NEW MEXICO DIJOUNILO AND Line SOCOKHO, Heart Michield 17 Maines

OF 101

A STUDY OF SILICIC PLUTONIC ROCKS IN THE ZUNI AND FLORIDA MOUNTAINS TO EVALUATE THE POSSIBLE OCCURRENCE OF DISSEMINATED URANIUM AND THORIUM DEPOSITS

URANIUM AND THORIUM ABUNDANCES AND WHOLE ROCK CHEMISTRY OF THE FLORIDA MOUNTAINS, NEW MEXICO: PRELIMINARY STUDY

NMEI REPORT NO. 77-1104C

DECEMBER 1978

This research was conducted with the support of the New Mexico Energy and Minerals Department (EMD) and the New Mexico Energy Institute at The University of New Mexico (NMEI at UNM) under Contract 77-1104. However, any opinions, findings, conclusions, or recommendations expressed within this report are those of the authors and do not necessarily reflect the views of the EMD or of the NMEI at UNM.

NMEI Report No. 77-1104C

A STUDY OF SILICIC PLUTONIC ROCKS IN THE ZUNI AND FLORIDA MOUNTAINS TO EVALUTE THE POSSIBLE OCCURRENCE OF DISSEMINATED URANIUM AND THORIUM DEPOSITS

Uranium and Thorium Abundances and Whole Rock Chemistry of the Florida Mountains, New Mexico: Preliminary Study

Final Report

August 15, 1977 - August 14, 1978

Principal Investigators

Douglas G. Brookins, Department of Geology, University of New Mexico Christopher E. Rautman, New Mexico Bureau of Mines and Mineral Resources L. LeRoy Corbitt, Department of Geology, Eastern New Mexico University

Authors

Douglas G. Brookins, Department of Geology, University of New Mexico Christopher E. Rautman, New Mexico Bureau of Mines and Mineral Resources L. LeRoy Corbitt, Department of Geology, Eastern New Mexico University

> NMEI #77-1104C December 1978

Uranium and Thorium Abundances and Whole Rock Chemistry of the Florida Mountains, New Mexico: Preliminary Study

by

Douglas G. Brookins, Department of Geology, University of New Mexico Christopher E. Rautman, N.M. Bur. Mines Min. Res.

L. LeRoy Corbitt, Department of Geology, Eastern New Mexico University

abstract

The uranium and thorium abundances in the Precambrian granitic and of the syenitic rocks (age unknown) of the Florida Mountains have been analyzed by delayed neutron activation analysis. The average uranium content of 90 surface and drill core samples is 3.12 ppm and thorium content for 66 samples is 12.33; Th/U = 3.97, well within the normal range for granitic rocks (3.7 - 4.2). Although the Th/U ratio is normal for granitic and syenitic rocks, a negative correlation between uranium (and Th/U) with Al_2O_3 , K_2O , and ($K_2O + Na_2O$) is observed. This may be due to (a) derivation of the syenitic rocks from parent, low uranium gabbroic rocks or (b) uranium loss during weathering. For the latter, significant amounts of uranium may have been removed and possibly not transported far from the source area. The syenitic rocks do not possess high uranium contents typical of other areas.

Introduction

The Florida Mountains, south-central New Mexico are of interest because of the presence of syenitic rocks (Corbitt, 1971) and the assumed association of uranium enrichment with uranium. This assumption prompted part of this study, víz. to determine if the rocks of the Florida Mountains were indeed uranium rich and, if so, whether they represented a possible, low grade uranium resource. If uranium poor, then uranium loss may be postulated which would indicate that uranium exploration in the surrounding sediments may be justified.

The Florida Mountains are very complex geologically; syenites originally mapped as Mesozoic by Corbitt (1971) have been indicated as much older (i.e., from early Phanerozoic (?) to Precambrian; Brookins, 1974). Whole rock chemical studies and petrographic studies have also been carried out to help assess the relationship between the granitic rocks and those with syenitic affinities. Some of this work is still in progress, and additional age work is contemplated and essential to attempt any material balance between the granites and syenites.

Uranium and Thorium Investigation

The uranium abundance in the Florida Mountains is of interest for several reasons. First, the rocks in which one might logically expect uranium enrichment, viz. syenites and quartz syenites, are depleted in uranium and thorium and Th/U is also low. Secondly, syenites typically show a positive correlation between potassium (or potassium plus sodium) and uranium. In Figures 2 to 5 are plotted U vs. K_2^{0} , U vs. $Al_2^{0}_3$, Th/U vs. $Al_2^{0}_3$, and U vs. $(Na_2^{0} + K_2^{0})$. In all cases uranium shows a negative correlation with increasing alkali and alumina content. Despite scatter,

this holds true for surface samples as well as drill core samples. These data may be interpreted in several ways, the two most obvious explanations are: (1) The syenites were derived from an alkali gabbro parent with low Th and U; this model is possible as hornblende gabbro, presumably gradational into syenite, is noted in the northern Floridas by Corbitt (1971). (2) Uranium has systematically been lost due to weathering or other processes. If (2)is correct, then, assuming normal U in the range of 4-5 ppm for granitic to syenitic rocks, some one million tons of uranium may (hypothetically) have been released from just 100 km³ of rock. This in turn indicates that either high uranium in stream sediments near the Floridas might result or that small (?) uranium deposits may be found in some of the sediments/ sedimentary rocks nearby. Critical to evaluating (1) versus (2) is the exact age relationship between the granites and syenites; Brookins (1974) has suggested that the sygnites are not coeval with the granites, but how much younger has not been resolved. This problem needs much more detailed work.

The Th/U ratio for the Florida samples is shown as Figure 6; despite the positive correlation, deviation from Th/U = 4 is apparent. The U and Ti correlation is tested in Figure 7; a negative correlation between U and Ti is indicated with Ti enriched in the U-depleted symmitic rocks. Surface samples and drill core samples show the same trend. Collectively these data indicate, as mentioned earlier, that a systematic variation between granitic and symmitic rocks exists. The problem of temporal relationship between the two rocks remains unsolved.

Whole Rock Chemistry

The whole rock chemistry for the Florida samples is presented in Table 2. Although rocks mapped as syenites (FM-3, FM-4, FM-7 (upper six samples), FM-8)

are justified based on petrography (See appendix), their SiO₂ contents are slightly higher than normal syenites, a point made by Brookins (1974) and Brookins and Corbitt (1974). High total alkalis and alumina support classification as syenites. Those rocks identified as granites possess SiO₂ contents from 71-77 percent and are characterized by lower alumina, total alkalies, titania. Iron is not systematically distributed between the various rocks although it is fairly constant for any one drill hole thus suggesting relatively little iron loss.

The whole rock chemical data will be more carefully interpreted when trace element data are available and additional Rb-Sr studies have been completed.

Acknowledgments

Partial financial support was provided by the N.M. Energy Resources Board (Grant #77-1104). The N.M. Bur. Mines and Min. Resources provided assistance in the drilling and in the x-ray fluorescence spectrography. R. T. Hicks, K. T. Emanuel and R. S. Della Valle of the University of New Mexico assisted in the work. The facilities of P-2 and CNC-11 at the Los Alamos Scientific Laboratory were used for the uranium and thorium analyses by delayed neutron activation analysis; acknowledgment is due M. Bunker and J. P. Balagna.

REFERENCES CITED

- Brookins, D. G., 1974, Radiometric Age Determinations from the Florida Mountains, New Mexico: Geology, v. 2, p. 555-557.
- Brookins, D. G., and Corbitt, L. L., 1974, Preliminary Rb-Sr Study of Igneous Rocks of the Florida Mountains, New Mexico: EOS Trans. Am. Geophys. Un., v. 55, p. 470-471.
- Corbitt, L. L., 1971, Structure and Stratigraphy of the Florida Mountains, New Mexico: Unpub. Ph. D. Thesis, Univ. New Mexico, 115 p.

TABLE 1

`

Th and U Data: Florida Mountains

Sample	Th (ppm)	<u>U (ppm)</u>	<u>Th/U</u>
FM5-1	13.65	3.08	4.43
FM5-3	35.8	7.80	4.59
FM5-5	15.0	3.65	4.11
FM2-1	16.4	4.03	4.07
FM7-3	2.40	1.58	1.52
FM8-1	12.9	2.88	4.48
FM2-2	15.0	2.80	5.36
FM7-4	3.70	2.39	1.55
FM7-2	3.63	1.77	2.05
FM2-4	18.2	4.81	3.78
FM16	17.4	3.03	5.74
FM7-1	3.15	1.42	2.22
FM7-6	30.8	7.08	4.35
FM-11	18.6	3.89	4.78
FM7-8	4.26	1.83	2.33
FM8-2	17.1	3.69	4.63
FM2-8	18.4	4.22	4.36
FM7-5	3.69	1.65	2.24
FM1-3	24.6	5.44	4.52
FM7-5	13.0	2.76	4.71
FM4-1	7.26	1.87	3.88
FM5-6	19.8	4.18	4.74
FM1-2	23.1	4.56	5.07
FM1-7	12.9	2.33	5.54
FM2-5	11.5	2.57	4.47
FM1-5	16.3	4.17	3.91
FM4-4	2.67	1.50	1.78
FM4-2	5.08	1.25	4.06
FM4-3	3.29	1.47	2.24
FM5-2	18.9	2.77	6.82
FM2-3	14.5	3.15	4.54
FM14	16.2	3.35	4.84

TABLE 1 (continued)

.

Sample	Th (ppm)	<u>U (ppm)</u>
F1183		2.98
F1184		3.05
F1185		8.04
F1187		3.63
F1188	• , ••••	1.38
F1189		5.53
F1190		1.53
F1191		1.48
F1192		7.73
F1193		3.44
F1194	au	4.80
F1195		3.56
F1196		5.61
F1197		2.62
F1198		6.43
F1199		1.55
F1200		1.16
F1201		2.60
SP9W10	12.8	4.10
CDSWSELO .	19.0	4.40
GPSWSW97	3.14	1.55
SPE4	7.23	1.76
SPSW3	11.4	2.55
GPNE31	11.1	3.65
SPSENE26	16.4	3.80
SPSESE15	24.6	5.95
CDSWNW18	2.48	1.64
CDNW34	2.01	0.86
GPNWNW18	28.3	7.50
SPSWSW26	22.3	4.73
GPNENE24	12.66	3.45
SPSWSW22	4.74	2.15

. . .

.

Sample	Th (ppm)	<u>U (ppm)</u>
GPCNW31	2.33	1.66
GP CNW6	2.05	1.48
SPNWNE23	2.54	2.02
SPC4	14.49	4.02
SPWC19	7.69	2.86
SPNWNW25	- 19.1	3.07
SPSW36		3.63
GPCNE31	10.6	2.36
GPNE13	6.22	1.68
CENENEL O		2.69
CDSW3	*** ===	1.77
GPSESE14		0.65
SP9 + SW10	4.22	1.37
GPSESE14	9.33	3.58
SPSWSW36	1.95	1.55
CDNE10	15.98	3.20
SP9	4.67	1.25
CDCNE3	3.34	1.40
GPNESW12	23.8	3.33
GPNWNW24	18.1	3.95
GPNESW14	8.75	1.86
SPSSW3	6.08	1.22

NOTES:

(1)	FM samples from drill core (see Fig. 1)
(2)	F1183-1202 surface samples; see Brookins (1974)
(3)	CD = Capitol Dome Quadrangle (Corbitt, 1971)
(4)	GP = Gym Peak Quadrangle (Corbitt, 1971)
(5)	SP = South Peak Quadrangle (Corbitt, 1971)

TABLE 2

Whole Rock Analyses -- Florida Mountains

	FML-1	FM1-2	FM1-3	FM1-4	FM1-5	FM1-6	FM1-7	FM1-8
SiO2	71.42	71.92	70.90	72.46	71.42	72.14	71.10	70.79
TiO2	.35	.29	.26	.28	.30	.30	.33	. 30
A1203	13.03	12.54	12.36	12.49	12.56	13.10	12.63	13.07
Fe203	4.83	5.02	6.66	5.02	5.42	3.98	4.96	4.42
MgO	.19	.29	.63	.32	.61	.24	.47	.49
Ca0	.34	.42	.37	.35	.49	.40	.38	.53
Na ₂ 0	4.28	4.04	3.32	3.57	3.61	4.38	4.10	4.12
K20	4.94	4.70	4.62	4.77	4.88	4.88	5.05	5.15
total	99.38	99.22	99.12	99.26	99.29	99.42	99.02	98.87
	FM2-1	FM2-2	FM2-3	FM2-4	FM2-5	FM2-7	FM2-8	FM3-1
SiO2	77.42	76.85	74.28	76.76	73.48	74.98	74.56	64.58
TiO2	• 32	- 32	.40	•33	.48	.40	.52	.28
A1203	11.68	11.19	11.63	11.05	12.55	12.26	12.49	15.80
Fe ₂ 03	2.32	4.14	5.30	4.45	4.54	4.69	3.83	5.85
MgO	.18	.14	.21	.13	.23	.15	.10	.56
Ca0	. 02	nd	nd	nd	nd	nd	nd	.48
Na ₂ 0	2.38	2.31	2.47	2.26	3.03	2.95	2.85	4.00
К ₂ 0	5.06	4.67	5.10	4.67	5.21	5.16	5.41	6.44
total	99.38	99.62	99.39	99.65	99.52	100.59	99.76	97.99
	FM3-2	FM3-3	FM4-1	FM4-2	FM4-3	FM4-4	FM4-5	FM5-1
SiO ₂	63.36	62.86	61.85	60.47	59.78	61.15	60.88	72.41
TiO2	. 24	.35	1.08	1.24	1.39	1.14	1.30	.31
Al ₂ 03	17.36	16.29	16.52	16.35	16.67	17.12	16.99	13.20
Fe ₂ 03	6.10	7.61	5.18	6.32	6.57	5.54	6.06	3.98
MgO	• 56	.41	1.15	1.84	1.81	1.66	1.79	.20
Ca0	. 44	.45	2.11	2.52	2.40	1.90	1.69	.30
Na ₂ 0	4.00	4.32	6.80	6.74	7.20	6.82	6.89	2.85
к ₂ 0	5.77	5.66	5.79	5.43	5.51	5.77	5.84	5.04
total	97.83	97.95	100.48	100.91	101.33	101.10	101.44	98.29
	FM5-2	FM5-3	FM5-4	FM5-5	FM5-6	FM 7-1 .	FM7-2	FM7-3
SiO ₂	73.50	70.10	73.54	73.90	75.20	65.56	64.56	65.14
TiO2	.31	.65	• 33	.27	.28	.69	.74	.80
Al203	12.27	12.38	12.61	12.48	11.80	18.96	18.12	18.58
Fe203	4.17	7.36	4.14	3.71	4.02	1.03	3.08	1.47
MgO	.19	• 32	.16	.20	.13	.43	.32	.36
Ca0	.35	.16	.20	.24	.12	.48	41	•53
Na ₂ 0	3.80	3.74	4.33	4.11	3.86	6.65	6.66	6.69
к ₂ 0	4.79	4.56	4.29	4.53	4.36	6.58	6.29	6.74
total	99.38	99.27	99.60	99.44	99.77	100.38	100.18	100.31

.

.

•

						•	
	FM7-4	FM7-5	FM7-6	FM7-7	FM7-8	FM8-1	FM8-2
SiO2	65.09	64.66	70.45	70.41	63.77	68.23	67.94
TiO ₂	.63	.58	.26	.30	.68	.32	.29
Al203	18.06	18.24	15.20	16.02	17.42	14.31	14.56
Fe203	2.44	2.44	2.59	1.32	4.48	4.40	4.00
MgO	-49	.40	.30	•26	.43	.24	.19
CaO	.49	.47	.17	.21	.41	.58	.68
Na ₂ 0	6.58	6.61	5.14	5.75	6.45	5.74	6.44
K20	6.30	6.52	5.44	5.53	6.19	5.45	5.42
total	100.08	99.92	99.55	99.80	99.83	99.27	99.52

· · · ·

.

.

•

.

`

FIGURE 2

FIGURE 3

FIGURE 4

.

FLORIDA MOUNTAINS (Na20 + K20) vs. U

FIGURE 6

16 %

FIGURE 7

FLORIDA MOUNTAINS

Sample Descriptions and Specimen Status

Spec. No.	Location	Depth	Map Unit
FM1-1	NE/SE/NE/23/26S/8W	0- 5	gr
-2		5-10	gr
-3		10-15	gr
-4		15-20	gr
-5		20-25	gr
-6		25-30	gr
-7		30-40	gr
-8		40-50	gr
FM2-1	SE/NE/SE/13/26S/8W	0- 5	gr
-2		5-10	gr
-3		10-15	gr
-4		15-20	gr
-5		20-25	gr
-6		25-30	gr
-7		30-35	gr
-8		35-40	gr
FM3-1	NE/SE/SE/2/26S/8W	0- 5	gr
-2		5-10	gr
-3		10-15	gr
F M4-1.	SW/NE/NE/35/26S/8W	0- 5	sy
-2		5-10	sy
-3		10-15	sy
-4		15-20	sy
-5		20-21	sy
FM5-1	NW/SW/SE/10/255/8W	0- 5	gr(N)
-2		5-10	gr(N)
-3		10-15	gr(N)
-4		15-20	gr(N)
-5		20-25	gr(N)
-6		25-30	gr(N)
FM7-1	SW/SW/SE/31/25S/7W	0-10	sy
-2		10-20	sy
-3		20-30	sy
-4		30-35	sy
-5		35-40	sy
-6		40-45	sy
-7		45-50	gr
-8		50-55	gr
FM8-1	NW/NE/NW/31/25S/7W	0- 5	sy
-2		5-10	sy

Ţ.

FLORIDA MOUNTAINS

Description and Location of Rocks

- Orthoclase Granite Sections 10, 11, 14 T. 25 S., R. 8 W. Capital Dome area.
- Hornblende Perthite Syenite to Quartz Syenite Sections 25, 35, 36 T. 25 S., R. 8 W. NW Portions Sections 6, 18 T. 26 S., R. 7 W. Mostly north of major fault.
- Perthite Biotite Syenite Section 25 T. 25 S., R. 8 W. Sections 30, 31 T. 25 S., R. 7 W. North of major fault.
- Perthite Quartz Syenite Section 36 T. 25 S., R. 8 W. Section 31 T. 25 S., R. 7 W. North of major fault.
- 5. Hornblende Perthite Granite Sections 25, 36 T. 25 S., R. 8 W. Section 31 T. 25 S., R. 7 W. Sections 9, 10, 14 T. 26 S., R. 8 W. Section 18 T. 26 S., R. 7 W. Identical to hornblende perthite syenite and perthite syenite except more quartz.
- Orthoclase Plagioclase Microcline Perthite Granite Sections 2, 9, 10, 12, 13, 14, 15, 16, 23, 24 T. 26 S., R. 8 W. Sections 18, 19 T. 26 S., R. 7 W. South of major fault.

LOCATION

٠

ROCK

FM4-3-	Brecciated	Hornblende	Perthite	Quartz	Syenite
FM4-5-	Hornblende	Perthite	Quartz	Svenite	
SPNW-25-	It	11	- 19	88	
SPNW-25*-	11	11	11	TT	
SPNENE-35-	**	11	11	\$ 7 .	
GPNWNW-6-	**	11	77	11	
GPCNW-6B-	12	, 17 ·	11	77	
GPNWNW18B	11	11	11	TT	
SPNENE-25-	Biotite	Perthite	Quartz	Syenite (calcito)	
GPSWNE-30-	11	11	11		
GPCNE-31A-	**	11	11	f#	
SDMINE-23-	Porthita	Overte	Suppito		
SPSESE-23-	II CI CIIICC	li li	n		
SPCNE31R-	11	72	11		
SPSWSE31-	11	11	11		
CDCNE31-	11	19	\$ 1		
FM7-4-	Perthite	Quartz	Syenite		
FM7-6-	Perthite	Plagioclase	Quartz	Syenite	
SPSW-36-	Brecciated	Perthite	Quartz	Syenite	
SPSWSE36-	Brecciated	Perthite	Orthoclase	Quartz	Syenite
FM8-2	Hornblende	Perthite	Granite		
SPNWNW25-	\$1	82	**	,	
SPSENE-26A-	11	11	11		
SP-SW-36(?)-	11	11	11		
GPNW-31A-	11	. 11	11		
SPSENE-14-	11 .	11	п , .	,	
GPSENE14	ft .	17	81		
SP9+SW-10A	12	31	**		
SP9+SW-10B	11	· 11 .	ŧt		
S999W-10-	11	11	11		
		a			

SPSENE26B-	Perthite	Granite
SPWNE-26-	tt .	11
SPSESE-26-	17	11
SPNENE-35-	11	tt j
SPSW-36A-	11	11
SPSESE-2-	11	11
SPNE-2-	73	tt
SPNESE-4-	11	11

(cont.)

.

LOCATION		ROCK
SPE-4-	Perthite	Granite
SPCN-4	11	11
SPSW-3A-	11	· • •
SPSW-3B-	**	tt ,
SPSSW-3-	11	11
GPNWNW-18C-		18
GPSESE-14C-	TT	11
GPNWSE-14-	11	11
GPNENE-23-		**
SPSWNW-16		. "
GPESE 14		67
FM 1-8	11	**
SPNESE 26- SP-SW2NU2-2-	Brecciated	Perthite
SPSW-3	17	
SPSW-3C-	11	11
SPSW-3E-	u	11
SPSWSW9-	11	tt
FM-3-	Perthite	Orthoclase
SP-SW-3D-	**	79
SPSW-3-	Orthoclase	Granite
SP9+W-10B-	Orthoclase	Plagioclase
		-
SPSW16	Orthoclase	Perthite
FM5-2	Orthoclase	Cranite
FM5-6	n Ortmociase	tt tt
CDNE-10	11	11
CDSWSE-10	Granophyric	Orthoclase
GPNESW-12	Perthite	Plagioclase
GPSWSW-13		**
GPSESE-14B	Perthite	Granite
SPNWNW-14?	Perthite	Orthoclase
GPCSE14	17 -	TT
GPSWNE14	11	**
GPSWNW14	**	**
GPNESW14	11	**
SPSESE-14-15 or	R "	tī
SPSE16D	11	11
SPSE16B	19	11

11

SPSE-45?

.

erthite "		Granite.
		11
11		11
11		11 .
tt		11

.

3-	Perthite	Orthoclase	Granite	
5W-3D- N-3-	" Orthoclase	" Granite	H	
+W-10B-	Orthoclase	Plagioclase	Granite	
W16	Orthoclase	Perthite	Granite	
-2 -6 E-10	Orthoclase "	Granite " "	(Calcite)	
WSE-10	Granophyric	Orthoclase	Granite	
ESW-12 NSW-13	Perthite "	Plagioclase "	Granite "	
ESE-14B	Perthite	Granite		
WNW-14? SE14	Perthite	Orthoclase	Plagioclase	Granite
JNF1 A	11	11	11	11

tt

11 11 27 77 11 11 11 11 n 11

11

.

**

.

LOCATION

.

.

ROCK

.

SPSWSE15	Granophyric	Perthite	Orthoclase	Plagioclase	Granite
GPNESE13	Perthite	Orthoclase	Microcline	Plagioclase	Granite
GPSW31B	Granophyric	Perthite	Orthoclase	Granite	
FM2-8	Granophyric	Perthite	Orthoclase	Plagioclase	Granite
SP99SW10A	Perthite	Orthoclase	Quartz	Granite	
GPSESE14A	Perthite	Orthoclase	Granite		·
CDSWSW14	Orthoclase	Perthite	Plagioclase	Granite	
SPSESE14	Orthoclase	Perthite	Granite		•
SPSESE-15	Granophyric	Perthite	Orthoclase	Plagioclase	Granite
SPSE16E	Microcline	Perthite	Granite		
GPSWNW18	Hornblende	Orthoclase	Plagioclase	Granite	
GPNWNW24	Orthoclase	Plagioclase	Granite		
GPNENE24	Orthoclase	Perthite	Granite		x
GPSWSE10A	Granophyric	Orthoclase	Granite		
SP9+W10A	Plagioclase	Orthoclase	Granite (Calcite)		
GPNWNW18A	Orthoclase	Plagioclase	Granite		
SPSE45?	Granophyric	Perthite	Orthoclase	Plagioclase	Granite
CDNWNE14	Perthite	Plagioclase	Granite		
CDSWSW11 CDSW11	Orthoclase "	Granite "			
GPSWSW17?	Perthite	Granite			
GP-SWNE36	Orthoclase	Quartz	Syenite (Calcite)		
GP-SW31A	Biotite	Orthoclase	Syenite		
SPSENW16	Perthite	Orthoclase	Quartz	Syenite "	
SPE17	99 19	22 77	11 11	17 77	
SPSWSW2Z?			101t - 1	0	C
SPCNW6A	Perthite	Orthoclase	Fiagloclase	Quartz	Syenice
SPCNE34C?	Biotite	Perthite	Orthoclase	Syenite (Calcite)	