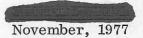
CEOCHEMICAL SERVICE REPORT

HYDROCARBON SOURCE ROCK EVALUATION STUDY

ORGANIC GEOCHEMICAL ANALYSES OF DRY WELL CUTTINGS

HUMBLE OIL & REFINING CO. NO. 1 N.M. STATE BA WELL


SEC. 25-32S-16W, HIDALGO COUNTY, NEW MEXICO

Prepared

for

New Mexico Bureau of Mines & Minerals Resources
Socorro, New Mexico

- 1143-C BRITTMORE ROAD, HOUSTON, TEXAS 77043 -

New Mexico Bureau of Mines & Mineral Resources

Socorro, NM 87801

A DIVISION OF NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY

December 11, 1978

MEMO

TO: Frank E. Kottlowski, Director

FROM: Sam Thompson III

SUBJECT: Open-file Reports OF 96 and OF 97

As we discussed, the following two reports from Geo Chem Laboratories, Inc. are to be placed in the Bureau's open file:

- OF 96: Hydrocarbon source-rock evaluation study,
 KCM No. 1 Cochise State A well, Hidalgo
 County, New Mexico, by P.J. Cernock, Geo
 Chem Laboratories, Inc., 1976, 4 p. (text),
 2 figs., 5 tables (11 p.), 1 appendix (4 p.).
- OF 97: Hydrocarbon source-rock evaluation study,
 Humble Oil & Refining Co. No. 1 State BA
 well, Hidalgo County, New Mexico, by
 P.J. Cernock, Geo Chem Laboratories, Inc.
 1977, 10 p. (text), 3 figs. (sep.),
 8 tables (15 p.), appendix (1 p.);
 supplement of 2 p. (text), 3 tables (3 p.).

cc: Paul J. Cernock Robert W. Kelley

GEOCHEMICAL ANALYSES SOURCE ROCK EVALUATION

CRUDE OIL - SOURCE ROCK CORRELATION

CRUDE OIL CHARACTERIZATION
GEOCHEMICAL PROSPECTING

1143 - C BRITTMORE ROAD . HOUSTON, TEXAS 77043 . 713/467-7011

July 3, 1978

New Mexico Bureau of Mines & Mineral Resources
Socorro, New Mexico 87801

Re: GeoChem Job No. 1050 Humble Oil & Refining Co. No. 1 N. M. State BA Well

Dear Sam:

Please find enclosed the results of the organic geochemical analyses carried out on seven (7) cuttings samples which were collected from the Humble Oil & Refining Co. No. 1 N.M. State BA Well located in Sec. 25-32S-16W, Hidalgo County, New Mexico. These samples have been identified by the GeoChem Sample Nos. 1050-001 through -007.

The organic geochemical analyses performed on the cuttings samples comprised hand picking of uncaved lithologies and general lithological description by a geologist, total organic carbon analyses and kerogen isolation, slide preparation and visual assessment. These data are presented in the attached Tables I, II and III.

It should be pointed out that the analyses performed on these seven (7) samples represent additional analyses to complement the hydrocarbon source rock evaluation study which was performed in November, 1977 on the Humble Oil & Refining Co. No. 1 N.M. State BA Well. This report was sent to you in November of 1977. Please compare these data enclosed herein with data presented in the previously submitted report.

The samples analyzed herein may be defined as having <u>fair</u> organic carbon contents for shales. The sample 1050-001 contains <u>fair</u> to good organic carbon contents for a limestone sample. The kerogen analyses show that most samples contain predominant amounts of degraded herbaceous type kerogen with secondary amounts of woody type of

material being present. Maturations have been defined as a Stage 2 to 2+, thus suggesting that these sediments have undergone a moderately mature thermal history. In comparing these data with data from the earlier report (identified by Geo Chem Job No. 1001), we see that there is a slight discrepancy in the thermal maturity and visual kerogen maturation. Visual kerogen data for the 1001 report defined thermal maturations ranging from 2+to 3- for samples above and below these samples described for the 1050 report. Thus, we appear to have a difference of 2 to 2+ (for samples 1050) compared to a Stage 2+to 3- for samples from Job No. 1001. The visual kerogen type appears very similar, inasmuch as the samples from Job 1001 contained predominant or secondary amounts of woody and/or degraded herbaceous type kerogens. I requested Ms. Ann Reaugh, GeoChem's palynologist, to look at slides from both sets of samples. She stated that the samples examined in this study most probably are more correct on a maturation basis. The samples examined from Job No. 1001 contained greater amounts of reworked material which were more difficult to interpret as reworked material or in-place material. To sum it up, Sam, we feel that this shallower section has a thermal maturation ranging from 2 to 2+, or possibly 2+ to 3-. In either case, we would still remain within the oil generating window. However, with the type of kerogen being present being degraded herbaceous and woody, I would certainly interpret this section as being gasprone, rather than oil-prone.

If you have any questions concerning the enclosed data, please feel free to give me a call and discuss it on the telephone. Enclosed also find an invoice No. 01538 for the Job No. 1050 analyses. I hope that all has gone well for you in the field and that you have an opportunity to incorporate field data into your regional studies.

Yours very truly,

Paul J. Cernock

Vice President & Chief Geologist GEOCHEM LABORATORIES, INC.

Paul J. Cermock

PJC/bh Enclosures

Table I

<u>Picked Samples</u>

Summary of Organic Carbon Analyses and Lithologic Description

GeoChem Well Depth Sample Interval Number (feet)		Percent Organic Carbon	Lithology
1050-001	460 - 470	0.44; 0.37R	Limestone, argillaceous, gray.
1050-002	4160 - 4170	0.43	Shale, silty, dark gray.
1050-003	4170 - 4180	0.56	Shale, silty, dark gray.
1050-004	4180 - 4190	0.68	Shale, silty, dark gray.
1050-005	4190 - 4200	0.72	Shale, silty, dark gray.
1050-006	4200 - 4210	0.83	Shale, silty, dark gray.
1050-007	4210 - 4220	0.90	Shale, silty, dark gray.

Table II
Summary of Organic Carbon and Visual Kerogen Analysis

Geo Chem	Well Depth	Organic	Visual Kerogen		
Sample Number	Interval (feet)	Carbon (% of Rock)	Туре	Alteration (1–5 Scale)	
1050-001	460 - 470	0.44; 0.37R	H*;-;W(C)	2 to 2+	
1050-002	4160 - 4170	0.43	H*-W;-;C	2 to 2+	
1050-003	4170 - 4180	0.56	H*;W;C	2 to 2+	
1050-004	4180 - 4190	0.68	H*;W;C	2 to 2+	
1050-005	4190 - 4200	0.72	H*;U;C	2 to 2+	
1050-006	4200 - 4210	0.83	H*-W;-;C	2 to 2+	
1050-007	4210 - 4220	0.90	W;H*;C	2 to 2+	

R = Repeat Sample

Kerogen Key

Predominant; Secondary; Trace 60 - 100%; 20 - 40%; 1 - 20%

Al = Algal

Am = Amorphous-Sapropel

H = Herbaceous-Spore/Cuticle

H* = Degraded Herbaceous

W = Woody C = Coaly

U = Unidentified Material

TABLE III
VISUAL KEROGEN ASSESSMENT WORKSHEET

		V150A	AL KEROGE	14 - M22	COOMPILE A	TOMOTILL	
		TYPE ORGANIC M	OF COLOR	R OF MATTER	STATE OF ORGANIC MATTER	MATURATION	INDEX DEPOSITIONAL ENVIRONMENT
		1,,,,,,,,			it Presented		REMARKS
GEOCHEM No.	DEPTH						H*;-;W(C')
1050-001	4701						H*-W;-;C
1050-002	4170'						H*;W;C
1050-003	4180'					++++	
1050-004	4190'					 	H*;W;C
1050-005	4200'					 	H*;U;C
1050-006	4210'						H*-W;-;C
1050-007	42201			A		<u> </u>	W;H*:C
		$H \cdot \cdot \cdot $					
		+					
		╂╃┼┼┼					
	· · · · · · · · · · · · · · · · · · ·			┼┼┼╂┤		- - - - -	
		$\prod + \cdots + \prod$				 	
		†1				╂┼┼┼	
						11111	
						 	

HYDROCARBON SOURCE ROCK EVALUATION STUDY

ORGANIC GEOCHEMICAL ANALYSES OF DRY WELL CUTTINGS

HUMBLE OIL & REFINING CO. NO. 1 N.M. STATE BA WELL

SEC. 25-32S-16W, HIDALGO COUNTY, NEW MEXICO

SUMMARY

Organic geochemical analyses run on a suite of dried cuttings, collected from the Humble Oil & Refining Company No. 1 N.M. State BA Well, over the interval from 460+ feet to 14,510+ feet, indicate the following:

- Zone A (460+ feet to 7,350+ feet) contains rocks which have a mature, very poor oil, condensate, "wet" and/or "dry" gas source character.
- Zone B (7,350+ feet to 10,150+ feet) contains rocks which have a very mature, very poor oil, condensate and associated "wet" gas source character, and a fair to good "dry" thermally derived methane gas source character.
 - Zone C (10,150+ feet to 14,510+ feet) contains rocks which have a very mature to severely altered, very poor oil, condensate and associated "wet" gas source character. This zone contains two intervals (10,900+ feet to 11,200+ feet and 12,500+ feet to 12,900+ feet) which have a fair "dry" thermally derived methane gas source character.

In order of priority, exploration plays in the local area of the Humble Oil & Refining Company No. 1 N. M. State BA Well are interpreted as follows (providing that resevoir traps are available):

1. <u>Permo-Pennsylvanian Horquilla Limestone Formation</u>
(Zone A)

This section should be prospective for moderate to good quantities of "dry" thermally derived methane gas. This gas is most probably being generated from dark gray shale intervals found within the Permo-Pennsylvanian Horquilla Limestone Formation from 7,350+ feet to 10,150+ feet.

2. Devonian Percha Shale within Zone C (Subunit c2: 12,500+ feet to 12,900+ feet)

This section should be prospective for <u>fair</u> quantities of "dry" thermally derived methane gas.

3. Mississippian Paradise Formation within Zone C (Subunit c₁: 10,900+ feet to 11,200+ feet)

This section should be prospective for <u>fair</u> quantities of "dry" thermally derived methane gas.

Paul J. Cernock

GEOCHEM LABORATORIES, INC.

INTRODUCTION

This report summarizes the results of a source rock evaluation study carried out on a suite of dry paleo cuttings collected over the gross well interval 460± feet to 14,510± feet from the Humble Oil & Refining Company No. 1 N.M. State BA Well in Sec. 25–32S-16W, Hidalgo County, New Mexico.

The purpose of this study has been to:

- investigate the <u>richness</u>, <u>type (oil, condensate or gas)</u>, and <u>state of thermal maturity</u> of the hydrocarbon source rocks, and their stratigraphic distribution within the sedimentary sequence penetrated by the Humble Oil & Refining Company No. 1 N.M. State BA Well.
- characterize geochemical zones within the stratigraphic section of this well as a basis for any subsequent crude oil parent rock correlations which may be required in the future.
- define the exploration significance of this study with respect to future drilling in the local area of the Humble Oil & Refining Company No. 1 N. M. State BA Well.

Analytical

On arrival at GeoChem's Houston laboratory, the Humble Oil & Refining Company No. 1 N. M. State BA Well was assigned the GeoChem Job No. 1001-. Small samples (5+grams) were hand-picked by a geologist at intervals of approximately 150+ feet throughout this well. Sam Thompson, III, New Mexico Bureau of Mines and Mineral Resources, Socorro, New Mexico, provided a list of sample locations with various priority ratings for this well. Utilizing Thompson's priority listing, and the 150+ foot sample interval guide, a total of seventy-six (76) small samples were hand-picked throughout the well interval from 460+ feet to 14,510+ feet. Each of these seventy-six (76) samples was identified by the suffix -001 through -076 in order of increasing depth.

Each of the seventy-six (76) samples was analyzed for total organic carbon content. On the basis of these results, plus the geological zonation and lithology of the samples, various single or composited samples were selected for more detailed geochemical analyses.

The following lists the number and type of geochemical analyses carried out on the dried well cuttings which were collected from the Humble Oil & Refining Company No. 1 N. M. State BA Well:

•	Humble Oil & Refining Co.
Type of Analysis	No. 1 N.M. State BA Well
Organic carbon analyses	87
Kerogen isolation, slide preparation as	nd
visual assessment	18
C ₁₅₊ soxhlet extraction w/deasphalten	ing 11
C ₁₅₊ quantitative liquid chromatograph	hic
separation	1
C ₁₅₊ qualitative liquid chromatographi	ic
separation	
C ₁₅₊ paraffin-naphthene (P-N) analysis	s 11
Vitrinite reflectance	

A brief description of the standard analytical procedures used by GeoChem in this study is presented in Appendix A.

All the analytical data obtained in this study, whether used in the ultimate interpretation or not, is documented in the appropriate Tables I through VIII of this report. The organic carbon values from the screen analysis are presented in Table I and in Figure 1, the gross lithologic description and organic carbon values are presented in Table II and Figure 1, the kerogen organic matter type and alteration data are presented in Tables III and VI and in Figure 1, the C_{15+} extraction, deasphaltening and liquid chromatographic separation data are presented in Table IV-A, -B and -C, the C_{15+} paraffinnaphthene (P-N) compositional data are presented in Table V-A and -B and the vitrinite reflectance data are presented in Table VII and in Figure 2. The gas chromatographic traces, showing the molecular distribution of the C_{15+} paraffinnaphthene (P-N) hydrocarbons, are presented in Figure 2. The summary of the various geochemical parameters which identify three (3) major organic zones in the Humble Oil & Refining Company No. 1 N. M. State BA Well are outlined in Table VIII.

General Information

Two (2) copies of this report have been forwarded to Br. Sam Thompson, III, New Mexico Bureau of Mines and Minerals Resources, Socorro, New Mexico, who authorized and coordinated this study. GeoChem has worked closely with Dr. Thompson in performing a source rock evaluation study on the No. 1 N.M. State BA Well. The program was designed to provide the most geochemical information, with the least

amount of cost. In providing this report to . Thompson, GeoChem has also made another copy of the report for GeoChem's files in Houston, Texas. This report copy will be utilized for reference purposes in discussions with authorized New Mexico Bureau of Mines and Minerals Resources personnel on specific details of this study.

All remaining used and unused, picked and unpicked cuttings samples, C_{15+} hydrocarbon and nonhydrocarbon chromat fractions and etc. will be returned to the Thompson, New Mexico Bureau of Mines and Minerals Resources, Socorro, New Mexico, under separate cover in the very near future.

The data, interpretations, sample materials and all other matters pertaining to this well study have been treated in a highly confidential manner and are considered proprietary to the New Mexico Bureau of Mines and Minerals Resources.

RESULTS AND INTERPRETATIONS

A. Geological Zonation

The sedimentary sequence penetrated by the Humble Oil & Refining Company No. 1 N.M. State BA Well in Hidalgo County, New Mexico has been divided into a number of discrete geological formations or groups. Specific formations which were provided to GeoChem in an excerpt from Zeller (1965) include the following:

Formation	Depth
Quaternary gravels, etc.	 Surface
Lower Cretaceous U-Bar Formation	. 2301
Lower Cretaceous Hell-to-Finish Formation	. 6481
Permian Concha Limestone	. 995'
Permian Scherrer Formation	. 1,522'
Permian Epitaph Dolomite	1,532
Permian Colina Limestone	. 4,4501
Permian Earp Formation	5,2581
Permo-Pennsylvanian Horquilla Limestone	. 6,265'
(Tentative correlations based on fusulinid	-
identifications by Garner L. Wilde are: top	
Wolfcampian at 6,625', top? Virgilian at	
8,755', top? Missourian at 8,935', top Des-	
moinesian at 9,425', top Derryan at 9,910',	
top Morrowan? at 10,800'.)	•
Mississippian Paradise Formation	. 10,9951
Mississippian Escabrosa Limestone	
Devonian Percha Shale	
Ordovician Montoya Dolomite; Cutter Member	. 12,8301
Ordovician Montoya Dolomite; Aleman Member	. 12,985
Ordovician Montoya Dolomite; Upham Member	. 13,097'
Ordovician Montoya Dolomite; Cable Canyon Member.	. 13,155'
Ordovician El Paso Formation	. 13,214'
Cott. Wy ST - Wississippian Escabrosa Limestone (below re-	
The 12.1 verse fault)	-14,120 4
Total depth in Escabrosa (probable)	. 14,5851

B. Geochemical Zonation

The stratigraphic section, penetrated by the Humble Oil & Refining Company No. 1 N.M. State BA Well over the interval from 460+ feet to 14,585+ feet T.D., can

be subdivided into three (3) major organic zones based primarily on the organic carbon contents, organic matter (kerogen) type and predominance, and the content and composition of the C_{15+} solvent extractable bitumen and C_{15+} total hydrocarbon of the fine-grained sediments. The deepest most zone (Zone C from 10,150+ feet to 14,510+ feet) contains two minor subunits which have significantly different organic character than the major Zone C section overall. The geochemical zonation and subunitization, both of which are independent of the formation tops, are as follows:

Zone A	460+ feet to 7,350+ feet
Zone B	7,350 <u>+</u> feet to 10,150 <u>+</u> feet
Zone C	10,150+ feet to 14,510+ feet
Subunit c_1	10,900+ feet to 11,200+ feet
Subunit c ₂	12,500+ feet to 12,900+ feet

C. Thermal Maturity and Hydrocarbon Source Character of Sediments

1. Zone A (460+ feet to 7, 350+ feet)

The Lower Cretaceous, Permian Concha through Earp Formations and Permo-Pennsylvanian Horquilla sediments within Zone A have a <u>mature</u>, very poor oil, condensate, "wet" and/or "dry" gas source character. The Zone A section, overall, has not generated any significant quantities of hydrocarbons in-place. The section is considered to be <u>non-prospective</u> for any producible quantities of liquid and/or gaseous type hydrocarbons in the local area of the Humble Oil & Refining Company No. 1 N.M. State BA Well.

The <u>mature</u> character of these sediments is based on the mature Maturation Index of Stage 2+ to 3- for the kerogen isolated from most of the samples from 2,410+ feet to 4,900+ feet. The Maturation Stage then jumps to a very mature Stage 3 to 3+ below 6,660+ feet. This jump in Maturation Indices from 2+ to 3- to a 3 to 3+ indicates a possible unconformity or fault.

The very poor oil, condensate, "wet" and/or "dry" gas source character assigned to the Zone A rocks is based on the <u>low</u> organic carbon contents and the type of kerogens predominating in the samples. The very poor liquid and/or gaseous source character assigned to the Zone A sediments is based primarily on the <u>very poor</u> organic carbon contents of the sediments ranging from 0.01% to 0.40%, mean 0.13% (see Tables I, II, III and VIII; Figure 1). It is interpreted that the entire Zone A section

represents non-source rocks. Possibly minor amounts of dry methane gas may be associated with some of the shale stringers contained in the Colian section.

2. Zone B $(7,350 \pm \text{ feet to } 10,150 \pm \text{ feet})$

The Permo-Pennsylvanian Horquilla Limestone Formation within Zone B has a very mature, very poor oil, condensate and associated "wet" gas source character, and a fair to good "dry" thermally derived methane gas source character. This section overall has minimal, if any, amounts of liquid hydrocarbons present within the sediments. Due to the organic matter kerogen type contained in these sediments, and their advanced thermal maturity, the Zone B sediments are considered to be beyond the oil generating window. That is, these sediments are interpreted to have been subjected to temperatures such that only thermally derived methane gas would be present and available for accumulation in adjacent reservoir traps.

The <u>very mature</u> character of these sediments is based on the <u>very mature</u> Maturation Indices of Stages 3 to 3+ for the kerogen isolated from most of the samples from 7,500+ feet to 10,100+ feet (Tables III, VI and VIII; Figure 1), the <u>very mature</u> range of vitrinite reflectance values [$(o/o R_0)$ from 1.76 to 2.36, mean 2.10; Tables VII and VIII; Figure 3] and by the <u>overall mature</u> nature of the C_{15+} paraffin-naphthene (P-N) hydrocarbon fraction (see typical gas chromatographs of Zone B samples in Figure 2).

The very poor oil and condensate source character assigned to these sediments, as well as to the overlying Zone A and underlying Zone C sediments, is attributed primarily to the very poor C_{15+} solvent extractable bitumen contents and very poor C15+ total hydrocarbon contents of these samples (see Tables IV-B and VIII). The encouraging factor on the Zone B sediments is the fact that the interbedded shales (dark gray shales) scattered throughout Zone B section do contain good quantities of total organic carbon content. The organic carbon content values of the Zone B samples range from 0.07% to 1.36%, with a mean of 0.58% (see Tables I, II, III and VIII; Figure 1). These fair to good organic carbon contents, in association with predominant amounts of gas-prone woody type kerogens identify the Zone B section as being a fair to good "dry" thermally derived methane gas-source. It is interpreted that this section may contain numerous thin zones of dark gray shales which are good "dry" methane gas sources. Any available reservoir traps in juxtaposition to these shales in the local area of the Humble No. 1 State BA Well, should be prospective for fair to good quantities of dry methane gas.

3. Zone C (10, 150+ feet to 14, 510+ feet)

The Mississippian, Devonian and Ordovician rocks within Zone C have a very mature to severely altered, very poor oil, condensate and associated "wet" gas source character. It should be noted that this zone does contain two intervals (10,900+ feet to 11,200+ feet and 12,500+ feet to 12,900+ feet) which have a fair "dry" thermally derived methane gas source character. These two intervals actually represent the Paradise Formation (shale) and the Percha Shale. It is interpreted that these two shale intervals represent fair "dry" thermally derived methane gas sources. Any available reservoir traps in juxtaposition to these shale sections in the local area of the No. 1 State BA Well, should be prospective for fair quantities of "dry" methane gas provided that reservoir traps are available.

The <u>very mature</u> to <u>severely altered</u> character of these sediments is based primarily on the very mature to severely altered Maturation Indices ranging from a Stage 3+ to 4- to a Stage 4- to 4 in most of the samples analyzed from 11,150+ feet to 14,440+ feet.

The very poor oil, condensate and associated "wet" gas source character assigned to these sediments is based primarily on the very poor total C₁₅₊ solvent extractable bitumen contents and very poor C₁₅₊ total hydrocarbon contents contained in these sediment samples (see Tables IV-A and VIII). The fair "dry" thermally derived methane gas source character assigned to the two minor intervals within Zone C is based primarily on fair amounts of organic carbon content for these samples and the presence of the gasprone coaly type kerogen contained in these samples (see Tables III, VI and VIII; Figure 1).

D. Exploration Significance of This Source Rock Evaluation Study

Examination of the <u>richness</u>, <u>type</u> (oil, condensate or gas) and <u>state of thermal</u> <u>maturity</u> of the hydrocarbon source rocks penetrated by the Humble Oil & Refining Company No. 1 N.M. State BA Well shows that the stratigraphic interval from 460+ feet to 14,510+ feet, contains zones which have <u>no prospectiveness</u> for <u>indigenously generated liquid hydrocarbons</u>. One major organic facies zone and minor subunits within another zone are considered to be <u>fair</u> to good sources for "dry" thermally derived methane gas. In order of priority, exploration plays are interpreted as follows:

Locally:

1. Zone B (7,350+ feet to 10,150+ feet)

The medium dark gray shales interbedded with argillaceous, micritic limestones within the Horquilla Limestone Formation have a very mature, very poor oil, condensate and associated "wet" gas source character, and a fair to good "dry" thermally derived methane gas source character. This section is considered to have sourced moderate quantities of "dry" methane gas to available reservoir traps in the local area of this well. It is emphasized that the Zone B section inplace has been thermally advanced beyond the oil-generating window. Thus, no liquid hydrocarbon potential exists within this section.

2. Subunit c_1 and c_2 within Zone C (10,900 \pm feet to 11,200 \pm feet and 12,500 \pm feet to 12,900 \pm feet)

The Paradise Shale and Percha Shales within Subunits c₁ and c₂ have a very mature to severely altered, <u>very poor</u> oil, condensate and associated "wet" gas source character. However, these two subunits do have a <u>fair</u> "dry" thermally derived methane gas source character. These sediments are interpreted to have sourced <u>fair</u> quantities of "dry" methane gas to available reservoir traps in the local area of the Humble Oil & Refining Company No. 1 N.M. State BA Well. Again, it is emphasized that these sediments are also beyond the oil-generating window, <u>in-place</u>. Thus, no liquid and/or wet gas hydrocarbon potential exists for Zone C section.

In summation, this source rock evaluation study defines the local area around the Humble Oil & Refining Company No. 1 N.M. State BA Well as being prospective primarily for "dry" methane gas. Liquid hydrocarbon prospectiveness is minimal, if any! If the explorationist is concerned strictly with oil and condensate type plays, he should concentrate on encountering section penetrated by this well in an laterally updip position, and thus, thermally less mature and within the oil-generating window. Likewise, the explorationist may concentrate his efforts in encountering section with a completely different type of organic matter kerogen type — that is, amorphous-sapropel oil-prone kerogen types. The reader should realize that the Zone B section, and the underlying Subunits c1 and c2, may be prospective for fair to good quantities of "dry" methane gas.

<u>Picked Samples</u> Summary of Organic Carbon Analyses and Lithologic Description

TABLE I

		•	
GeoChem		Percent	
Sample		Organic	
Number	Well Depth*	Carbon	Lithology
		ÿ	
1001-001	460- 470	0.31	Medium dark gray, very argillaceous
	•		and calcareous dolomite.
1001-002	740- 750	0.05	Grayish red silty shale.
1001-003	1510- 1520	0.01	Light brown limestone.
1001-004	1560- 1570	0.03	Dolomite.
1001-005	1680- 1690	0.02; 0.02R	Dolomite.
1001-006	1810- 1820	0.02	Dolomite.
1001-007	2010- 2020	0.03	Dolomite.
1001-008	2210- 2220	0.04	Dolomite.
1001-009	2400- 2410	0.18	Dolomite.
1001-010	2500- 2510	0.05; 0.07R	Dolomite.
1001-011	2750- 2760	0.09	Dolomite.
1001-012	2940- 2950	0.18	Dolomite.
1001-013	3030- 3040	0.22	Dolomite.
1001-014	3280- 3290	0.17	Dolomite.
1001-015	4350- 4360	0.36; 0.35R	Dolomite.
1001-016	4450- 4460	0.14	Limestone.
1001-017	4550- 4560	0.23	Limestone.
1001-018	4750- 4760	0.16	Limestone.
1001-019	4890- 4900	0.23	Limestone.
1001-020	5050- 5060	0.15; 0.16R	Limestone.
1001-021	5200- 5210	0.13	Limestone.
1001-022	5290- 5300	0.04	Grayish red silty shale.
1001-023	5640- 5650	0.05	Limestone.
1001-024	5920- 5930	0.05	Siltstone.
1001-025	6350- 6360	0.09; 0.08R	Limestone.
1001-026	6550- 6560	0.11	Medium dark gray, silty shale.
1001-027	6650- 6660	0.12	Medium dark gray, limy shale.
1001-028	6850- 6860	0.12	Limestone.
1001-029	7100- 7110	0.12	Medium dark gray, very calcareous shale.
1001-030	7260- 7270	0.11; 0.06R	Medium dark gray, calcareous shale.
1001-031	7400- 7410	0.10	Limestone.
1001-032	7470- 7480	1.09	Dark gray shale.
1001-033	7660- 7670	0.07	Medium dark gray, silty shale.
1001-034	7920- 7930	0.24	Medium dark gray, silty shale.
1001-035	7940- 7950	0.85; 0.80R	Dark gray shale.
1001-036	8070- 8080	0.08	Limestone.
1001-037	8240- 8250	0.26	Medium dark gray shale.
1001-038	8390- 8400	0.39	Medium dark gray shale.
1001-039	8590- 8600	0.34	Medium dark gray shale.
1001-040	8790- 8800	1.36; 1.32R	Dark gray shale.
		· ,	

^{*} In feet

TABLE I (continued)

<u>Picked Samples</u> Summary of Organic Carbon Analyses and Lithologic Description

GeoChem		Percent	
Sample	oran 40 an 17 de	Organic	W 225 - 3
Number	Well Depth*	Carbon	Lithology
1001-041	88 40- .88 50	0.66	Dark gray shale.
1001-042	8970- 8980	0.59	Dark gray shale.
1001-043	9080- 9090	0.97; 0.98R	Dark gray shale.
1001-044	9290- 9300	0.89	Dark gray shale.
1001-045	9470- 9480	0.11	Limestone.
1001-046	9570- 9580	0.22	Limestone.
1001-047	9850- 9860	0.50	Grayish black shale.
1001-048	9960- 9970	0.69	Dark gray shale.
1001-049	10050-10060	1.10	Grayish black shale.
1001-050	10180-10190	0.18; 0.17R	Limestone.
1001-051	10460-10470	0.10	Limestone.
1001-052	10820-10830	0.06	Limestone.
1001-053	10990-11000	0.29	Medium dark gray shale.
1001-054	11100-11110	0.54	Medium dark gray shale.
1001-055	11350-11360	0.16; 0.14R	Limestone.
1001-056	11490-11500	0.08	Limestone.
1001-057	11690-11700	0.02	Limestone.
1001-058	11900-11910	0.13	Limestone.
1001-059	12090-12100	0.12	Limestone.
1001-060	12300-12310	0.02; 0.04R	Limestone.
1001-061	12400-12410	0.09	Limestone.
1001-062	12600-12610	0.30	Dark gray shale grading into micrite.
1001-063	12700-12710	0.27	Dark gray shale grading into micrite.
1001-064	12800-12810	0.88	Dark gray shale.
1001-065	12900-12910	0.05; 0.11R	Dolomite.
1001-066	13000-13010	0.12	Dolomite.
1001-067	13140-13150	0.08	Dolomite.
1001-068	13300-13310	0.10	Limestone.
1001-069	13450-13460	0.10	Limestone.
1001-070	13600-13610	0.08; 0.08R	Limestone.
1001-071	13750-13760	0.09	Limestone.
1001-072	13900-13910	0.09	Limestone.
1001-073	14050-14060	0.10	Limestone.
1001-074	14200-14210	0.05	Limestone.
1001-075	14400-14410	0.22; 0.17R	Limestone, very argillaceous.
1001-076	14500-14510	0.13	Limestone.

^{*} In feet

Table II
Organic Carbon Analyses and Gross Lithological Description

GeoChem Sample Number	Well Interval	Gross Lithological Description	GSA Color Code	Total Organic Carbon (% of Rock)
1001-015D -A	4390'	100% Dolomite, massive-cryptocrystalline, very argillaceous, hard, poor porosity, no show, medium dark gray.	N4	0.40
1001-032D -A	7500 '	70% Limestone, chalk grading into a very argillaceous micrite, moderately hard to hard, fair to poor porosity, no show,		0.50
-В		medium light gray to medium dark gray. 30% Shale, slightly calcareous, silty, blocky, hard, medium dark gray.	N6 to N4 N4	
1001-035D -A -B	7980¹	70% Shale, calcareous, silty, blocky to fissile, hard, dark gray. 30% Limestone, chalk grading into	N3	1.16
		an argillaceous micrite, moderately hard to hard, fair to poor porosity, no show, medium light gray to medium dark gray.	N6 to N4	
1001-038D -A -B	8400¹	80% Shale, very calcareous, silty, blocky, hard, medium dark gray. 20% Limestone, micrite, argillaceous,	N4	0.49; 0.55R
-		hard, poor porosity, no show, medium dark gray.	N4	
1001-040D -A	88001	60% Limestone, chalk grading into an argillaceous micrite, moderately hard to hard, fair to poor porosity, no show,		0.50
- B	·	light gray to medium gray. 40% Shale, calcareous, silty, blocky to fissile, hard, dark gray.	N7 to N5	

Table II (continued)

Organic Carbon Analyses and Gross Lithological Description

GeoChem Sample Number	Well Interval	Gross Lithological Description	GSA Color Code	Total Organic Carbon (% of Rock)
1001-043D -A	9100'	60% Shale, calcareous, silty, blocky to fissile, hard,	NO.	0.53
-B		dark gray. 40% Limestone, chalk grading into an argillaceous micrite, moderately hard to hard, fair to poor porosity, no show, light gray to medium gray.	N3 N7 to N	5
1001-049D -A	10100'	70% Shale, limy grading into a limestone, slightly silty, blocky to fissile, hard,	NO.	0.79
-В		grayish black. 30% Limestone, chalk grading into a micrite, moderately hard to hard, fair to poor porosity, no show, white to medium dark gray.	N2 N9 to N4	
1001-054D -A	11150'	60% Limestone, chalk grading into micrite and intramicrite, argillaceous, moderately hard to hard, fair to poor porosity, no show, light gray to medium	N7 to	0.29
- B	· · ·	dark gray. 40% Shale, limy grading into a limestone, slightly silty, blocky to fissile, hard, grayish black.	N4 N2	
1001-062D A	12610'	50% Shale, noncalcareous, silty, blocky to fissile, hard, dark gray.	MO	0.36; 0.35R
-В		50% Limestone, micrite very argillaceous, hard, poor porosity, no show, dark gray.	N3 N3	

Table II (continued) Organic Carbon Analyses and Gross Lithological Description

GeoChem Sample Number	Well Interval	Gross Lithological Description	GSA Color Code	Total Organic Carbon (% of Rock)
1001-064D -A	12820'	50% Shale, noncalcareous, silty,		0.47
		blocky to fissile, hard,		
- B		dark gray. 50% Limestone, micrite very argillaceous, hard, poor	N3	
		porosity, no show, dark gray.	N3	
1001-075D	14440'			0.20
- A ⋅		90% Limestone, chalk grading into an argillaceous micrite, moderately hard to hard,		0120
_		fair to poor porosity, no show, light gray to dark gray.	N7 to N	3
− B		10% Shale, limy, silty, blocky, hard, dark gray.	N3	

TABLE III

Summary of Organic Carbon and Visual Kerogen Analysis

GeoChem Well		Visual	Kerogen	
Depth	Carbon		Alteration	
Interval	(% of Rock)	Type	(1-5 Scale)	
2400- 2410	:0.18	Am-W;H-C;-	2+ to 3-	
3030- 3040	0.22	W;H;C	2+ to 3-	
4350- 4390	0.40	W;H-C;-	2+ to 3-	
4550- 4560	0.23	W;H;C	2+ to 3-	
4890- 4900	0.23	H;W;C	2+ to 3-	
6650- 6660	0.12	W;C;H	3 to 3+	
7450- 7500	0.50	W;H-C;-	3 to 3+	
7940- 7980	1.16	H;W;C	3 to 3+	
8360- 8400	0.49; 0.55R	W;H;C	3 to $\frac{-}{3}$ +	
8750- 8800	0.50	W;H;C	3+	
9050- 9100	0.53	W;H;C	3+	
9960- 9970		W;H;C	3+ to 4-	
10050-10100	0.79	W;H-C;-	- 3+	
11100-11150	0.29	C;W;H	3+ to 4-	
12600-12640	0.36; 0.35R	C;H;Am-W	3+ to 4-	
12760-12820	0.47	C;W;Am-H	3+ to 4-	
13750-13760		•	4- to 4	
14400-14440	0.20	W;H;C	<u>4</u> - to 4	
	Depth Interval 2400- 2410 3030- 3040 4350- 4390 4550- 4560 4890- 4900 6650- 6660 7450- 7500 7940- 7980 8360- 8400 8750- 8800 9050- 9100 9960- 9970 10050-10100 11100-11150 12600-12640 12760-12820 13750-13760	Depth Interval (% of Rock) 2400- 2410	Depth Interval Carbon (% of Rock) Type 2400- 2410 0.18 Am-W;H-C;- 3030- 3040 0.22 W;H;C 4350- 4390 0.40 W;H-C;- 4550- 4560 0.23 W;H;C 4890- 4900 0.23 H;W;C 6650- 6660 0.12 W;C;H 7450- 7500 0.50 W;H-C;- 7940- 7980 1.16 H;W;C 8360- 8400 0.49; 0.55R W;H;C 9050- 9100 0.53 W;H;C 9960- 9970 W;H;C 10050-10100 0.79 W;H-C;- 1100-11150 0.29 C;W;H 12600-12640 0.36; 0.35R C;H;Am-W 12760-12820 0.47 C;W;Am-H 13750-13760 Am;H-C;-	Depth Interval Carbon (% of Rock) Type Alteration (1-5 Scale) 2400- 2410 0.18 Am-W;H-C;- 2+ to 3- 2+ 2+ to 3- 2+

R = Repeat Sample

Ke	rogen Key		Al	=	Algal
			Am	=	Amorphous-Sapropel
Predominant;	Secondary;	Trace	H	==	Herbaceous-Spore/Cuticle
60-100%	20-40%	1-20%	W	=	Woody
			\mathbf{C}	==	Coaly
			ŦΤ	=	Unidentified Material

Table IV

Summary of Cl5+ Soxhlet Extraction, Deasphaltening and Liquid Chromatography

A. Weights of Extracts and Chromatographic Fractions

GeoChem Sample Number	Well Interval *	Weight of Rock Extd. (grams)	Total Extract (grams)	Precipitated Asphaltenes (grams)	N-C5 Soluble (grams)	Sulfur (grams)	Paraffins- Naphthenes (grams)	Aromatics (grams)	Eluted NSO'S (grams)	Noneluted NSO'S (grams)
1001-015D	4350- 4390	100.0	0.0059	0.0006	0.0053	N.D.	N.D.	N.D.	N.D.	N.D.
1001-032D	7450 - 7500	90.0	0.0080	0.0003	0.0077	N.D.	N.D.	N.D.	N.D.	N.D.
1001-035D	7940 - 7980	100.0	0.0099	0.0033	0.0066	N.D.	N.D.	N.D.	N.D.	N.D.
1001-038D	8360- 8400	100.0	0.0086	0.0030	0.0056	N.D.	N.D.	N.D.	N.D.	N.D.
1001-040D	8750- 8800	100.0	0.0066	0.0011	0.0055	N.D.	N.D.	N.D.	N.D.	N.D.
1001-043D	9050- 9100	94.0	0.0162	0.0080	0.0082	N.D.	N.D.	N.D.	N.D.	N.D.
1001-049D	10050-10100	100.0	0.0163	0.0091	0.0072	N.D.	N.D.	N.D.	. N.D.	N.D.
1001-054D	11100-11150	100.0	0.0126	0.0075	0.0051	N.D.	N.D.	N.D.	N.D.	N.D.
1001-062D	12600-12640	100.0	0.0106	0.0014	0.0092	N.D.	N.D.	N.D.	N.D.	N.D.
1001-064D	. 12760–12820	100.0	0.0190	0.0074	0.0116	N.D.	. 0.0027	0.0023	0.0063	0.0003
1001-075D	14400-14440	100.0	0.0070	0.0015	0.0055	N.D.	N.D.	N.D.	N.D.	N.D.

^{*} In feet.

Table IV (Continued)

B. Concentration of Extracted Materials in Rock

a a				drocarbons—				₩.	arbons	
GeoChem Sample Number	Well Interval*	Total Extract (ppm)	Paraffin- Naphthene (ppm)	Aromatic (ppm)	Total (ppm)	Sulfur (ppm)	Preciptd. Asphaltene (ppm)	Eluted NSO'S (ppm)	Noneluted NSO'S (ppm)	Total (ppm)
1001-015D	4350- 4390	59			· -	-	. 6		- .	_
1001-032D	7450- 7500	89	-	-	-		3	_	_	
1001-035D	7940- 7980	99	• -	***	-	_	33	-	-	-
1001-038D	8360- 8400	86		-	-		30	-	-	_
1001-040D	8750- 8800	66	-	-	-		11	-	-	_
1001-043D	9050- 9100	172	_	-	-	_	85	-	-	_
1001-049D	10050-10100	163	-		-	****	91	_	_	-
1001-054D	11100-11150	126	-	-	-	_	75			<u>-</u>
1001-062D	12600-12640	106	**	-	-	-	14	_	· -	_
1001-064D	12760-12820	190	· 27	23	50	-	74	. 63	3	140
1001-075D	14400-14440	70		_	_	_	15	-	**	

^{*} In feet.

ppm values are expressed on a weight/weight basis,

Table IV (Continued)

C. Composition of Extracts

GeoChem		Hy Paraffin-	drocarbons			Eluted	Nonhyd Noneluted	rocarbons Precipitd.	·		
Sample		Naphthene	Aromatic		Sulfur	NSO'S	NSO'S	Asphaltene		HC'S	
Number	Well Interval *	₹ .	8	PN/Arom	8	8	8	- 8	Asph/NSO	8	HC/Non HC
1001-015D		-	-	_	_	_		10.2	-	_	***
1001-032D			-	-		-	-	3.8	-	٠ 🕳	
1001-035D		-	-	-	-	-		33.3	-	-	_
1001-038D			-	-	~-	• -	_	34.9	_	-	-
1001-040D	8750- 8800	-	•••		-	_	_	16.7	-	-	_
1001-043D	9050- 9100	-	-	-	-	-	-	49.4	-	-	
1001-049D	10050-10100	· -	-	-	***	_	-	55.8	-	_	-
1001-054D	11100-11150	-	-		-	-	-	59.5		_	-
1001-062D	12600-12640	·	-	-	-	_	-	13.2	_		
1001-064D	12760-12820	14.2	12.1	1.17	-	33.2	1.6	38.9	1.12	26.3	0.36
1001-075D	14400-14440		-	-	-	_	~	21.4	-		-

^{*} In feet.

Table V-A
Saturate Hydrocarbon Analyses
Summary of Paraffin-Naphthene Distribution

GeoChem Sample		% .	8	8	C-P	C-P	
_	ell Interval*	_	Isoprenoid	-	Index A	Index B	ipl9/ip20
1001-015D	4350- 4390	15.7	1.9	82.4	1.01	1.20	0.61
1001-032D	7450- 7500	21.3	1.9	76.8	1.02	-	0.85
1001-035D	7940- 7980	13.1	3.3	83.5	1.08	-	0.92
1001-038D	8360-8400	17.3	1.3	81.4	0.95	-	0.73
1001-040D	8750- 8800	18.0	1.5	80.6	1.11		0.77
1001-043D	9050- 9100	14.8	1.0	84.2	1.03	 ·	0.69
1001-049D	10050-10100	13.4	3.1	83.5	0.97	-	1.00
1001-054D	11100-11150	12.1	0.7	87.3	1.04	-	0.42
1001-062D	12600-12640	12.3	2.4	85.3	1.09	-	1.03
1001-064D	12760-12820	12.1	2.2	85.7	1.15	_	0.72
1001-075D	14400-14440	10.8	1.2	88.0	1.30	 ,	0.44

^{*} In feet,

Table V-B
Saturate Hydrocarbon Analyses
Normalized Paraffin Distribution

GeoChem Sample Number	Well Interval *	% nC15	% nCl6	% nCl7	% ipl9	% nCl8	% ip20	% nC19	ջ nC20	% nC2l	ֆ nC22	ֆ nC23	ֆ nC24		ֆ nC26	ֆ nC27	ֆ nC28	ֆ nC29	ֆ nC30	% nC31	ֆ nC32	% nC33	ֆ nC34	ֆ nC35	
1001-015D 1001-032D	4350- 4390 7450- 7500	0.9	1.9	7.2 6.3	4.1 3.8	-				9.2 10.3			5.5 8.6	ì.,		1.4 2.2	0.7	0.4 0.5	0.3		0.1	0.0		0.0	
1001-0350	7940- 7980	0.9	3.3	15.4		18.0	10.5	14.7	8.8	6.5	5.2	3.2	1.7	1.3	0.6	0.3	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	
1001-038D 1001-040D	8360- 8400 8750- 8800	0.4	2.5	6.4 8.6		10.0		11.7 12.1	8.7	7.9 8.2	8.6				5.2 3.7	3.0 2.3		0.7 0.5		0.1	0.0	0.0	0.0		
1001-043D 1001-049D	9050~ 9100 10050 ~ 10100	0.4		5.8 13.9		10.1 16.3		12.1 14.4		8.8 6.4	10.9			1	4.4 0.9		1.0	0.5 0.1		0.1	0.0	0.0	0.0	0.0	
1001-054D	11100-11150	0.2	0.8	5.2	1.6	11.1	3.7	15.2	11.5	11.0	11.8	10.7	7.5	4.9	2.5	1.3	0.4	0.3	0.1	0.1	0.0	0.0	0.0	0.0	
1001-062D 1001-064D	12600-12640 12760-12820	0.5 0.4		15.5 14.4	6.6	17.3 19.0	9.1	16.7	9.7 10.9	7.9	5.9	3.8 3.5		0.8		0.3	0.2 0.3	0.4 0.1		0.1 0.0	0.0	0.0	0.0	0.0	
1001-075D	14400-14440	0.5	0.9	7.2	2.9	16.7	6.7	19.9	13.9	11.3	7.0	6.0	2.6	1.4	0.5	0.7	0.7	0.7	0.2	0.2	0.0	0.0	0.0	0.0	

^{*} In feet.

_	Visual Kerogen Assessment Worksheet								
		TYPE OF COLOR OF	STATE OF	MATURATION INDEX DEPOSITIONAL					
		ORGANIC MATTER ORGANIC MATTER	ORGANIC MATTER	ENVIRONMENT					
	+ 2 or more maturation pop-		CLE SIZE						
	~2% to 20% ulations	STATE OF THE STATE	PRESE						
	20% to 45%								
	45% to 80%			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					
	80% +			//////////////////// REMARKS					
	GEOCHEM NO. DEPTH		1./2/2/2/3/3/3/3/4-/	1/5/2/2/2/2/ NEMAINS					
	1001-009D 2410'			Am-W;H-C;- (-)					
+	1001-013D 3040'								
+	1001-015D 4390'								
	1001-017D 4560'			W;H;C (-)					
+	1001-019D 4900'			H;W;C (-)					
	1001-027D 6660'		137	W;C;H					
	1001-032D 7500'		7	W;H-C;-					
	1001-035D 7980'			H;W;C (-)					
	1001-038D 8400'		74	W;H;C					
	1001-040D 8800'			W;H;C					
	1001-043D 9100'			W;H;C					
	1001-048D 9970'			W;H;C					
	1001-049D 10100'			W;H-C;- (-)					
+	1001-054D 11150'		27	C;W;H (-)					
	1001-062D 12640'			C;H;Am-W (-)(*)					
+	1001-064D 12820'			C;W;Am-H (-)					
+	1001-071D 13760'		1-1777-1-1-1 -1 -1						
+	1001-075D 14440'								
		┇┍┋╸	 						
		<u> </u>							

⁽⁻⁾ Degraded herbaceous.

^(*) Relic amorphous.

Table VII

Vitrinite Reflectance Summary

	GeoChem Sample Number	Depth (feet)	Number of Readings	Minimum Reflectance (% Ro)	Maximum Reflectance (% Ro)	Average Reflectance (% Ro)
=	1001-49D	10050' - 10060'	21	1.76	2.36	2.10

Table VIII

Summary of Hydrqcarbon Source Character

RGANIC FACIES	WELL DEPTH INTERVAL (FEET)	LITHOLOGY	ORGANIC CARBON (% of rock)	VISUAL 1 TYPE	KEROGEN ALTERATION (Considered in place)	VITRINITE REPLECTANCE (% R ₀)	,	(I	RACTION ppm) AROM	TOTAL HC's	HYDROCARBON SOURCE CHARACTER	PROSPECTIVENESS
	400+	Medium dark gray agrillaceous dolomites	0.01	Woody Predominates		-					Mature, very poor oil, condensate, "wet" and/or	Non-prospective for any producible quantities of
		and micritic limestones predominate.	to								"dry" gas source character.	indigenously generated hy- carbons.
A	to	•	0.40	W;H;C	2+ to 3-	N.D.	59	< 20	< 20	<40		
i	7,350 <u>+</u>		- 0.13 <u>Mean</u>	Secondary Herbaceous								
				· · · · · · · · · · · · · · · · · · ·					-			
	7,350 <u>+</u>	Medium dark gray shales alternating with	0.07	Woody Predominates		1.76	66 	$pprox^{10}$	≈10	≈20	Very mature, very poor oil, condensate and associated	Non-prospective for any producible quantities of oil,
		argillaceous, micritic limestones predominate.	to		Į.	to	to	to	to	to	"wet" gas source character, and a fair to good "dry" ther-	condensate or "wet" gas.
B 	to	mmestones predominate.	1.36	W;H;C	3 to 3+	2.36	172	≈30	≈=30	≈60	mally derived methane gas source character.	Prospective for fair to good quantities of "dry" methane
			0.58	Secondary		2.10	112	< 20	< 20	< 40		gas provided that reservoir
I	10,150 <u>+</u>		Mean	Herbaceous	<i>;</i>	Mean	Mean	Mean	<u>Mean</u>	Mean		traps are available.
					· · · · · · · · · · · · · · · · · · ·	;	***					
	10,150 <u>+</u>	Argillaceous, dark gray micritic limestones	0.02	Coaly Predominates			70	≈ 20	≈20	≈40	Very mature to severely altered, very poor oil, condensate and	Overall, non-prospective for any producible quantities of
		predominate.	to			N. D.	to	to	to	to	associated "wet" gas source character. This zone contains	oil, condensate or "wet" gas
C	to		0.88	C;H-W;Am	3+ to 4		190	≈30	≈30	≈60	two intervals (10,900± to 11,200± feet and 12,500± to	Two intervals (10,900+ to 11,200+ feet and 12,500+ to
				Secondary				. 0.5	. 05	. 50	12,900+ feet) which have a fair	12,900+ feet) are considered
	14,510 <u>+</u>		0.19 <u>Mean</u>	Herbaceous/ Woody			123 <u>Mean</u>	< 25 Mean	< 25 Mean	< 50 Mean	"dry" thermally derived meth- ane gas source character.	prospective for <u>fair</u> quantities of "dry" methane gas
I		•									1.	provided that reservoir traps are available.

N.D. = No Data.

Table VIII (Contd.)

GEOTHERMAL DIAGENTIC CRITERIA AND VARIOUS GEOCHEMICAL RICHNESS SCALES UTILIZED FOR TABLE VIII DATA

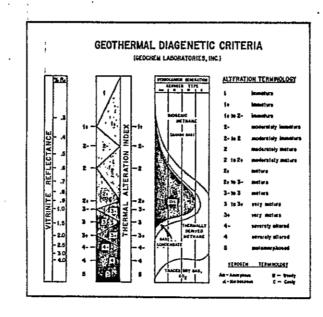
ORGANIC CARBON RICHNESS SCALE

	Carbonates	Clastics
Very poor to poor	0 to 0.25%	0 to 0.5%
Fair to good	0,25 to 0,50%	0,5 to 1.00%
Good to very good	0.50 to 1.0 %	1.0 to 4.0%
Excellent	> 1,00%	> 4.0%

KEROGEN TYPE & PREDOMINANCE KEY

Predominant; Secondary; Trace 60-100% 20-40% 1-20%

Al = Algal


Am = Amorphous-Sapropel

Il . Herbaceous-Spore/Cuticle

W = Woody

C = Coaly

U . Unidentified Material

C154 TOTAL BITUMEN EXTRACT RICHNESS SCALE

0 - 250 ppm : Very Poor 250 - 500 ppm : Poor 500 - 1000 ppm : Fair 1000 - 2000 ppm : Good 2000 - 4000 ppm : Very good Greater than 4000 ppm : Excellent

C154 TOTAL HYDROCARBON RICHNESS SCALE

0 - 50 ppm : Very poor 50 - 100 ppm : Poor 100 - 200 ppm : Fair 200 - 400 ppm : Good 400 - 800 ppm : Very good Groater than 800 ppm : Excellent

APPENDIX A

BRIEF DESCRIPTION OF ORGANIC GEOCHEMICAL ANALYSES PERFORMED IN THIS STUDY

Lithological Description and Picking of Samples

Rock samples of dry paleo cuttings and conventional cores were lithologically described and carefully screened to remove obvious cavings. Representative lithologies were composited for detailed geochemical analysis. Sample identification and lithological descriptions are recorded in Table II.

Organic Carbon

The total organic carbon content of a rock is a measure of its total organic richness. This data is used in conjunction with visual kerogen and C_1-C_4 , C_4-C_7 and C_{15+} hydrocarbon content of a rock to indicate its hydrocarbon source quality.

The procedure for determining the total organic carbon content of a rock involves grinding the dried sample to a powder, weighing out a 0.2729 gram sample into a crucible and acidizing with hot and cold hydrochloric acid to remove any carbonate, and performing combustion carbon analysis in a Leco carbon analyzer.

We run several blank crucibles, standards (iron rings of known carbon content) and duplicate rock samples in this analysis for purposes of data quality control.

The organic carbon data is recorded in Tables II and III.

C15- Soxhlet Extraction, Deasphaltening and Chromatographic Separation

The amount and composition of the organic matter which can be solvent-extracted from a rock reflects source quality and source type. C^{13}/C^{12} carbon isotopic, high mass spectrometric and gc analyses of the paraffin-naphthene and aromatic hydrocarbon fractions of the soluble extract gives data which is used in crude oil-parent rock correlations.

This analysis involves grinding of a dry rock sample to a powder and removal of the soluble organic matter by soxillet extraction using a benzene-methanol solvent. Where the amount of available sample material permits, we like to use at least 100 grams of rock for this analysis.

The extracted bitumen is separated into an asphaltene (Asph) and a pentane soluble fraction by normal pentane precipitation. The pentane soluble components are separated into a saturate hydrocarbon (P-N), aromatic hydrocarbon (AROM) and nitrogen-sulfur-oxygen containing fraction (NSO) by adsorption chromatography on a silica gel-alumina column.

A semi-quantitative micro-chromatographic analysis was performed on some of the samples since they contained an insufficient amount of $n-C_5$ soluble extract suitable for quantitative liquid chromatography. This enabled GeoChem to run gas-chromatographic analyses of the C_{15+} paraffin-naphthene (P-N) hydrocarbon fraction for all of the samples.

All C_{15+} compositional data is reported in Tables IV-A, B and C.

GC Analysis of C₁₅₊ Paraffin-Naphthene Hydrocarbons

The content and molecular composition of the heavy C_{15+} paraffin-naphthene hydrocarbons of rocks, as determined by gc analysis, reflects source quality, source type and degree of thermal maturation.

In this analysis we subject a very small fraction of the total amount of the P-N fraction extracted from a rock sample to gc analysis. The gas chromatograph is a Varian Aerograph Model 1400 equipped with a solid rod injection system and a eutectic column.

The chromatographic traces are shown in Figures 2, and the compositional data obtained for the C_{15+} saturate hydrocarbon is reported in Tables V-A and B.

In this study the calculated C. P.I. (carbon preference index) values for the normal paraffin data is defined as the mean of two ratios which are determined by dividing the sum of concentrations of odd-carbon numbered n-paraffins by the sum of even-carbon numbered n-paraffins. The C. P. Indices A and B were obtained by the formulas:

C. P. Index A =
$$\frac{C_{21} + C_{23} + C_{25} + C_{27}}{C_{22} + C_{26} + C_{26}} + \frac{C_{21} + C_{25} + C_{27}}{C_{20} + C_{22} + C_{24} + C_{26}}$$
C. P. Index B =
$$\frac{C_{25} + C_{27} + C_{29} + C_{31}}{C_{26} + C_{28} + C_{30} + C_{25} + C_{27} + C_{29} + C_{31}}$$

These C. P.I. values are recorded in Table V-A.

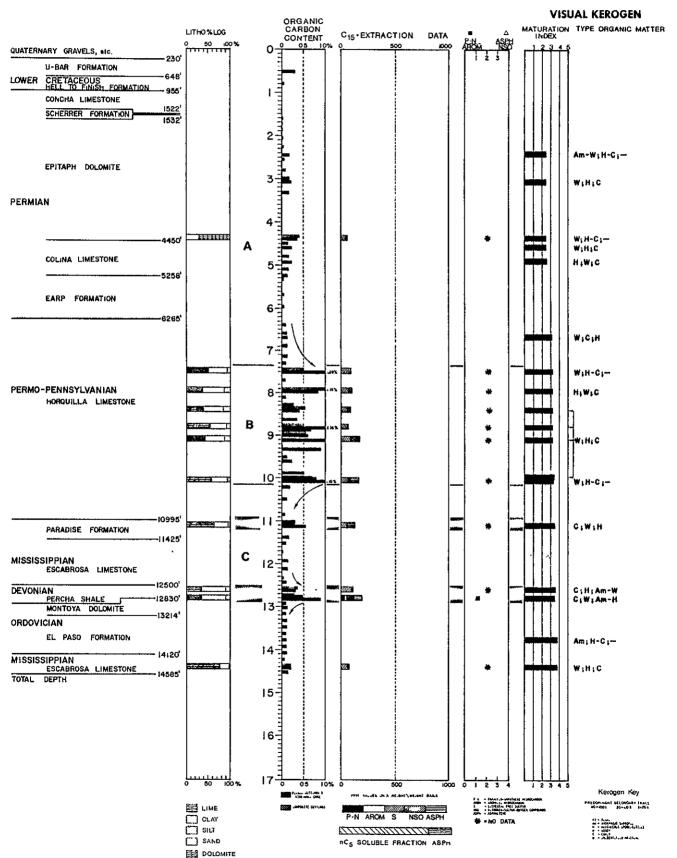
Visual Kerogen

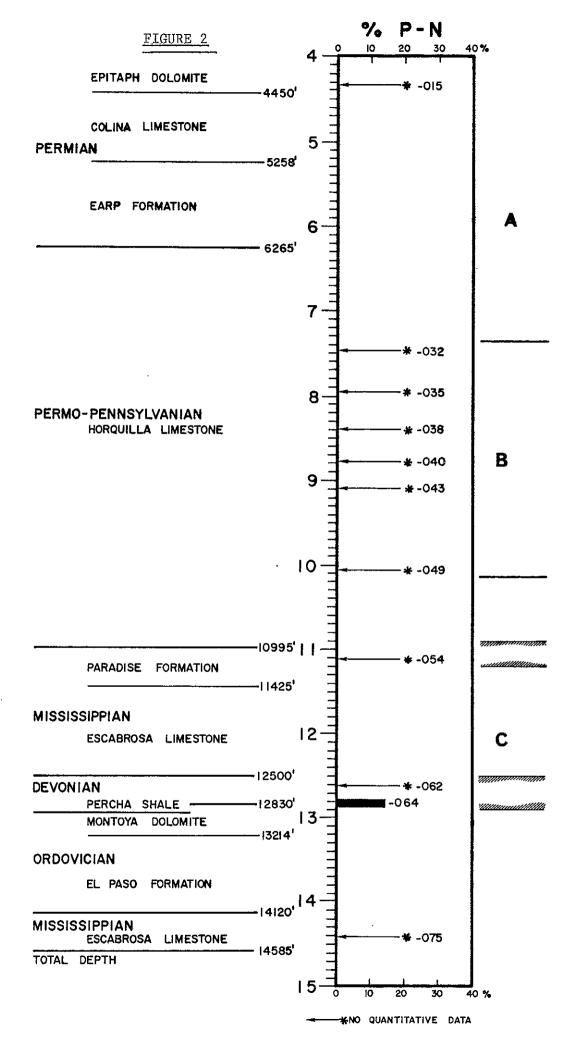
A visual study of kerogen, the insoluble organic matter in rocks, can indicate the relative abundance, size, and state of preservation of the various recognizable kerogen types and thereby indicate the hydrocarbon source character of a rock. The color of the kerogen can be used to indicate the state of thermal maturity of the sediments (i.e. their time-temperature history). Thermal maturation plays an important role in the generation of hydrocarbons from organic matter and also affects the composition of reservoired hydrocarbons.

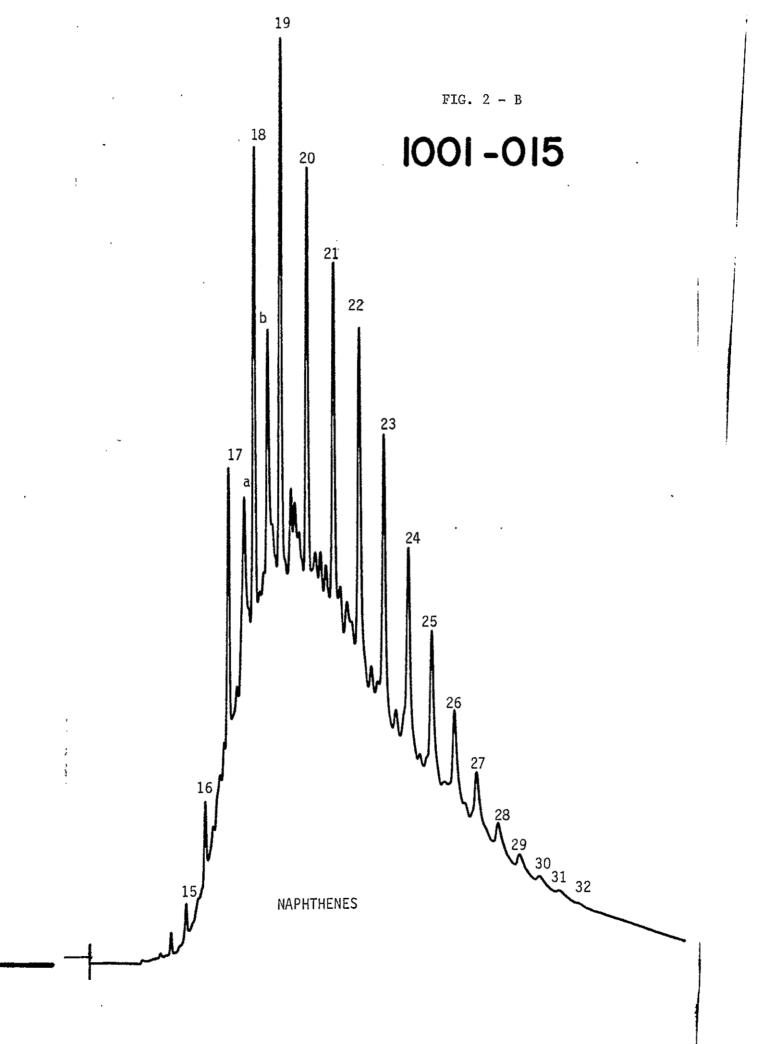
Our procedure for visual kerogen slide preparation involves isolation of the organic matter of a rock by removal of the rock material with hydrochloric and hydrofluoric acid treatment and heavy liquid separation. This procedure is comparable to that used by the palynologist except it does not include an exidation stage. (The exidation treatment is deleted from our procedure because it removes a great deal of kerogen and blanches any remaining kerogen to an extent whereby it is useless for our kerogen color observations.) The kerogen residue is mounted on a glass slide and is examined visually under a high power microscope. The kerogen assessment is noted in Tables III and VI.

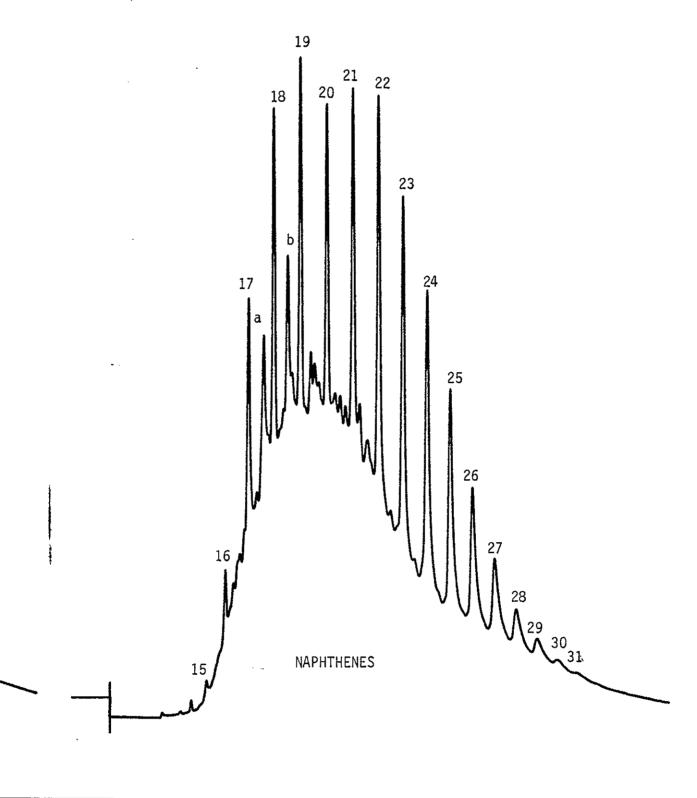
Vitrinite Reflectance (%R_o)

Vitrinite reflectivity (\$120) is a precise method of determining the state of geochemical maturation of the organic matter in sediments.

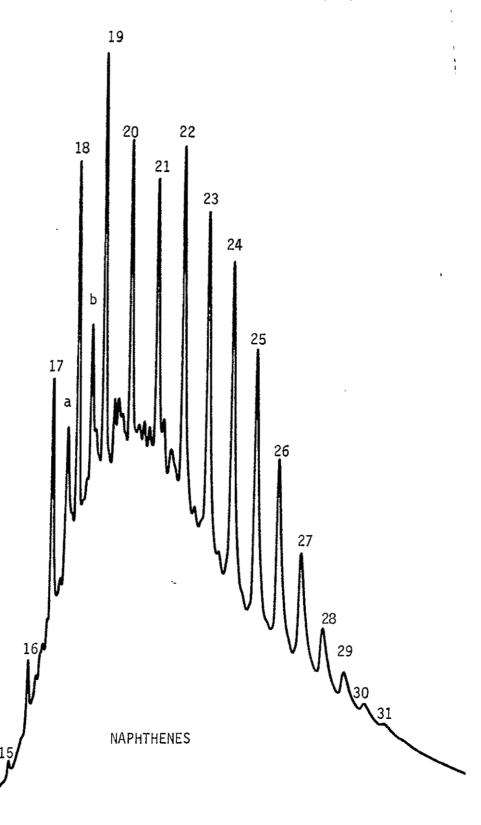

The kerogen isolated from the sedimentary rock by a similar process to that described above is embedded in Epoxy and polished. The Vitrinite reflectivity is then measured using a high resolution microscope calibrated against a known standard. The degree of thermal alteration is derived statistically by obtaining approximately 40 measurements on different pieces of vitrinite. Data is presented in Table VII and in histogram format in Figure 3.

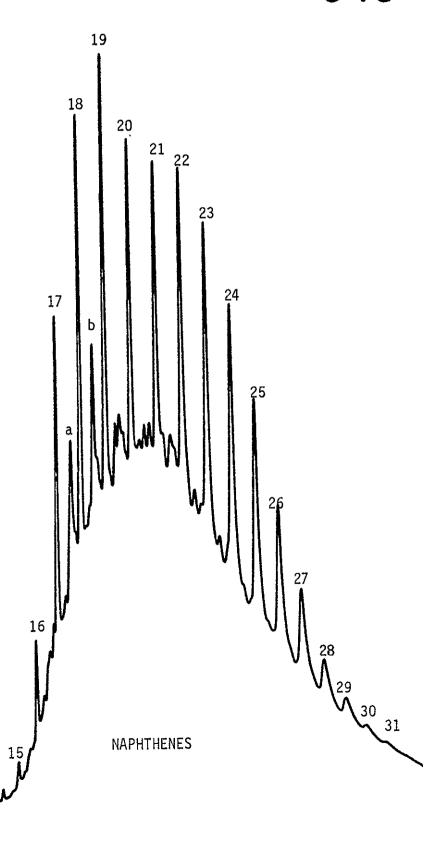

FIGURE 1

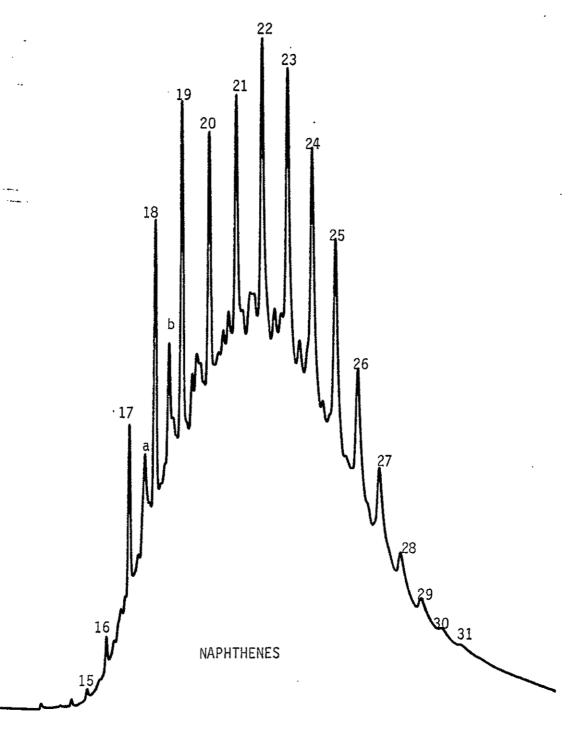

HUMBLE No. 1 STATE BA HIDALGO COUNTY, NEW MEXICO

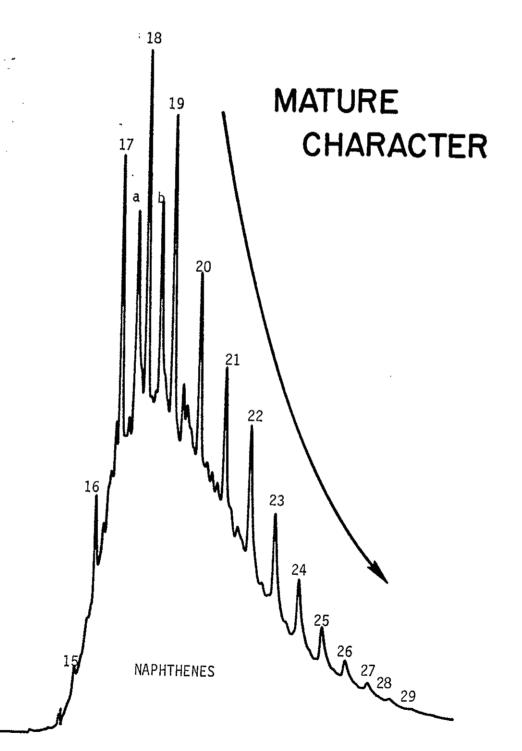

SUMMARY OF ORGANIC ANALYSES

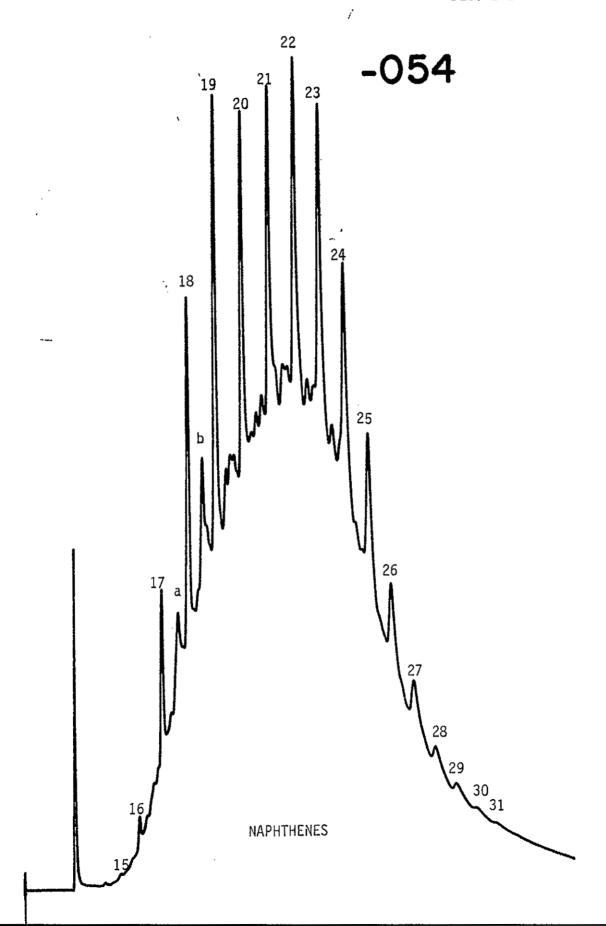
SOURCE CHARACTER

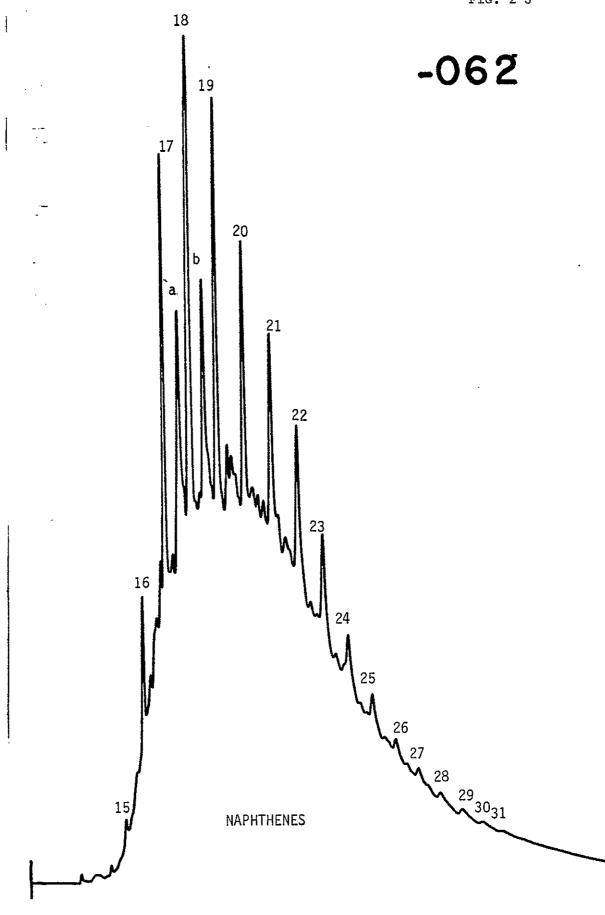


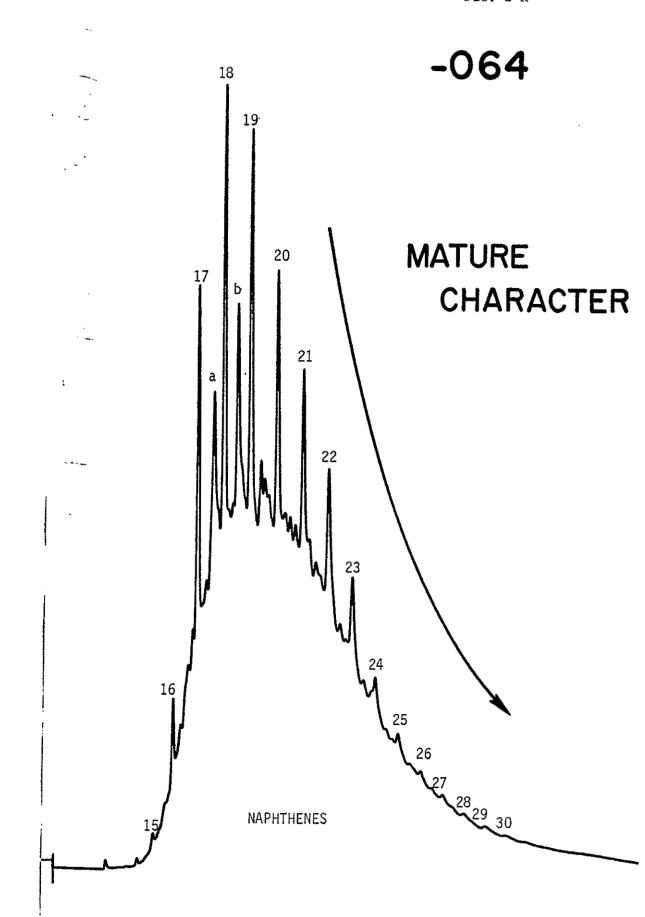


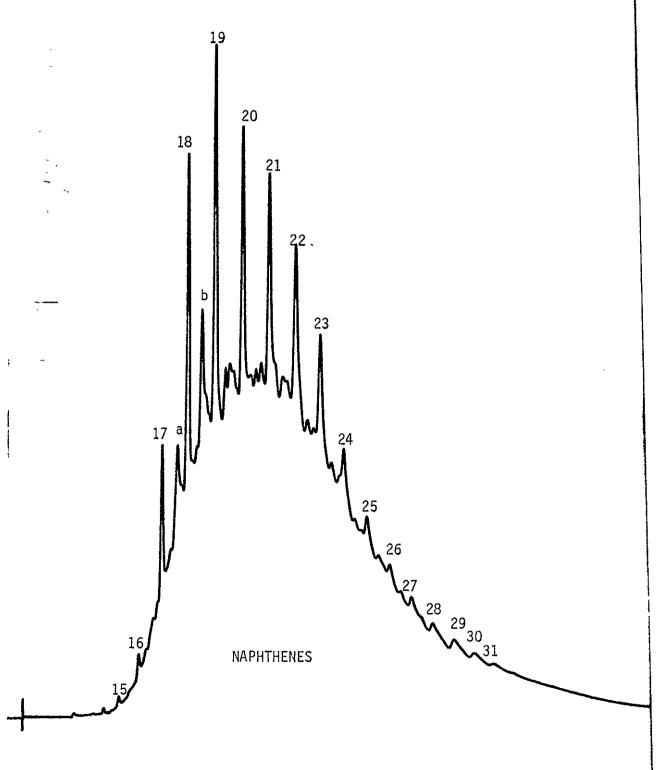












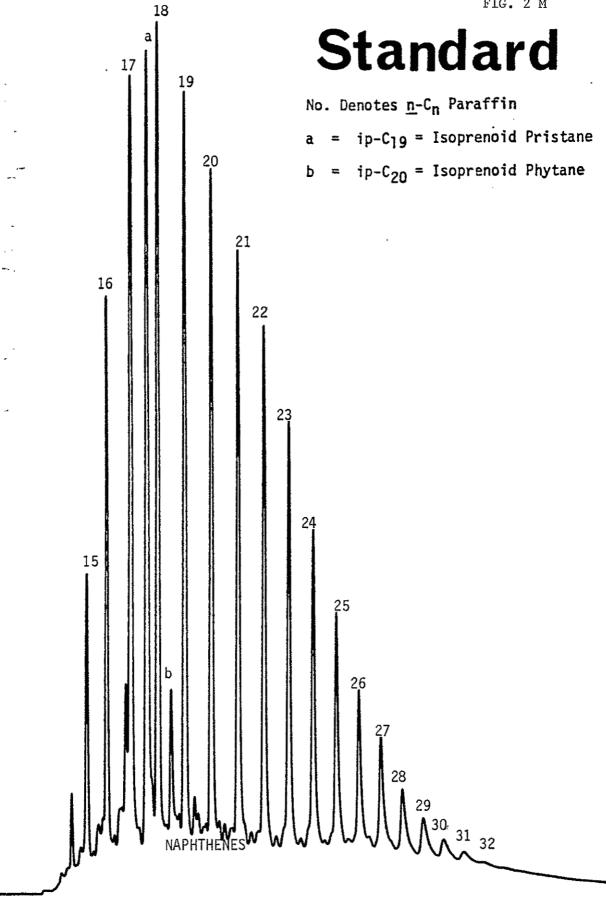
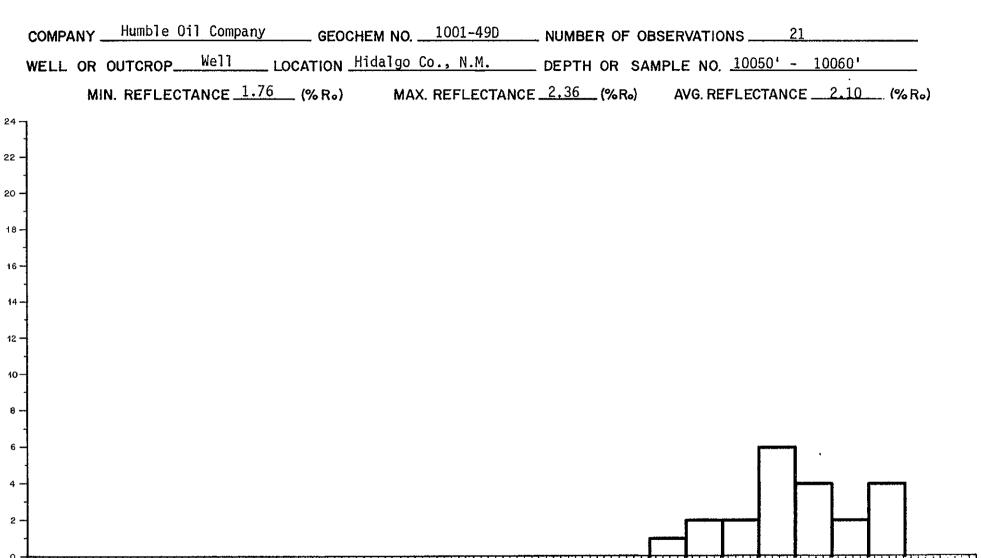



Figure 3

VITRINITE REFLECTANCE HISTOGRAM

2.0

NUMBER OF OBSERVATIONS