New Mexico

STATEMAP mapping status
- Mapping in progress
- Mapping complete
- NM Congressional Districts

Contact Information

New Mexico Bureau of Geology & Mineral Resources
L. Greer Price, Director & State Geologist (575.835.5294)
J. Michael Timmons, NM STATEMAP Program Director (575.835.5237)
David J. McCraw, NM STATEMAP Cartographic Coordinator (575.835.5594)
Phil L. Miller, NM STATEMAP Map Production Coordinator (575.835.5487)

http://geoinfo.nmt.edu

USGS Geologic Mapping Program Office
Program Coordinator: Peter T. Lyttle (703.648.6943)
Associate Program Coordinators:
Linda Jacobsen (703.648.4335)
Douglas Howard (703.648.6978)

http://ncgmp.usgs.gov
Modern digital geologic maps are essential for New Mexico's environmental and economic prosperity. Geologic maps are uniquely suited to solving problems involving Earth resources, hazards, and environments, and perhaps most importantly for the people of New Mexico, such maps help identify and protect water-supply wells, and are fundamental for all environmental studies and land-use plans.

One of the primary objectives of the New Mexico Bureau of Geology and Mineral Resources is to characterize the state's geology in sufficient detail to allow governments, communities, planners, and scientists to use these map data in matters of practical economic, environmental, and basic scientific concerns. The bureau’s mapping program is cooperative in the broadest sense; STATEMAP priorities are set annually by the 40+ member N.M. STATEMAP Advisory Committee, comprised of professionals from federal, tribal, state, and local agencies, as well as private industry.

**STATEMENT OF OUTCOME:** Of the 121,598 sq. miles of New Mexico, about 35% has been mapped at a scale of 1:24,000. In total, 712 quadrangles have been produced by the bureau and USGS efforts over the history of these agencies. Approximately 217 quadrangles have been completed under the 20 year history of the NM STATEMAP Program, indicating a dramatic increase in mapping activity and efficiency. Few of these pre-STATEMAP quadrangles are located within the metropolitan corridors, and very few are mapped well enough to satisfy the current needs of hydrologists, engineers, land-use managers, and planners. The most critical area is the populated zone along the Rio Grande watershed from the Colorado border to Elephant Butte Reservoir, which contains 50%+ of the state’s population on 5% of its land area. Rapid population growth, shallow alluvial aquifers, large topographic relief, and the alternating scarcity and abundance of precipitation, give rise to a host of hydrologic and engineering problems here.

Due to these concerns, the N.M. Office of the State Engineer, among other state agencies, many New Mexico counties, and several pueblo tribes conduct hydrologic studies to determine water resource availability, protect existing water rights, and plan for continued growth in the region. Increasing consumption of surface and ground waters by a growing population, a continuing long-term regional drought, and the competing needs of municipalities, agriculture and endangered species in riverine ecosystems, make geologic and hydrologic data collection and interpretation a critical need for the state. Because much of the state’s water is produced from Tertiary sedimentary basins, a thorough geologic understanding of these basins is essential to develop accurate models and data collection and interpretation a critical need for the state.

Due to these concerns, the N.M. Office of the State Engineer, among other state agencies, many New Mexico counties, and several pueblo tribes conduct hydrologic studies to determine water resource availability, protect existing water rights, and plan for continued growth in the region. Increasing consumption of surface and ground waters by a growing population, a continuing long-term regional drought, and the competing needs of municipalities, agriculture and endangered species in riverine ecosystems, make geologic and hydrologic data collection and interpretation a critical need for the state. Because much of the state’s water is produced from Tertiary sedimentary basins, a thorough geologic understanding of these basins is essential to develop accurate models and data collection and interpretation a critical need for the state.

Due to these concerns, the N.M. Office of the State Engineer, among other state agencies, many New Mexico counties, and several pueblo tribes conduct hydrologic studies to determine water resource availability, protect existing water rights, and plan for continued growth in the region. Increasing consumption of surface and ground waters by a growing population, a continuing long-term regional drought, and the competing needs of municipalities, agriculture and endangered species in riverine ecosystems, make geologic and hydrologic data collection and interpretation a critical need for the state. Because much of the state’s water is produced from Tertiary sedimentary basins, a thorough geologic understanding of these basins is essential to develop accurate models and data collection and interpretation a critical need for the state. Because much of the state’s water is produced from Tertiary sedimentary basins, a thorough geologic understanding of these basins is essential to develop accurate models and data collection and interpretation a critical need for the state. Because much of the state’s water is produced from Tertiary sedimentary basins, a thorough geologic understanding of these basins is essential to develop accurate models and data collection and interpretation a critical need for the state. Because much of the state’s water is produced from Tertiary sedimentary basins, a thorough geologic understanding of these basins is essential to develop accurate models and data collection and interpretation a critical need for the state.