NEW MEXICO INSTITUTE OF MINING AND TECHNOLOGY

E. J. Workman, President

STATE BUREAU OF MINES AND MINERAL RESOURCES

Eugene Callaghan, Director

Circular 15

TABLES OF FLUORESCENT AND RADIOACTIVE MINERALS

Compiled 1947 by

ROBERT L. HERSHEY, Student assistant

Second edition, revised 1955 by

Ming-Shan Sun, Mineralogist

Socorro

1955

FLUORESCENCE

During the past few years prospecting in New Mexico has expanded so as to include many minerals besides gold, silver, and the common base metals. The use of fluorescent light has helped to expand the field for both the prospector and the technical engineer. The New Mexico Bureau of Mines and Mineral Resources arranged for the writer to compile the attached tables illustrating the behavior of minerals under ultra-violet light, for the use of prospectors and other interested persons.

Some minerals have the property of emitting light of different colors while they are exposed to direct radiation such as ultra-violet rays. If the emission of light lasts only as long as the mineral is exposed to direct radiation, the mineral is said to be fluorescent; if the emission lasts after the direct radiation has been cut off, the mineral is said to be phosphorescent. These tables refer only to the property of fluorescence.

The wave lengths of ultra-violet light are measured in Angstrom units (A.U.), which are fractions of a centimeter or more exactly .0000001 millimeter. Rays with wave lengths shorter than 3100 A.U. are short rays. Such rays are obtained from cold quartz tubes. The cold quartz tube is useful because it can be built in a portable unit and can be used very conveniently for prospecting in the field.

Rays with wave length longer than 3100 A.U. are long rays. These rays are obtained from heat-generating units such as arc lamps, and are generally used only in laboratory work. Black Bulb, Black Light, and Wonder Light are convenient sources of long waves. There are many manufacturers of the portable or laboratory ultraviolet units. One can find dealers in such units in many big cities. A few such dealers are listed below:

- (1) W. H. Curtin & Company, P. O. Box 118, Houston, Texas
- (2) Central Scientific Company, 3555 Whittier Blvd., Los Angeles 23, California
- (3) Eberbach & Son Company, Ann Arbor, Michigan
- (4) The Denver Fire Clay Company, 121 North 7th Street, or P. O, Box 497, Albuquerque, New Mexico
- (5) Fisher Scientific Company, 2850 South Jefferson, St. Louis 18, Missouri
- (6) Braun Corporation, 2260 East 15th Street, Los Angeles 21, California
- (7) Ward's Natural Science Establishment, Inc., 3000 Ridge Road East, Rochester 9, New York

FLUORESCENT MINERALS

Note:

- (1) Minerals marked with an asterisk (*) are radioactive-
- (2) A double asterisk (**) indicates that the fluorescent color is not obtainable from the references consulted.
- (3) Minerals which have been found in New Mexico are capitalized.

	CHEMICAL	COLOR UNDER	COLOR UNDER	
NAME	FORMULA.	SHORT RAY	LONG RAY	REACTION
AGATE (gem)	SiO ₂	Strong green		Good
Alexandrite (gem)	BeAl ₂ O ₄	**		Fair
Aluminite	$Al_2O_3 \cdot SO_3 \cdot 9H_2O$	White	White	Fair
ALUNITE	K2Al6 (OH) ₁₂ (SO4) ₄	White		Fair
Amber (gem)	Hydrocarbon	Yellow-green to blue-white		Fair
AMAZONITE (gem)	KAlSi ₃ O ₈	Dirty pale green		Fair
AMETHYST (gem)	SiO_2	Green		Fair
ANGLESITE	PbSO ₄	Yellow	Yellow	Fair
ANORTHOCLASE	(Na,K)AlSi ₃ O ₈	Blue		Fair

APATITE (See Fluorapatite)

ħ	APOPHYLLITE	$KF{\cdot}Ca_4(Si_2O_5)4{\cdot}8H_2O$	Yellowish		Fair
	ARAGONITE	CaCO ₃	Fire-red, cream-white	Pink, green	Good
	AUTUNITE*	$CaO \cdot 2UO_3 \cdot P_2O_5 \cdot 8H_2O$	Strong yellow- green	Strong yellow- green	Good
	AXINITE	HCa ₃ Al ₂ BSi ₄ O ₁₆	Red	Red	Fair
	BARITE	BaSO ₄	**	**	Fair
		(Generally not fluore	scent)		
	Barylite	Be ₂ BaSi ₂ O ₇	Blue		Fair
	BASSETITE*	$CaO \cdot 2UO_3 \cdot P_2O_5 \cdot 8H_2O$	Strong yellow- green	Strong yellow- green	Fair
	Benitoite (gem)	BaTiSi ₃ O ₉	**	**	Fair
	BERYL (gem)	Be ₃ Al ₂ (SiO ₃) ₆	Very dark green	Very dark green	Fair
	BORAX	$Na_2B_4O_7 \cdot 10H_2O$		Greenish	Fair
	BRUCITE	Mg(OH) ₂	**	**	Fair
	CALCITE	CaCO ₃	Red		Good
	Calcium-larsenite	(Pb,Ca)ZnSiO ₄	strong yellow		Good
	CARNELIAN (gem)	SiO ₂	Dull purple		Good
	CELESTITE	SrSO ₄	White		Fair
	CERUSSITE	PbCO ₃	Pale Blue	Yellow	Fair
	CHALCEDONY	SiO ₂	Strong green, variable		Good

	CHALCOCITE	Cu_2S	**	**	Fair.
ъ	Chrysoberyl (gem)	BeAl ₂ O ₄	**	**	Fair
	CHRYSOPRASE (gem)	SiO ₂	Strong greem		Fair
	Clinohedrite	$H_2CaZnSiO_5$	Bright orange	Pink	Good
	Colemanite	$Ca_2B_6O_{11}$ ·5H ₂ O		Green	Good
	Cuproscheelite	(Ca,Cu)WO ₄	Dull green		Good
	Curtisite	Hydrocarbon	Yellowish green	Yellowish green	Good
	Diamond (gem)	Carbon	**	**	Fair
	DOLOMITE	CaMg(CO3)	White	White, blue- white	Fair
	Elaterite	Hydrocarbon		Brown	Fair
	EPSOMITE	MgSO ₄ ·7H ₂ O		Pale blue	Fair
	EMERALD (gem)	Be ₃ Al ₂ (SiO ₃) ₆	Very dark green	Very dark green	Fair
	FLUORITE	CaF ₂		Blue	Good
	FLUORAPATITE	$(CaF)Ca_4(PO_4)_3$	Orange		Fair
	GARNET (gem)	$3RO \cdot R_2O_3 \cdot 3SiO_2$	Dull purple	Dull purple	Fair
	Gay-Lussite	Na ₂ CO ₃ ·CaCO ₃ ·5H ₂ O		Pink	Fair
	GYPSUM	CaSO ₄ ·2H ₂ O		Green	Good
	Gyrolite	$H_2Ca_2Si_3O_9H_2O$	White	White	Fair
	Hackmanite	Variety of sodalite	Pale pink	Pale pink	Good

	HALITE	NaCl	Vivid red		Good
9	Hexagonite	CaMg ₃ (SiO ₄) ₃	Red	Pink	Fair
	Hiddenite	LiAl(SiO ₃) ₂		Weak orange	Pair
	HYDROMAGNESITE	MgCO ₃ ·Mg(OH) ₂ ·3H ₂ O		Greenish	Fair
	HYDROZINCITE	$3ZnCO_3 \cdot 3Zn(OH)_2$	Vivid blue		Good
	HYALITE (gem)	SiO ₂ ·nH ₂ O	Yellow-green		
	Jade (gem)	Ca2(Mg,Fe)5(OH)2(Si4O11)2	Dark green bright streaks	Dark green bright streaks	Fair
	Johannite*	$(Cu,Fe,Na_2)O \cdot UO_3 \cdot SO_3 \cdot 4H_2O$	Characteristic yellow-green	Characteristic yellow-green	Fair
	Kunzite (gem)	LiAl(SiO ₃) ₃		Weak orange	Fair
	Lanthanite	(La,Di,Ce) ₂ (CO ₃) ₃ ·8H ₂ O	**	**	Fair
	LEUCITE	KAl(SiO ₃) ₂		Orange	Fair
	Meta-torbernite*	$Cu(UO_2)_2P_2O_8\cdot 8H_2O$	Characteristic yellow-green	Characteristic yellow-green	Good
	Masonite	$Pb_4(PbCl)_2Ca_4(Si_2O_7)_3$	Blue		Fair
	OPAL (gem)	SiO ₂ ·nH ₂ O	Green		Good
	OPAL*	SiO ₂ ·nH ₂ O	Strong bright green		Good
	Ozocerite	Hydrocarbon	Yellowish		Fair
	PECTOLITE	HNaCa ₂ (SiO ₃) ₃	Yellow		Good
	PERIDOT (gem)	(Mg,Fe) ₂ SiO ₄	Dark brown to green	Dark brown to green	Fair

PETROLEUM	Hydrocarbon	Yellowish green	Yellowish green	Good
PITCHBLENDE	Uranium oxide	Yellowish green	Yellowish green	Fair
POWELLITE	Ca(Mo,W)O ₄	Yellowish white		Good
Priceite	$5CaO \cdot 6B_2O_3 \cdot 9H_2O$	Yellowish		Fair
PYROMORPHITE	$(PbCl)Pb_4(PO_4)_3$		White	Fair
QUARTZ (gem)	SiO ₂	Strong green		Good
Ruby (gem)	Al ₂ O ₃	Weak red to wine-red	Weak red to wine-red	Fair
Sapphire (gem)	Al ₂ O ₃	Weaker than ruby	Weaker than ruby	Fair
SCAPOLITE	CaCO ₃ ·3CaAl ₂ Si ₂ O ₈ to NaCl·3NaAlSi ₃ O ₈	Moderate yellow	Vivid yellow	Good
SCHEELITE	CaWO ₄	Blue		Good
Schroeckingerite*	Hydrous U carbonate	Yellowish green	Yellowish green	Good
(Dakeite)				
SELENITE	$CaSO_4 \cdot 2H_2O$		Green	
SMITHSONITE (gem)	ZnCO ₃	Blue-green	Green	Good
SODALITE	3NaAlSiO ₄ •NaCl	Pale pink	Pale pink	Fair
SPHALERITE (gem)	ZnS		Strong orange	Good
SPINEL (gem)	MgAl ₂ O ₄	Weak red to wine-red	Weak red to wine-red	Fair
STRONTIANITE	SrCO ₃	White		Fair

SULFUR	S		Yellowish	Fair
Thaumasite	$CaSiO_3{\cdot}CaCO_3{\cdot}CaSO_4{\cdot}15H_2O$	White		Fair
TOPAZ (gem)	[Al(F,OH)2]AlSiO4	Weak yellow		Fair
TORBERNITE	$Cu(UO_2)_2P_2O_8 \cdot 12H_2O$	Characteristic yellow-green	Characteristic yellow-green	Good
TOURMALINE (gem)	$H_9Al_3(B{\cdot}OH)_2Si4O_{19}$	**	**	Fair
TRAVERTINE	CaCO ₃	Vivid red		Fair
TRONA	Na ₂ CO ₃ ·HNaCO ₃ 2H ₂ O	Blue	Blue	Fair
TURQUOIS (gem)	$CuO{\cdot}3Al_2O_3{\cdot}2P_2O_5{\cdot}9H_2O$	Mouse-gray	Mouse-gray	Fair
VESUVIANITE	Ca ₆ [Al(OH,F)]Al ₂ (SiO ₄) ₅		Yellowish	Fair
Wavellite	4AlPO ₄ ·2Al(OH) ₃ ·9H ₂ O		Green	Fair
WERNERITE	Variety of scapolite	Moderate yellow	Vivid yellow	Good
WILLEMITE	Zn_2SiO_4	Green	Green	Good
WITHERITE	BaCO ₃		Yellow	Fair
WOLLASTONITE	CaSiO ₃	Yellowish orange		Good
Zippeite*	$2UO_3 \cdot SO_3 \cdot H_2O$	Characteristic yellow-green	Characteristic yellow-green	Good
ZIRCON (gem)	$ZrSiO_4$	**	**	Fair

ω

RADIOACTIVITY

Radioactivity is a phenomenon of substances which emit naturally particular radiations. The fundamental nature of radioactivity is such that the atoms of a substance will undergo a transformation spontaneously into atoms of another element. During such transformation, energy is released by the substance in the form of various types of radiation. The major types of such radiations are (1) alpha rays, nuclei of helium atoms; (2) beta rays, negative electrons emitted by the nucleus; and (3) gamma rays, an electromagnetic radiation. A chemical element that exhibits the phenomenon of radioactivity is termed radio-element; minerals that contain these radio-elements are radioactive minerals. If the probability of the atoms of a substance undergoing transformation and emitting various types of radiation is very small, such substance is either stable or weakly radioactive. If such probability is large, the substance will be strongly radioactive.

There are three types of instruments for the detection and measurement of radioactivity. The most common and popular type is the Geiger-Muller counter, commonly known as Geiger counter. The second type is the scintillation counter, or commonly known as scintillator. The third type is the ionization chamber which is not commonly used in prospecting. There are various kinds of Geiger counters on the market, such as "Lucky Strike Geiger Counter," "Professional Geiger Counter," "Drill Hole Geiger Counter and Snooper-Geiger Counter." Also there are various kinds of

9

scintillation counters, such as "Royal Scintillator," "Super Scintillator," "Special Scintillator," etc. The price of the counters ranges from less than \$50 to over \$1,000. The sensitivity of these counters also varies greatly. Usually only the gamma rays can be detected by Geiger counter. The alpha and beta rays are very weak and can easily be stopped by the wall of the counter. A scintillation counter is usually about 100 times as sensitive as a Geiger counter. A prospector can be misled when he retires his old Geiger counter and begins to use a more expensive and sensitive scintillation counter, because many kinds of rocks (not uranium ore) will exhibit a "high" radioactivity in his new scintillation counter. It is important to understand thoroughly the function and sensitivity of a counter, and to interpret correctly the reading of the counter in terms of U_3O_8 percentage. The following two booklets are good references for those who are interested in prospecting with a counter.

- Prospecting for uranium, published by the U. S. Atomic Energy Commission and the U. S. Geological Survey. Price 55 cents.
- (2) Prospecting with a counter, by Robert J. Wright, U. S. Atomic Energy Commission. Price 30 cents.

These booklets can be purchased from:

- (1) Superintendent of Documents, Government Printing Office, Washington 25, D. C.
- New Mexico Bureau of Nines and Mineral Resources, Campus Station, Socorro, New Mexico.

RADIOACTIVE MINERALS

- Note: (1) Radioactive minerals are mainly uranium and thorium minerals.
 - (2) Minerals which have been found in New Mexico are capitalized.
 - (3) Minerals which contain only a small amount of uranium or thorium as impurities or intergrowths are listed at the end of this table. Many varieties and doubtful minerals are not included.

MINERAL	CHEMICAL FORMULA
Abernathyite	$K_2(UO_2)_2 (AsO_4)_2 \cdot 8H_2O$
Abukulalite	(Th,Ca,Y) ₅ (SiO ₄ ,PO ₄ ,AlO ₄) ₃ (O,F)
ALLANITE	(Th,Ca,Ce) ₂ (Al,Fe,Mg) ₃ Si ₃ O ₁₂ (OH); U=0.02%
Ampangabeite	(Y,Er,U,Ca,Th) ₂ (Nb,Ta,Fe,Ti) ₇ O ₁₈ ?
Andersonite	$Na_2Ca(UO_2) (CO_3)_3 \cdot 6H_2O$
Anthraxolite	A Ni- and U-hydrocarbon; U=0.003%
ASPHALTITE	Solid bituminous hydrocarbon with 0.001% and up U.
AUTUNITE	$Ca(UO_2)_2(PO_4)_2 \cdot 10-12H_2O$
Bassetite	$Fe(UO_2)2(PO_4)_2 \cdot 8H_2O$
BASTNAESITE	(Ce,La)CO ₃ F; U and Th present but less than 1%
Bayleyite	$Mg_2(UO_2) (CO_3)_3 \cdot 18H_2O$
Becquerelite	7UO ₃ ·11H ₂ O
Betafite	$(U,Ca) (Nb_3Ta,Ti)_3O_2 \cdot nH_2O ?$
BETA-URANOPHANE	Ca(UO ₂) (SiO ₃) (OH) ₂ ·5H ₂ O
Billietite	BaO·6UO ₃ ·11H ₂ O
Brannerite	(U,Ca,Fe,Y.Th) ₃ (Ti,Si) ₅ O ₁₆ ?
Calciosamarskite	$(Ca,X,U,Th)_3(Nb,Ta,Fe,Ti,Sn)_5O_{15}$?
Cappelenite	Ba(Y,Ce,La) ₆ B ₆ O ₁₂ (OH) ₂ (SiO ₄) ₃ ; Th=0.42%
Carbonate-fl	Contains U up to 0.02%
CARNOTITE	$K_2(UO_2)_2(VO_4)2\cdot 3H_2O$

Cerite	A cerium silicate containing a small amount of Th & U.	
Chinglusuite	A complex silicate with a small amount of Th and rare earths.	
Clarkeite	$(Na,K)_{2-2x}(Ca,Pb)_xU_2O_7\cdot yH_2O$	
Coffinite	$U(SiO_4)_{1-x}(OH)_{4x}$	
Cordylite	(Ce,La) ₂ Ba(CO ₃) ₃ F ₂ ; Th=0.26%	
CUPROSKLODOWSKITE	$Cu(UO_2)_2(SiO_3)_2(OH)_2 \cdot 5H_2O$	
Curite	$3PbO\cdot 8UO_{3}\cdot 4H_{2}O$	
Davidite	$AB_3(O,OH)_7$ or AB_5O_7 ; U=4.4%; Th=0.12%; A= Fe ₂ , U ₆	
	Ca,Zr,Th, rare earths; B= Ti,Fe ₃ ,V,Cr	
Delorenzite	$(Y,U,Fe_2)(Ti,Sn?)_2O_8 ? U=8.7\%$	
Dewindtite	$Pb_{3}(UO_{2})_{5}(PO_{4})_{4}(OH)_{4} \cdot 10H_{2}O$	
Dumontite	$Pb_2(UO_2)_3(PO_4)_2(OH)_4 \cdot 3H_2O$	
Epiianthinite	yUO ₃ ·xH ₂ O	
Eschynite	(Ce,Ca,Fe ₂ ,Th)(Ti,Nb) ₂ O ₆	
EUXENITE	(Y,Ca,Ce,U,Th)(Nb,Ta,Ti) ₂ O ₆	
Ferghanite	$U_{3}(VO_{4})_{2} \cdot 6H_{2}O$?	
FERGUSONITE	(Y,Er,Ce,Fe)(Nb,Ta,Ti)O ₄	
Fersmite	(Ca,Ce,Na)(Nb,Ti,Fe,Al) ₂ (O,OH,F) ₆	
Formanite	(Y,U,Th,Ca)(Ta,Nb,Ti)O ₄	
Fourmarierite	$PbU_4O_{13} \cdot 7H_2O$	
Fritzcheite	$Mn(UO_2)_2(P,V)_2O_8 \cdot 8H_2O$?	
GUMMITE	An altered Uraninite	
Hielmite	$(Y,Fe_2,U_4,Mn,Ca)(Nb,Ta,Sn,W)_2O_6$	
Huttonite	ThSiO ₄	
Ianthinite	2UO ₂ ·7H ₂ O ?	
Irinite	$(Na,Ce,Th)_{1-x}(Ti,Nb)[O_{3-x}(OH)_x]$	

Ishikawaite	(U,Fe,rare-earths)(Nb,Ta)O ₄
Johannite	$Cu(UO_2)_2(SO_4)_2(OH)_2 \cdot 6H_2O$
Kasolite	Pb(UO ₂)SiO ₄ ·H ₂ O
Kahle rite	$Fe(UO_2)_2(AsO_4)_2 \cdot nH_2O$
Khlopinite	$(Y,U_4,Th)_3(Nb,Ta,Ti,Fe)_7O_{20}$?
Kolm	U-bearing oil shale
Liebigite	$Ca_2(UO_2)(CO_3)_3 \cdot 10-11H_2O$
Lovchorrite	Ce ₂ (TiO ₃) ₃ ·10CaS; O ₃ ·2CeF ₃ ; U up to .03%, Th up to .7%
Lovozerite	Complex silicate of Ti and Zr, with a little Th
Masuyite	$UO_3 \cdot 2H_2O$
Meta-Autunite I	$Ca(UO_2)_2(PO_4)_2 \cdot 2^{1/2} - 6^{1/2}H_2O$
METATORBERNITE	$Cu(UO_2)_2(PO_4)_2 \cdot nH_2O; n=4 \text{ to } 8$
Metatyuyamunite	$Ca(UO_2)_2(VO_4)_2$ ·5-7H ₂ O
Meta-Uranocircite	$Ba(UO_2)_2(PO_4)_2 \cdot 8H_2O$
Meta-Uranopilite	$(UO_2)_6(SO_4)(OH)_{10} \cdot 5H_2O$?
Metazeunerite	$Cu(UO_2)_2(AsO_4) \cdot 8H_2O$
MICROLITE	(Na,Ca) ₂ (Ta,Nb) ₂ O ₆ (O,OH,F); U= up to 10.4%; Th= up to .2%
MONAZITE	(Ce,La,Th)PO
Mosandrite	Complex silicate of Na,Ca,Ce, and Ti; Th=.3%
Nohlite	(Ca,Mg,Fe ² ,X,U) ₂ (Nb,Zr,Fe ³) ₃ O ₁₀ ; X=rare-earths
Novacekite	$Mg(UO_2)_2(AsO_4)_2 \cdot 8 10H_2O$
Parsonsite	$Pb_2(UO_2)(PO_4)_2 \cdot 2H_2O$
Phosphuranylite	$Ca_3(UO_2)_4(PO_4)_2(OH)_4$ ·7H ₂ O
Pilbarite	$Pb \cdot UO_3, ThO_2 \cdot 2SiO_2 \cdot 4H_2O$
Pisekite	Niobate-tantalate-titanate of U and rare-earths
PITCHBLENDE	Altered fine-grained variety of uraninite

Polycrase	(Y,Ca,Ce,U,Th)(Ti,Nb,Ta) ₂ O ₆
Polymignyte	(Ca,Fe ² ,Y,Zr,Th)(Nb,Ti,Ta)O ₄
Priorite	(Y,Er,Ca,Fe ² ,Th)(Ti,Nb) ₂ O ₆ ; U up to 3.4%
Pyrochlore	$(Na,Ca)_2(Nb,Ta)_2O_6F$; U up to 1.4%; Th up to 4.4%
Rauvite	$CaO \cdot 2UO_3 \cdot 5V_2O_5 \cdot 16H_2O ?$
Renardite	$Pb(UO_2)_4(PO_4)_2(OH)_4 \cdot 7H_2O$
Rinkite	$Ce_2(TiO_3)_3 \cdot 10CaSiO_3 \cdot 3CaF_2$
Rowlandite	$(Y,La,Ce)_4Fe(F,Si_2O_7)_2$?
Rutherfordine	UO ₂ CO ₃
Sabugalite	$HAl(UO_2)_4(PO_4)_4 \cdot 16H_2O$
Saleeite	$Mg(UO_2)_2(PO_4)_2$ ·8-10H ₂ O
SAMARSKITE	(Y,Ce,U,Ca,Fe,Pb,Th)(Nb,Ta,Ti,Sn) ₂ O ₆
Schoepite	$UO_3 \cdot 2H_2O$
Schroeckingerite	$NaCa_3(UO_2)(CO_3)_3(SO_4)F \cdot 10H_2O$
Sengierite	$Cu(UO_2)(VO_4)(OH) \cdot 4-5H_2O$
Sharpite	$(UO_2)_6(CO_3)_5(OH)_2 \cdot 7H_2O$?
SKLODOWSKITE	$Mg(UO_2)_2(SiO_3)_2(OH)_2 \cdot 6H_2O$
Soddyite	$(UO_2)_5(SiO_4)_2(OH)_2 \cdot 5H_2O$
Swartzite	$CaMg(UO_2)(CO_3)_3 \cdot 12H_2O$
Thalenite	Y ₄ Si ₄ O ₁₃ (OH) ₂
Thorianite	(Th,U)O ₂
THORITE	ThSiO ₄
Thorogummite	$Th(SiO_4)_{1-x}(OH)_{4x}$
Thucholite	Hydrocarbons with uraninite
TORBERNITE	$Cu(UO_2)_2(PO_4)_2 \cdot 12H_2O$
Tritomite	A borosilicate of Ce,Y,Ca,Th, and F: Th up to 8.3%

Troegerite	$H^{2}(UO_{2})_{2}(AsO_{14})_{2}\cdot 8H_{2}O$?
Tscheffkinite	Silicate of rare-earths,Fe,Mn,Mg,Ca,Al,Ti,Th,and U
TYUYAMUNITE	$Ca(UO_2)_2(VO4)_2 \cdot nH_2O$
URANINITE	Ideally UO ₂
URANOPHANE	$Ca(UO_2)_2(SiO_3)_2(OH)_2 \cdot 5H_2O$
Uranopilite	$(UO_2)_6(SO_4)(OH)_{10} \cdot 12H_2O$
Uranospathite	$Cu(UO_2)_2(AsO_4,PO_4)_2 \cdot 11H_2O?$
Uranosphaerite	(BiO) (UO ₂)(OH) ₃ ?
Uranospinite	$Ca(UO_2)_2(AsO)_2 \cdot 10H_2O$
Uvanite	$U_2V_6O_{21}$ ·15H ₂ O
Vandenbrandeite	CuUO ₄ ·2H ₂ O
Vandendriesscheite	$PbO \cdot 7UO_3 \cdot 12H_2O$
Voglite	$Ca_2CuU(CO_3)_5 \cdot 6H_2O$?
Volborthite	$Cu_3(VO_4)_2$ ·3H ₂ O; U up to 3.1%
Walpurgite	$Bi_4(UO_2)(AsO_4)_2O_4 \cdot 3H_2O$
Xenotime	YPO ₄ ; U up to 3.6%; Th up to 2.2%
Yttrialite	Silicate of Th and Y, possibly thalenite with much Th. U up to 0.8%
Yttrocrasite	$(Y,Th,U,Ce)_2Ti_4O_{11}$?
Zippeite	$2UO_3 \cdot SO_3 \cdot 5H_2O$?
ZIRCON	ZrSiO ₄ ; U up to 2.7%; Th up to 13,1%
Zirkelite	$(Ca,Fe,Th,U)_2(Ti,Zr)_2O_5$?

The following minerals may contain some uranium and thorium as impurities or intergrowths:

Adamite	Zn ₂ (OH)AsO ₄
Ambatoarinite	Carbonate of Sr and rare-earths

Ancylite	$(Ce,La)_4(Sr,Ca)_3(CO_3)_7(OH)_4 \cdot 3H_2O$
Baddeleyite	ZrO ₂
Bazzite	Silicate of scandium, with Fe,Na, and rare-earths
COLUMBITE	(Fe,Mn)(Nb,Ta) ₂ O ₆
Corvusite	$V_2O_4 \cdot 6V_2O_5 \cdot nH_2O$
CYRTOLITE	Altered zircon
Fischerite	$Al_2(OH)_3PO_4 \cdot 2\frac{1}{2}H_2O$
FLUORITE	CaFO ₃ purple fluorite in New Mexico usually contains a small amount of U
Kalkowskite	$Fe_2Ti_3O_9$?
OPAL	SiO ₂ ·nH ₂ O; some green varieties in New Mexico may contain up to .10% U_3O_8
PYROMORPHITE	Pb ₅ (PO ₄) ₃ Cl
SCAPOLITE	$(Na_3Ca)_4Al_3(Al,Si)_3Si_6O_{24}(Cl,CO_3,SO_4)$
TANTALITE	(Fe,Mn)(Ta,Nb) ₂ O ₆
Turanite	Cu 5(VO4)2(OH)4 ?
Volborthite	$Cu_3(VO_4)_2 \cdot 3H_2O$?

REFERENCES

- Dake, H. C., and DeMent, Jack (1941) <u>Fluorescent light and its application</u>, Brooklyn, N. Y., Chemical Publishing Co., 116-139.
- Dana, E. S., and Ford, W. E. (1932) <u>A textbook of mineralogy</u>, 4th ed., New York, John Wiley & Sons.
- Frondel, J. W., and Fleischer, M. (1955) <u>Glossary of uranium-and thorium-bearing minerals</u>, 3d ed., U, S. Geol. Survey Bull, 1009-F.

Land, N. A. (1944) Handbook of chemistry, 5th ed., Sandusky, Ohio, Handbook Publishers.

- Northrop, S. A. (1944) <u>Minerals of New Mexico</u>, Albuquerque, N. M., Univ. of New Mexico Press.
- Realey, J. A., and Grant, J. (1939) <u>Fluorescence analysis in ultra-violet light</u>, 3d ed., New York, D. van Nostrand Co., 266-277.

Rose, R. B. (19)46) Radioactive exploration, Mining World, v 8, n 9, 46-48.