production: This chart shows a history of rare earth element production, in metric tons of rare earth oxide equivalent, between 1950 and 2016. It clearly shows the United States' entry into the market in the mid-1960s when color television exploded demand. When China began selling rare earths at very low prices in the late-1980s and early-1990s, mines in the United States were forced to close because they could no longer make a profit. When China cut exports in 2010, rare earth prices skyrocketed. That motivated new production in the United States, Australia, Russia, Thailand, Malaysia, and other countries. In 2016, rare earth production in the United States stopped as the only remaining mine was put on care and maintenance.

Ytterby mine, Sweden Photo: Wikipedia

Yttrium, erbium, terbium and ytterbium all have their names from Ytterby: also holmium, thulium and gadolinium were first discovered in minerals from Ytterby.

Rare Earth Elements

- •World production was 123 000 t in 2010 (BGS, 2011)
- REE are not so rare (0,3 64 g/t in the crust), except Pm
- The ores contain several REE (usually also U and Th): processing is challenging
- 554 projects outside China, few in Europe outside Norden, NW Russia
- Main uses: Catalysts, magnets, metallurgical applications, phosphors ++ Several REE have properties which are uniquely important in a wide range of high-tech applications.

Potential in Europe includes:

- REE in alkaline intrusions, carbonatites, skarn, + related pegmatites, e.g. Norra Kärr (Sweden) – 60 Mt @ 0.54% TREO + 1.72% ZrO₂
- REE in apatite (e.g. Kiruna (Sweden) study in progress)
- Beach sands (e.g. Peramos (Greece) 5.7 Mt @ 1.17 % REE)
- New deposit types, e.g. palaeoplacers
- Lovozero (Kola Peninsula) (reserves >200 Mt @ >1.2% REE) is in ?sporadic production

- •
- •
- •

Project	Owner	Asset Location	Listing	Market Cap (US\$M)	Resources (REO)	Stage	Capacity (REO tpa)	Start Up
Kvanefjeld	Greenland Minerals & Energy	Greenland	ASX	\$150	10.3Mt	Feasibility	44,000+	2016
Mountain Pass	Molycorp	CA, USA	NYSE	\$1,100	1.8 Mt	Commissioning	37,000	2012
Mt Weld	Lynas Corp	WA, Australia	ASX	\$1,200	1.8 Mt	Construction	21,000	2012
Nechalacho	Avalon Rare Metals	NT, Canada	TSX	\$200	4.35 Mt	Feasibility	6,000	2016
Strange Lake	Quest	QC, Canada	TSX-V	\$75	2.4 Mt	Exploration	12,500	2017+
Zandkopsdrift	Frontier	South Africa	TSX-V	\$70	0.94 Mt	Feasibility		2017
Nolans	Arafura	NT, Australia	ASX	\$60	1.7 Mt	Feasibility	10,000	2017?
Dubbo Zirconia	Alkane Resources	NSW, Australia	ASX	\$290	0.5 Mt	Feasibility	2,600	2015
Steenkamskraal	Great Western Minerals Group	South Africa	TSX-V	\$115	0.03Mt	Construction	2,700	2013?

http://www.australianrareearths.com/image s/rees-by-company-country-ex-china.gif

 \bullet

۲

4	1	1	
ι.		2	

Global Rare Earth Deposits										
Deposit	Location	Owner	Status	In-situ	TREO	HREO	Ratio			
Kangankunde	Malawi	LYC	Inf	2.5mt	107,019	759	0.7%			
Steenkampskr	aal Sth Africa	GWG	Hist	0.3mt	29,125	2,246	7.7%			
Hoidas Lake	Canada	GWG	M+Ind+Inf	2.9mt	68,400	2,563	3.7%			
Eco Ridge	Canada	GEM	Ind+Inf	47.4mt	66,402	5,218	7.9%			
Sarlartoq	Greenland	HUD	Inf	14.1mt	216,946	5,623	2.6%			
Mountain Pass	USA	MCP	M+Ind+Inf	31.6mt	2,066,525	9,466	0.5%			
Bokan	Alaska	UCU	Inf	3.7mt	27,525	10,530	38.3%			
Bear Lodge	USA	RES	Inf	21.2mt	795,000	20,691	2.6%			
Kutessay II	Kyrgyzstan	HRE	Inf	18.0mt	46,800	25,000	53.4%			
Nolans Bore	Aust	ARU	M+Ind+Inf	46.0mt	1,150,000	35,995	3.1%			
Zeus (Kipawa)	Canada	MAT	Ind+Int	24.5mt	101,957	36,551	35.8%			
Hastings	Aust	HAS	Ind+Inf	36.2mt	76,020	65,160	85.7%			
Zandkopsdrift	Sth Africa	FRO	Inf	43.7mt	944,568	69,968	7.4%			
Mt Weld	Aust	LYC	M+Ind+Inf	23.9mt	1,888,100	88,578	4.7%			
Eldor	Canada	CCE	Inf	117.3mt	2,041,716	104,433	5.1%			
Dubbo	Aust	ALK	Ind+Inf	73.2mt	651,480	167,960	25.8%			
Norra Karr	Sweden	TSM	Inf	60.5mt	332,750	175,450	52.7%			
Nechalacho	Canada	AVL	Ind+Inf	315.0mt	4,284,000	660,206	15.4%			
Strange Lake	Canada	QRM	Ind+Inf	229.8mt	2,091,180	853,860	40.8%			
Kvanefjeld	Greenland	GGG	Ind+Inf	861.0mt	9,212,700	1,103,802	12.0%			
Owner S	Stock Exchange Ticker Code (ASX and TSX)									
Status A	M = Measures, Ind = Indicated, Inf = Inferred, Hist = Historical									
In-situ C	Dre Tonnes									
TREO T	Total Rare Earth Oxides (Contained)									
HREO H	Heavy Rare Earth Oxides (Contained)									
Ratio R	atio of HREO to IREO Deposit (Ro	TREO	r than 30%)							

http://www.australianrareearths.com/known-rees-resources-reserves.html

• • • • • •

Table 1. Percentage distribution of rare-earth elements by type of ore at major production sites in the United States and China.

[Data are percentage of total rare-earth elements in ore and are rounded to no more than three significant digits; may not add to totals shown. Rare-earth elements are listed in ascending order of atomic number]

	Bastn	Monazite	
Rare-earth element	Mountain Pass, Calif., United States ¹	Bayan Obo, Inner Mongolia, China²	Nangang, Guangdong, China ³
Yttrium	0.10	trace	2.40
Lanthanum	33.20	23.00	23.00
Cerium	49.10	50.00	42.70
Praseodymium	4.34	6.20	4.10
Neodymium	12.00	18.50	17.00
Samarium	0.80	0.80	3.00
Europium	0.10	0.20	0.10
Gadolinium	0.20	0.70	2.00
Terbium	trace	0.10	0.70
Dysprosium	trace	0.10	0.80
Holmium	trace	trace	0.12
Erbium	trace	trace	0.30
Thulium	trace	trace	trace
Ytterbium	trace	trace	2.40
Lutetium	trace	trace	0.14
Total	100	100	100
	Xenotime	Rare-earth laterite	
	Southeast Guangdong, China ⁴	Xunwu, Jiangxi Province, China⁵	Longnan, Jiangxi Province, China ⁵
Yttrium	59.30	8.00	65.00
Lanthanum	1.20	43.40	1.82
Cerium	3.00	2.40	0.40
Praseodymium	0.60	9.00	0.70
Neodymium	3.50	31.70	3.00
Samarium	2.20	3.90	2.80
Europium	0.20	0.50	0.10

https://pubs.usgs.gov/of/2013/1072/QFR2013-1072.pdf

China's rare earth monopoly operates on 4 levels:

- 1. Mining: Basic Resource Production Monopoly
- 2. Value Chain: Integration Monopoly
- 3. Industry & IP Capture: Leverage & Control over All End-Users
- 4. Supplication & Resource Redirection

1. Mining: Basic Resource Production Monopoly

- a. Mining REs without a supporting domestic value chain is pointless because RE concentrates & oxides are useless to technology & defense end-users
- b. Consequently, these RE resource would need to pass through China which has the world's only fully integrated value chain and necessary capacity
- Realistically, China will undercut western production costs, resulting in bankruptcies, as evidenced by Molycorp's bankruptcy and all other 'ongoing' non-Chinese producers

James Kennedy ThREE consulting Inc. http://threeconsulting.com/pdfs/SME2017WebV.p

2. Value Chain: Integration monopoly:

- a. Free market actors cannot be expected to establish any part of the value chain through independent action because the capital required is significantly higher than what is required for resource production (mining), and is at risk of bankruptcy through Chinese manipulation at the value chain level and indirectly through the resource supply level.
- b. China's value chain consists of over 400 companies that produce over 1000 ultrahigh specification products spanning two cities, referred to by the Chinese government as 'rare earth cities', with a combined population of 17 million people.
- c. U.S. Corporations are exclusively motivated by short term profits. Relocating to China typically results in higher profits in the short-term.
 - Short term profit incentives for publicly traded companies outweigh long term consequences. This fuels China's aggressive mercantilist strategy of knocking off non-Chinese producers through relocation and the incremental capture of their technologies and industries
- d. China can bankrupt the value chain directly or bankrupt the resource supplier (the rare earth mine(s)): a two-tiered strategy.

3. Industry & IP Capture: Leverage & Control over End-Users

- a. China is the only country that can guarantee an uninterruptable flow of value added rare earths.
- b. China uses its monopoly control over rare earths to incrementally capture non-Chinese technologies and manufacturing: first by capturing the production of rare earth dependent components, then component sub-assemblies, then product lines, then entire industries.
 - China has already captured much of the world's RE dependent technology and RE end-users because most of the world's leading technologies, consumer goods, commercial goods, industrial goods and defense systems are rare earth dependent.
- c. Now under China's control, China can use carrot-and-stick incentives to force these Chinese dependent companies to continue to use Chinese only value added rare earth products and prevent these companies from developing or supporting the emergence of alternative non-Chinese supply lines through the implied threat of supply disruption.
 - This threat is greatly compounded for defense contractors who may be utilizing Chinese materials without federally required 'waivers' to do so (a federal crime)
- d. As time goes on, China's relative position in all of the above increases. Eventually all rare earth related technology, IP and manufacturing ends up in China
 - Japan is the only exception, but they are losing ground to China
- e. Soon China's control over global technology, markets and economics will become unassailable as it continues to expand far outside the confines of rare earth related technologies, products and industries

Supplication & Resource Redirection:

- a. China will eventually run out of rare earths, but before that happens,
- b. China's next play will be to make the rest of the world its resource supplier

c. China will allow supplicant non-Chinese producers to feed China's rare earth value chain, but China will retain its monopoly at the value adding, metallurgy, component, system, product, industry and IP level.

- Molycorp was an example of resource supplication, as it became a supplier to China's metallurgical value chain.
- All new non-Chinese resource producers can be expected to follow the same strategy.

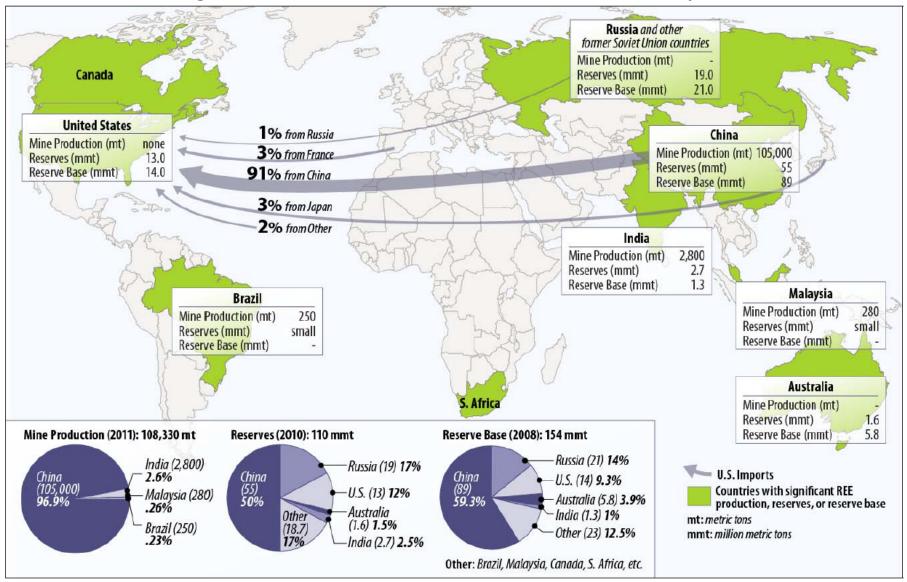
The potential viability of any other stand-alone RE projects is no different without China's sanction; as China *is the market and sets price*

Other issues

- 1. At the time Chinese rare earth industry publications disclosed that the Chinese mining industry maintained rare earth mining capacity equal to three-times global demand
 - Various Chinese publications, available on-line and in English, outlined China's internal production capacity and capabilities. Credible sources listed Chinese internal rare earth production capacity at three-times global demand (*much of this would later manifest as 'black market' production)
 - According to these same sources one-third of this capacity was decommissioned, beginning sometime in 2013*
- 2. Most of China's rare earth production was a byproduct of iron ore mining: having no direct mining cost

Circa 2010 – 2013: China's combined production capacity of rare earths exceeds three times global demand: Association of China Rare Earth Industry, Chinese Society of Rare Earths and other Chinese publications

Continued


- 3. Various commodities producers in the U.S. mining industry were already dumping the recoverable equivalent of at least 85% of global demand each year to avoid regulatory changes first implemented in 1980 (Part 75 of U.S. 10 CFR 40). These regulatory changes were ultimately responsible for transferring the rare earth industry to China in the first place
- Raw rare earth resources and oxides had no high-value uses until they were converted into a useful form, such as metals, alloys, magnets, garnets, phosphors, etc.
- China has the only fully integrated value chain with capacity to produce metals, alloys, magnets, garnets and other value added products from oxides
- Japan has a limited value chain with no available capacity and Japanese industry continues to rely heavily on China to meet its internal / domestic needs

Continued

- Japan was reluctant to expand internal rare earth value chain capabilities because Chinese pricing and control over the market for value added goods offered little or no profit and was ultimately subject to Chinese monopoly price and supply manipulation
- 8. The U.S. had no metallurgical or other value chain capabilities, because;
 - a) China acquired, idled or bankrupt all U.S. value adding capabilities; as a consequence of the same-said regulations above
 - b) U.S. corporations had no interest in investing or developing their own rare earth value chain capabilities because China provided these materials at reasonable prices and the cost of establishing their own value chains would greatly exceed any one company's projected demand of these materials over any time or return measure.

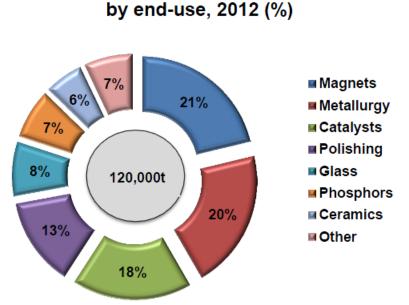
۲

Figure 4. Rare Earth Elements: World Production, Reserves and U.S. Imports

Source: U.S. Geological Survey, Mineral Commodity Summaries, 2008-2013. (Figure created by CRS.)

https://fas.org/sgp/crs/natsec/R41347.pdf

 \bullet \bullet • \bullet ۲

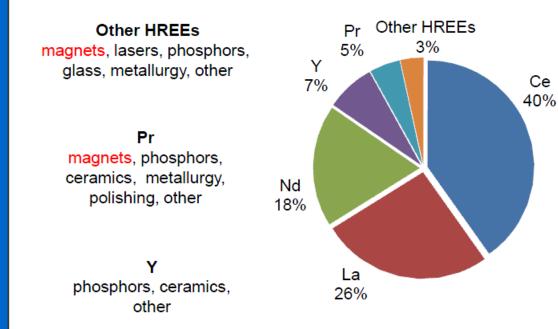

Not all REE are equal

AND

Good substitutions for REE used in modern technology do not exist

Global demand for rare earths by end-use in 2012

- World 'official' production of REO ~110,000t in 2012, 85-90% in China
- World demand ~120,000t in 2012, 65-70% in China



World: Demand for rare earths

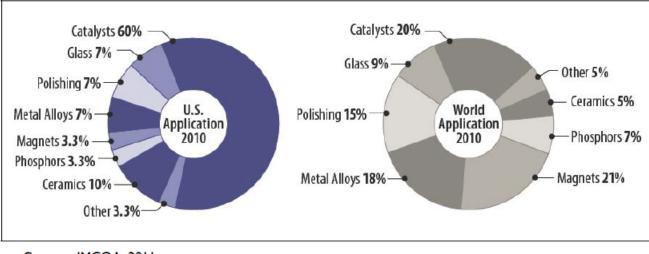
Source: Roskill estimates

Demand for rare earths by element in 2012

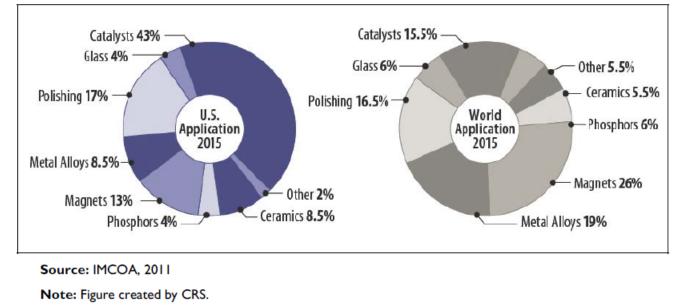
Ce polishing, metallurgy, catalysts, glass, phosphors, ceramics, other

La metallurgy, catalysts, glass, phosphors, ceramics, polishing, other

Nd magnets, ceramics, metallurgy, glass, catalysts, phosphors, other


Source: Roskill estimates

Forecast Rates of Growth 2010-2020


Forecast Rare Earths Sector Rates of Growth 2010-2020						
Application	Growth 2010-2015	Growth 2015-2020	Comments			
Catalysts	3-5%pa	3-5%pa	Growth rate unchanged through the decade.			
Glass	Negligible	Negligible	Negligible growth rate as use in television and computer screens falling off rapidly.			
Polishing	7-10%pa	8-12%pa	Until recently growth was forecast at 4-8%pa, but with increasing use in nano-particulate polishing powders for the electronic industry growth has been strong.			
Metal Alloys	8-12%pa	4-8%	From 2010 to 2015 growth will be driven by the use of NiMH batteries in hybrid vehicles. IMCOA is of the view that meaningful substitution of hybrids by electric vehicles driven by Li-ion batteries will not occur before 2015/16.			
Magnets	10-15%pa	10-15%pa	The real driver of demand in the next decade; price and availability a constraint. Could be greater than the indicated forecast if more of the rare earths used in permanent magnets were to become available.			
Phosphors	6-10%pa	3-6%pa	New lighting devices under development use less rare earths, even though television and computer screens are getting bigger and being replaced more often.			
Ceramics	6-8%pa	4-8%pa	Steady growth rates at historic rates.			
Other	6-8%pa	4-8%pa	Barring the development of a new application with a high demand; steady growth rates at historic rates. Use of gadolinium for refrigeration is included.			

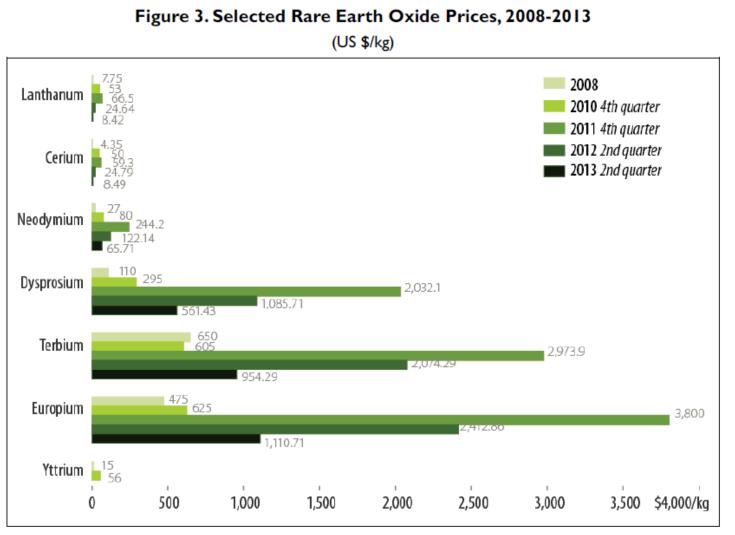
۲

Source: IMCOA, 2011

Note: Figure created by CRS.

۲

۲


Figure 2. Rare Earth Demand by Application-U.S. and World, 2015

https://fas.or g/sgp/crs/nat sec/R41347. pdf

۲

•

Figure 1. Rare Earth Demand by Application-U.S. and World, 2010

https://f as.org/ sgp/crs /natsec /R4134 7.pdf

۲

Source: IMCOA, 2011, 2013 and METI, 2011.

Notes: According to the Ministry of Economy Trade and Industry (METI) of Japan, prices for dysprosium and neodymium metals rose dramatically. The price for dysprosium metal rose from \$250/kg in April 2010 to \$2,840/kg by July 2011, while the price for neodymium metal rose from \$42/kg in April 2010 to \$334/kg in July 2011. 2011 prices taken from CRS Report R42510, *China's Rare Earth Industry and Export Regime: Economic and Trade Implications for the United States*, by Wayne M. Morrison and Rachel Y. Tang. Prices for 2012 (Q-2) and 2013 (Q-2) were obtained from the Lynas Corp. Ltd., Quarterly Report, June 2013.

FORECAST DEMAND FOR RARE EARTHS APPLICATIONS*

Application of separated Rare Earths products	2014 Demand Tonnes REO
Neodymium Rare Earths magnets	49,600
Nickel Metal Hydride battery alloy	32,500
Metallurgy applications excluding NiMH	12,700
Automotive catalytic convertors	12,200
Fluid Cracking Catalyst in oil refining	24,900
Glass polishing powder	20,600
Glass additives	7,800
Phosphors for lighting	10,800
Others	6,100
Total	177,200

⁶ Forecasts are based on Lynas' current expectations and they are not guarantees of future events.

http://www.lynascorp.com/SiteCollectionDocuments/Fact%20Sheets/Rare_Earth_A pplications.pdf

۲

۲

Key demand drivers and growth outlook

Sector	Segment	Sub Segments	Growth rate over GDP	Rare Earths us	
	Fuel Cracking	FCC		La	
Conventional Energy	Emissions control	Catalysts	+ 2%	Ce	
3,	Nuclear	Material		Gd	
Denovieble Energy	Storage	NiMH Batteries	+10-15%	La, Nd	
Renewable Energy	Wind turbines	Magnets	+25-30%	NdPr	
	Emissions Control	Autocat	+6-8%	Ce	
Auto / Transportation	Emissions Control	Oxygen Sensors	0%	Y	
Auto / Transportation	o Mobility	Magnets	+20-25%	NdPr, Dy	
	e-Mobility	Batteries	+20-25%	La, Nd	
Lighting	TC Lamps	Dheenhore	. 50/		
Lighting	LEDs	Phosphors	+5%	Eu, Tb, Y, Ce, La	
Metallurgy	Special Alloys	RE Silicides	+10-15%	CeLa	
	GHD	Polishing	+2-5%	CeLa	
Floatronico	Cameras	Materials	+5-10%	La	
Electronics	Displays	Phosphors	0%	Eu, Tb, Y, Ce, La	
	Capacitors & chips		0%	Dy, Nd, Ce	
	MRI	Magnets	+5-10%	Gd, NdPr	
Medical	PET Scans	Crystals	+10-15%	Lu	
	Medicines	Material	+10-15%	La	
	Defense			NdPr, Dy, La	
Miscellaneous	Decorative Ceramics	Niches		Ce, Pr	
	Agriculture			Če	

9

 \bullet

Looming crisis - Rare Earths supply will be outstripped by demand; 115kt REO in 2010

CHINESE SUPPLY SOURCES (2010 CAPACITY, REO)

NON CHINESE SUPPLY SOURCES (2010 CAPACITY, REO)

 By product of iron ore mine Moving to higher grade iron, w lower impurities and Rare Early 		 India Subsidiary of Indian AEA Toyota Tsusho bought trading firm with Japanese distribution 	3,000t
 Tailing facilities near capacity Sichuan Jiangxi Copper to invest ¥1.2E Target to increase value addee 		 Russia Limited expansion capacity By product of Mg production 	4,000t
 Capacity expected to increase Ionic clay regions Reportedly 14 yrs of resource Large amount of illegal mining Government action taking effe Recycling 	35,000t	 Recycling Magnet swarf Batteries – future potential USA – Mountain Pass Reprocessing stockpiles Requires approx. US\$530 million rebuild 	1,500t 3,000t
Total	103,300t	Total	11,500t
Sc Recention	-	rces and Lynas research B	Lynas CORPORTION LTD

۲

۲

۲

Our assumptions show global supply at 170kt by 2014, compared to demand of 190kt

9

 \bullet

۲

۲

2014 FORECAST SUPPLY ASSUMPTIONS

SUPPLY SOURCES

Baotou	60,000t
Sichuan	20,000t
 Ionic Clay Regions 	30,000t
 Recycling in China 	4,000t
China Total	114,000t
Mount Weld	22,000t
Mountain Pass	20,000t
 Others (India & Russia) 	12,000t
 Recycling outside China 	1,800t
Outside China Total	55,800t
Grand Total	169,800t

KEY UNDERLYING ASSUMPTIONS

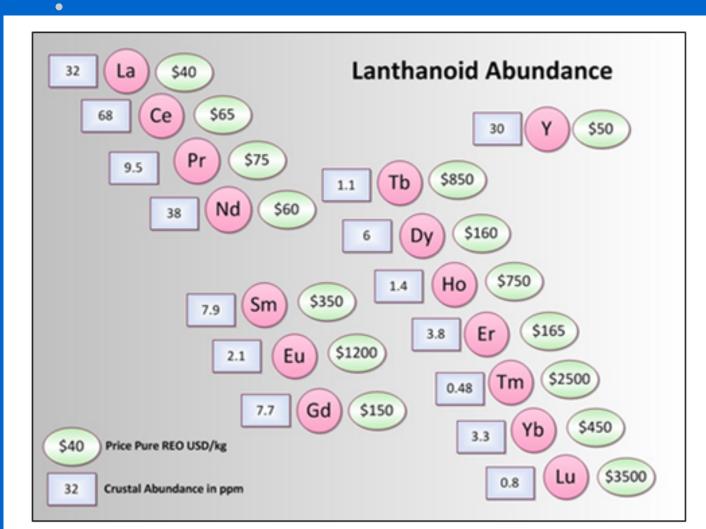
- Baotou 10% production increase 2010 / 2014
- Sichuan full production quota to be utilised
- Iconic Clay 2010 reduced from 2008 reported levels due to news reports. 2014 reduced to double current production quota (conservative estimate, could be lower)
- Mountain Pass full production (20,000tpa) achieved
- Recycling 20% Nd, Pr & Dy recycled from previous year's magnet production (~30% SWARF losses)

۲

Table 1.2: Range of projected surpluses / deficits for select REOs

	2010e	2011p	2012p	2013p	2014p	2015p	2016p	2017p
La ₂ O ₃	0	0	0	✓	~~	~ ~	~~~	~~~
CeO ₂	0	0	0	v .	~~	~~~	~~~	~~~
Nd_2O_3	×	×	×	0	0	~	~~	~~~
Eu ₂ O ₃	хx	XX	XX	XX	×	0	~~	~~
Tb ₄ O ₇	×	×	×	×	×	0	~~	~~~
Dy ₂ O ₃	XX	XX	XX	XX	хx	XX	0	 ✓
Y_2O_3	××	××	XX	××	хx	×	v	~ ~
CREO	×	×	×	×	×	~	~~	~~~

Supply as % demand: **X X** = 50-74% : **X** = 75-94% : **O** = 95-105% : **V** = 106-125% : **V V** = 126-150% : **V V** ≥ 151%


 \bullet

CREO = oxides of Nd, Eu, Tb, Dy & Y

Source: TMR estimates / projections

 \bullet

 \bullet

Prices are for pure oxides from a leading rare earth elements chemical producer in 2009. Pm (prometheum) is not shown because it does not occur in nature and is not commercially available.

 \bullet

۲

۲

۲

REO: rare earth oxide.

USD/kg: United States Dollars per kilogram.

USGS OF2011-1189

 \bullet

 \bullet

۲

۲

RARE EARTH ELEMENTS— MINERALOGY

270 minerals
Bastnaesite LnFCO₃
Apatite > 5400 ppm total REE Ca₅(PO₄)₃(OH,F,CI)
monazite 500,000 ppm total REE (Ln,Th)PO₄

manganese nodules 99,000 ppm total REE

TABLE 2 RARE EARTH CONTENTS OF SELECTED SOURCE MINERALS^{1,2}

(Percent of total pare-earth oxide)

	Basta		Monazite		
	Mountain Pass,	Bayan Obo, Nei	Mount Weld,	Nangang,	
Rare earth	CA, United States ³	Mongol, China ⁴	Australia ⁵	Guangdong, China	
Yttnium	0.10	trace	trace	2)	
Lonthanna	33.20	23.00	26.00	23.	
Centum	49.10	50.00	51.00	42.	
Praseodymium	4.34	6.20	4.00	4.	
Seedymium	12.00	18.50	15.00	17	
Amarikan (0.80	0.80	1.80	3	
Europium	0.10	0.20	0.40	0	
Gadolinism	0.20	0.70	1.00	2	
Terbium	trace	0.10	0.10	0	
Dyspesium	trace.	0.10	0.20	0	
loiminn.	580	trace.	0.10	0	
antium .	trace	trace	0.20	0	
The lines	trace.	trace	trace	1	
r tterbingen	trace	1000	0.10	2	
Lutetium	trace	trace	trace	0	
Total	100	100	100	1	
	Loparite	Rate earth		Xenotime	
	Revda, Munnansk	Xunwu, Jiangxi	Longson, Jiangxi	Southeast	
	Oblast, Russia ⁷	Province, China ¹	Province, China ¹	Guangdong, Chin	
fittrium	1.30	8.00	65.00	59	
ADDADGD	25.00	43.40	1.82	1	
anun.	50.50	2.40	0.40	3	
rateodynium	5.00	9.00	0.70	0	
Seodymium.	15.00	31.70	3.00	3	
Secondaria and	0.70	3.90	2.80	2	
Europium	0.09	0.50	0.10	0	
Gadiolimium	0.60	3.00	6.90	5	
Ferbiana	trace	trace	1.30	L	
Dysprosium	0.60	1000	6.70	9	
Holmium	0.70	trace	1.60	2	
- biens	0.80	tace	4.90	5	
Dealines	0.10	1000	0.70	1	
Merbium	0.20	0.30	2.50	6	
Intetions	0.15	0.10	0.40	1	
Total	100	100	100		

http://minerals.usgs.gov/m inerals/pubs/commodity/ra re_earths/myb1-2012raree.pdf

•

۲

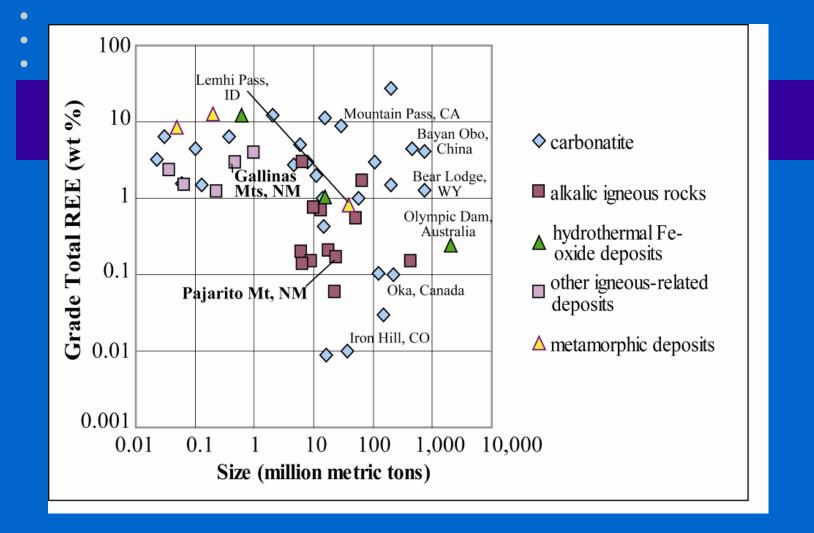
• •

•

Rare Earth Element Minerals & Deposit Types

ullet

Group- Mineral	Formula	Carbonatite	Alkaline Intrusion- Related	Placer	Phosphorite
Oxides					
Aeschynite	(Ln,Ca,Fe)(Ti,Nb) ₂ (O,OH) ₆		Х		
Euxenite	(Y,Ln,Ca)(Nb,Ta,Ti) ₂ (O,OH) ₆		Х	Х	
Fergusonite	YNbO₄		Х		
Carbonates					
Bastnäsite	(Ln,Y)CO ₃ F	Х	Х		
Parisite	$Ca(Ln)_2(CO_3)_3F_2$	Х	Х		
Synchisite	Ca(Ln,Y)(CO ₃) ₂ F	Х	Х		
Tengerite	$Y_2(CO_3)_3 \bullet n(H_2O)$		Х		
Phosphates					
Apatite	(Ca,Ln) ₅ (PO ₄) ₃ (OH,F,Cl)	Х	Х		Х
Monazite	(Ln,Th)PO₄	Х	Х	Х	
Xenotime	YPO ₄		Х	Х	
Silicates					
Allanite	(Ln,Y,Ca) ₂ (Al,Fe ³⁺) ₂ (SiO ₄) ₃ (OH)		Х		
Eudialyte	Na4(Ca,Ce)2(Fe2+,Mn2+,Y)ZrSi8O22(OH,Cl)2		Х		
Thalenite	Y ₂ Si ₂ O ₇		Х		
Zircon	(Zr,Ln)SiO₄		Х	Х	
			Ln: La	anthanide	e (a.k.a. REE)


REE ORES

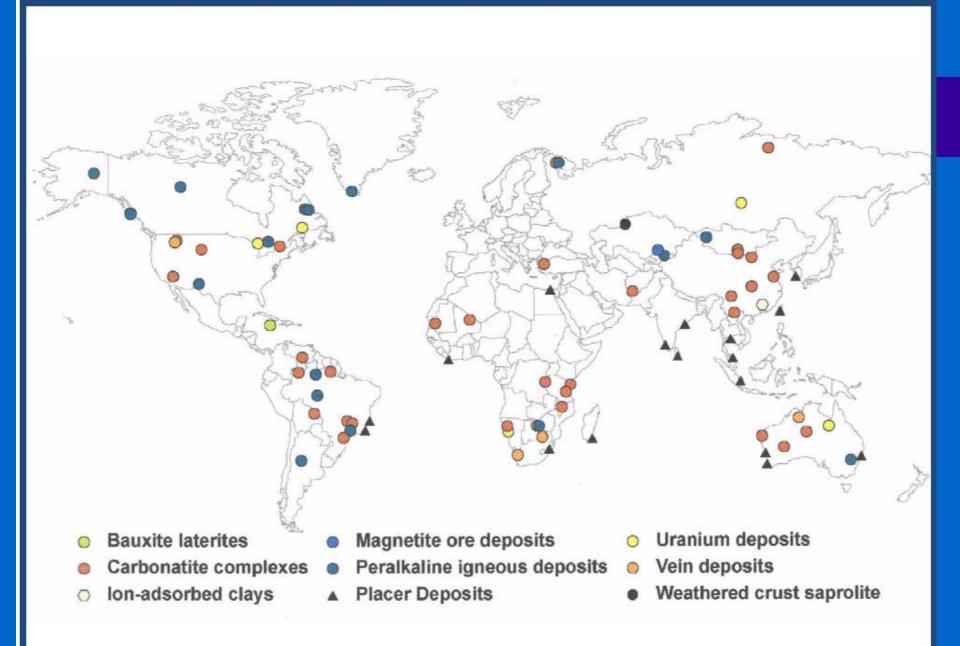
 REE ores contain all rare earth elements except Pm There is no shortage of REE ores Most rare earths are not rare Most ores are rich in Ce, La, Nd and Pr •The rare earths are chemically very similar Producers try to balance supply and demand And are *rarely* successful!

• •	US	World			World
Commodity	production 2009 mt	production 2009 mt	consumption 2009 mt	Price 2009	reserves 2009 mt
Cu	1,190,000	15,800,000	1,660,000	\$2.3/lb	540,000,000
Au	210	2,350	170	\$950/oz	47,000
REO	0	124,000	7,410	varies	99,000,000
Be	120	140	140	\$120/lb	15900+
Sb	0	187,000	22,400	\$2.3/lb	2,100,000
As	385	52,500	3,600	\$0.92/lb	1,070,000
Bi	100	7,300	1,020	\$7.4/lb	320,000
Ga	0	78	20	\$480/kg	1,000,000
Ge	5	14	5	\$950/kg	450+
Те	W		W	\$145/kg	22,000
cement	71,800,000	2,800,000,000	73,800,000	\$100/mton	• • •

Deposit	Location	Size (tons	Grade	Type of
		REE)	%	deposit
			REE	
Bayan	Inner	48,000,000	6	Carbonatite
Obo	Mongolia			and/or Fe
				oxide-Cu-Au
Mountain	California	1,800,000	8.9	Carbonatite
Pass				
Mount	Australia	1,700,000	11.2	Carbonatite
Weld				laterite
Dubbo	Australia	700,000	0.86	trachyte
Thor Lake	NW	1,547,000	0.41	Alkaline rock
	Territories,			
	Canada			
Strange	Laborador,	440,000	0.85	Alkaline rock
Lake	Quebec			

Dep	osit	Tonnage (metric tons)	Grade (percent TREO)	Contained TREO (metric tons)	Source			
	Reserves—Proven and probable							
Mountain Pass,	California	13,588,000	8.24	1,120,000	Molycorp, Inc. (2010).			
			Resources—Inferred					
Bear Lodge,	Wyoming	10,678,000	3.60	384,000	Noble and others (2009).			
		Re	sources—Unclassifie	d				
Bald Mountain,	Wyoming	18,000,000	0.08	14,400	Osterwald and others (1966).			
Bokan Mountain,	Alaska	34,100,000	0.48	164,000	Keyser and Kennedy (2007).			
Diamond Creek,	Idaho	5,800,000	1.22	70,800	Staatz and others (1979).			
Elk Creek,	Nebraska	39,400,000			Molycorp, Inc. (1986).			
Gallinas Mtns.,	New Mexico	46,000	2.95	1,400	Jackson and Christiansen (1993).			
Hall Mountain,	Idaho	100,000	0.05	50	Staatz and others (1979).			
Hick's Dome,	Illinois	14,700,000	0.42	62,000	Jackson and Christiansen (1993).			
Iron Hill,	Colorado	2,424,000,000	0.40	9,696,000	Staatz and others (1979).			
Lemhi Pass,	Idaho	500,000	0.33	1,650	Staatz and others (1979).			
Mineville,	New York	9,000,000	0.9	80,000	McKeown and Klemic (1956).			
Music Valley,	California	50,000	8.6	4,300	Jackson and Christiansen (1993).			
Pajarito,	New Mexico	2,400,000	0.18	4,000	Jackson and Christiansen (1993).			
Pea Ridge,	Missouri	600,000	12	72,000	Grauch and others (2010).			
Scrub Oaks,	New Jersey	10,000,000	0.38	38,000	Klemic and other (1959).			
Wet Mountains,	Colorado	13,957,000	0.42	59,000	Jackson and Christiansen (1993).			

Grade and size (tonnage) of selected REE Deposits, using data from Oris and Grauch (2002) and resources data from Schreiner (1993) and Jackson and Christiansen (1993) for the Gallinas Mountains. Deposits in bold are located in New Mexico.


۲

۲

TYPES OF REE DEPOSITS

- Carbonatites
- Pegmatites
- Iron oxide Cu-Au (REE)
 - Magnetite ore bodies
- Porphyry Mo
- Metamorphic/ metasomatic
- Paleoplacer/placer/ beach sands
- Colluvial REE

- Stratiform phosphate residual
- Ion adsorption clays/laterite/bauxite
- REE-Th-U Hydrothermal Veins
- Unconformity uranium deposits
- Quartz-pebble conglomerate deposits
- Collapse breccia pipes
- Sea floor muds
- Other REE-Bearing Deposits

 \bullet \bullet ۲ \bullet ۲ ۲ ۲

Ce in automotive catalytic

converters

- Recovering PGMs
- 19,000 metric tons Ce
- No technologies at the present time

http://pubs.usgs.gov/of/2013/1037/OFR201 3-1037.pdf

Figure 1. Stockpiled catalytic converters (CATCONs) that have been removed from vehicles before the CATCONs were dismantled and recycled for platinum-group metals. Photograph courtesy of Ashok Kumar, Director, A–1 Specialized Services & Supplies, Inc. Used with permission.

New process recycles valuable rare earth metals from old electronics

It's gone. Undo What was wrong with this ad? Instewart Reparitive Inspiropriate

"Recycling rare-earth metals out of consumer waste is problematic, and there are multiple obstacles in the entire chain from manufacturing to collection infrastructure to sorting and processing," said CMI scientist Ryan Ott. "We're looking at ways to make the processing part of that chain—removing the rare-earths from scrap magnet material—better."

In the liquid extraction method CMI has developed, scrap metals are melted with magnesium. The lighter atomic weight rare earths like neodymium bind with the magnesium and leave the iron scrap and other materials behind. Then the rare earths are recovered from the magnesium through vacuum distillation.

In the second step, another material is used to bind with and extract the heavier atomic weight rare earths, like dysprosium.

http://phys.org/news/2015-02-recycles-valuable-rare-earth-metals.html

Economic risks

- Less than 1 in 10,000 deposits become mines
- Estimated 1 in 2,000 or 3,000 prospects become mines
- Ore processing is very deposit specific because of the mineralogy

- •
- •

Table 2 Current producers out of China

No.	Company	Location	Country	Current capacity (tpy REO)	Target capacity after 2015 (tpy REO)
1	Molycorp Minerals	Mountain Pass, CA	USA	3 000	40 000
2	Lovozersky Mining Company	Kamasurt Mine, Kola Peninsula	Russia	3 0004 400	15 000
3	Solikamsk Magnesium Works	Solikamsk Processing Plant, Urals	Russia		
4	Indian Rare Earths	Orissa, Tamil Nadu and Kerala	India	100	10 000
5	Toyota/Sojitz/Gov.of Vietnam		Vietnam	1 800–2 000	>2 000
6	Neo		Thailand		
7	Lynas/Malaysia	Gebeng, Malaysia	Malaysia		
8	Indústrias Nucleares do Brasil S/A (INB)	Buena Norte	Brazil	1 500	>1 500
Total				9 500–11 000	>68 500

- •
- •

Table 3 Under preparation producers

No.	Company	Location	Countries	2011-2013 Capacity	Target capacity after 2010
				(tpy REO)	(tpy REO)
1	Lynas Corp	Mount Weld, Western Australia, and a	Australia	10 500	21 000
		processing plant in Gebeng, Malaysia			
2	Rareco/Great Western Minerals	Steenkramskaal, South Africa	South	3 000	5 000
	Group		Africa/Canada		
3	Sumitomo/Kazatomprom/	Kazakhstan	Kazakhstan/	3 000	15 000
	SARECO JV		Japan		
4	Toyota/Sojitz/Govt. of Vietnam	Dong Pao, Vietnam	Vietnam/Japan	300	5 000
5	Toyota/Indian Rare Earths jv	Orissa, India	India/Japan	5 000	10 000
6	Mitsubishi/Neo Material	Pitinga, Brazil	Japan/USA/Canad	500	1 000
	Technologies		a/Brazil		
7	Alkane Resources	Dubbo, NSW, Australia	Australia	2 600	6 000
Total				24 900	63 000

Table 4 Exploration-candidate supplier

-					
No.	Company	Location	Countries	2011-2013 Capacity	Target capacity (tpy REO)
				(tpy REO)	in 2015
16	Avalon Rare Metals Inc	Nechalacho deposit rich in HREEs in	Canada	0	5 000
		NWT, Canada			
17	Quest Rare Metals	Strange Lake and others in Quebec/	Canada	0	0
		Labrador, Canada			
18	Ucore	Bokan-Dotson Ridge project, Alaska	USA	0	0
19	Matamec	Kipawa deposit in Quebec, Canada	Canada	0	0
20	Arafura	Nolan's project, Australia	Australia	10 000	20 000
21	Great Western Minerals Group	Hoidas Lake, Canada	Canada	3 000	5 000
22	Rare Element Resources	Bear Lodge, Wyoming, USA	USA	0	0
23	Stans Energy Corp	Kutessay ll Mine, Orlovka	Kyrgyz Republic	0	0
		Kyrgyz Republic			
24	Greenland Minerals and Energy	Kvanefjeld-Greenland	GreenLand	0	10 000
25	Japan-Mongolia JV	Mongolia	Mongolia	0	0
Total				13 000	40 000

•

Property	Proven & Probable Reserves	Measured & Indicated Resources	Inferred Resources	Total
Mountain Pass	48,375			48,375
Mount Weld	2,040	12,200	5,294	19,534
Steenkampskraal			250	250
Dubbo Zirconia		37,500	35,700	73,200
Nolan's Bore		17,400	12,800	30,200
Bear Lodge			15,876	15,876
Montviel			133,636	133,636
Nechalacho	12,001	88,130	226,880	327,011
Kvanefjeld		365,000	92,000	457,000
Strange Lake			114,823	114,823

•

Project	Tonnage (ooo)	Grade (%)	Mineral Type	HREE (%)	Stage	Start Up?
Mountain Pass	48,375	7.0	Carbonatite	0.4	Construction	2012
Mount Weld	19,534	8.8	Carbonatite	3.0	Construction	2012
Steenkampskraal	250	11.7	Monazite	7.7	Feasibility	2013
Dubbo Zirconia	73,200	0.9	Peralkaline syenite	23.0	Feasibility	2014
Nolan's Bore	30,200	2.8	Pegmatite	4.0	Feasibility	2014
Bear Lodge	15,876	3.5	Carbonatite	3-3	Pre- feasibility	2015
Montviel	133,636	1.3	Carbonatite	2.0	Scoping	2015
Nechalacho	327,011	1.3	Peralkaline syenite	26.0	Feasibiity	2016
Kvanefjeld	457,000	1.0	Peralkaline syenite	14.0	Pre- feasibility	2016
Strange Lake	114,823	1.0	Peralkaline syenite	47.0	Pre- feasibility	2016

Project	TREO Basket Value (mid 2011)	Annual TREO Production	Infra- structure	Necessary Capital Expenditure (US\$ million)
Mountain Pass	127	40,000		781
Mount Weld	150	22,000		512
Steenkampskraal	161	5,000	Good	70
Dubbo Zirconia	207	6,500	Good	178
Nolan's Bore	161	20,000	Poor	1,014
Bear Lodge	222	10,000	Good	88
Montviel	208		Good	300 (?)
Nechalacho	301	10,000	Poor	863
Kvanefjeld	218	43,729	Poor	2,310
Strange Lake	313	12,100	Poor	563

RE-oxide prices, FOB China (US\$/kg)

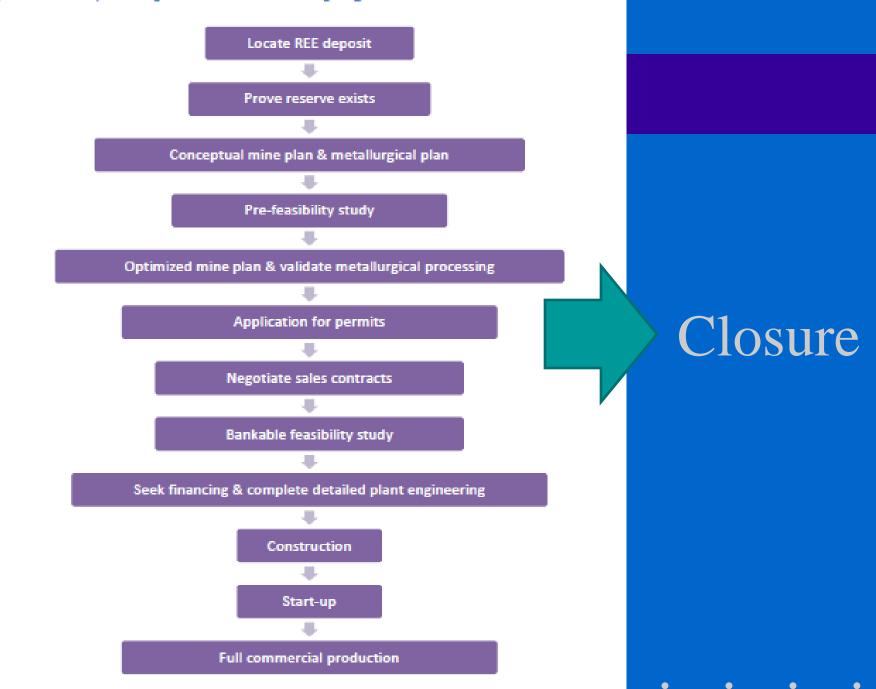
Oxide 99% min purity	2007	2008	2009	2010	31 March 2011	30 June 2011	18 Oct 2011
Cerium	3.65	4.25	4.15	61.00	121.00	149.00	71.00
Dysprosium	93.00	94.50	116.50	295.00	640.00	1510.00	2240.00
Europium	350.00	480.00	480.00	630.00	940.00	3190.00	3790.00
Gadolinium	10.45	7.75	6.75	44.50	147.50	202.50	142.50
Lanthanum	4.70	7.75	5.55	60.00	120.50	148.00	64.00
Neodymium	29.25	14.24	22.75	87.00	201.50	317.50	154.69
Praseodymium	29.75	14.25	22.25	86.50	196.00	238.50	218.50
Samarium	4.05	4.50	4.50	34.50	106.50	128.50	101.50
Terbium	610.00	410.00	350.00	605.00	990.00	2910.00	3010.00
Yttrium	11.40	15.25	10.25	72.50	142.50	169.50	142.50

 \bullet

 \bullet

۲

۲


Source: metal-pages.com

 \bullet

 \bullet ۲

Figure 16: Major Steps Taken In Developing A Rare Earth Elements Mine

The Kingsnorth 8: steps in developing rare-earths projects

1. <u>Resource</u>: grade, REO distribution

 Mineralogy : which minerals; liberation not too fine; beneficiate to > 30% REO

3. Scoping study

4. Pilot plant (beneficiation, extraction, separation)

Demonstrate technical viability/flexibility

The Kingsnorth 8 (cont'd)

- 5. Environmental approval: government, social
- 6. Marketing plan: recognizing the 'balance' issue
- 7. Definitive feasibility study and financing
- 8. Construction & start-up

Exploration methods

 \bullet

۲

Exploration methods

- Radiometric
 - Most occur with U and Th
- Gravimetric
 - Many are surrounded by mafic alkaline rocks (gravity high) or sedimentary rocks (gravity low)

۲

- Geochemical
- Drilling, trenching

•

lacksquare \bullet ۲

Mine Design Sequence

Iterative Evaluation Process

- Geologic Analysis & Sampling
 - Resource Characterization
 - Geomechanics
 - Metallurgy
- Reserve Estimation & Cutoff Grade Assessment
- Mine Size & Mining Rate
- Closure, Reclamation & Post Mining Uses
- Mining Method & Systems
- Equipment, Infrastructure, Mine Layout, Labor Estimates
- Sequencing & Production Optimization
- Cost Estimation (Operating and Capital Costs)
- Financial Analysis
- Corporate Evaluation

Rare Earths Boot Camp St. Andrews Club & Conference Centre Toronto, Ontario, Canada - November 1, 2011

Mining Method Selection

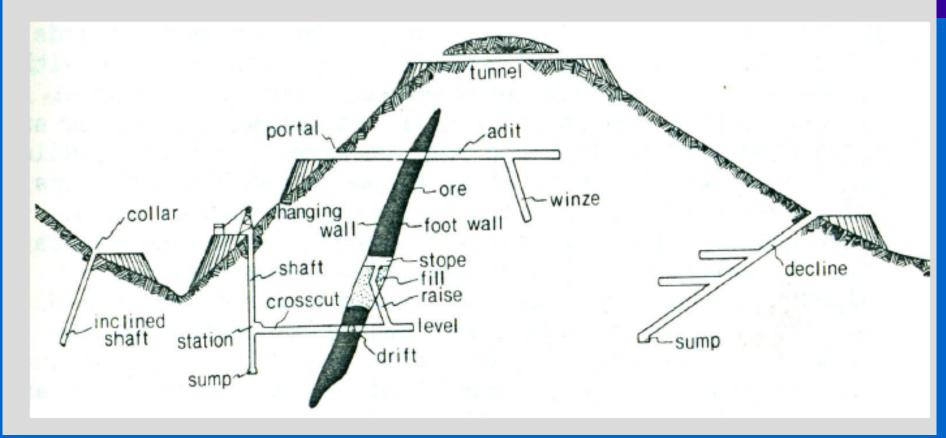
- Traditional Approach: Use designs and systems that have successfully work at mines with similar geologic and operating characteristics.
- Very conservative approach usually mandated by regulatory process and external financing, often is employed at the expense of technical innovations and improved labor practices.
- Mitigates risk: Mining history littered with examples of mines heavily reliant on new technology failing because of over estimated performance.
- Any Mining Method Considers Ore to Waste Ratios !

Open Pit Factors - Strip Ratio :: Underground Factors - Dilution Factor

Rare Earths Boot Camp St. Andrews Club & Conference Centre Toronto, Ontario, Canada - November 1, 2011

Surface Mining Methods & Systems

- Open Pit Mining Massive & Disseminated Deposits
- Strip Mining Bedded & Flat Laying Deposits
- Quarry/Aggregate Mining Common to Place-Value Mineral Commodities
- Placer Mine Minerals in Alluvium



- •
- •

Underground Mining Terms

(U.S. Forest Service, Anatomy of a Mine, Pg. 75)

Mineral Processing

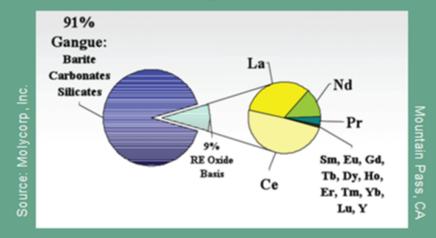
• The processes focused on physically separating the grains of valuable minerals from the gangue minerals to produce an enriched portion, or concentrate, and a discard portion, or tailings.

- Two major functions
 - Liberation
 - Separation

Comminution is from the Latin word *comminuere* meaning to make small and is needed to achieve <u>Liberation</u>.

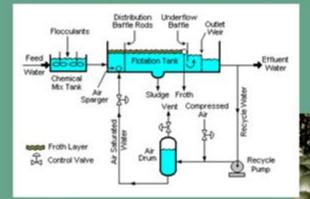
Crushing and grinding of the ore to a particle size such that the product is a mixture of relatively free particles of valuable mineral and gangue.

Do not want to grind beyond the liberation size (wastes energy) or minimum size that unit operations do not function well at (reduces recovery and/or grade).



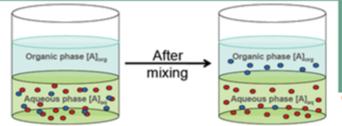
Rare Earths Boot Camp St. Andrews Club & Conference Centre Toronto, Ontario, Canada - November 1, 2011

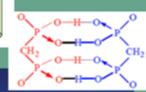
Mineral Processing


≊USGS

Requires two steps: (1) separate REE minerals from other minerals; (2) separate individual REE.

≊USGS


Separating Rare Earth Minerals


Froth flotation is the most common method for separation of rare earth minerals from other minerals in ore.

Separating Individual REE

Solvent extraction uses small differences in solubility between individual REE. REE minerals are leached with an acid or base, then mixed with an organic chemical that strips a selected REE.

Separation

 \bullet

۲

۲

- Gravity
- Magnetic
- Flotation
- Electrostatic Separation

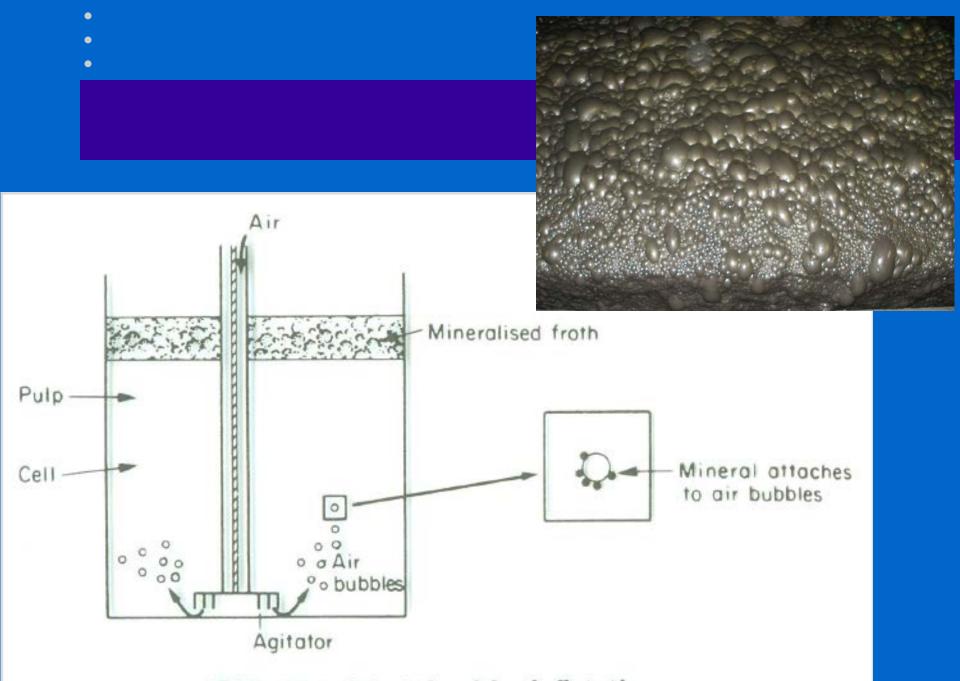
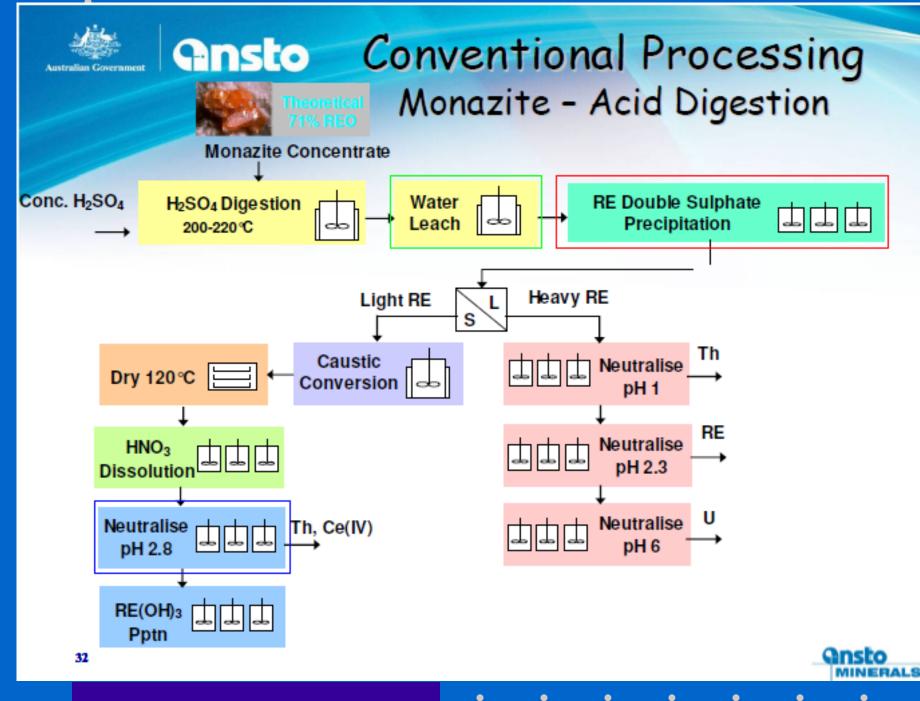
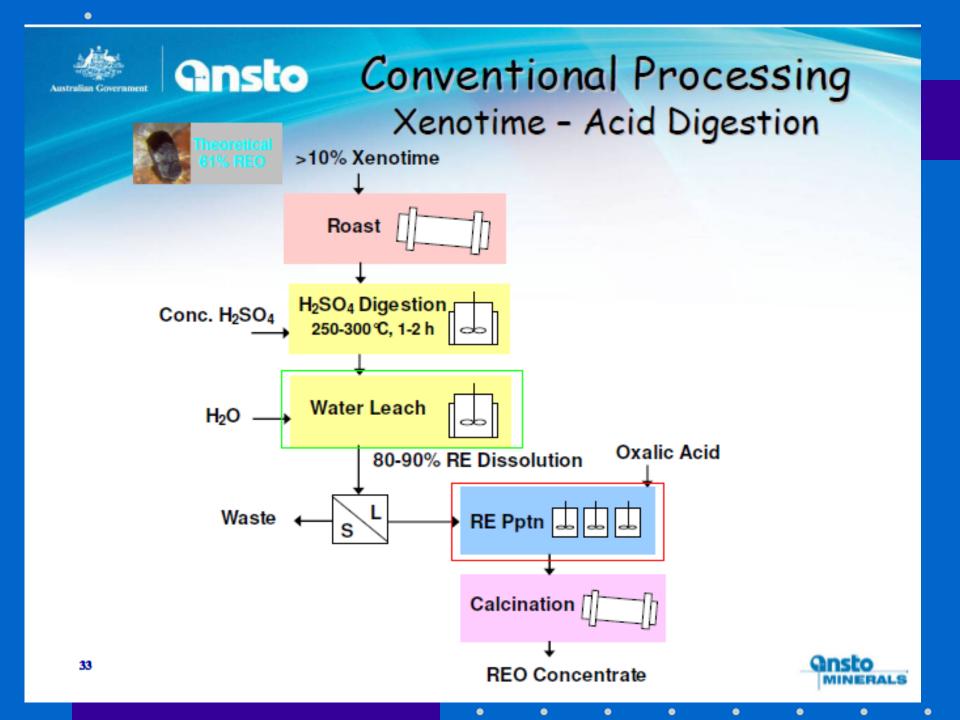
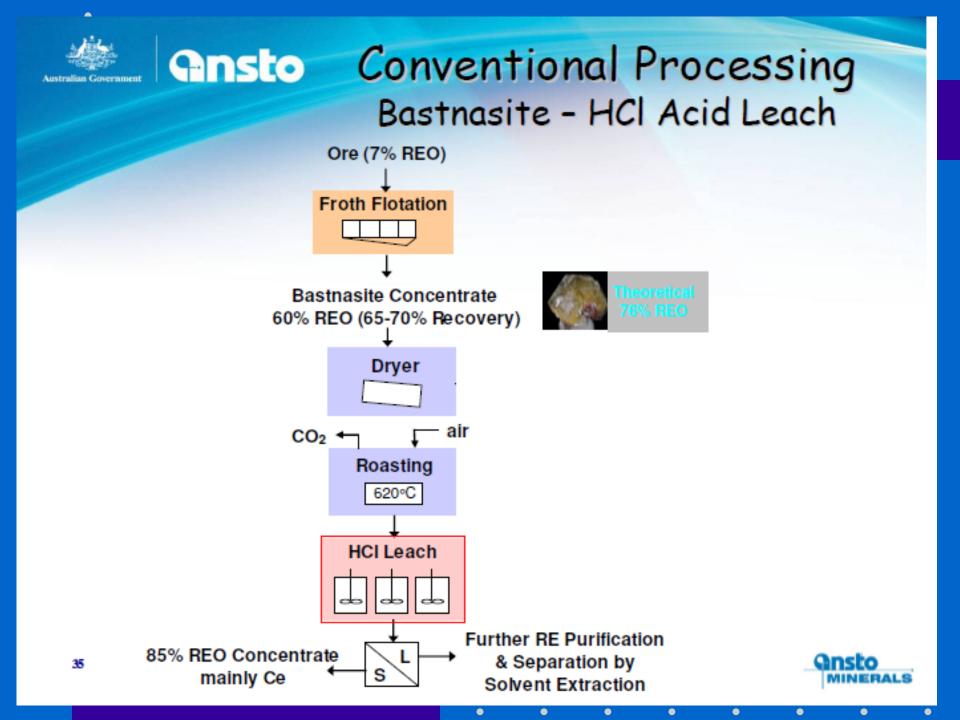


FIG. 12.1. Principle of froth flotation.

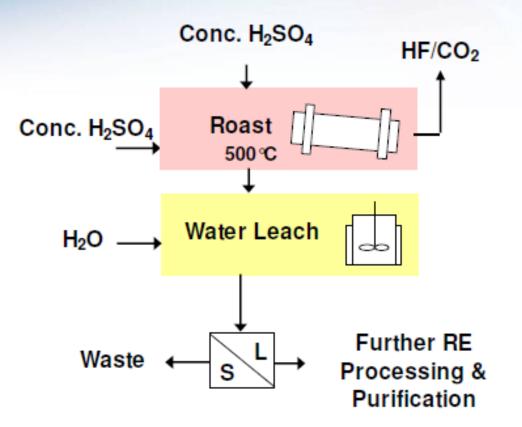

Monazite Ore Processing


- The ore undergoes grinding, spiraling, or other similar operations for the initial coarse upgrading of the ore.
- Magnetic separation removes the magnetic ore constituents which can be processed separately or discarded as waste.
- The refined ore is then digested with sulfuric acid at 200-220°C.
- Rare earth sulfates and thorium sulfates are then dissolved and removed from the waste monazite solids by filtration.
- Rare earth elements are then precipitated as oxalates or sulfates.
- These precipitates undergo separations to form rare earth oxides.

Rare Earths Boot Camp St. Andrews Club & Conference Centre Toronto, Ontario, Canada - November 1, 2011


BASTNASITE ORE PROCESSING

- Bastnasite mining near Mountain Pass in southeastern California will be a the major source of rare earth metals in the U.S. again.
- The previous recovery process of the rare earths from this ore is shown.
- The ore was initially crushed, ground, classified, and concentrated by flotation to increase the rare earth concentrations from about 5% to about 60% (REO).
- The concentrated bastnasite undergoes an acid (HCl) digestion to produce several rare earth chlorides.
- The resulting slurry is filtered, with sodium hydroxide to produce rare earth hydroxides.
- This rare earth hydroxide cake is chlorinated, converting the hydroxides to chlorides.
- Final filtration and evaporation yields the solid rare earth chloride products.



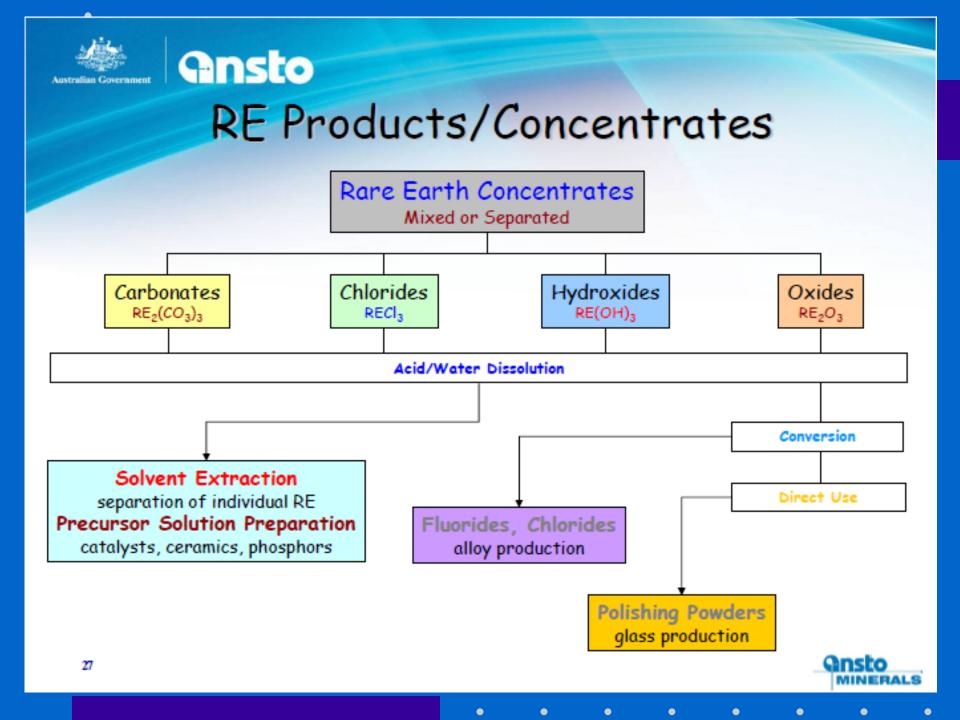
Rare Earths Boot Camp St. Andrews Club & Conference Centre Toronto, Ontario, Canada - November 1, 2011

Geneto Conventional Processing Bastnasite - H₂SO₄ Roast-Leach

۲

 \bullet

۲


Processing of the Products

- The rare earth hydroxides and chlorines which are recovered from monazite and bastnasite are, respectively, typically would undergo further processing to produce and recover individual rare earth metal compounds for a variety of applications.
- Several processes are used to produce rare earth fluorides, nitrates, carbonates, oxides, and pure metals.
- Processes used include fractional crystallization, fractional precipitation, solvent extraction, ion exchange, and reduction.

Rare Earths Boot Camp St. Andrews Club & Conference Centre Toronto, Ontario, Canada - November 1, 2011

Ansto

Rare Earth Processing

Key Points

- Processing of conventional RE sources is well established but processing of other sources is NOT;
- The mineralogy of RE is complex and <u>'a specific process is</u> needed for a specific ore';
- Multiple unit processes are required to reject the elemental and radioactive impurities associated with the RE;
- 4. There is an exponential increase in the complexity where the RE are trying to be recovered as a by-product and multiple processing options need to be explored.

۲

۲

۲

•

lacksquarelacksquare۲

Politics

- Government reports are abundant
- China's policy is unknown and ever changing
- Afghanistan has potential REE deposits

۲

• Some countries will subsidize the development of their deposits

Environmental issues

- Limited case studies
- Knowedge is limited
- Environmental risks likely vary among deposit types
- U, Th issues
- Other trace elements (Cd, Ni, Se???)
- Acid drainage is probably low, but monitor it

- Few sulfide minerals
- Abundant carbonates.

Rare Earth Element Minerals & Chemistry

Group-Mineral	Formula	REO Wt%	ThO ₂ Wt%	UO ₂ Wt%
Oxides				
Aeschynite	(Ln,Ca,Fe)(Ti,Nb) ₂ (O,OH) ₆			
Euxenite	(Y,Ln,Ca)(Nb,Ta,Ti),(O,OH),			
Fergusonite	YNbO₄			
Carbonates				
Bastnäsite	(Ln,Y)CO ₃ F	70 - 74	0 - 0.3	0.09
Parisite	$Ca(Ln)_2(CO_3)_3F_2$	59	0-0.5	0-0.3
Synchisite	Ca(Ln,Y)(CO ₃) ₂ F	49 – 52	1.6	
Tengerite	$Y_2(CO_3)_3 \bullet n(H_2O)$			
Phosphates	2. 3.3 . 2 .			
Apatite	(Ca,Ln)₅(PO₄)₃(OH,F,Cl)	0 -20		
Monazite	(Ln,Th)PO₄	35 - 71	0 - 20	0 - 16
Xenotime	YPO ₄	52 – 67	0 - 3	0 -5
Silicates	4			
Allanite	(Ln,Y,Ca) ₂ (Al,Fe ³⁺) ₂ (SiO ₄) ₃ (OH)	3 - 51	0 -3	
Eudialyte	$Na_4(Ca,Ce)_2(Fe^{2+},Mn^{2+},Y)ZrSi_8O_{22}(OH,Cl)_2$	1 - 10		
Thalenite	Y ₂ Si ₂ O ₇			
Zircon	(Zr,Ln)SiO	0-0.7	0.1 - 0.8	
			In Ionthonido	

Ln: Lanthanide (a.k.a. REE)

Scarred landscape from small REE mines in China and pipeline spill

Every ton of REE produced generates approximately 8.5 kg (18.7 lb) of F and 13 kg (28.7lb) of dust. Using concentrated sulfuric acid high temperature calcination techniques to produce approximately 1 ton of calcined REE ore generates 9,600 to 12,000 m3 of waste gas containing dust concentrate, hydrofluoric acid, sulfur dioxide and sulfuric acid, approximately 75 m3 of acidic wastewater, and about 1 ton of radioactive waste residue (containing water). (Chinese Society of Rare Earths)

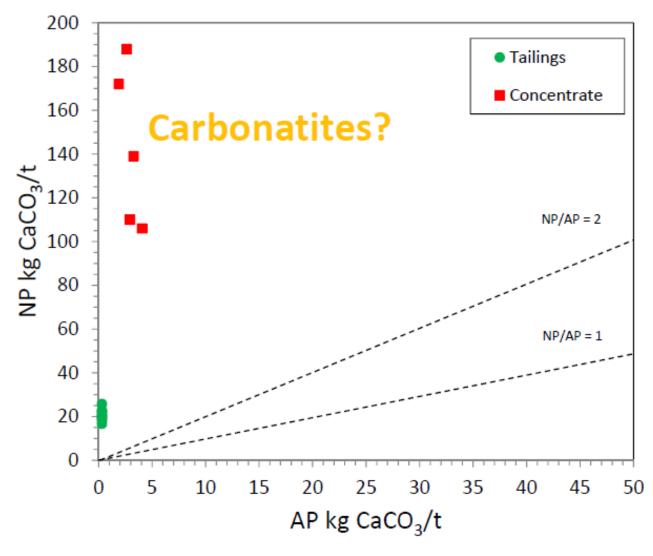
• • •

1 ton of REES creates 2,000 tons of mine tailings

• • • • • • • •

Rare Earth Element Minerals & Chemistry

Group-Mineral	Formula	REO Wt%	ThO ₂ Wt%	UO ₂ Wt%
Oxides				
Aeschynite	(Ln,Ca,Fe)(Ti,Nb) ₂ (O,OH) ₆			
Euxenite	(Y,Ln,Ca)(Nb,Ta,Ti),(O,OH),			
Fergusonite	YNbO₄			
Carbonates				
Bastnäsite	(Ln,Y)CO ₃ F	70 - 74	0 - 0.3	0.09
Parisite	$Ca(Ln)_2(CO_3)_3F_2$	59	0-0.5	0-0.3
Synchisite	Ca(Ln,Y)(CO ₃) ₂ F	49 – 52	1.6	
Tengerite	$Y_2(CO_3)_3 \bullet n(H_2O)$			
Phosphates	2. 3.3 . 2 .			
Apatite	(Ca,Ln)₅(PO₄)₃(OH,F,Cl)	0 -20		
Monazite	(Ln,Th)PO₄	35 - 71	0 - 20	0 - 16
Xenotime	YPO ₄	52 – 67	0 - 3	0 -5
Silicates	4			
Allanite	(Ln,Y,Ca) ₂ (Al,Fe ³⁺) ₂ (SiO ₄) ₃ (OH)	3 - 51	0 -3	
Eudialyte	$Na_4(Ca,Ce)_2(Fe^{2+},Mn^{2+},Y)ZrSi_8O_{22}(OH,Cl)_2$	1 - 10		
Thalenite	Y ₂ Si ₂ O ₇			
Zircon	(Zr,Ln)SiO	0-0.7	0.1 - 0.8	
			In Ionthonido	


Ln: Lanthanide (a.k.a. REE)

Molycorp Mountain Pass

 \bullet

- Th and Ra contamination of waste water spills in 1990s closed the mine
- Desert tortoise
- Evaporating ponds
- Water use
- Th, Ra in waste materials

Acid-Generating Potential - Thor Lake, NWT, Canada

Despite lack of data, carbonatite-hosted REE deposits would be expected to be strongly net alkaline.

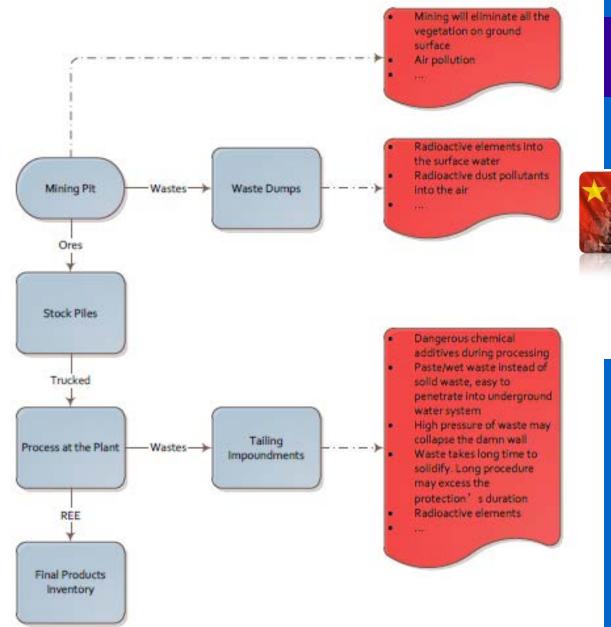
٠

Thor Lake data: http://www.reviewboard.ca/registry/project.php?project_id=87

 \bullet

Rare Earth Elements: Surface Water Guidelines

		Yellow River, Baotou, China Bayan Obo Industrial Complex			Valzinco, VA		Thor Lake, NWT, Canada
	MPC*	Main Channel	Site F	Site G	VLZN-10	VLZN-3	Tailings HCT
pН	μg/L	7.6 - 8.2		3.7 - 6.9	1.1	3.3	7.5
Y μg/L	6.4				370	2.0	0.183
La µg/L	10.1	0.103	140	988	340	4.6	
Ce µg/L	22.1	0.22	152	1149	870	9.5	
Pr μg/L	9.1	0.0304	16.08	294	150	1.2	
Nd µg/L	1.8	0.095	52.01	1193	650	4.7	
Sm µg/L	8.2	0.023	6.91	62.35	180	0.9	
Gd µg/L	7.1	0.028	7.22	67.33	140	0.7	
Dy μg/L	9.3	0.082	3.8	9.08	93	0.4	


 \bullet

*From: Maximum Permissible Concerntration; Sneller et al. (2000)

Thor Lake data: http://www.reviewboard.ca/registry/project.php?project_id=87

Appendix 15: Environmental Risks from REE Production

HYBRID HYBRID

Politics & Economics of Rare Earths Citigroup – Global Commodities Research Columbia University School of International and Public Affairs

•

Inditenges

 \bullet

 \bullet

- • •
- •

KEY ISSUES FOR REE

Finite resources

- Chinese market dominance
- Long lead times for mine development
- Resource nationalism/country risk
- High project development cost
- Relentless demand for high tech consumer products
- Ongoing material use research
- Low substitutability
- Environmental issues
- Low recycling rates
- Lack of intellectual knowledge and operational expertise in the west

Table 12. Time required to obtain permits, construct, and commission recently opened metal mines in the United States.

[NYA, not yet achieved, production not yet begun or commercial operations not achieved; PGE, platinum group elements. Yes, long permitting and development delays because of litigation by government agencies and nongovernmental organizations]

Min	е	Commodity	Permitting began	Permitting completed	Production began	Commercial operations began	Litigation reported
Alta Mesa,	Texas	U	1999	2004	10/2005	1/2006	
Arizona 1,	Arizona	U	mid-2007	2009	NYA	NYA	Yes.
Ashdown,	Nevada	Mo Au	2/2004	11/2006	12/2006	NYA	
Buckhorn,	Washington	Au	1992	9/2006	10/2008	11/2008	Yes.
Carlota,	Arizona	Cu	2/1992	6/2007	12/2008	1/2009	Yes.
Eagle,	Michigan	Ni Cu Co PGE	4/2004	1/2010	NYA	NYA	Yes.
East Boulder,	Montana	PGE	1995	1998	6/2001	1/2002	
Kensington,	Alaska	Au	3/1988	6/2005	9/2010	NYA	Yes.
Leeville,	Nevada	Au	7/1997	8/2002	10/2006	4th quarter 2006	
Lisbon Valley,	Utah	Cu	2/1996	7/2004	1st quarter 2006	NYA	Yes.
Pend Oreille,	Washington	Zn	1992	9/2000	1/2004	8/2004	
Phoenix,	Nevada	Au	1/1999	1/2004	10/2006	4th quarter 2006	
Pogo,	Alaska	Au	12/1997	4/2004	2/2006	4/2007	
Rock Creek,	Alaska	Au	2003	8/2006	9/2008	NYA	Yes.
Rossi (Storm),	Nevada	Au	1990	3Q/2006	3/2007	12/2007	
Safford,	Arizona	Cu	4/1998	7/2006	4th quarter 2007	2nd half 2008	Yes.
Turquoise Ridge	, Nevada	Au	9/1995	5/2003	2004	NYA	

(Long et al., 2010)

ADDITIONAL CHALLENGES

- How much REE do we need?
- Are there enough REE in the pipeline to meet the demand for these technologies and other uses? Can REE be recycled? Are there substitutions that can be used? What are the reclamation challenges?
 - REE are nearly always associated with U and Th and the wastes from mining REE will have to accommodate radioactivity and radon

ADDITIONAL CHALLENGES

Will there be enough scientists engineers to develop the mine?

Substitutions

CONCLUSIONS

- REE are important for green technologies as well as our entire lifestyle and new uses will be found because of their unique properties
- REE are found in specific locations based on favorable geology and there is sufficient supply for the near future
- Need for understanding the mineralogy and distribution of these minerals in known ore deposits