New Mexico Bureau of Mines and Mineral Resources Open File Report No. OF-347

GEOCHEMICAL ANALYSIS OF THE CHAMPLIN PETROLEUM NO. 1 MESA ALTA FEDERAL (43-C-9) WELL, MCKINLEY COUNTY, NEW MEXICO

by James E. Keal, Jr. and Wallace G. Dow Robertson Research, Inc. Houston, Texas

April 18, 1983

Mesa Alta Prospect Champlin #1 Federal - Mesa Alta ROBERTSON RESEARCH (U.S.) INC. SE 9-18N-8W

REPORT NO. 823/260

Geology GEOCHEMICAL ANALYSIS OF THE FEDERAL 34D-9 WELL, MCKINLEY CO., NEW MEXICO ·

> by James E. Keal 🕔 Wallace G. Dow

PROJECT NO. RRUS/823/T/260/2

Prepared by: Robertson Research (U.S.) Inc. 16730 Hedgecroft, Suite 306 Houston, Texas 77060-3697

Prepared for: Champlin Petroleum Company and Santa Fe Energy

April 18, 1983

TABLE OF CONTENTS

.

ROBERTSON RESEARCH (U.S.) INC.

PAGE NO.

I.	SUMMARY	1
п.	INTRODUCTION	. 1
III.	DISCUSSION	2
IV.	REFERENCES	7
۷.	FIGURES	
1. 2. 3. 4. 5. 6.	Organic Carbon and Visual Kerogen Plots Rock-Eval Pyrolysis Plots Kerogen Type and Pyrolysis Data Kerogen Maturation Profile Zones of Oil and Gas Generation Headspace Gas Plot	9 10 11 12 13 14
VI.	APPENDICES	
I. II. IV V.	 Analyses Performed and Lithology Symbols Organic Carbon Data Rock-Eval Pyrolysis Data Reflected Light Microscopy Data Headspace Gas Analysis Data 	15 18 20 23 33
V I	• Organic Extract Data	36

I

SUMMARY

Geochemical analyses of cuttings in the Federal 34D-9 well indicate that only the Cretaceous section is capable of hydrocarbon generation. All of the samples analyzed from deeper parts of the section penetrated are organic lean and are considered to be nonsources for migratable amounts of oil or gas.

Wet and dry gas should be the primary hydrocarbons generated from Cretaceous source beds; however, maturity determinations indicate that the Cretaceous section is not sufficiently mature for peak wet gas generation. No oil source beds were identified by this study. Some migrated gas appears to be present in the lowermost part of the Cretaceous section.

II

INTRODUCTION

Geochemical analysis of canned cuttings from the Champlin, #1 Federal 34D-9 well have been performed in order to determine the source bed capability of the penetrated section. The age of the sedimentary section ranges from Cretaceous at the surface to Carboniferous at T.D. Two large sample gaps exist at approximately 3,200 to 4,300 feet and 4,400 to 7,510 feet. The Exlog sample log provided by the client indicates that much of the missing sections consist of red shale, sandstone, and siltstone. Some intervals, however, appear to contain brown and gray shales which could possibly have some source capability. Because these samples were not made available, the source capatility in these parts of the section could not be determined.

Analytical data are tabulated in Appendices I-VI. Age designations shown on the figures were provided by the client and lithologies were taken from the Exlog sample log.

III DISCUSSION

ORGANIC MATTER CONCENTRATION

The organic matter content of rocks is measured by the weight percent organic carbon they contain. The distribution of organic carbon in samples from the Federal 34D-9 well is shown on Figure 1. Highest organic carbon content occurs in the Cretaceous part of the section which ranges from marginal (0.5 percent) to very good (>2.0 percent) in source quality (Figure 1). Only one sample analyzed from the Cretaceous section (2,200 feet) is rated as nonsource rock (<0.5 percent). Samples from the following depths are rated as good or very good in source quality: 225 feet; 600 feet; 1,020 feet; 1,600 feet; 2,600 feet; and 3,000 feet.

The Lower Jurassic and Carboniferous samples analyzed are all rated as nonsource rocks because of very low organic carbon content.

ORGANIC MATTER TYPE

The type of organic matter present, and hence its capability to generate oil or gas, was determined by a number of techniques including visual examination with reflected light microscopy and Rock-Eval pyrolysis. Supporting evidence of organic matter type is provided by C_1 - C_5 headspace gas analysis and organic extract data.

Optical methods of kerogen type analysis have the ability to discriminate the various components of organic matter mixtures and are valid regardless of rank. Chemical or physical methods, on the other hand, can reveal the actual capacity of organic matter to generate hydrocarbons but reflect only the average of the kerogen mixture present. The best results are achieved when subjective optical studies are used in conjunction with objective chemical data.

The visual percent of oil-generating kerogen (amorphous + exinite) as determined by reflected light microscopy is plotted on Figure 1. Because amorphous kerogen is considrably less dense than other kerogen types, relatively high visual percentages must be present before oil can be expelled. Our experience indicates that samples with less than about 35 visual percent amorphous kerogen will yield primarily dry gas and that oil source beds contain 65 percent or more of oil-generating components. Intermediate kerogen mixtures will expel primarily wet gas and condensate although a complete transition probably exists. Visual kerogen analysis reveals that dry gas-generating organic matter predominates throughout most of the section penetrated by the well, especially in the most organic-rich, coaly intervals in the Cretaceo's sec-Sufficient amorphous kerogen for wet gas generation is present tion. in most Cretaceous and Jurassic samples analysed but no samples are classified as primarily oil-generating.

Data obtained from Rock-Eval pyrolysis can also be used as a general indication of kerogen type as well as the actual remaining potential to generate hydrocarbons. Pyrolysis S_2/S_3 ratios can generally be used as a kerogen type indicator and values in excess of 5.0 are usually taken to signify oil-generating capability. On the basis of this parameter, most of the Cretaceous organic-rich zones above about 3,200 feet appear to have primarily an oil-generating capability. We have found, however, that pyrolysis S_2/S_3 ratios are usually misleading in some organic-rich samples, especially if solid bitumen is present. A good oil-generating potential, therefore, may not be present in these organic-rich, coaly intervals.

Rock-Eval pyrolysis confirms the visual kerogen conclusions that dry gas-generating organic matter predominates in the subject well. Some

-3-

wet gas-generating capability may occur in thin Cretaceous zones above 3,200 feet. Many of the organic-rich, coaly samples contain solvent insoluble solid bitumen which distorts the analytical results. The relatively low hydrogen content and minor quantities of this solid bitumen suggest that it probably should not be considered to be a significant potential source for crude oil.

Supporting evidence for kerogen type is provided by the hydrocarbon gas and solvent extractable material present although it is realized that these components could be migrated as well as indigenous. Indigenous free hydrocarbons also reflect thermal maturity as well as kerogen Headspace gas data (Figure 6) in Cretaceous samples from above type. about 2,000 feet contain moderate percentages of wet gas which is consistent with the kerogen type present. Between 2,500 and 3,230 feet, wet gas percentages increase, total gas/organic carbon ratios ircrease, and n-butane/isobutane ratios increase. These parameters all suggest much of the gas in this interval is not related to the kerogen present but has migrated from more mature, possibly oil-generating source beds.

Cretaes

(**b**oth

1200

* 31.61

دامر

Relatively low productivity indices (S_1/S_1+S_2) from Rock-Eval freeze pyrolysis indicates only minor quantities of free hydrocarbons are present in the samples analysed (Figure 2). This is verified by very low organic extract/organic carbon ratios in both of the samples analysed \leftarrow (Appendix VI). Low percent saturates, high percent NSO compounds, high pristane/phytane ratios, and high carbon preference indices all indicate an abundance of gas-generating, terrestrial organic matter in both of the samples analysed.

ORGANIC MATTER MATURITY

The thermal maturity of organic matter and, therefore, whether oil or gas generation capability has been realized, was determined with basically the same techniques used to define organic matter type. Vitrinite reflectance and pyrolysis T-max values are both kerogen maturity indicators. Additional maturity evidence is supplied by headspace gas and organic extract data. The same arguments pertaining to the strengths and weaknesses of optical versus chemical and physical methods of kerogen type analysis, can be applied here as well.

Because of the abundance of terrestrial kerogen in most of the samples analysed, vitrinite reflectance data are generally very good and provide the most reliable maturity indicator for the subject well. Strong, unimodal, reflectance histograms were obtained on some samples, resulting in a reasonably good maturation profile for the well (Figure 4). The only significant problems are high rank, recycled organic matter in some samples, semifusinite, and minor caving.

The vitrinite reflectance profile indicates the section above about 1,782 feet is thermally immature (less than 0.6 R_0) and has not reached peak oil or gas generation (Figure 4). The interval between 1,782 feet and 7,024 feet is within the oil-generating maturity zone. Peak generation of wet gas (0.8-2.0 R_0) should occur only below about 3,560 feet (0.8 R_0).

Projection of the maturation profile to $0.2 R_0$ indicates that approximately 5,000 feet of overburden has been lost to erosion since maximum burial took place. Cooling associated with the loss of this section has caused hydrocarbon generation to become suspended and source beds are probably not actively generating oil or gas at the present time.

The conclusions drawn by vitrinite reflectance maturity interpretations are supported by kerogen fluorescence intensity (Figure 1). Fluorescence intensity increases as the top of the oil-generating maturity zone is approached and is absent in most samples below the oil floor.

NOBERTSOI

Pyrolysis T-max values can be used as a general indication of thermal maturity but, because they are obtained on whole rock samples, they can be affected by recycled or oxidized organic matter, caving, or solid bitumen. Solid bitumen typically results in substantially reduced T-max values (Clementz, 1979).

Pyrolysis T-max data (Figure 2) point to virtually the same conclusions as vitrinite reflectance. The top of the oil-generating maturity zone (435°C) is difficult to pick but most samples have T-max values close to 435°C. Organic-rich samples with solid bitumen contents have reduced T-max values and many shallow samples have relatively high T-max values due to recycled organic matter. Pyrolysis T-max maturity data, therefore, provides some confirmation for the kerogen type and maturity conclusions described previously.

Additional evidence of kerogen maturity is supplied by headspace gas and organic extract data. As mentioned previously, these components could be migrated as well as indigenous and may reflect kerogen type as well as maturity.

Wet gas percent and total gas to organic carbon ratios gradually increase in response to maturity, especially above the top of the wet gas-generation zone at about 3,560 feet. An increase in n-butane/isobutane ratios also marks increasing maturity. High odd carbon predominances in the organic extracts from the two samples analysed indicate maturities of less than about $0.8 R_0$ as well as the presence of terrestrial kerogen.

DBERTSON

-6-

v

REFERENCES

- Bryant, A. C., 1980, Entrada fields of southern San Juan Basin, New Mexico: Bull., AAPG, vol.64, p.682 (abstract).
- Clementz, D. M., 1979, Effect of oil and bitumen saturation as source rock pyrolysis: Bull., AAPG, vol. 63, pp. 2227-2232.
- Dow, W. G., 1977, Kerogen studies and geological interpretations: Jour. of Geochem. Expl., vol. 7, pp. 79-99
 - , 1982, Geochemical evalutaion of the James P. Dunigan No. 1 Santa Fe, McKinley County, New Mexico: Robertson Research (U.S.) Inc. Report No. 580, pp. 1-27.
- Keal, J. E., 1982, Geochemical Analysis of Eleven wells of San Juan Basin, New Mexico: Robertson Research (U.S.) Inc. Report No. 823/43, pp. 1-117.
- McClasin, J. C., 1982, San Juan basin gas area yields oil find: Oil and Gas Journal, May 17, pp. 123-124.
- _____, 1982, Small New Mexico basins draw interest: Oil and Gas Journal, pp. 341-342.
- Meissner, F. F., 1981, Case studies of hydrocarbon generation and migration: AAPG Geochemistry for Geologists Course Notes, pp. 10-52.

- Ross, L. M., 1980, Geochemical correltation of San Juan Basin oils a study: Oil and Gas Journal, Nov. 3, pp. 102-110.
- Silver, C., 1968, Principles of gas occurrence, San Juan Basin: in Natural Gases of North America: AAPG Memoir 9, pp. 946-960.

FEDERAL 34D-9 WELL

FIGURE 1: SUMMARY PLOTS SHOWING KEROGEN TYPES, MATURITY, AND SOURCE RICHNESS (SEE APPENDICES II AND IV) FEDERAL 34D-9 WELL

FIGURE 2: SUMMARY PLOTS OF ROCK-EVAL PYROLYSIS DATA (APPENDIX III)

FEDERAL 34D-9 WELL

FIGURE 3: KEROGEN TYPE DETERMINATION FROM ROCK-EVA'. PYROLYSIS DATA (APPENDIX III).

FEDERAL 34D-9 WELL

FIGURE 5: CORRELATION OF VARIOUS MATURATION INDICES AND ZONES OF PETROLEUM GENERATION AND DESTRUCTION.

- . .

-13-

FEDERAL 34D-9 WELL

FIGURE 6: SUMMARY PLOTS OF HEADSPACE GAS DATA (APPENDIX V)

APPENDIX I

DETAILS OF ANALYSES

...

DETAILS OF ANALYSIS

FEDERAL 34D-9 WELL

Project No. : RRUS/823/T/260/02

SAM	PLE IDENTIFICATION	1		ANA	LYSES	CARR	IED C	UT		
RRUS	DEPTH (Feet)	TOC	REV	REF	SCI	ELM	HSP	EXT	SEP	GCR
1 2 3 4 5	225 600 800 1020 1200		X X X X X	X X X			X X X X X X		- - - 	- - - - - -
6 7 8 9 10	1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0 2 2 0 0		X X X X	X - -			X X X X X			
11 12 13 14 15	2400 2600 A 2600 B 2800 3000		X X X X X	x - - x		- - - -	X X X X			
16 17 18 19 20	3200 4278 4320 4340 4340 4360		X X X X	X X - -			X X X X			
21 22 23 24 25	4380 4395 7510 7550 7590		X X -				X X X X X			
26 27 28 29 30	7630 7670 7710 7750 7790		- - - x	- - X		-	X X X X X			
3 L 3 2 3 3 3 4 3 5	7830 7870 7910 7950 7990	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX					X X X X X			
36 37 38 39 40	8030 8070 8110 8150 8190						X X X X			
41 42 43 44 45	8230 8270 8310 8350 8390						X X X X			
46 47 48 49	8430 8470 8510 8540		Ī	X X			X X X X		- - -	

LIST OF LITHOLOGY SYMBOLS USED IN FIGURES

• .

-- .

APPENDIX II

TOTAL ORGANIC CARBON DATA

Total organic carbon is determined by pulverizing the sample, treating a carefully weighed portion with warm hydrochloric acid to remove carbonate minerals, and analysing the residue for carbon content with a Leco carbon analyser. It is generally accepted that samples with less than about 0.5 percent TOC cannot yield sufficient petroleum to form commercial deposits and are therefore considered nonsources; samples with between 0.5 and 1.0 TOC are rated as marginal in source quality; and samples with more than 1.0 TOC are considered to be good in source quality.

TOTAL ORGANIC CARBON DATA

FEDERAL 34D-9 WELL

DEFTH	TOC	DEPTH	TOC
(Fæet)	(%)	(Feat)	(%)
225 600 800 1020 1200	1.19 1.44 0.75 22.29 0.58	7630 7670 7710 7750 7790	0.10 0.12 0.14 0.12 0.12 0.18
$ \begin{array}{r} 1 4 0 0 \\ 1 6 0 0 \\ 1 8 0 0 \\ 2 0 0 0 \\ 2 2 0 0 \\ \end{array} $	0.62	7830	0.13
	1.45	7870	0.12
	0.67	7910	0.12
	0.73	7950	0.13
	0.46	7990	0.13
2400	0.62	8030	0.10
2600 A	1.94	8070	0.13
2600 B	1.44	8110	0.16
2800	0.96	8150	0.07
3000	1.23	8190	0.11
3200	0.77	8230	0.13
4298	0.28	8270	0.09
4320	0.18	8310	0.09
4340	0.16	8350	0.15
4360	0.14	8350	0.12
4380 4395 7510 7550 7590	0.20 0.18 0.18 0.12 0.12	8430 8470 8510 8540	0.29 0.23 0.25 0.45

.

..

•

APPENDIX III

ROCK-EVAL PYROLYSIS DATA

Rock-Eval data are expressed as mg/g of rock and include four basic parameters: 1) S_1 represents the quantity of free hydrocarbons present in the rock and is roughly analogous to the solvent extractable portion of the organic matter; 2) S_2 represents the quantity of hydrocarbons released by the kerogen in the sample during pyrolysis; 3) S_3 is related to the amount of oxygen present in the kerogen; and 4) T-max is the temperature at which the maximum rate of generation (of the S_2 peak) occurs and can be used as an estimate of thermal maturity.

In addition, the ratio S_2/S_3 provides a general indication of kerogen quality (type) and reveals whether oil or gas is likely to be generated. The ratio $S_1/(S_1+S_2)$, or the productivity index, is an indication of the relative amount of free hydrocarbons (in place or migrated) present in the sample. Hydrogen and oxygen index values are expressed as mg of hydrocarbons (S₂ peak) or carbon diovide (S₃ peak) per gram of organic carbon. When plotted against each other on a van Krevelen-type diagram, information on kerogen type and maturity can be obtained.

	Key for data interpretation:		
	Source Potential - values of S2	<2.5 2.5-5.0	: poor : margina' : acod
	Petroleum Type - values of \$2/\$3	<2,5 2,5-5,0	: dry gas : wet gas
	Generation Zones - values of T-max (°C)	<435 435 - 470 450 +	: Immature : oll : gas
	Productivity index - high values of S1/(S hydrocarbons.	1+S2) indic:	ate migrated
I T S			
MERCON-ZO	2		
V			

ROCK-EVAL PYROLYSIS RAW DATA

FEDERAL 34D-9 WELL

DEPTH (FEET)	S 1	S 2	53	52/53	51/(51+52)	T-MAX
225	0.061	1.226	0.099	12.332	0.047	435
600	0.047	1.340	0.164	8.169	0.034	433
800	0.085	0.460	0.114	4.047	0.157	431
1020	2.905	79.383	0.576	137.791	0.035	420
1200	0.353	0.825	0.088	9.333	0.300	433
1 40 0	0.034	0.342	0.094	3.638	0.090	429
1 600	0.062	1.210	0.125	9.699	0.049	433
1 80 0	0.040	0.609	0.096	6.345	0.062	429
2 0 0 0	0.046	0.891	0.074	12.061	0.049	427
2 2 0 0	0.083	0.390	0.051	7.703	0.175	433
2400 (2600 X (2600 B 2600 B 5h. Mbr. (2800 3000 Kd."A"	0.041 0.166 0.131 0.092 0.097	0.362 4.382 2.621 1.081 1.767	0.067 0.105 0.495 0.190 0.178	5.398 41.816 5.291 5.677 9.917	0.101 0.037 0.048 0.078 0.052	434 428 433 429 429
3200 Kac.	$\begin{array}{r} 0.061 \\ 0.022 \\ 0.016 \\ 0.012 \\ 0.012 \\ 0.010 \end{array}$	1.141	0.078	14.700	0.051	431
4298 J±		0.253	0.083	3.032	0.079	431
4320		0.120	0.121	0.990	0.118	429
4340		0.087	0.086	1.019	0.124	429
4360 \[e		0.078	0.069	1.132	0.115	430
4380	0.018	0.178	0.292	0.610	0.091	429
4395)	0.016	0.220	0.388	0.566	0.068	427
7510	0.025	0.144	0.081	1.789	0.147	501
7790	0.023	0.017	0.069	0.249	0.570	486
8540	0.023	0.493	0.091	5.440	0.010	447

--

HYDROGEN AND OXYGEN INDICES FROM ROCK-EVAL Pyrolysis data, with toc data

FEDERAL 34D-9 WELL

•

.

DEFTH (feet)	HYDROGEN INDEX (mg HC/g TOC)	OXYGEN INDEX (mg CO2/g TOC)	TOC (%)
225	103	8	1.19
600	93	11	1.44
800	61	15	0.75
1020	356	3	22.29
1200	142	·1 5	0.58
1400	55	15	0.62
1600	83 ,	9	1.45
1800	91	14	0.67
2000	122	10	0.73
2200	85	11	0.46
2400	58	11	0.62
2600 A	226	5	1.94
2600 B	182	34	1.44
2800	113	20	0.96
3000	144	14	1.23
3200	148	10	0.77
4298	90	30	0.28
4320	66	67	0.18
4340	55	54	0.16
4360	5 6	49	0.14
4380	89	146	0.20
4395	122	216	0.18
7510	80	45	0.18
7790	9	38	0.18
8540	110	20	0.45

.

••

APPENDIX IV

REFLECTED LIGHT MICROSCOPY DATA

A sample of ground rock is treated successively with hydrochloric and hydrofluoric acids to concentrate the kerogen, freeze-dried, mounted in an epoxy plug, and polished. Kerogen type is identified with the aid of blue light fluorescence.

The visual kerogen analysis data table contains visual percentage estimates of each principle kerogen type and kerogen background fluorescence data. This data is also displayed on the histograms with relative amounts of solid bitumen and coked material.

The histograms show measured reflectance values of all virtuite present and on all material with the visual appearance of vitrinite. Shaded values (marked with *) are those used to calculate the interpreted vitrinite reflectance maturities. Unshaded values are interpreted to be oxidized vitrinite, recycled vitrinite, or possibly misidentified material such as solid bitumen, pseudo-vitrinite, or semifusinite. When samples analysed contain no vitrinite, nonindigenous vitrinite or have an insufficient number of readings to allow a reliable maturity determination to be made, then the mean value for that sample is shown as N. D. (Not Determined). Alternate maturity calculations are possible on a few samples. The histograms are identified by a Robertson Research sequence number (RRUS No.) and depth or other notation.

ABBREVIATIONS USED IN VISUAL KEROGEN ANALYSIS DATA SHEET AND HISTOGRAMS

Am :	Amorphous	Kerogen
------	-----------	---------

- Ex : Exinite
- Vit : Vitrinite
- Inert : Inertinite
- Ro : Vitrinite Reflectance Mean in Immersion Oil
- Bkg Fl : Background Fluorescence

VISUAL KEROGEN ANALYSIS - REFLECTED LIGHT

-

FEDERAL 34D-9 WELL

SAMP	LE IDENTIFICATION	REFLECT.	KER	OGEN	CHAR	ACTERIS	TICS	TOC
RRUS	DEPTH (Feet)	Ro %	Am %	Ex%	Vit%	Inert%	Fluor	%
1	225	0.43	10	15	50	2 5	Low	1.19
2	000	0.47	20	15	40	25	Low	1.44
4	1020	0.46	20	20	40	20	Med	22.29
6	1400	0.57	25	10	40	25	Low	0.62
7	1600	0.59	15	10	40	35	Med	1.45
9	2000	0.69	30	15	30	25	Med	0.73
11	2400	0.69	20	10	45	25	High	0.62
12	2600 A	0.74	30	10	40	20	High	1.94
15	3000	0.81?	30	5	45	20	Méd	1.23
16	3200	0.85	30	10	35	25	Med	0.77
17	4298		55	5	30	10	Med	0.28
30	7790	1.59	5	ō	85	10	None	0.18
38	8110	1.61	5	õ	50	45	None	0.16
46	8430	1.65	5	ō	50	45	None	0.29
49	8540	1 43	10	Ť.	40	25	Low	0 4 5

Project No. : RRUS/823/T/260/02

:-

-

: None

Coke

.

ORDERED REFLECTANCE VALUES:			KEROGEN DESC	RI	PTION	
*0.32	×0.41	¥Ø.46		Amorphous	1	10 %
*0.36	¥Ø.42	¥Ø.46		Exinite	:	15 %
*Ø.38	*0.43	*0.46		Vitrinite	ı.	50 X
¥Ø.38	*0.43	¥Ø.47		Inertinite	1	25 X
¥Ø.38	*0.44	*0 .47				
¥Ø.38	¥Ø.44	¥Ø.48		Back Fluor	1	LOW
¥Ø.38	*0.44	#Ø .48		Bitumen	:	None
¥Ø.39	*0.44	ר.5Ø		LOKE	:	None
*0.40	¥Ø.45	¥Ø.52				
*0.40	¥Ø.45	*0.54				

-25-

*Ø.43

*0.45

¥Ø.46

*0.50

×0.50

¥Ø.31

¥Ø.47 ¥Ø.52

0.63

0.74

0.89

RRUS No.	: 4	ļ	
DEPTH	1 1 1	020.0 310.9	Ft M
* = Ro M/	TUR	ITY	
# VALUES	:	26	
MEAN STD DEV MEDIAN MODE	: : 1 :	0.46 0.08 0.44 0.45	
HISTOGRAI Ran Increme	1: nge: ent:	0- 42 0.102	

ORDEREI	REFLE	CTANCE VALUES:	KEROGEN DESC	R	IPTION	
9.35	*0.40	*0.48	Amorphous	;	20	z
0.35	*0.42	¥Ø.49	Exinite	:	20	X.
0.36	ר.43	*0.49	Vitrinite	:	40	X.
*0.38	*0.43	*0.53	Inertinite	1	20 3	X
*Ø.38 *Ø.38 *Ø.38 *Ø.39 *Ø.39	×0.44 ×0.44 ×0.44 ×0.44 ×0.45	*0.53 *0.54 *0.60 *0.64 *0.65	Back Fluor Bitumen Coke	: : 1	Med ?High None	

FEDERAL	340-9
---------	-------

ORDERE	D REFLE	CTANCE	VALUES:	
¥0.44	¥Ø.56	¥Ø.69	0.92	
¥Ø.46	¥Ø.56	0.72	1.27	
¥Ø.50	*2.60	0.74		
*0.51	\$0.61	2.74		
*0.51	*0.61	0.77		
¥Ø.51	¥Ø.62	0.77		
¥Ø.53	¥Ø.63	0.78		
*0.5 4	¥Ø.65	0.83		
¥Ø.55	¥Ø.65	2.84		
¥Ø.56	¥Ø.66	2.92		

RRUS No.	\$	6	
DEPTH	:	1400.0 426.7	F1 M
* = Ro MA	τι	JRITY	
# VALUES	:	21	
MEAN STD DEV MEDIAN MODE	\$; ; ;	0.57 0.07 0.56 0.55	
HISTOGRAM Ram Increme	1ı ngi ≩n	e: 0-4% t: 0.10%	

KEROGEN DESC	RI	PTION	1
Amorphous	t	25	z
Exinite	:	10	X
Vitrinite	:	40	*
Inertinite	ı	25	X
Back Fluor	:	Low	
Bitumen	1	Swel	1
Coke	ı	None	3

ORDERE	D REFLE	CTANCE	VALUES
Ø.39	¥Ø.66	0.88	,
0.40	¥Ø.66	Ø.89	
¥Ø.46	¥Ø.72	0.90	
¥Ø.49	¥Ø.74	0.93	
×0.52	0.77	Ø.93	
¥Ø.53	0.79	0.98	
¥Ø.53	0.79	0.99	
X0 53	0 81	1 22	

1.14

0.87

0.88

*0.62

¥Ø.61

¥Ø.67

¥Ø.67

\$0.68

¥Ø.76

0.81

0.87

1.26 1.15

1.18

Increment	:	Ø.	t	01	
KEROGEN DESC	R	IPT	I	01	ł
Amorphous Exinite Vitrinite Inertinite	: : : :		1 4 3	5005	****
Back Fluor Bitumen Coke	1 1 6	M S t	e m r	d al	1

RRUS No. : 7

= Ro MATURITY

;

t

:

:

Range: 0- 4%

VALUES 1

HISTOGRAM:

DEPTH

MEAN

MODE

STD DEV

MEDIAN

: 1600.0 Ft : 487.7 M

12

0.59

0.09

0.60

FEDERAL JAD 3

-	2	7	-
---	---	---	---

DEPTH	1 240 1 73	30.0 31.5	Ft M
* = Ro MA	TURI	ΓY	
# VALUES	:	11	
MEAN STD DEV MEDIAN MODE	1 2 2 2	0.69 0.07 0.70 0.75	
HISTOGRAM Rar Increme	t: nge: í ent: í	3- 4X 3.10X	

20 x 10 x 45 x 25 x

۰.

30 x 10 x 40 x 20 x

Hign Small None

RRUS No. : 11

	VIT	RINITE	REFLECTANCE	E (RANDOM	X 1			
ORDERE	D REFLE		VALUES			KEROGEN DESC	CRI	PTION
0.39	*Ø .75	0.99				Amorphous	:	20
0.49	¥Ø.78	1.03				Exinite	1	10
¥0.58	¥Ø.78	1.03				Vitrinite	:	45
¥Ø.59	0.80	1.05				Inentinite	:	25
×0.59	0.82	1.09						
¥Ø.63	0.86	1.10				Back Fluor	1	High
ר.69	0.87	1.20				Bitumen	1	None
×0.70	Ø. 89	1.21				Coke	:	1r
*0.73	0.93	1.22						
×0.73	0.98	1.26						

ORDERE	D REFLE		VALUES:	KEROGEN DESCR	1PTION
2.41 0.43 0.45 *0.55	¥0.79 ¥0.80 ¥0.82 0.85	0.93 0.94 0.94 0.95	1.05 1.10 1.13 1.20	Amorphous Exinite Vitrinite Inertinite	30 10 40 20
¥0.65 ¥0.68 ¥0.74 ¥0.76 ¥0.77 ¥0.77	0.85 0.86 0.90 0.92 0.93	0.95 0.99 1.01 1.01 1.03 1.03	1.34	Back Fluar Bitumen Cake	: Hign : Smal : None

DEPTH	;	2600 A 792.5	Ft M
* = Ro MA	TI	JRITY	
# VALUES	\$	10	
MEAN STD DEV Median Mode	::	0.74 0.06 0.77 0.75	

HISTOGRAM:		
Range	Ø-	4%
Increment:	Ø.1	07

Vitrinite	:
Inertinite	:
Spek Eluce	,
Bitumen	
Coke	1

DEPTH	1 1	3000.0 F1 914.4 M
¥ = Ra MA	T	JRITY
# VALUES	:	3
MEAN STD DEV MEDIAN MODE	: 1 1 1	0.81 0-02 0.91 0.95
HISTOGRAM Ran Increme	igi in	≘: 0- 4x t: 0.10x

-

No. : 16

1

:

:

:

11

2.85 2.27 2.83

2.85

••

ORDERE	D_REFLE	CTANCE VAL	UES	KEROGEN	DESC	:R []	PTION	1
0.36	0.66	1.05		Amorpho	ວບຣ	;	30	7
0.40	¥Ø.79	1.10		Exinite	3	t	5	X
0.42	¥Ø.81	1,12		Yitrin	ite	3	45	7
0.47	*0.83	1.11		Inerti	hite	1	2Ø	X
0.47	0.93	1.12			_			
0.48	0.95	1.12		Back F	luar	;	Med	
0.49	2.96	1,18		Bitumer	1	1	ned	
0.50	2.98	1.19		Loke		1	10	
0.51	0.98	1.31						
0.57	1.02	1.40						•

*

ORDERE	D REFLE	CTANCE VALUES:	KEROGEN DESC	:R1	PTION	
0.40	*0 82	1.04	Amorphous	:	30	¥
0.43	×0.82	1.05	Exinite	ŧ	10	X.
0 45	×9 83	1 97	Vitninite	:	35	x
0.58	¥0.87	1.07	Inertialte	:	25	X
0.60	¥Ø.87		Stat Eluca		Mod	
0.62	¥Ø.92		BI SURGE		Seel	1
0.63	¥Ø 94		Cato		10	•
¥Ø.74	¥Ø.97		CORE	•	••	
¥Ø.79	1.00					
*0.80	1.01					

0.59	Amorphous	:	55 %
1.03	Exinite		5 %
1.08	Vitrinite	1	30 X
1.19	Inertinite	:	10 %
1.32	Back Fluor	;	Med
	Bitumen	:	Small
	Coke	1	None

FEDERAL 34D-9

: 7790.0 Ft : 2374.4 M

21

1.59

0.12

1.58

••

RRUS No. : 30

¥ = Ro MATURITY

:

:

:

:

Rangei 0- 4% Incrementi 0.10%

VALUES :

HISTOGRAM:

DEPTH

MEAN

MODE

STD DEV

MEDIAN

*1.56 *1.77

ORDERED REFLECTANCE VALUES:	KEROGEN DESCRIP	FION
*1.43 *1.58 *1.86 *1.43 *1.60	Amorphous : Exinite : Vitcinite :	5 × 2 × 85 ×
*1.44 *1.61 *1.48 *1.65	Inertinite :	10 %
*1.49 *1.65 *1.51 *1.65 *1.52 *1.72	Back-Fluor : Bitumen : Coke :	None None
*1.53 *1.73 *1.54 *1.73		

RRUS No.	;	38
DEPTH	1	8110.0 Ft 2471.9 M
* = Ro MA	TI	URITY
≠ VALUES	:	3
MEAN STD DEV MEDIAN MODE	1 2 1 1	1.61 Ø.07 1.62 1.65
HISTÖGRAF Rar Increme	1: 191 201	≘: 0- 4% ⊺: 0.10%
KEROGEN DE	s	CRIPTION

5

1.65

0.10

1.63

- -

1.19	Amorphous :	5 %
1.21	Exinite :	Ø X
1.39	Vitrinite :	50 %
*1.52	Inertialte :	45 X
*1.62	Beck Eluce	Mana
*1.68	Bitumon	None
	Cato	None
	CORE	NUNG

ORDERED	REFLE	ECTANCE	VALUES:	KEROGEN DESC	KEROGEN DESCRIPTIC		
0.81	1.12	*1.63		Amorphous		5	*
0.83	1.12	*1.71		Exinite	1	2	X
0 84	1.14	*1.80		Vitrinite	:	50	X
0.86	1.25			Inertinite	1	45	X
0.91	1.34					Nees	
Ø.96	1.35			BECK FLUOR	:		. 1
1.02	1.38			Bitumen	\$	2001	L L
1.07	1.47			Coke	1	t r	
1.10	*1.50						
1.12	*1.62						

-31-

- *1 48 *1.81
- *1.49 1.95 *1.51 2.01

..

APPENDIX V -

LIGHT ENDS (C1-C6⁺) GAS ANALYSIS

Samples collected in sealed cans are analyzed for light end $(C_1 - C_6^+)$ components by headspace gas or cuttings gas chromatography. To provide an improved integration of the C_6^+ components a backflush technique is employed resulting in the C_6^+ peak eluting first. The amounts of the individual gas components are computed in parts per million by multiplying the integrated peak areas for each by response factors determined from a standard gas. These values are then divided by the headspace volume to obtain the amounts of each gas component in microliters as reported in the data tables.

Key for data presented in "calculated ratios and parameters" table:

KCARB	-	weight of kerogen carbon (gms) in can.
GAS		amount of gas generated from kerogen carbon (µ liters)
WET GAS %	-	$(C_2 - C_4) \times 100$
		$\overline{c_1 - c_4}$

- ratios not obtained due to insufficient data

SUMMARY OF INDIVIDUAL COMPONENT CONCENTRATIONS IN HEADSPACE GAS (ppm by volume in n-C:1 to n-C:6+ range)

FEDERAL 34D-9 WELL

(Feet)	n-C:i ppm	n-C:2 ppm	n-C:3 ppm	i-C:4 ppm	n-C:4 ppm	neC:5 ppm	i-C:5 ppm	n-C:5 ppm	С:6+ ррт	GAS ul	KCARB gms
225 600 800 1020 1200	19 13 15 874 66	3 Tr Tr 21 10	9 4 0 4 2 3 0	Tr Tr 16 6	Tr Tr 5 2	Tr Tr G Tr O	1 Tr Tr 4 2	Tr 0 1 0	11 4 0 11 7	33 18 13 615 86	1.2 1.4 0.2 12.4 1.1
$ \begin{array}{r} 1 40 0 \\ 1 6 0 0 \\ 1 8 0 0 \\ 2 0 0 0 \\ 2 2 0 0 \\ \end{array} $	38 19 28 30 19	10 Tr 5 7 Tr	39 22 36 4	16 1 9 17 Tr	16 1 19 42 1	7 Tr 0 0 0	12 1 10 22 3	9 Tr 3 10 Tr	29 6 36 67 17	148 27 100 169 34	0.4 1.4 0.8 0.9 0.7
2400 2600 A 2600 B 2800 3000	19 42 14 14 17	5 94 15 12 18	32 586 123 120 158	7 128 36 38 51	15 434 141 135 185	0 0 0 0	8 111 49 49 69	5 65 50 44 54	27 205 152 118 225	94 1369 513 442 656	0.9 1.3 0.7 0.6 0.6
3200 4298 4320 4340 4360	4 1 9 1 1 8 9	99 2 1 Tr Tr	171 3 3 1 1	50 Tr 1 Tr Tr	145 2 3 1 1	0 0 0 0	56 2 3 1 1	13 3 4 1 1	168 91 102 73 78	561 102 114 80 83	0.9 0.1 0.1 0.0 0.1
4380 4395 7510 7550 7590	8 12 24 10 10	Tr Tr 14 1 Tr	1 3 28 1 12	Tr Tr 13 Tr Tr	Tr 12 1 0	0 0 12 1 Tr	Tr Tr 11 1 Tr	1 10 1 0	73 72 24 8 6	- 78 81 134 22 24	0.1 0.0 0.2 0.0 0.2
7630 7670 7710 7750 7790	18 31 16 27 16	Tr 7r 2 7r	17 10 37 18 0	Tr Tr 0 0	000000000000000000000000000000000000000	0 0 0 0	00000	0 0 0 0	1 50 6	21 22 37 32 16	0.3 0.4 0.0 0.3 0.3
7830 7870 7910 7950 7990	18 22 39 26 32	Tr Tr 1 7	13 11 0 26 0	00000	00000	0 0 0 Tr	00000	0 0 0 0	9 5 8 1 2 1 1	33 33 33 49 38	0.1 0.3 0.2 0.2
8030 8070 8110 8150 8190	26 42 57 27 20	1 2 15 Tr 1	0 0 53 16 4	0 0 18 1 Tr	0 0 2 1 1 0	0 0 Tr 0 0	0 0 2 6 1 1	0 0 1 0 1 1	9 19 60 12 11	28 51 163 46 25	0.2 0.1 0.5 0.1 0.2
8230 8270 8310 8350 8390	23 16 48 17 20	3 1 5 Tr 8	1 7 6 1 2 6	Tr Tr Tr 7	Tr Tr Tr 7	0 0 0 6	Tr Tr 1 Tr 7	0 Tr 1 0 6	10 8 10 7 19	33 29 55 23 83	0.1 0.0 0.1 0.1 0.1
8430 8470 8510 8540	39 109 31 44	7 32 8 12	25 10 4 23	1 2 1 1	2 3 1 3	Tr Tr 0	1 2 1 1	1 Tr 1	17 14 8 37	80 97 44 101	0.3 0.7 0.3 0.6

SUMMARY OF IMPORTANT RATIOS AND PARAMETERS OBTAINED FROM HEADSPACE GAS ANALYSIS

FEDERAL 34D-9 WELL

(Teet)	GAS/KCARB	WET GAS	n/iso-C:4	n/iso-C:5	HEADSPACE	GAS COMPO	SITION
	ul/gm	%	ratio	ratio	%C:5-6+	WC:2-4	%C:1
225	26.4	39.7	1.9	0.4	30.9	27.4	41.6
600	12.8	31.9	0.7		23.0	24.5	52.3
800	52.6	2.0	0.5		2.8	1.9	95.2
1020	49.4	8.9	0.3		1.7	8.7	89.4
1200	76.5	42.9	0.4		7.7	39.5	52.6
1400	370.1	68.6	1.0	0.7	32.7	46.1	21.1
1400	18.6	22.7	1.0	0.8	25.9	16.8	57.2
1800	112.5	68.0	2.0	0.3	36.2	43.4	20.3
2000	182.0	77.0	2.4	0.4	42.6	44.2	13.1
2200	47.5	27.5	1.4	0.1	45.3	15.0.	39.6
2400	100.1	76.3	2.0	0.5	33.7	50.5	15.7
2600 A	1037.1	96.6	3.3	0.5	22.9	74.5	2.5
2600 B	650.5	95.6	3.8	1.0	43.2	54.3	2.4
2800	738.2	95.4	3.5	0.9	39.9	57.3	2.7
2900	952.0	95.9	3.6	0.7	44.8	52.9	2.2
3200	603.2	91.8	2 . 8	0.2	31.9	62.4	5.5
4298	730.0	49.4	2 . 6	1.3	84.1	7.8	8.0
4320	1143.9	48.8	2 . 3	1.4	83.5	8.0	8.4
*340	893.6	31.5	3 . 1	1.5	85.3	4.6	10.0
4360	559.5	24.2	3 . 0	1.4	86.1	3.6	10.2
4380 4395 7510 7550 7590	$\begin{array}{r} 710.2 \\ 1021.7 \\ 621.6 \\ 370.8 \\ 122.1 \end{array}$	21.3 26.2 73.8 31.8 54.4	2.5 1.7 0.9 1.1	1.0 1.4 0.9 0.9	87.0 80.9 38.7 45.4 23.6	2.7 5.0 45.2 17.3 41.5	10.2 14.0 16.0 37.2 34.8
7630 7670 7710 7750 7790	62.9 50.9 463.1 105,6 43.0	50.1 26.5 71.0 43.2 1.8		 	2.9 11.7 0.0 12.4 28.8	48.6 23.4 71.0 37.8 1.3	48.4 64.7 29.0 49.7 67.9
7830 7870 7910 7950 7950	209.1 306.2 107.4 249.2 181.6	44.1 34.5 4.6 51.6 18.4			22.2 14.0 16.8 18.2 22.8	34.3 29.7 3.8 42.2 14.2	43.4 56.2 79.3 39.5 62.9
8030 8070 8110 8150 8190	129.5 273.4 309.1 309.6 101.4	3.9 5.0 65.6 41.8 25.6	1 . 1 1 . 5	0.4 0.7 1.0	25.5 30.2 36.6 23.8 32.3	2.9 3.5 41.5 31.8 17.3	71.5 66.1 21.7 44.3 50.2
8230 8270 8310 8350 8350 8390	307.8 478.0 396.9 210.7 594.6	18.0 38.0 21.6 12.0 71.2	1 - 4 1 - 6 0 - 9 1 - 0 1 - 0	0.7 0.8 0.8	29.3 27.6 17.0 28.1 36.1	12.7 27.5 17.9 8.6 45.4	57.9 44.8 65.0 63.2 18.3
8430	205.6	48.9	1.3	0.9	21.5	38.3	40.1
8470	133.4	31.0	1.3	0.5	10.7	27.6	61.6
8510	126.9	33.4	1.7	0.6	17.5	27.6	54.8
8540	168.5	48.2	1.5	0.7	32.5	32.5	34.9

APPENDIX VI

ORGANIC EXTRACT DATA AND C15+ SATURATE ANALYSIS

A weighed amount of each sample is pulverized and soxhlet extracted for 18 hours with dichloromethane to obtain the total amount of extractable material. The extract is first treated with hexane in order to remove the insoluble asphaltenes. The precipitate is considered to be asphaltenes and the weight is recorded. The hexane soluble fraction is then separated into saturates, aromatics, and NSO compounds by successive elutions with hexane, benzene, and benzene-methanol on a silica-alumina chromatographic column. The functional groups, including asphaltenes, are weighed and expressed as the total extract in parts per million of the original sample weight. Each functional group is also expressed as a normalized weight per cent of the total extract.

The saturate fraction is analyzed using gas chromatographic techniques to separate and identify components in the C_{15} to C_{40} range. These straight chain paraffins (n-alkanes) are normalized to 100% and the per cent of each component is plotted on a bargraph. Specific pristane (Pr) and phytane(Ph) ratios are also calculated and plotted. Carbon preference index (CPI) values are calculated by the Bray and Evans formula.

COMPOSITION OF SOURCE ROCK EXTRACT

FEDERAL 34D-9 WELL

DEPTH(FEET)	EXTRACT	PPM	* SAT	* AROM	% NSO	% ASPH
102 120	0	7379 309		11.30 9.10	45.40 19.50	32.60 47.80	10.70 23.60

SUMMARY TABLE SHOWING GROUP COMPOSITION AND SELECTED PARAMETERS OF ROCK EXTRACT

FEDERAL 34D-9 WELL

•

-

..

NOTATION	EXT/TOC	RELATIVE COMPOSITION *NSO+			PR/PH	CPI
DEPTH(FEET)		%SAT	%ARO	ASPH		
1020 1200	0.033 0.053	$\begin{array}{c}11.3\\9.1\end{array}$	45.4 19.5	43.3 71.4	6.36 4.03	1.83

HEAVY HYDROCARBONS NORMALIZED TO 100%

FEDERAL 34D-9 WELL

ID	C-10 C-	-11 C-12 C	-13 C-1	4 C-15 C	-16 C-17 (C-18 C-19 C-20
1020.0 1200.0	0.00 0. 0.00 0.	00 0.00 0 00 0.00 0	.00 0.0 .00 0.0	0 2.71 2 0 0.60 1	.71 3.41 .40 2.70	3.11 3.41 2.61 3.60 3.50 3.70
Th	C 31	a a	G 3 4			
1020. 1200.	0 3.11 0 3.40	4.01 5.32 4.30 5.60	5.82 6.00	6.92 5.72 8.10 6.90	13.64 9.33 11.30 6.90	3 17.65 5.02 3 12.50 5.00
	C - 91	C 22 C.23	6 - 24	C-35 C-34	C 27 C 2	C 38 C-40
1020. 1200.	0 4.71 0 9.20	0.80 0.00 2.20 2.50	0.00 0.40	0.00 0.00 0.20 0.00	0.00 0.00 0.00 0.00	0 0.00 0.00 0 0.00 0.00
ID	PR/T X100	FH/T X100	PR/17	PH/18	PR/PH	CPI C-MAX
1020.0	35.71 14.10	5.62 3.50	10.47	1.81	6.36 4.03	C-29 1.83 C-29

GAS CHROMATOGRAMS OF CI5+ SATURATE HYDROCARBONS

- -

NORMALIZED DISTRIBUTION OF n-ALKANES

ROBERTSON RESEARCH (U.S.) INC.

16730 Hedgecroft, Suite 306, Houston, Texas 77060 - 3697 Tel:(713) 445 - 4587 351 - 2018 Telex: 762684

April 30, 1984

Champlin #1 Federal-Mess Alta SE 9-18N-8W McKinley County, New Mexico

Champlin Petroleum Company 5800 S. Quebec Englewood, CO 80111

Attention: Jim Lister

Reference: Calibration Error in Rock-Eval Pyrolysis Equipment

Dear Mr. Lister:

Please be advised that the following project has been affected by a calibration error (see enclosed erratum sheet):

1.Project Number:RRUS/823/T/260/22.Report Number:823/2603.Name of Well:Federal 34D-9 Well4.Date of Execution:April, 1983

We apologize for any inconvenience this error may cause. However, we would point out that the revised data will not influence our interpretation in any significant manner.

If you require a reprint of the corrected pyrolysis data, please let us know.

Sincerely,

ROBERTSON RESEARCH (U.S.) INC.

1 Coleman

Stephen H. Coleman Director, Geochemical Studies

John R. Allen Director, Laboratory Services

JRA:jh

Erratum (March 19, 1984)

.

There was a calibration error in the Rock-Eval pyrolysis equipment during this project which has produced distorted S₃ data.

The impact of this error is on the reported S₃ abundance (mg carbon dioxide/gm of rock) and on the Oxygen Index value which is derived from the S₃ and total organic carbon data (OI = $(S_3 \times 100)/TOC$).

The correct S_3 values should read exactly twice the tabulated value.

Corrections should be made as follows:

- Rock-Eval Pyrolysis Raw Data Table

 New S₃ = old S₃ X 2
 New S₂/S₃ ratio = old ratio X 0.5
- Hydrogen and Oxygen Index Table
 a. New oxygen index = old oxygen index X 2
- Hydrogen and Oxygen Index Crossplots

 All points move horizontally away from the origin, to their new oxygen index values.
- 4. No change to depth plots.

SF-OK 1 year 3-8-88 1 year 3-8-88

Mr. Roy Johnson Energy Minerals and Natural Resources Dept. Oil Conservation Division P. O. Box 2088 Land Office Building Santa FE, New Mexico 87501

Dear Roy:

Enclosed herewith is a copy of the geochemical analyses conducted on the Champlin Petroleum Federal 34D-9 well in McKinley County, New Mexico.

While our partner Santa Fe Energy and UPRC, have not been able to locate the particular confidentiality agreement regarding this well, Tim Parker, District Geologist for Santa Fe, and I discussed the matter and agreed to send you the information provided that you keep such data confidential.

Since Santa Fe is monetarily supporting your efforts to study the regional source rock potential of New Mexico, they, as we do, hope this will assist you.

Thank you very much for your help in obtaining data for the Shell SWEPI State well.

Sincerely,

JCL/cjs Enclosure

James C. Lister

cc: W/O Attach

Tim Parker District Geologist Santa Fe Energy 500 W. Illinois, Suite 500 Midland, Texas 79701

SantaFe OK Norsan OK UPR OK Imendiate Release

3-15-88

STATE OF NEW MEXICO

RECEIVED ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

AFR 1 9 1988

ROCK' MOUNTAIN EXFLORATION

> POST OFFICE BOX 2088 STATE LAND OFFICE BUILDING S/ NTA FE, NEW MEXICO 87504 (505) 827-5800

APR 0 3 1983

GARREY CARRUTHERS GOVERNOR

anan APR 28 1933

April 15, 1988

Mr. James C. Lister Union Pacific Resources Company P. O. Box 1257 Englewood, Colorado 80150-1257

Dear Jim:

Thank you very much for your contribution of the geochemical analyses of the Champlin Petroleum Federal 34D-9 well in McKinley County to the New Mexico Hydrocarbon Source Rock Data Base. This report will be a very useful addition to the data base.

If you would sign below and return this letter to me as a waiver of confidentiality, we can release this information and incorporate it in the New Mexico Bureau of Mines open file system. I apologize for the delay in sending this letter after our conversation last month regarding its release.

Very truly yours,

Roy E. Johnson Senior Petroleum Geologist

REJ:JB:sl

James CLISTA Senior Staff Geologist 4/22/88

٩