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Critical minerals contain elements that are vital to
the economy
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Many of New Mexico’s historic mining districts have

not been actively mined in decades
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Microorganisms catalyze many important
geochemical reactions that matter for mining

* Fe and S oxidizing microorganisms drive
sulfide mineral oxidation, which can result
in acidic rock drainage (ARD) generation

CuFeS, + 4.25 0, + H* = Cu?* + Fe3* + 2SO0, + 0.5 H,0
* Bioremediation of metal-impacted areas

Wlth algae

B

Without algae

From Johnson (2014), courtesy of Dan Jones



Microorganisms catalyze many important
geochemical reactions that matter for mining

Iron oxidizers attaghed to
pyrite £ &,
> ;

* Metal-cycling
microorganisms can be used
for biomining and B, e
bioleaching = SSHE A e e e e 2013)

e Biotic Fe and S oxidation is
faster than abiotic oxidation
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Microorganisms catalyze many important
geochemical reactions that matter for mining

* Metal-cycling
microorganisms can be used = _ @
for biomining and B ers et 4l £013)
bioleaching Despite their importance to metal cycling, we | =

don’t know that much about microorganismsin |

mine waste
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Research motivations

* What microorganisms are
associated with historic mine
waste?

* How do microbial communities
relate to waste type, mineralogy,
and geochemistry?

* Are metal cycling microorganisms
abundant? What can microbial
communities tell us about
biogeochemical processes
occurring in historic mine waste?




Center and Carlisle Mines (Steeple Rock District)
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Center Mine (Steeple Rock District

-—

e Active until 1994

e District produced Au, Ag, Cu,
Pb, Zn

* 6 in of cover on top of mixed
waste
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Center Mine (Steeple Rock District
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Carlisle Mine (Steeple Rockstrit

 Exploration began 1860, :
Production first reported
1880

e District produced Au, Ag,
Cu, Pb, Zn

* Intensive exploration from

1970-1994 for Au-Ag

* Mostly bulk waste, some
tailing

o 375 75
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Carlisle Mine (Steeple Rock District

* Exploration began 1860,
Production first reported
1880

e District produced Au, Ag,
Cu, Pb, Zn

* Intensive exploration from
1970-1994 for Au-Ag

* Mostly bulk waste, some
tailing
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Copper Flat (Hillsboro)
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Copper Flat (Hillsboro)

e Laramide porphyry-copper

e Sporadic production since
1982

* Seasonal acidic seep
e Bulk waste rock and tailings
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Copper Flat HiHsbor

e Laramide porphyry-copper

e Sporadic production since
1982

Seasonal acidic seep
e Bulk waste rock and tailings
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Copper Flat (Hillsboro
Laramide porphyry-copper
Sporadic production since 1982

Seasonal acidic seep
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Research motivations

e What are the microbial
communities associated with mine
waste?

How do we get a e
representative sample?

composition, abundance, and
metabolic activity be correlated
with geochemistry and mineralogy,
especially with an eye towards
critical minerals?




Capture heterogeneity
while maintaining a
balance with the overall
community

* Consistent sampling
depth

* Cover the entirety of
waste pile geometry

PC Dan Jones



Capture heterogeneity
while maintaining a
balance with the overall
community

Individual geochemistry hole
samples AND a composite for
each waste type

PC Dan Jones



Amplicon sequencing: Community fingerprinting with rRNA or other
genes/transcripts

Sample Extract

* Who is home? (In many samples)
* rRNA genes/transcripts, other functional genes
* Bacterial, archaeal, and eukaryotic communities

— =<

Environmental
sample

Identify/classify Analyze
Sp.A Sp.B Sp.C Sp.D Sp.E ..

Sample 1 0 0 0 4 0
Sample 2 23 0 0 0 0

sample 3 0 4 3 32 0 —
Sample 4 71 8 58 4 0
Sample 5 31 0 45 5 0
" 2 Sample 6 1 0 2 19 1
. L Sample 7 0 0 0 0 0
Amplify specific Sample8 0 0 0 0 O
genes/transcripts Sampled — 0 0 0 1 0
Sample 10 0 0 2 4 0

Courtesy of Dan Jones



Amplicon sequencing: Community fingerprinting with rRNA or other
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At least 2 DNA extractions per
sample to avoid “nugget

effect”
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Sp.A Sp.B Sp.C Sp.D Sp.E ..
Sample 1 0 0 0 4 0
Sample 2 23 0 0 0 0
Sample 3 0 4 3 32 0
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Sample 6 1 0 2 19 1
Sample 7 0 0 0 0 0
Sample 8 0 0 0 0 0
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Courtesy of Dan Jones



Different waste types have very different microbial

communities with little to no overlap

Copper Flat Seep
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NMS 2

Waste type drives community differences
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Testing our methodology: Composite samples capture
some of the heterogeneity of the individual samples
without overemphasizing that heterogeneity

ooooo
© composite




Testing our methodology: Multiple DNA extractions
per sample were similar




Relative abundance of archaea is greatest in seeps and
waste rock
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Bulk waste and tailings microbial communities do not closely
resemble ARD or bioleaching consortia
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, ||I [ [ ] I _ B |||-| |- |l I _Il
n I | -
Seep Waste rock Tailings Seep Waste rock ' Tailings
| I | ‘
3 Gallionella
Acidithiobacillus

[}
8 g
o
c 02 ©
S hel
€ g
c s,
& ©
o [
g >
= g
3 ©
© °
2
u\o o
0.1 ‘ |
1
. Ill | I _ U l B B



What about the other microorganisms present?

Candidatus Nitrososphaera

Novel microorganisms

Seep Waste rock Talllngs

Candidatus Nitrocosmicus “ |‘“‘| ‘|||‘| ‘
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Metal cyclers only loosely track geochemical results

Iron cyclers Sulfur cyclers
10
e Waste rock
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* Tailings
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Larger implications for metal cycling and
bioremediation

* Bulk waste and tailings communities do not closely resemble typical ARD
or bioleaching communities

* Bulk waste covered by a soil cover had microbial communities that
strongly resembled soil communities

* Many of the microorganisms identified are novel, especially in tailings
samples




Future Work

* rRNA transcripts analysis

e Cell counts

 Amplicon sequencing from Black
Hawk and Alhambra Mines from
the Black Hawk District

* Microbial diversity analyses




Thank youl!
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Mackenzie.best@student.nmt.edu
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Microbial communities vary with depth (and oxidation)

/ Above oxidation front

NMS 2

At oxidation front

/ Below oxidation front
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Microbial communities vary with depth (and oxidation)
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Testing our methodology: Multiple DNA extractions
per sample were similar

CN23-15Aind S11_  CN23-15A S122 L CN23-16Aind_S11_ CN23-16A S138 L CN23-17Aind_S11_  CN23-17A S123 L CN23-18Aind_S11_  CN23-18A S139 L CN23-19Aind S11_  CN23-19A S140 L_

B Nitrososphaeraceae_ge(100) M Nitrososphaeraceae_ge(97) B Pseudarthrobacter(100) Candidatus_Nitrososphaera(100) M Solirubrobacter(100) B Candidatus_Nitrocosmicus(62)
W67-14_ge(87) B MB-A2-108_ge(100) B uncultured(100) W uncultured_ge(98) B Actinobacteria_unclassified(60) M Nitrososphaeraceae_ge(70)

W RCP2-54_ge(88) W Gitt-GS-136_ge(100) Bacteria_unclassified(99) MB-A2-108_ge(100) M uncultured_ge(99) ® Microvirga(100)

M Nitrososphaeraceae_ge(71) H MB-A2-108_ge(100) H67-14_ge(99) W 67-14_ge(100) M uncultured_ge(98) M Nitrososphaeraceae_ge(100)

W Bacillales_undassified(88) Nocardioides(100) 0319-7114 ge(99) Rubrobacter(100) uncultured(85) Pird_lineage(94)



