GEOLOGY AND MINERAL DEPOSITS OF THE GALLINAS MOUNTAINS, LINCOLN AND TORRANCE COUNTIES, NEW MEXICO; PRELIMINARY REPORT

Virginia T. McLemore

New Mexico Bureau of Geology and Mineral Resources New Mexico Institute of Mining and Technology Socorro, NM 87801 ginger@gis.nmt.edu

Open-file Report OF-532

September 2010

This information is preliminary and has not been reviewed according to New Mexico Bureau of Geology and Mineral Resources standards. The content of this report should not be considered final and is subject to revision based upon new information. Any resource or reserve data are historical data and are provided for information purposes only and does not reflect Canadian National Instrument NI 43-101 requirements, unless specified as such.

Cougar Mountain, looking east from the top of Gallinas Peak.

ABSTRACT

Rare earth elements (REE) are used in the electronics, automotive and metallurgical industries. Deposits containing REE are found throughout New Mexico. With the projected increase in demand of REE, domestically and globally, areas such as the Gallinas Mountains in New Mexico are being re-examined for additional REE potential. Minimal past production of REE in the 1950s, as bastnaesite, came from the Gallinas Mountains, Lincoln and Torrance Counties. Since then, several companies and the U.S. Bureau of Mines (USBM) have conducted various exploration programs to identify and delineate REE resource potential. The igneous rocks in the Gallinas Mountains are metaluminous to peraluminous, alkaline volcanic rocks, and have chemical compositions similar to A-type granitoids. Trachyte/syenite and latite are possibly related, but the rhyolite could be a separate magmatic event. The geochemical data suggest a crustal source for the igneous rocks. Four types of deposits are found in the Gallinas Mountains: epithermal REE-F veins, Cu-REE-F veins, REE-F breccia pipes and iron skarn deposits; all are associated with Tertiary alkaline to alkalic-calcic igneous rocks. District zonation is defined by Cu-REE-F (±Pb, Zn, Ag) veins that form center of the district, surrounded by REE-F veins. The magmatic-hydrothermal breccia pipe deposits form a belt partially surrounding the veins. Iron skarns formed at the top and edge of the trachyte/syenite body and are likely the earliest stage of mineralization. The iron skarns are probably related to the REE-F veins and breccias because they typically contain bastnaesite and fluorite and are similar in trace element geochemistry. The paragenesis is defined by four stages of brecciation and faulting with three stages of fluorite deposition. REE minerals were deposited during the 1st and 2nd stage of fluorite deposition. A genetic model is summarized by intrusion/extrusion of crustal-derived igneous source rock in an extensional terrain possibly related to an alkaline-carbonatite complex with mineralization related to mixing of magmatic-hydrothermal and formation fluids. In 1991-1992, USBM calculated an inferred resource of 537,000 short tons with a grade of 2.95% total REE (not NI-43-101 compliant).

TABLE OF CONTENTS

INTRODUCTION	8
METHODS OF STUDY	10
MINING AND EXPLORATION HISTORY AND PREVIOUS INVESTIGATIONS	10
REGIONAL GEOLOGIC AND TECTONIC SETTING	12
LOCAL STRATIGRAPHY	20
Proterozoic rocks	20
Permian sedimentary rocks	20
Abo Formation	20
Yeso Formation	23
Glorieta Sandstone	23
Tertiary igneous rocks	23
Latite	23
Trachyte/syenite	24
Rhyolite	25
Andesite	26
Magmatic-hydrothermal breccia pipes	26
PETROCHEMISTRY OF THE IGNEOUS ROCKS	26
DESCRIPTION OF MINERAL DEPOSITS	29
Introduction	29
Great Plains Margin-iron skarn (or pyrometasomatic iron) deposits	33
American (NMLI0003)	34
Rare Metals (NMLI0039)	34
Gallinas (NMLI0299)	34
Iron Lamp (NMLI0313)	34
Iron Box (NMLI0311)	34
Unknown (NMLI0312)	35
Great Plains Margin-breccia pipes	35
Sky High (NMLI0045)	35
M and E No. 13 (NMLI0301)	35
Seventeen No. 2 (NMLI0322)	35
Breccia pipes in Sawmill Canyon	35
Great Plains Margin REE-F hydrothermal vein deposits	35
Cu-REE-F (±Pb, Zn, Ag) hydrothermal vein deposits	35
REE-F hydrothermal vein deposits	36
Potential carbonatite deposits	37
ALTERATION	37
EVALUATION OF THE NURE STREAM-SEDIMENT DATA	37
Description	37
Methods of study	39
Geochemical anomaly maps	41
NURE Results in the Gallinas Mountains	41
GEOCHEMISTRY OF THE GALLINAS REE DEPOSITS	41
DISCUSSION	48
Mineral zonation, sequence of events and paragenesis of the mineral deposits	48

Relationship of the mineral deposits in the Gallinas Mountains to other REE deposits	in New
Mexico and elsewhere	48
PRELIMINARY CONCLUSIONS	52
RECOMMENDATIONS FOR FUTURE STUDIES	53
ACKNOWLEDGEMENTS	53
REFERENCES	53
APPENDIX 1. GEOCHEMICAL ANALYSES OF IGNEOUS ROCKS	63
APPENDIX 2. SELECTED GEOCHEMICAL ANALYSES OF ORE SAMPLES	65
APPENDIX 3. GEOCHEMICAL PLOTS	89

FIGURES

FIGURE 1. North American Cordilleran belt of alkaline igneous rocks (Woolley, 1987;
Mutschler et al., 1991; McLemore, 1996).
FIGURE 2. Mining districts and areas in New Mexico that contain REE deposits (modified from
Adams, 1965; Northrop, 1996; McLemore et al., 1988a, b; 2005a)
FIGURE 3. Mining districts and igneous intrusions forming the Lincoln County porphyry belt
(LCPB; McLemore and Zimmerer, 2009). The mining district identification numbers are
from the New Mexico Mines Database, are prefaced with DIS, and are defined in Table
5
FIGURE 4. Ideogram of K/Ar, Rb/Sr, and Ar ⁴⁰ /Ar ³⁹ ages of igneous rocks in the LCPB area.
⁴⁰ Ar/ ³⁹ Ar ages have been recalculated using the new decay constant (modified from
McLemore and Zimmerer, 2009). References are cited in Table 4. The Gallinas
Mountains trachyte/syenite was dated by K/Ar methods as 29.9 Ma (Perhac, 1970) 16
FIGURE 5. Schematic model for formation of Great Plains Margin deposits (modified from
Richards, 1995)
FIGURE 6. Aeromagnetic map of the Gallinas Mountains area, from Kucks et al. (2001). Note
the aeromagnetic high (red) southeast of the Gallinas Mountains, which could be
indicative of an intrusion in the subsurface. The blue in the center of the Gallinas
Mountains is a magnetic low anomaly. The magnetic high anomaly in the northeastern
portion of the man could be indicative of subsurface continuation of the latite. See Figure
7 for the geologic man
FIGURE 7 Geologic map of the Gallinas Mountains Lincoln and Torrance Counties New
Maxico (modified from Kollow et al. 1046; Kollow 1040, 1071; Derhoe 1061, 1070;
Weadward and Euln 1001: Schreiner 1002: field reconneissance by the author)
EICUDE 9. Destograph of the normhyritic latite (comple CM10.6)
FIGURE 8. Photograph of the porphyrlic fattle (sample GM10-6)
FIGURE 9. Photograph of the trachyte (sample GM10-9)
FIGURE 10. Photograph of the rhyolite (sample GM10-7)
FIGURE 11. Geochemical plots characterizing the igneous rocks in the Gallinas Mountains.
Additional plots are in Appendix 2. Turquoise triangles are breccia pipes and fenite
samples, red circle is rhyolite, pink diamond is latite, blue diamond is trachyte/syenite,
and open blue triangle is fenitized trachyte/syenite. Chemical analyses are from Schreiner
(1993) and this report. Geochemical plots by Pearce et al. (1984), Le Bas et al. (1986), de
la Roche et al. (1980), and Frost et al. (2001)
FIGURE 12. Mines and prospects in the Gallinas Mountains, Lincoln County

- FIGURE 25. Grade and size (tonnage) of selected REE deposits, using data from Oris and Grauch (2002) and resources data from Schreiner (1993) and Jackson and Christiansen

TABLES

INTRODUCTION

Rare earth elements (REE) are increasingly becoming more important in our technological society and are used in many of our electronic devices. REE include the 15 lanthanide elements (atomic number 57-71), yttrium (Y, atomic number 39), and scandium (Sc; Table 1) and are commonly divided into two chemical groups, the light REE (La through Eu) and the heavy REE (Gd through Lu, Sc, and Y). REE are lithophile elements (or elements enriched in the crust) that have similar physical and chemical properties (Table 1), and, therefore, occur together in nature. However, REE are not always concentrated in easily mined economic deposits and only a few deposits in the world account for current production (Committee on Critical Mineral Impacts of the U.S. Economy, 2008; Hedrick, 2009). Thorium (Th), uranium (U), niobium (Nb) and other elements typically are found with REE. Most deposits are radioactive because of their Th and U content.

TABLE 1. Description of rare earth elements (REE) (from Taylor and McClennan, 1985; Samson and Wood, 2005; Rudnick and Gao, 2005; Castor and Hedrick, 2006; and Hedrick, 2009). * Promethium does not occur naturally.

Rare Earth Element	Symbol	Oxide	Conversion factor (% element x conversion factor - % oxide)	Atomic Number	Abundance in the upper crust (ppm)
Scandium	Sc	Sc_2O_3		21	14
Yttrium	Y	Y_2O_3	1.269	39	21
Lanthanum	La	La ₂ O ₃	1.173	57	31
Cerium	Ce	Ce ₂ O ₃	1.171	58	63
Praseodymium	Pr	Pr ₂ O ₃	1.17	59	7.1
Neodymium	Nd	Nd ₂ O ₃	1.166	60	27
Promethium	Pm	*	*	61	*
Samarium	Sm	Sm_2O_3	1.16	62	4.7
Europium	Eu	Eu ₂ O ₃	1.158	63	1.0
Gadolinium	Gd	Gd ₂ O ₃	1.153	64	4.0
Terbium	Tb	Tb ₂ O ₃	1.151	65	0.7
Dysprosium	Dy	Dy ₂ O ₃	1.148	66	3.9
Holmium	Но	Ho ₂ O ₃	1.146	67	0.83
Erbium	Er	Er ₂ O ₃	1.143	68	2.3
Thulium	Tm	Tm ₂ O ₃	1.142	69	0.30
Ytterbium	Yb	Yb ₂ O ₃	1.139	70	2.2
Lutetium	Lu	Lu ₂ O ₃	1.137	71	0.31
Thorium	Th	ThO ₂	1.138	90	10.5
Zirconium	Zr	ZrO ₂	1.351	40	193
Niobium	Nb	Nb ₂ O ₅	1.431	41	12

REE have many highly specialized applications in our industry and for many applications there is no other known substitute (Naumov, 2008; Hedrick, 2009). Europium is the red phosphor used in color cathode-ray tubes and liquid-crystal displays in computer monitors and televisions, with no known substitute (Committee on Critical Mineral Impacts of the U.S. Economy, 2008). Erbium is used in fiber-optic telecommunication cables that transmit signals over long distance and provide greater bandwidth than the traditional copper wires. Erbium also is used in fiber-optics telecommunication cables, ceramics, dyes for glass, optical filters and lasers. Permanent magnets utilize Nd, Sm, Gd, Dy and Pr, which are used in appliances, audio and video equipment, computers, automobiles, communication systems, and wind turbines. Rechargeable lanthanum-nickel-hydrogen (La-Ni-H) batteries are replacing nickel-cadmium (Ni-Cd) batteries in computers, communication systems, and automobiles. Dysprosium is used in

hybrid car motors. As electric automobiles become more viable, La-Ni-H and other REE batteries will be in more demand. Cerium magnetic switches are an important component of modern cell phones. Scandium is used in high-strength aluminum-scandium (Al-Sc) alloys and electron beam tubes. Catalytic converters require La and Ce and there are no known substitutes (Committee on Critical Mineral Impacts of the U.S. Economy, 2008). Cerium, as CeO₂, is used to polish mirrors and lenses because of its unique physical and chemical attributes in aqueous medium (Committee on Critical Mineral Impacts of the U.S. Economy, 2008). Yttrium is used in fluorescent lamps, capacitors, cathode-ray tube (CRT) phosphors, microwave filters, glasses oxygen sensors, radars, lasers, structural ceramics, and superconductors. A small amount of Y in steel produces a fine-grained structure and improves the mechanical, electrical, and magnetic properties (Naumov, 2008). Scandium is alloyed with aluminum and used in baseball and softball bats and in metallurgical research, semiconductors, and specialty lighting (Hedrick, 2009). Approximately 35% of the REE produced are used as catalysts in the refining of crude oil to improve cracking and in automobiles to improve oxidation of pollutants, although use of REE as catalysts is declining (Committee on Critical Mineral Impacts of the U.S. Economy, 2008).

The U.S. once produced enough REE for U.S. consumption, but since 1999 more than 90% of the REE required by U.S. industry have been imported from China (Haxel et al., 2002). However, the projected increase in demand for REE in China, India, U.S., and other countries has resulted in increased exploration and ultimate production from future deposits in the U.S. and elsewhere. Furthermore, specific REE are becoming more economically important. Recently, the Chinese government announced that it is examining the economic feasibility of continuing to export REE from their deposits. REE deposits have been reported from New Mexico (McLemore et al., 1988a, b; McLemore, 2010a), but were not considered important exploration targets because the demand in past years has been met by other deposits in the world. However, with the projected increase in demand and potential lack of available production from the Chinese areas in New Mexico is the Gallinas Mountains.

The Gallinas Mountains are in northern Lincoln County and southern Torrance County where a series of alkaline igneous bodies, including porphyritic latite, trachyte/syenite, andesite, and rhyolite laccoliths, flows, dikes, and plugs, have intruded Permian sedimentary rocks belonging to the Abo, Yeso, and Glorieta Formations (Perhac, 1961, 1970). A small amount of bastnaesite, a REE mineral, was recovered during processing for fluorite. Alteration includes brecciation, silicification, chloritization, and fenitization (Griswold, 1959; Woodward and Fulp, 1991; Schreiner, 1993). Carbonatites are inferred at depth by the presence of fenitization, carbonatization of the breccias, presence of REE and similarity of the intrusive rocks and mineralization to areas with known carbonatites.

A number of previous reports have examined the geology and mineral resources of the Gallinas Mountains, but few examined the resource potential for REE and re-examination of the Gallinas Mountains is warranted in light of today's potential economic importance of REE. Therefore, the purposes of this report are 1) to compile and interpret available published and unpublished data from the Gallinas Mountains, 2) to summarize the geology, geochemistry, resource potential, and origin of the mineral deposits in the Gallinas Mountains, and 3) relate the mineral deposits to other REE deposits in New Mexico and elsewhere.

METHODS OF STUDY

Published and unpublished data were inventoried and compiled on existing mines and prospects within the Gallinas Mountains. Mineral databases were examined, including the Mineral Resource Data System (MRDS) of the U.S. Geological Survey (Mason and Arndt, 1996), the Minerals Industry Location System (MILS) of the U.S. Bureau of Mines (U.S. Bureau of Mines, 1995), U.S. Forest Service Abandoned and Inactive Mines database, AMLIS (U.S. Bureau of Land Management), and unpublished files at the New Mexico Bureau of Geology and Mineral Resources (NMBGMR). Using these data, mineral occurrences, deposits, mines, prospects, and mills were identified, plotted on base maps, and compiled in the New Mexico Mines Database (McLemore et al., 2005a, b). Mineralized areas were examined and sampled in 1980 and 2009-2010 by the author and in 1991-1992 by the U.S. Bureau of Mines (Schreiner, 1993). Mineral production by commodity and year since the late 1880s is in Tables 1 and 2. Mining and production records are generally poor, particularly for the earliest times, and many early records are conflicting. These production figures are the best data available and were obtained from published and unpublished sources (NMBGMR, file data). However, production figures are subject to change as new data are obtained.

A geologic map was compiled in ARCMAP@ using U.S. Geological Survey topographic maps as the map base and by modifying Kelley et al. (1946), Perhac (1961, 1970), Fulp and Woodward (1991), Schreiner (1993), and field reconnaissance by the author (1980, 2009-2010). Samples were collected and analyzed and compared with published data (Appendix 1). Igneous rock lithologies were identified on the basis of mineralogy and chemistry as defined by LeMaitre (1989).

This report has not been reviewed according to NMBGMR standards. The contents of the report should not be considered final and complete until reviewed and published by the NMBGMR. The views and conclusions contained in this document are those of the author and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the State of New Mexico. Any resource or reserve data presented here are historical data and are provided for information purposes only and do not conform to Canadian National Instrument NI 43-101 requirements.

MINING AND EXPLORATION HISTORY AND PREVIOUS INVESTIGATIONS

The Gallinas Mountains mining district is in the central Gallinas Mountains, mostly in Lincoln County and is also known as the Corona, Iron Mountain, Red Cloud, and Gallinas districts (File and Northrop, 1966). The Gallinas Mountains were first examined about 1881 when the Red Cloud, Buckhorn, Deadwood, and Summit mining claims were established; production started around 1885 for copper, silver, and lead (File and Northrop, 1966). Small quantities of ore were sent to Socorro for smelting (Jones, 1904), but there are no early production records remaining. The first recorded production for base metals was in 1909, which continued until 1955 (Table 2). By 1920, the ore was shipped to El Paso for refining at the smelter. Iron ore was found by 1904 (Jones, 1904) and in 1942-1943, iron ore was produced from the American Iron and Red Cliff mines (Kelley, 1949). Kelley et al. (1946) and Kelley (1949) mapped the geology and described the iron resources.

Fluorite was discovered in the Gallinas Mountains before the 1930s (Johnson, 1928; Perhac, 1970). In 1951-1954, fluorite was produced from the Red Cloud and Conqueror mines. Bastnaesite was discovered in the area about 1943 (Glass and Smalley, 1943; Dean, 1944; Soulé, 1943, 1946) and approximately 142,000 lbs of bastnaesite was produced from the Red Cloud

mine in the 1950s (Zandra et al., 1952). Between 1954 and 1956, the New Mexico Copper Corp. set up a small mill facility near Carrizozo, NM and produced 55,000 pounds of bastnaesite. Phelps Dodge drilled a 532-ft deep hole at the Rio Tinto mine in 1980 and Molycorp. Inc. conducted a more extensive exploration program in 1980-1981, including a geochemical survey. geophysical survey, and two drill holes on a magnetic high anomaly (Schreiner, 1993). Other companies examined the area in 1989-1992, including Canyon Resources (1989), Hecla Mining Co. (1991-1992), American Copper and Nickel, Inc. and Romana Resources (1992). Woodward and Fulp (1991) reported gold assays as high as 183 ppb in brecciated trachyte/syenite sills that intruded Yeso sandstone. The U.S. Bureau of Mines conducted extensive mapping and sampling of the REE deposits in 1991-1992 (Schreiner, 1993). Williams-Jones et al. (2000) and associates (Gagnon et al., 2003; Salvi et al, 2005; Samson and Wood, 2005) examined the geochemistry of selected deposits in the Gallinas Mountains. Strategic Resources, Inc. staked claims in 2009 and exploration activities (http://www.strategicresourcesinc.ca/index.php, accessed began 5/14/2010).

Year	Ore (tons)	Copper (lbs)	Gold (oz)	Silver (oz)	Lead (lbs)	Zinc (lbs)	Value \$
1900-1908							0
1909	14	361		42	7,907		409
1910							0
1911	8	555		70	6,620		404
1912	131	8,337		879	103,911		6,593
1913	157	7,068	0.18	895	94,010		5,777
1914	82	15,068	3.44	649	10,641		2,849
1915	46	5,091	0.11	243	13,277		1,640
1916-1919							0
1920	363	11,386		1345	171,925		17,315
1921	378	49,240		2,552	155,222		15,889
1922	1,893	213,072		11,015	700,072		78,284
1923	578	38,966		3,065	232,657		24,527
1924	121	8,596		409	26,912		3,553
1925-1926							0
1927	60	3,382		381	21,683		2,025
1928	18	667		77	7,000		547
1929							0
1930	23	700	0.19	151	12,000		753
1931							0
1932	24	1,000	0.58	103	11,500		449
1933	42	1,000	0.39	123	14,000		633
1934	30	4,400	0.29	221	13,850		1,017
1935	61	2,000	0.4	185	17,300		1,005
1936-1947							0
1948	1,015	10,000		854	74,000	16,000	18,317
1949-1950							0
1951	11			31	4,000		720
1952							0
1953	39	4529		183	14,351	1344	3,466
1954	23			45	6,000		863
1955	250		1	205	79,000		1,398
Total	5,367	385,418	6.58	23,723	1,797,838	17,344	188,433

TABLE 2. Yearly metals production data compiled from U.S. Geological Survey (1902-1927) and U.S. Bureau of Mines Mineral Yearbooks (1927-1990) and (McLemore, 1991a, b).

Mineral	Mine name	Vears of	Amount (short	Grade %	Reference
Produced	while hame	production	tons)	Glude /0	Reference
Connor	verious	1000 1052	102.7		Malamara $(1001a h)$
Copper	various	1909-1933	192.7		McLeniore (1991a, b)
Gold	various	1913-1955	6.58 ounces		McLemore (1991a, b)
Silver	various	1909-1955	23,723 ounces		McLemore (1991a, b)
Lead	various	1909-1055	863.4		McLemore (1991a, b)
Zinc	various	1948-1953	8.7		McLemore (1991a, b)
Iron ore	American	1942-1943	3,944	55.7	Kelley (1949)
	Gallinas	1942	6,410	48.7	Kelley (1949)
	Other mines		3,326		Kelley (1949)
Total iron		1942-1943	11, 540		Kelley (1949)
ore					
Fluorite	All American	1951-1954	129		Griswold (1959),
					McAnulty (1978)
	Conqueror (Rio	1951-1954	300		Griswold (1959),
	Tinto)				McAnulty (1978)
	Red Cloud	1951-1954	1,000		Griswold (1959),
					McAnulty (1978)
Total fluorite		1951-1954	1,608		
Bastnaesite	Conqueror No. 9	1954-1955	60		Griswold (1959)
	Conqueror No. 10	1956	11		Griswold (1959)
Total		1954-1956	71		
bastnaesite					

TABLE 3. Minerals production from the Gallinas Mountains, New Mexico.

REGIONAL GEOLOGIC AND TECTONIC SETTING

Lindgren (1915, 1933) was one of the first geologists who noted that a belt of alkalineigneous rocks extends from Alaska and British Columbia southward into eastern New Mexico, Trans-Pecos Texas, and eastern Mexico (Fig. 1) and that these rocks contain relatively large quantities of fluorine (F), zirconium (Zr), REE, and other elements. Since then, the North American Cordilleran alkaline-igneous belt has been explored and exploited for numerous types of mineral deposits, especially gold and silver (Mutschler et al., 1985, 1991; Clark, 1989), fluorite (Van Alstine, 1976), and REE (Woolley, 1987). Economic mineral deposits found within this belt have produced nearly 13% of the total lode gold production in the U.S. and Canada (Mutschler et al., 1991). Consequently, numerous companies have examined the belt for additional deposits, including REE deposits.

In New Mexico, the North American Cordilleran alkaline-igneous belt extends from the Sangre de Cristo Mountains near Raton, southward to the Cornudas Mountains, east of El Paso, Texas (Fig. 2; North and McLemore, 1986, 1988; McLemore, 1996, 2001). Significant mineral production, especially gold and silver, has come from deposits spatially associated with Tertiary alkaline-igneous rocks in the New Mexico alkaline-igneous belt (McLemore, 1996, 2001). These mineral deposits in New Mexico have been referred to as Great Plains Margin (GPM) deposits by North and McLemore (1986, 1988) and McLemore (1996, 2001). Alternative classifications by other workers include alkalic-gold or alkaline-igneous related gold deposits (Fulp and Woodward, 1991; Thompson, 1991a, b; Bonham, 1988; Mutschler et al., 1985, 1991; Richards, 1995), porphyry gold deposits, and Rocky Mountain gold province.

The Lincoln County porphyry belt (LCPB) in central New Mexico is part of the North American Cordilleran alkaline-igneous belt and is at the intersection of the north-trending Pedernal arch and the east-west-trending Capitan lineament in Lincoln County, which appears to have localized magmatic and volcanic activity in the LCPB (Fig. 3; Table 4; Kelley and Thompson, 1964; Kelley, 1971; Allen and Foord, 1991; McLemore and Zimmerer, 2009). Alkaline to subalkaline igneous rocks are found in all districts in the LCPB, but mineralization is locally associated with silica-saturated (monzonite) or oversaturated (quartz monzonite) rocks (Table 5; Seagerstrom and Ryberg, 1974; McLemore and Phillips, 1991; Thompson, 1991a, b). K-Ar and sparse ⁴⁰Ar/³⁹Ar dating (Fig. 4, Table 4) suggests the LCPB likely represents two stages of magmatism, an early alkaline belt emplaced along a N-S trend (Pedernal uplift) between 38 and 30 Ma and a younger bimodal suite emplaced along an E-W trend between 30 and 25 Ma (Fig. 2; Allen and Foord, 1991). The GPM deposits consist of seven associated deposit types: (1) polymetallic, epithermal to mesothermal veins, (2) breccia pipes and quartz veins, (3) porphyry Cu-Mo-Au, (4) Cu, Pb/Zn, and/or Au skarns or carbonate-hosted replacement deposits, (5) Fe skarns and replacement bodies, (6) placer Au, and (7) Th-REE-fluorite epithermal veins, breccias, and carbonatites. The GPM veins have high Au/base metal ratios and typically low Ag/Au ratios (North and McLemore, 1988; McLemore, 1996, 2001) in contrast with other high Ag/Au deposits in western New Mexico (McLemore, 2001).

FIGURE 1. North American Cordilleran belt of alkaline igneous rocks (Woolley, 1987; Mutschler et al., 1991; McLemore, 1996).

FIGURE 2. Mining districts and areas in New Mexico that contain REE deposits (modified from Adams, 1965; Northrop, 1996; McLemore et al., 1988a, b; 2005a).

The North American Cordilleran alkaline-igneous belt in New Mexico coincides with a belt of alkaline igneous rocks and eastward lithospheric thickening, which follows the tectonic boundary from Texas to Colorado between the tectonically stable Great Plains and tectonically active Rocky Mountains and Basin and Range Provinces. The lithosphere of the Basin and Range and Southern Rocky Mountains is thinner, has a higher heat flow, and is more permeable and fractured than the lithosphere of the Great Plains (Eaton, 1980; Prodehl and Lipman, 1989; McLemore, 1996). This belt of alkaline-igneous rocks occurs along this boundary and continues northward into Canada and southward into Mexico (Clark et al., 1982; Clark, 1989; Mutschler et al., 1991). The diversity of igneous rocks and associated mineral deposits within this belt (Mutschler et al., 1985, 1991; McLemore, 1996) suggests that the boundary between the Great Plains and Rocky Mountains and Basin and Range provinces is a region of highly fractionated and differentiated magmas (Thompson, 1991a, b; Allen and Foord, 1991). Low initial ⁸⁷Sr/⁸⁶Sr ratios suggest intrusive rocks associated with GPM deposits are derived from upper mantle to lower crustal sources (Allen and Foord, 1991; McLemore, 1996).

FIGURE 3. Mining districts and igneous intrusions forming the Lincoln County porphyry belt (LCPB; McLemore and Zimmerer, 2009). The mining district identification numbers are from the New Mexico Mines Database, are prefaced with DIS, and are defined in Table 5.

It has not been proven that the mineral deposits associated with this belt are genetically related to the igneous rocks; however, it is likely that they are. Supporting evidence for a magmatic origin includes: 1) fluid inclusion, stable isotope, and age data from the Capitan quartz-REE-Th veins (Phillips, 1990; Phillips et al., 1991; Campbell et al., 1995; Dunbar et al., 1996), 2) nature of stockwork molybdenum deposits at Sierra Blanca (Thompson, 1968, 1973), 3) close spatial association with igneous rocks (Table 4), 4) presence of skarn deposits along the contacts of igneous rocks (Table 4, 5), and 5) similarity to other deposits at Cripple Creek, Colorado and elsewhere where a magmatic origin is favored (Thompson et al., 1985; Porter and Ripley, 1985; Thompson, 1992; Maynard et al., 1989, 1990; Kelley and Luddington, 2002). It is likely that the co-occurrence of Au, Cu, Fe, Mo, F, W, and other elements is the result of several complex magmatic fractionation

and differentiation events and tectonic subenvironments, which overlap near the Great Plains Margin. The association of lineaments and other major structures with igneous rocks and mineral deposits in New Mexico suggests that near vertical deep-seated fracture systems probably channeled the magmas and resulting fluids. Once the magmas and fluids reached shallow levels, local structures and wall rock compositions determined the final character and distribution of intrusions and mineralization. Figure 5 summarizes the formation of GPM deposits in New Mexico.

Evidence suggests that complex, multiple intrusions are needed to generate the fluids necessary to produce GPM mineral deposits. The more productive districts, such as Nogal and White Oaks occur in areas of complex magmatism that lasted for more than 5 Ma and resulted in intrusions of different ages. Many of these areas have older calc-alkaline rocks followed by younger alkaline rocks (Table 4; Fig. 4; Allen and Foord, 1991). In areas such as the Capitan Mountains, where intrusive activity occurred in less than 5 Ma, only localized minor Au, Ag, and REE occurrences are found (McLemore and Phillips, 1991). Additional age determinations are required to confirm these observations, especially in the Gallinas, Sierra Blanca, and Tecolote districts.

FIGURE 4. Ideogram of K/Ar, Rb/Sr, and Ar^{40}/Ar^{39} ages of igneous rocks in the LCPB area. ${}^{40}Ar/{}^{39}Ar$ ages have been recalculated using the new decay constant (modified from McLemore

and Zimmerer, 2009). References are cited in Table 4. The Gallinas Mountains trachyte/syenite was dated by K/Ar methods as 29.9 Ma (Perhac, 1970).

Schematic cross section of a Great Plains margin deposit

FIGURE 5. Schematic model for formation of Great Plains Margin deposits (modified from Richards, 1995).

TABLE 4. Major intrusions along the eastern Capitan lineament and Lincoln County porphyry belt.

Intrusive Complex	Lithology	Age (million years)	Mineral	Method	Reference
Capitan Pluton	granite	28.8	adularia	Ar/Ar	Campbell et al. (1994, 1995)
Carrizo Mountain	granite				
Lone Mountain	syenite				
Patos Mountain	monzonite				

Intrusive Complex	Lithology	Age (million years)	Mineral Method		Reference
Vera Cruz	monzonite				
Jones Camp Dike		27.9	?	K/Ar	Aldrich et al. (1986)
Railroad Mountain Dike	gabbro	27.9	gmc	K/Ar	Aldrich et al. (1986)
Camino del Diablo	diabase				
Jicarilla Mountains	monzonite	38.2	biotite	K/Ar	Bachman and Mehnert (1978)
Gallinas Mountains	trachyte/syenite	29.9	orthoclase	K/Ar	Perhac (1970)
Tecolote Hills	syenite-diorite				
Sierra Blanca Complex					
Three Rivers (alkali		26.7	gmc	Rh/Sr	Allen and Foord (1991)
granite)		20.7	gine	1(0/ 51	
Syenite)		28.1	biotite	K/Ar	Allen and Foord (1991)
Three Rivers (quartz. Syenite)		29.3	K-feldspar	K/Ar	Allen and Foord (1991)
Three Rivers (Porphyry)		25.8	K-feldspar	K/Ar	Thompson (1973)
Three Rivers (syenite)		28.5	amphibole	K/Ar	Allen and Foord (1991)
Three Rivers (syenite)		29.9	K-feldspar	K/Ar	Allen and Foord (1991)
Rialto	monzonite				
Older Sierra Blanca Intrusions					
Older S.B. (essexite)		32.8	K-feldspar	K/Ar	Allen and Foord (1991)
Older S.B. (nepheline syenite)		36.6	biotite	K/Ar	Allen and Foord (1991)
Older S.B. (essexite)		36.6-37	inferred		
Older S.B. (nepheline syenite)		37	biotite	K/Ar	Allen and Foord (1991)
Hollow Hill	rhyolite				
Bonito Lake Stock	syenite	26.6	biotite	K/Ar	Weber (1971)
Willow Hill Stock	syenite	34.4	biotite	K/Ar	Weber (1971)
Cub Mountain Stock	syenite	36.5	gmc	K/Ar	Aldrich et al. (1986)
Black Mountain Stock					
Alkali Gabbro		17.5	apatite	fission-track	Thompson (1973)
Alkali Gabbro		33.6	biotite	K/Ar	Weber (1971)
Alkali Gabbro		37.8	biotite	Ar/Ar	Allen and Foord (1991)
Hornblende syenite Porphyry		22.6	apatite	fission-track	Allen and Foord (1991)
Hornblende syenite Porphyry		32.6	Plagioclase	K/Ar	Allen and Foord (1991)
Hornblende syenite Porphyry		34.6	Plagioclase	Ar/Ar	Allen and Foord (1991)
Hornblende syenite Porphyry		36.3	zircon	fission-track	Allen and Foord (1991)
Hornblende syenite Dike		37.3	hornblende	Ar/Ar	Allen and Foord (1991)

Intrusive Complex	Lithology	Age (million years)	Mineral	Method	Reference
Hornblende syenite Dike		47.7	hornblende	K/Ar	Allen and Foord (1991)
Baxter Mountain	syenite				
Carrizozo lava flows	basalt	5200 yrs		³⁶ Cl	Dunbar (1999)

TABLE 5. Mining districts along the Lincoln County porphyry belt (LCPB) and Capitan lineament, central New Mexico. Names of districts are after File and Northrop (1966), wherever practical, but some districts have been added. Estimated value of production is in original cumulative dollars and includes all commodities in the district. Production data modified from Lindgren et al. (1910), Anderson (1957), U.S. Geological Survey (1903-1927) and U.S. Bureau of Mines Mineral Yearbooks (1927-1990), New Mexico State Inspector of Mines Annual Reports, and Energy, Minerals and Natural Resources Department (1994). *majority of production is due to clay.

District no.	District	Types of deposits	Years of Production	Estimated Cumulative Production	Reference
DIS271	Duran	GPM-iron replacement		none	Kelley (1972), McLemore (1984)
DIS092	Gallinas Mountains	GPM-REE-Th- U veins, sedimentary copper, placer gold	1909-1955	\$261,000	Perhac (1970), Griswold (1959), Schreiner (1993), McLemore (1991b)
DIS098	Tecolote Iron	GPM	1915-1919	\$24,000	Rawson (1957), Allen and Foord (1991), Korzeb and Kness (1992)
DIS089	Ancho	sedimentary	1902-1922	\$10,000*	McLemore (1991a)
DIS093	Jicarilla	GPM, placer gold	1850-1957	\$165,000	Seagerstrom and Ryberg (1974), McLemore et al. (1991), Marvin and Dobson (1979), Griswold (1959)
DIS099	White Oaks	GPM, placer gold	1850-1953	\$3,100,000	Thompson (1991b,c), Ronkos (1991), Griswold (1959), Grainger (1974), Weber (1971)
DIS091	Capitan	GPM-REE-Th- U veins, Fe skarn	1960-2000	\$500,000	Allen and McLemore (1991), Campbell et al. (1994, 1995), McLemore and Phillips (1991), Phillips (1990)
DIS096	Schelerville	GPM		\$10,000	Griswold (1959), Korzeb and Kness (1992)
DIS095	Nogal (Nogal- Bonito)	GPM, placer gold	1865-1942	\$300,000	Thompson (1968, 1973, 1991b,c), Moore et al. (1991), Allen and Foord (1991), Weber (1971), Aldrich et al. (1986), Douglass and Campbell (1995), Douglass (1992), Korzeb and Kness (1992)

District no.	District	Types of deposits	Years of Production	Estimated Cumulative Production	Reference
DIS132	Three Rivers (Apache No. 1, White Mtn)	replacement iron	1911-1943	\$160	McLemore (1991a)
DIS216	Jones (Jones Camp)	iron replacement	1942-1943	\$1000	Aldrich et al. (1986, #312), Gibbons (1981)
DIS241	Chupadera Mesa	iron replacement		\$1000	Aldrich et al. (1986, #322), McLemore (1984)
DIS211	Chupadero	Precambrian vein and replacements, sedimentary copper, RGR		\$1000	McLemore (1984)

LOCAL STRATIGRAPHY

The oldest rocks in the Gallinas Mountains are altered Proterozoic gneisses and granites (exposed in Red Cloud Canyon) that are overlain by arkoses, quartz sandstones, siltstones, shales and limestones of the Permian Abo, Yeso and Glorieta Formations. The mineralized area of the Gallinas Mountains lies in a magnetic low surrounded by magnetic high anomalies (Fig. 6). Similar magnetic anomalies are characteristic of some alkaline complexes associated with mineral deposits (Woolley, 1987).

Proterozoic rocks

Proterozoic granite and granitic gneiss are exposed by faulting in three places in the Gallinas Mountains (Fig. 7). The granite is light gray to pink, foliated, fine- to medium-grained and equigranular, and consists of quartz, microcline, oligoclase, biotite, and trace hornblende, zircon, titanite, and apatite (Perhac, 1970; Schreiner, 1993). The granitic gneiss is medium- to coarse-grained, strongly foliated and consists of bands of plagioclase, orthoclase, quartz, biotite and trace zircon, titanite, and apatite. Quartz diorite was found in drill core by Molycorp, Inc. (Schreiner, 1993) and is fine- to medium-grained, consisting of plagioclase, microcline, hornblende, and trace quartz, biotite, titanite, rutile, pyrite, chalcopyrite, magnetite, and apatite.

Permian sedimentary rocks

Abo Formation

Permian Abo Formation consists of a basal arkosic conglomerate, a middle arkose, siltstone, and shale sequence, and an upper shale unit. Most of the Abo rocks are a distinctive brick-red color. In the Gallinas Mountains, the Abo Formation ranges in thickness from 100 to 200 ft and unconformably overlie the Proterozoic rocks (Perhac, 1970). The conglomerates and sandstones are poorly sorted, and consist of subrounded to angular grains of quartz, feldspar, rock fragments of granite, mica schist, quartzite and minor accessory minerals.

FIGURE 6. Aeromagnetic map of the Gallinas Mountains area, from Kucks et al. (2001). Note the aeromagnetic high (red) southeast of the Gallinas Mountains, which could be indicative of an intrusion in the subsurface. The blue in the center of the Gallinas Mountains is a magnetic low anomaly. The magnetic high anomaly in the northeastern portion of the map could be indicative of subsurface continuation of the latite. See Figure 7 for the geologic map.

FIGURE 7. Geologic map of the Gallinas Mountains, Lincoln and Torrance Counties, New Mexico (modified from Kelley et al., 1946; Kelley, 1949, 1971; Perhac, 1961, 1970; Woodward and Fulp, 1991; Schreiner, 1993; field reconnaissance by the author).

Yeso Formation

The Yeso Formation unconformably overlies the Abo Formation and consists of 1500 ft of tan to orange, thinly-bedded sandstone, siltstone, shale, limestone, and dolomite. The gypsum facies, commonly found in the Yeso Formation elsewhere in central New Mexico, is absent in the Gallinas Mountains (Kelley, 1949; Perhac, 1961, 1970).

Glorieta Sandstone

The more resistant Glorieta Sandstone, is as much as 250 ft thick, overlies the Yeso Formation, and caps many of the mesas and ridges in the Gallinas Mountains. The unit is tan to light gray, massive, medium-bedded, well- to moderately-sorted, locally cross-bedded, quartz sandstone. The quartz sandstone consists predominantly of well- to moderately-rounded quartz grains and few rock fragments cemented by silica and containing few accessory minerals, including feldspar, zircon, apatite, muscovite, and magnetite. The Glorieta Sandstone caps many of the mesas and ridges in the area (Fig. 7).

Tertiary igneous rocks

The nomenclature of igneous rocks in this report conforms to the International classification proposed by LeMaitre (1989), where the primary classification of igneous rocks is based upon mineralogy and, if too fine-grained to determine mineralogy, by the use of whole-rock geochemical analyses using the TAS (Le Bas et al., 1986) and R1-R2 (de la Roche et al., 1980) diagrams. According to the definition of volcanic and plutonic rocks proposed by LeMaitre (1989), the igneous rocks in the Gallinas Mountains are mostly volcanic (i.e. aphanitic texture) and not plutonic (i.e. coarse-grained rock), except for portions of the trachyte/syenite. Kelley et al. (1946), Poe (1965), Perhac (1961, 1970), and Schreiner (1993) used the volcanic terminology, which is used in this report. Allen and Foord (1991) and Williams-Jones et al. (2000) used the plutonic terminology for these rocks; i.e. syenogabbro, quartz syenite, syenodiorite, and alkali rhyolite. The volcanic rocks are mostly extrusive or shallow intrusive as interpreted from their texture.

The igneous rocks are generally poorly exposed and the contacts are generally covered and not exposed. Cougar Mountain, in the northeastern portion of the Gallinas Mountains, consists of a porphyritic latite stock (Kelley et al., 1946; Poe, 1965; Perhac, 1970). The northern portion of the Gallinas Mountains consists of a rhyolite stock. The southern portion of the Gallinas Mountains consists of porphyritic trachyte (trachytic texture) to syenite (equigranular texture). These igneous rocks have intruded Permian Yeso and Abo Formations. Poe (1965) determined from thermal states of feldspar that the latite is the oldest, followed by the trachyte/syenite, and the youngest is the rhyolite. This requires confirmation by isotopic age dating.

The age of the igneous rocks is mid-Tertiary and likely similar in age to other igneous rocks in the LCPB. A sample of trachyte/syenite has been dated as 29.2 Ma by K-Ar dating methods on feldspar (Perhac, 1970), but Allen and Foord (1991) believed the igneous rocks in the Gallinas Mountains are older than 32 Ma on the basis of chemical data. Additional age dating is required.

Latite

The latite is in the northern Gallinas Mountains (Fig. 7) and ranges in lithology from latite to trachydacite to trachyandesite, according to the classification by LeMaitre (1989). The

latite is light to medium gray, holocrystalline to porphyritic, matrix supported (Fig. 8) and consists of euhedral plagioclase and hornblende phenocrysts in a medium- to fine-grained matrix of plagioclase, orthoclase, hornblende, titanite (sphene), apatite, magnetite, and quartz (Poe, 1965; Perhac, 1961, 1970). The porphyritic texture is produced by large plagioclase and hornblende phenocrysts surrounded by a fine-grained matrix. The nearby Yeso sedimentary rocks are nearly flat lying, suggesting that the latite is a stock. An aeromagnetic high anomaly to the northeast could indicate additional latite in the subsurface (Fig. 6).

FIGURE 8. Photograph of the porphyritic latite (sample GM10-6).

Trachyte/syenite

The trachyte/syenite (called syenite by some workers) is found in the southern Gallinas Mountains (Fig. 7) and is associated with the mineral deposits. The trachyte/syenite consists of tan to buff to light gray holocrystalline-porphyritic trachyte with trachytic texture (Fig. 9) to porphyritic-holocrystalline syenite with equigranular texture. It consists of albite and K-feldspar phenocrysts in an aphanitic groundmass consisting of albite, K-feldspar, biotite or hornblende (now altered to hematite and limonite) and trace amounts of apatite, quartz, zircon, and hematite.

FIGURE 9. Photograph of the trachyte (sample GM10-9).

Rhyolite

The rhyolite is found in the northwestern Gallinas Mountains (Fig. 7) and is more than 500 ft thick at Gallinas Peak. The rhyolite is tan to pinkish gray to white, fine-grained to aphanitic to porphyritic (Fig. 10) and contains small miarolitic cavities (few millimeters in diameter) containing small crystals of quartz and feldspar. The groundmass consists of orthoclase, quartz, albite, and trace biotite, aegirine-augite, apatite, titanite, magnetite, ilmenite, zircon, and muscovite. Albite phenocrysts form the local porphyritic texture.

FIGURE 10. Photograph of the rhyolite (sample GM10-7).

Andesite

An altered andesite dike intruded the Yeso sandstone near the Sky High prospect. The andesite is dark gray to dark brown, porphyritic and consists of hornblende, pyroxene, plagioclase, K-feldspar, and trace amounts of sericite, calcite, apatite, and biotite.

Magmatic-hydrothermal breccia pipes

Several breccia pipes are hosted in the trachyte/syenite and Yeso Formation and consist of angular to subrounded fragments of sandstone, shale, limestone, granite, granitic gneiss, and trachyte/syenite that are as much as 1 m in diameter. The contacts are covered and not exposed, but the pipes appear to be roughly elliptical in shape. Most of the breccia pipes are matrix-supported and are cemented by quartz, feldspar, fluorite, and hematite along with small crystals of other minerals and rock fragments. The matrix locally has a trachytic or porphyritic texture (Schreiner, 1993). Two breccia pipes at the M and E No. 13 prospect are clast-supported. The magmatic-hydrothermal breccia pipes form a north-east-trending belt, approximately 2-3 miles long and 0.5 mile wide (Fig. 7). Most of the breccia pipes are strongly altered and weathered to hematite and locally carbonate. Fenitization of mineralized breccia pipes was identified by Schreiner (1993).

The classification of breccia pipes is primarily based upon the mechanism of brecciation and the involvement of water, magma, or tectonics (Sillitoe, 1985). Schreiner (1993) called these breccia pipes intrusive breccias. Intrusion breccias are formed directly from the subsurface movement of magmas (Sillitoe, 1985). Magmatic-hydrothermal breccias are formed by the release of hydrothermal fluids from the magma chamber and can include magmatic, meteoric, connate, or ocean waters (Sillitoe, 1985). In the Gallinas breccia pipes, the breccia cement consists of hydrothermal minerals not magma and the texture is hydrothermal not magmatic; therefore, magmatic-hydrothermal breccia pipe is a better term (Sillitoe, 1985).

PETROCHEMISTRY OF THE IGNEOUS ROCKS

The igneous rocks in the Gallinas Mountains are metaluminous to peraluminous, alkaline volcanic rocks (Fig. 11; Frost et al., 2001), and have chemical compositions similar to A-type granitoids (Appendix 3; Whalen et al., 1987). A-type (anorogenic or anhydrous) granitoids typically are found along rift zones and within stable continental blocks and the identification of A-type granitoids is based upon both tectonic setting and chemical characteristics. Many ore deposits are associated with A-type granitoids (Lindgren, 1933; Mutschler et al., 1985, 1991; McLemore, 1996). The trachyte/syenite and latite samples plot within the within-plate granite tectonic field of Pearce et al. (1984; WPG, Fig. 11), whereas the rhyolite sample plots within the volcanic-arc granite field (VAG, Fig. 11). Trachyte/syenite and latite are possibly related, but the rhyolite could be a separate magmatic event (Appendix 3). Detailed dating and geochemical analyses are required to confirm this hypothesis. The geochemical characteristics of the Gallinas Mountains are consistent with a crustal source for the igneous rocks.

a) Geochemical plots showing the lithology and chemical composition, i.e. alkaline, of the igneous rocks from the Gallinas Mountains. Key is below.

b) Enriched light-REE chondrite-normalized patterns (with no Eu anomaly) of igneous rocks in the Gallinas Mountains. Key is above.

c) Geochemical plots showing the chemical characteristics of the igneous rocks from the Gallinas Mountains, i.e. peraluminous to metaluminous and alkalic to alkalic-calcic. Key is above.

d) Tectonic classification of igneous rocks from the Gallinas Mountains, i.e. within plate granites. Key is above.

FIGURE 11. Geochemical plots characterizing the igneous rocks in the Gallinas Mountains. Additional plots are in Appendix 2. Turquoise triangles are breccia pipes and fenite samples, red circle is rhyolite, pink diamond is latite, blue diamond is trachyte/syenite, and open blue triangle is fenitized trachyte/syenite. Chemical analyses are from Schreiner (1993) and this report. Geochemical plots by Pearce et al. (1984), Le Bas et al. (1986), de la Roche et al. (1980), and Frost et al. (2001).

DESCRIPTION OF MINERAL DEPOSITS Introduction

Four types of deposits have been identified in the Gallinas Mountains (Table 6; Fig. 12; McLemore et al., 1991a), as defined by McLemore (1996) and the U.S. Geological Survey (Cox and Singer, 1983):

- 1. GPM iron skarn deposits (U.S. Geological Survey classification, iron skarn, 18d)
- 2. GPM breccia pipe deposits
- 3. GPM REE-F hydrothermal veins (U.S. Geological Survey classification, thorium-rareearth veins, 10b)
- 4. GPM Cu-REE-F (±Pb, Zn, Ag) hydrothermal veins (U.S. Geological Survey classification, thorium-rare-earth veins, 10b)

A fifth type of deposit, carbonatites (Cox and Singer, 1986), could be in the subsurface as suggested by previous drilling, but no samples have been obtained for precise determination of the lithology.

The mineralogy in the Gallinas Mountains is diverse and includes fluorite, quartz, barite, pyrite, iron oxides and accessory bastnaesite, calcite, chalcedony, galena, bornite, chalcocite, pyromorphite, anglesite, chrysocolla, malachite, and azurite and rare agardite (yttrium-arsenic oxide), mimetite, wulfenite, vanadinite, mottramite, cerusite, among others (Table 7; Perhac, 1964, 1968, 1970; Perhac and Heinrich, 1964; McAnulty, 1978; DeMark, 1980). Geothermometric fluid-inclusion studies indicate a temperature of formation of 250-400°C with salinities of approximately 15 NaCl eq. wt% at pressures of 1-2 kbar (Perhac, 1970; Williams-Jones et al., 2000). Nb₂O₅ ranges from 8-148 ppm (Moore, 1965; Schreiner, 1993).

The following selected descriptions are from cited references, especially Johnson (1928), Rothrock et al. (1946), Williams (1966), Perhac (1970), Schreiner (1993) and field reconnaissance by the author. More detailed descriptions can be found in Schreiner (1993) and earlier references.

TABLE	6. Mines	and pro	spects in t	he Gallinas I	Mounta	ins. Mir	ne ide	entific	ation nur	nber	s are from
the New	Mexico	Mines	Database	(McLemore	et al.,	2005a,	b). N	Aine	locations	are	shown in
Figure 9.	UTM are	e in met	ers and NA	AD 27.							

Mine id	Mine name	UTM easting	UTM northing	Type of Deposit	Commodities produced	Commodities present not produced
NMLI0002	All American	430160	3785872	REE-F veins	F	U, Th, REE, Cu, Fe
NMLI0003	American	429093	3785541	Iron skarn	Fe	U, Th, REE
NMLI0210	Big Ben	430175	3786768	REE-F veins	none	U, Th, REE
NMLI0009	Bottleneck	432430	3785090	REE-F veins	None	U, Th, REE, F
NML10302	Buckhorn	432736	3785671	Cu-REE-F veins	None	REE, U, Th
NMLI0011	Congress	432463	3785172	REE-F veins	None	U, Th, REE, F
NMLI0328	Conqueror Apex	431857	3784696	REE-F veins	None	REE, fluorite

Mine id	Mine name	UTM easting	UTM northing	Type of Deposit	Commodities produced	Commodities present not produced
NMLI0318	Conqueror No. 10	432098	3783663	REE-F veins	None	REE, F, Au, fluorite
NMLI0315	Conqueror No. 4	432012	3784675	REE-F veins	None	REE, F, Au, fluorite
NMLI0319	Deadwood	431720	3783910	Cu-REE-F veins	Cu	REE, F, Au, fluorite
NMLI0014	Eagle Nest	432051	3785272	REE-F veins	None	U, Th, REE, F, Cu, Ag
NMLI0317	Eureka	432948	3784751	Cu-REE-F veins	None	REE, F, Au, fluorite
NMLI0299	Gallinas	433468	3778071	REE-F veins	Fe	
NMLI0327	Helen S	431665	3784733	REE-F veins	None	REE, fluorite
NMLI0314	Hilltop	432256	3784791	REE-F veins	None	REE, F, Au, fluorite
NMLI0316	Hoosier Boy	432832	3784809	Cu-REE-F veins	None	REE, F, Au, fluorite
NMLI0329	Hoosier Girl North	432762	3784974	Cu-REE-F veins	None	REE, fluorite
NMLI0021	Hoosier Girl South	432566	3784839	REE-F veins	None	F, REE, U, Th
NMLI0311	Iron Box	430190	3788260	REE-F veins	Fe	
NMLI0313	Iron Lamp	430390	3784833	Iron skarn	None	Fe, REE
NMLI0027	Last Chance	432624	3785909	REE-F veins	None	F, Th, REE, U, V
NMLI0320	Little Jack	431695	3783700	REE-F veins	None	REE, F, Au, fluorite
NMLI0029	Little Wonder	432716	3785718	Cu-REE-F veins	None	F, Th, U, REE, Cu, V
NMLI0301	M and E No. 13	428605	3784217	Breccia pipe	None	REE, U, Th
NMLI0323	North All American	430073	3785979	Breccia pipe	None	REE, fluorite
NMLI0308	Old Hickory	432789	3785014	Cu-REE-F veins	F	Cu, Pb, REE
NMLI0310	Park	430979	3785321	Breccia pipe	None	REE, F, Au
NMLI0037	Pride	428818	3783554	REE-F veins	None	U, Th, REE
NMLI0039	Rare Metals	428668	3785107	Iron skarn	None	Fe, U, REE
NMLI0040	Red Cloud	431825	3784047	Cu-REE-F veins	F, bastnaesite, Cu, Pb, Ag	REE, Th, U, Zn
NMLI0330	Red Cloud fluorite	431966	3784008	REE-F veins	F	REE

Mine id	Mine name	UTM easting	UTM northing	Type of Deposit	Commodities produced	Commodities present not produced
NMLI0042	Rio Tinto	432323	3783697	Cu-REE-F veins	F, Cu, Pb, bastnaesite	U, Th, REE
NMLI0322	Seventeen No. 2	430856	3785452	Breccia pipe	None	REE, fluorite
NMLI0045	Sky High	430175	3786882	Breccia pipe	None	F, U, Th, REE
NMLI0048	Summit	432648	3784602	Cu-REE-F veins	None	F, U, Th, REE
NMLI0300	unknown	431454	3783709	REE-F veins	None	REE, U, Th
NMLI0309	unknown	432314	3783392	REE-F veins	None	REE, F
NMLI0312	unknown	429484	3784900	Iron skarn	None	Fe
NMLI0321	unknown	430131	3786384	REE-F veins	None	REE, fluorite
NMLI0324	unknown	431469	3784427	REE-F veins	None	REE, fluorite
NMLI0325	unknown	431768	3784537	REE-F veins	None	REE, fluorite
NMLI0326	White Oaks	433003	3784642	Cu-REE-F veins	None	REE, fluorite

TABLE 7. Minerals found in the Gallinas Mountains (Kelley et al., 1946; Perhac, 1970; Modreski, 1979, 1983; DeMark, 1980; Schreiner, 1993; Modreski and Schreiner, 1993; DeMark and Hlava, 1993; Northrop, 1996; VTM field notes).

Mineral	Formula	Occurrence		
All 4 types of mineral de	eposits			
quartz	SiO ₂	Cement, crystals		
fluorite	CaF ₂	Massive, purple to clear, cementing breccias, 2-3		
		stages		
barite	BaSO ₄	White bladed crystals		
calcite	CaCO ₃			
pyrite	FeS_2	Mostly as pseudomorphs in fluorite matrix,		
		replaced by goethite and hematite		
Iron skarn deposits				
hematite	Fe ₂ O ₃			
magnetite	Fe ₃ O ₄			
GPM REE-F and Cu-R	EE-F vein and breccias deposits			
bastnaesite	[Ce, La, (CO ₃)]F	Yellow hexagonal crystals, inclusions in fluorite		
agardite	(Ce,Ca,La)Cu6(AsO ₄) ₃ (OH) ₆ ·3H ₂ O	Fluorite matrix, acicular crystals		
parisite	$Ca(Nd,Ce,La)_2(CO_3)_3F_2$			
xenotime	(Yb,Y,Er)PO ₄			
monazite	(Sm,Gd,Ce,Th,Ca)(PO ₄)			
GPM Cu-REE-F vein d	eposits			
mimetite	Pb ₅ (AsO ₄) ₃ Cl	Trace as prisms with chrysocolla		
chalcopyrite	CuFeS ₂	trace		
chrysocolla	CuSiO ₃ ·H ₂ O	botryoidal crusts and vein fillings		
conichalcite	CaCu ⁺² (AsO ₄)(OH)	Rounded and botryoidal crusts and coatings in		

Mineral	Formula	Occurrence
		brecciated sandstones
wulfenite	(Fe, Mn)WO ₄	Fracture coatings and small orange tabular
		crystals
tenorite	CuO	trace
descloisite	PbZn(VO ₄)(OH)	trace
vanadinite	Pb ₅ (VO ₄) ₃ Cl	Prisms typically associated with mottramite
mottramite	(Pb,Bi,Ca)Cu(VO ₄)(OH,O)	Small black crystals
cerussite	PbCO ₃	Gray crystals associated with chrysocolla and mimetite, Red Cloud and Buckhorn
galena	PbS	trace
sphalerite	(Zn, Fe)S	trace
bornite	Cu ₅ FeS ₄	trace
chalcocite	Cu ₂ S	trace
pyromophite	$Pb_5(PO_4)_3Cl$	trace
anglesite	$PbSO_4$	trace
argentite	Ag_2S	Buckhorn mine
malachite	Cu ₂ (CO ₃)(OH) ₂	Trace to minor
azurite	$Cu_2(CO_3)_2(OH)_2$	Trace to minor
linarite	PbCu(SO4)(OH)2	Buckhorn mine
smithsonite	ZnCO ₃	trace
adamite	Zn2(AsO4)(OH)	Buckhorn mine
tennantite	Cu10(Fe,Zn)2As4S13	Buckhorn mine
proustite	Ag3AsS3	Buckhorn mine
covellite	CuS	Buckhorn mine
digenite	Cu9S5	Buckhorn mine
shattuckite	Cu5(SiO3)4(OH)2	Buckhorn mine
brochantite	Cu4(SO4)(OH)6	Buckhorn mine
cyanotrichite	Cu4Al2(SO4)(OH)12.2H2O	Buckhorn mine
spangolite	Cu6Al(SO4)(OH)12Cl.3H2O	Buckhorn mine
cornubite	Cu5(AsO4)2(OH)4	Buckhorn mine
duftite	PbCu(AsO4)(OH)	Buckhorn mine
iodargyrite	AgI	Buckhorn mine
freibergite	$(Ag,Cu)_{6}(Cu,Ag)_{4}(Fe,Zn)2Sb_{4}S_{12-13}$	Buckhorn mine

FIGURE 12. Mines and prospects in the Gallinas Mountains, Lincoln County.

Great Plains Margin-iron skarn (or pyrometasomatic iron) deposits

The GPM iron skarn deposits are found throughout the Gallinas Mountains replacing Yeso limestone, sandstone, and siltstone and are spatially associated with the igneous rocks (Kelley et al., 1946; Kelley, 1949; Harrer and Kelly, 1963). These deposits typically consist of magnetite, hematite, limonite, and martite in a gangue of calcite, quartz, fluorite, tremolite, actinolite, pyrite, fluorite, phlogopite, and locally bastnaesite (Table 7). The iron ore grade is typically less than 50%.

American (NMLI0003)

The American (Iron Hammer) mine was mined by the Lincoln Ore and Metals Co. in 1942. In 1943, the mine was leased to A.F. Denison who mined approximately 806 short tons. In 1943, the Mineral Materials Co. continued stripping. Total production from the mine in 1942-1943 is 3,944 short tons of 54.5-56.2% Fe (Kelley, 1949). The deposit was approximately 400 ft long and 5 ft wide and contained magnetite, hematite, epidote, diopside, allanite, and tremolite (Kelley, 1949; Schreiner, 1993). Iron mineralization extended only to the 170 ft crosscut, approximately 65 ft below the main bench. Ore shipments averaged 55.7% Fe and 0.033% P (Kelley, 1949). Sample no. 58 contained 34.2% Fe and 1090 ppm REE; the REE mineral is allanite (Appendix 2; Schreiner, 1993). The iron mineralization replaced limestone and sandstone along the contact with the trachyte/syenite, which is either a roof pendent on top of the trachyte/syenite or a xenolith within the trachyte/syenite.

Rare Metals (NMLI0039)

The Rare Metals (Little Marie) mine was prospected by the Lincoln Ore and Metals Co. and the U.S. Bureau of Mines in 1943, but there was no production (Kelley, 1949). The deposit is developed by a 10 ft adit and several pits and trenches. The iron mineralization replaced limestone and consists of magnetite, hematite, fluorite, galena, epidote, tremolite, and phlogopite. Two separate deposits are approximately 350 ft long and 10-15 ft thick and averages 40-50% Fe. Sample 59 contained 47.1% Fe and 209 ppm REE (Appendix 2; Schreiner, 1993) and is slightly radioactive due to U and Th (McLemore, 1983). The iron mineralization replaced either a roof pendent on top of the trachyte/syenite or a xenolith within the trachyte/syenite.

Gallinas (NMLI0299)

The Gallinas (Red Cliff) mine was mined by open pit by Dudley Cornell, Paul Teas and Vincent Moore in 1942. Total production from the mine in 1942 was 6410 short tons of 48.7% Fe (Kelley, 1949). The deposit was approximately 125 ft long, 7-10 ft thick, consisted of magnetite, hematite, and gypsum, and replaced limestone and sandstone. Sample 260 contained 44.8% Fe and 216 ppm REE (Appendix 2; Schreiner, 1993).

Iron Lamp (NMLI0313)

The Iron Lamp deposit was developed by an 18-ft-deep shaft and trenches, and contained magnetite and hematite (Kelley, 1949; Schreiner, 1993). The deposit is 100 ft long and 2-4 ft thick (Kelley, 1949). Sample no. 96 contained 50.3% Fe and 125 ppm REE (Appendix 2; Schreiner, 1993). The iron mineralization replaced limestone in either a roof pendent on top of the trachyte/syenite or in a xenolith within the trachyte/syenite. There was no reported production.

Iron Box (NMLI0311)

The Iron Box deposit is 4-6 ft thick and 100 ft long (Sheridan, 1947). The deposit is in limestone and sandstone and overlain by a trachyte/syenite sill.

Unknown (NMLI0312)

A small skarn is found in Yeso limestone in section 23, T1S, R11E and contained magnetite, hematite, diopside, and tremolite (Schreiner, 1993). Sample 61 contained 627 ppm REE (Appendix 2; Schreiner, 1993).

Great Plains Margin-breccia pipes

Many GPM breccia deposits are circular or oval in plan view and possibly formed by intrusion, gaseous explosions, or collapse (Griswold, 1959). Schreiner (1993) calls the Gallinas breccia pipes intrusive breccias, but they are better described as magmatic-hydrothermal breccias pipes (Sillitoe, 1985). Typical mineralogy is listed in Table 7 and they are described above in the description of igneous rocks.

Sky High (NMLI0045)

The Sky High prospect consists of a breccia pipe developed by shafts (up to 100 ft deep), pits, trenches, and road cuts. The breccia consists of angular to subrounded trachyte/syenite, sandstone, and less common granite rock fragments cemented by quartz, hematite, fluorite, barite, and calcite. Chryscolla, malachite, azurite, wulfenite, mimetite, pyrite, and iron and manganese oxides are locally found. Twenty samples ranged from 0.08% to 1.04% REE, less than 254 ppm Y, and minor Au, Ag, and Cu (Appendix 2; Schreiner, 1993).

M and E No. 13 (NMLI0301)

The M and E No. 13 (Pinatosa) prospect consists of 2 shafts, 3 pits and a bull dozed area on the edge of the M and E intrusive breccia pipe. The breccia pipe is approximately 350-700 ft long, 150-350 ft wide, clast-supported, and is hosted by trachyte/syenite (Perhac, 1970; Schreiner, 1993; Williams-Jones et al., 2000). Fluorite, barite, quartz, pyrite, bastnaesite, and calcite cement the breccia pipe. Xenotime, monazite, malachite, and azurite are found in vugs locally.

Seventeen No. 2 (NMLI0322)

The Seventeen No. 2 prospect consists of a 30-ft adit in a fenitized breccia pipe that consists of angular to subrounded rock fragments of sandstone, siltstone, granite, trachyte/syenite, and limestone. Quartz, calcite, bastnaesite, apatite, and zircon are found. Samples contained as much as 0.06% REE and 23 ppb Au (Appendix 2; Schreiner, 1993).

Breccia pipes in Sawmill Canyon

Three small mineralized breccia pipes were mapped in the Sawmill Canyon area in the northern portion of the mineralized area in the Gallinas Mountains by Woodward and Fulp (1991; Fig. 7). The pipes are predominantly composed of trachyte/syenite and Yeso sandstone, silicified, iron-oxide stained, and argillized, and fractured. Gold assays of rock chips range from 10 to 183 ppm Au (Woodward and Fulp, 1991).

Great Plains Margin REE-F hydrothermal vein deposits Cu-REE-F (±Pb, Zn, Ag) hydrothermal vein deposits

The Cu-REE-F (±Pb, Zn, Ag) hydrothermal vein deposits were first developed and mined in the Gallinas Mountains and consist of fissure and fracture filling brecciated hydrothermal veins. Fluorite, barite, and quartz are major minerals along with many copper and lead minerals (Table 7).

Buckhorn (NMLI0302)

The Buckhorn consists of an adit, three shafts, and pits along a northwest-trending brecciated vein containing fluorite, barite, quartz, calcite, pyrite and trace amounts of galena, tennantite, argentian tennantite/freibergite, proustite, xeotime, and zircon. Oxidation has produced covellite, digenite, chrysocolla, shattuckite, malachite, azurite, cerusite, brochantite, cyanotrichite, spangolite, adamite, cornubite, dufite, mimetite, iodargyrite, perroudite or capgaronnite (Table 7; Modreski and Schreiner, 1993; DeMark and Hlava, 1993).

Hoosier Boy (NMLI0316)

The Hoosier Boy prospect consists of a 30-ft shaft along a brecciated vein, 2-5 ft thick, trending N25°E, and consisting of fluorite, calcite, and hematite.

Old Hickory (NML10308)

The Old Hickory mine consists of a 200-ft-deep shaft and adit along a brecciated vein, approximately 13 ft thick, 180 ft long, trending N20°E and consisting of fluorite, calcite, quartz, and trace amounts of galena, malachite, chrysocolla, pyrite and dolomite. The vein pinches out with depth (Rothrock et al., 1946). A sample contained 60.9% CaF₂, 25.2% SiO₂, 3.6% CaCO₃, 0.44% CuO, and 0.14% PbO (NMBMMR files, 1943).

REE-F hydrothermal vein deposits

The REE-F hydrothermal vein deposits were developed and mined for fluorite and consist of fissure and fracture filling brecciated hydrothermal veins, similar to the Cu-REE-F (±Pb, Zn, Ag) hydrothermal vein deposits. Fluorite, barite, and quartz are major minerals; only trace amounts, if any, base and precious metals are found (Table 7).

All American (NMLI0002)

The All American prospect consists of 2 shafts (85 ft deep), pits, and trenches at the intersection of major faults, striking N30°W, N0°, and N80°W in fractured and brecciated sandstone and trachyte/syenite in Red Cloud Canyon. Fluorite, barite, calcite and trace bastnaesite are found. In the 85-ft level of the shaft, copper oxides in limestone and sandstone are reported by Griswold (1959). In 1949-1951, 129 tons of fluorspar ore was produced (Rothrock et al., 1946). Five samples contained 0.03% to 0.33% REE and trace amounts of Au, Ag, and Cu (Appendix 2; Schreiner, 1993).

Big Ben (NMLI0210)

The Big Ben prospect consists of a 100-ft shaft, adit and pits along brecciated veins of fluorite, barite, quartz, and calcite.

Bottleneck (NMLI0009)

The Bottleneck prospect consists of a 25-ft shaft, 30-ft adit, and pits along a brecciated vein 2-4 ft thick. Veins of fluorite cut older fluorite-barite matrix (Rothrock et al., 1946).

Congress (NMLI0011)

The Congress prospect consists of pits along a N20°E trending brecciated vein that is approximately 4 ft wide.
Pride (NMLI0037)

The Pride prospect consists of shafts, pits, and a trench in brecciated fault zone, trending N10°E, in trachyte/syenite. Fluorite, galena, malachite, and chrysocolla are found. Samples contained as much as 2.14% REE, 6.2% Pb, 0.5% Cu, 71 ppb Au and 2.9 ppm Ag (Appendix 2; Schreiner, 1993).

Potential carbonatite deposits

A fifth type of deposit, carbonatites (Cox and Singer, 1986), could be in the subsurface as suggested by previous drilling, but no samples have been obtained for precise determination of the lithology. Carbonatites are inferred at depth by the presence of fenitization, carbonatization of the breccias, presence of REE, and similarity of the intrusive rocks and mineralization to areas with carbonatites. Carbonatites are carbonate-rich rocks of apparent magmatic derivation (Fig. 13) and typically contain REE, U, Th, Nb, Ta, Zr, Hf, Fe, Ti, V, Cu, apatite, vermiculite, and barite. Some of the world's largest REE deposits are associated with carbonatites, such as Mountain Pass, California and Bayan Obo, Inner Mongolia, China (Castor and Hedrick, 2006).

FIGURE 13. Relationship of REE-Th-U veins to alkaline rocks and carbonatites (modified from Staatz, 1992).

ALTERATION

Schreiner (1993) described the alteration associated with the mineralization in the Gallinas Mountains in detail, which is only summarized in this report. The trachyte/syenite, Proterozoic granite and granitic gneiss, and magmatic-hydrothermal breccia have been altered locally by two separate periods of fenitization; sodic followed by potassic fenitization. Sodic fenitization is characterized by replacement of feldspars and other minerals by albite. Potassic fenitization is characterized by replacement of feldspars, including older albite, and other minerals by K-feldspar. Temperatures ranging from 400 to 700°C are estimated for fenitization (Eckerman, 1966; Kresten and Morgan, 1986; Haggerty and Mariano, 1983; Le Bas, 1987).

EVALUATION OF THE NURE STREAM-SEDIMENT DATA Description

A regional geochemical database, including stream-sediment and water samples, exists for the state of New Mexico that was generated from reconnaissance surveys as part of the U.S. Department of Energy's National Uranium Resource Evaluation (NURE) program during 19741984 (McLemore and Chamberlin, 1986; McLemore, 2010b). Field sampling techniques are detailed in Sharp and Aamodt (1978). The NURE data is typically arranged by 1x2-degree quadrangles, although a few areas were sampled and evaluated in greater detail (Estancia Basin, Grants uranium district, and San Andres and Oscura Mountains area). Total number of stream-sediment samples in the state analyzed was 27,798 and 12,383 water samples were analyzed. Chemical analyses for New Mexico were performed at two national laboratories (Los Alamos and Oak Ridge) and each laboratory utilized different analytical techniques and analyzed sediments for different elements (Hansel and Martell, 1977; Cagle 1977; Aredt et al., 1979). Only the stream sediments were examined for this report.

Some of the NURE data are problematic (Haxel, 2002; McLemore, 2010a, b) and the entire data set should be used with caution. Some of the recognized problems of the NURE data include inconsistent sampling techniques, variability in density of sampling, different size fractions used for analysis, different laboratories and different analytical techniques and analytical errors, and different analytical detection limits. These issues and concerns encountered with the NURE data are described by McLemore (2010b). Normal distributions of geochemical data should not be assumed (Rollinson, 1993) and can be determined by histograms or other statistical methods. However, regional geochemical data such as the NURE data typically are not normal or log-normal distributions, especially if the data consists of large number of samples because the data are characterized by a variety of factors. Methods of evaluating if the validity of NURE data in New Mexico, include examining histograms, comparing the NURE data with average upper crustal values, comparing data for pairs of statistically similar elements, such as Zr-Hf, Th-U, and La-Ce (Haxel, 2002), comparing descriptive statistics and histograms for different laboratories, and examining the descriptive statistics between the 1x2-degree quadrangles. In addition, there are several areas in New Mexico where subsequent streamsediment surveys have been completed and show similar geochemical patterns as the with the NURE data (Ellinger, 1988; Ellinger and Cepeda, 1991; Watrus, 1998; New Mexico Bureau of Mines and Minerals Resources et al., 1998). Some NURE samples have been re-analyzed by the U.S. Geological Survey and most samples compare well.

The main purposes of the NURE program were to provide an assessment of the nation's uranium resources and to identify areas favorable for uranium mineralization. The NURE data were not designed to reveal uranium or other mineral deposits, but if the NURE data are used with caution, the data can be used to identify areas of potential geochemical interest for further study. Ultimately, field examination of these identified areas must be conducted.

Elemental geochemical patterns in stream-sediment and water samples can be used in environmental studies to detect areas of anomalously high concentrations of elements and perhaps to distinguish between natural background and possible contamination from mining and other anthropogenic inputs (Schreck et al., 2005; McLemore, 2010b), as well as identify areas for potential economic mineral resources. Numerous studies have utilized the NURE data for New Mexico to evaluate mineral resource potential (Laughlin et al., 1985; Bartsch-Winkler and Donatich, 1995; Bartsch-Winkler, 1997; New Mexico Bureau of Mines and Mineral Resources et al., 1998; McLemore et al., 2001). Zumlot (2006) presented an evaluation of the NURE data for the entire state and used slightly different statistical techniques then used in this report and presented much of the data analysis on a web site (https://webspace.utexas.edu/howarifm/www/NURE/1nm.htm/). Different approaches to evaluating the NURE data is another method of validating the data set.

Methods of study

The NURE data for New Mexico were downloaded from Smith (1997) and the data from samples in the vicinity of the Gallinas Mountains (Fig. 14) were entered in to a spreadsheet. Below detection values (i.e. concentrations of 0 and negative values) were eliminated from the data set to form a processed data set. Statistical analysis was performed on the processed data. The processed NURE data were entered into GIS ArcMap, along with mines from the New Mexico Mines Database (McLemore et al., 2005a, b), and the state geologic map (New Mexico Bureau of Geology and Mineral Resources, 2003). Single element maps were plotted for selected elements using ArcMap. Descriptive statistics, histograms, box plots, scatter plots, and cumulative frequency plots were created using data for the entire state and for the selected area (Table 8). Outliers were identified, located (using search in ArcMap), and determined if they were due to analytical error or atypical abundance (i.e. geochemical anomalies). Since the sample density is not very detailed, single outliers could have geochemical significance.

TABLE 8. Descriptive statistics of processed NURE data for New Mexico using WinStat@. Data are in parts per million (ppm). Upper crustal abundance is from Rudnick and Gao (2005). Note the difference in the mean for Sc, Y, and Hf values and the upper crustal abundance for Sc, Y and Hf which suggests that Sc, Y, and Hf NURE chemical analyses could be problematic. The other elements have mean values similar to the upper crustal abundance and are likely valid chemical analyses.

	U	Th	La	Ce	Sm	Eu	Dy	Yb	Lu	Y	Hf	Zr	Sc
Number of samples	27351	25033	24985	24952	11487	11526	11516	11475	11516	13495	12256	18369	25008
Mean	3.35	8.11	26.62	54.47	5.03	1.17	4.62	3.97	0.45	14.23	13.70	123.96	5.87
Variance	14.25	68.11	293.22	1073.02	7.67	0.21	4.99	5.12	6.40E- 02	97.58	138.41	34518	8.55
Standard deviation	3.78	8.25	17.12	32.78	2.77	0.45	2.23	2.26	0.25	9.88	11.76	185.79	2.92
Minimum	0.1	0.2	1	1	0.1	0.1	1	0.1	0.1	1	0.7	1	0.1
Maximum	445.1	332.5	467	722	63.6	8.1	78	69.4	6.9	165	261.4	4689	48.8
5th Percentile	1.72	1.3	3	6	1.9	0.6	2	1.6	0.2	1	1.6	7	1.9
25th Percentile	2.4	4	18	37	3.7	0.9	4	2.9	0.3	9	7.2	48	4
Median	2.9	7	26	54	4.8	1.1	4	3.7	0.4	13	11.9	66	5.5
75th Percentile	3.59	9.9	34	68	5.8	1.4	5	4.5	0.5	17	16.9	112	7.1
Geometric mean	3.00	6.02	21.00	42.84	4.52	1.10	4.24	3.50	0.40	10.72	10.11	68.87	5.17
Geometric Standard Deviation	1.50	2.22	2.27	2.31	1.60	1.45	1.521	1.70	1.58	2.43	2.33	3.04	1.71
Abundance in the upper crust (ppm)	2.7	10.5	31	63	4.7	1.0	3.9	2.0	0.31	21	5.3	193	14

FIGURE 14. Distribution of Ce (in ppm) analyses in the NURE stream-sediment samples in the Gallinas Mountains area (data from Smith, 1997). Green circles are location of NURE samples. Note the high values of 106 and 78 ppm from drainages near the mineralized area in the Gallinas Mountains.

Geochemical anomaly maps

There are several ways to display geochemical element maps. Point maps of the raw data are used to display absolute concentrations of individual samples (used in this report). Symbols for specific ranges of concentration can be used (Chamberlin, 2009). The point data can be krigged (Laughlin et al, 1985) or contoured. Other techniques can be employed.

Identification of geochemical anomalies (i.e. outliers) and background concentration is not always simple. An orientation or analog study can be performed in a non-mineralized or uncontaminated site to define a local threshold against which anomalies can be judged. Anomalies can be determined by statistical methods such as selecting the upper 2.5% of the data or the mean plus 2σ (standard deviation) as geochemical anomalies (Hawkes and Webb, 1962). However, these statistical methods do not always account for different geochemical processes that form the anomalies nor do they always account for two or more overlapping populations. The geochemical threshold also can be determined by plotting a cumulative frequency plot and the threshold value is at the break in slope (Matschullat et al., 2000). The box plot also can be used to define the upper and lower threshold (Bounessah and Atkin, 2003; Reimann et al., 2005). These later two techniques begin to account for different geochemical processes and for two or more overlapping populations. The data also can be compared to average crustal abundance or other averaged data. Table 9 summarizes the upper threshold for REE and other elements using these techniques.

methous.							
Method	La ppm	Ce ppm	Sc ppm	Y ppm	U ppm	Th ppm	Reference
Upper crustal	31	63	14	21	2.7	10.5	Rudnick and Gao (2005)
abundance							
Mean (entire state)	29.4	61.9	6.2	15.8	3.4	9.5	NURE data
Median (entire state)	27.0	58.0	6.0	13.0	2.9	8.5	NURE data
Mean + 2σ	45.6	92.6	9.1	25.6	7.4	18.0	Hawkes and Webb (1962)
Box plot	34.0	72.0	7.6	18.0	3.6	11.0	Bounessah and Atkin
							(2003)
Cumulative	55	100	12	25	7	20	
frequency plot							

TABLE 9. Upper concentration thresholds (i.e. outliers) for REE calculated by different methods.

NURE Results in the Gallinas Mountains

Approximately 30 stream-sediment samples were collected and analyzed for the NURE program in the Gallinas Mountains area and only two samples are anomalous for Ce and La (78, 106 ppm Ce, Fig. 15; 63 ppm La). Most samples are within normal crustal abundance for Ce (40-106 ppm), La (18-63 ppm), Y (8-14 ppm), Sc (3-6 ppm), Th (3-13 ppm), and U (2-4 ppm).

GEOCHEMISTRY OF THE GALLINAS REE DEPOSITS

Another set of geochemical data for this area consists of 279 rock and mineralized samples that were collected and analyzed for various elements by Schreiner (1993) and the author for this report. Geochemical anomaly maps were constructed using ARCMAP@ and indicate that the higher concentrations of REE, Cu, Pb, and Au are found along faults filled with Cu-REE-F and REE-F veins and the M and E breccia deposit (Figs. 15-18). Descriptive statistics are in Table 10.

a) REE-F veins (131 samples)

c) Breccia pipe deposits (58 samples)

d) iron skarns (6 samples)

FIGURE 15. Chondrite-normalized REE plots of mineralized samples from the Gallinas Mountains. Data from Schreiner (1993) and this report (Appendix 2). Chondrite values from Nakamura (1974). Note the similarity in REE patterns between the different deposit types.

	La	Ce	Sm	Eu	Yb	Lu	Y	Total REE	Sc	Th
Cases	273	278	272	270	271	264	273	278	260	266
Mean	2716.59	3367.5	75.8733	29.4215	9.90258	1.16511	179.608	7758.78	5.16838	37.6868
Std.error	234.304	281.46	5.84276	12.748	0.65587	6.40E-02	12.9061	626.476	0.26241	2.7719
Std.deviation	3871.34	4692.88	96.3612	209.471	10.797	1.03964	213.244	10445.4	4.23127	45.2084
Minimum	2.7	21	0.27	0.6	0.6	0.1	3	7	0.13	1.8
Maximum	19101	22702	539	3440	95	7	752	56697	33	277
Range	19098.3	22681	538.73	3439.4	94.4	6.9	749	56690	32.87	275.2
Sum	7.42E+05	9.36E+05	20637.5	7943.8	2683.6	307.59	49033	2.16E+06	1343.78	10024.7
10th Percentile	81.82	125.4	7.43	1.8	3.1	0.435	33.4	362.5	1.404	6.9
25th Percentile	167.5	257.75	13.425	3.3	4.5	0.6	55.5	707.75	2.5625	12
Median	799	1130	33.45	7.3	7.3	0.92	95	2683	4.275	25

TABLE 10. Descriptive statistics of chemical analyses of samples from the Gallinas Mountains. Chemical analyses are from Schreiner (1993) and this report (Appendix 2).

	La	Ce	Sm	n Eu	Yb	Lu	Y	Tota REE	l Sc	Th
75th Percentile	3930	5215	102.	75 21.02	.5 11	1.2975	178	12171	.1 6.635	47.325
90th Percentile	9000	9871	200) 46.2	18.08	2.14	725.6	23261	.1 9.332	77.09
95th Percentile	10360	13400	295	.2 65.8	1 26.64	3.1	735.3	31272	.3 12.95	116.5
99th Percentile	19100.3	22700.	2 495.	75 111.2	.9 69.952	6.9805	741	51665	.9 21.67.	3 276
Geom. mean	786.915	1101.9	4 35.90	8.394	67 7.2976	6 0.90952	104.758	3 2724.1	18 3.8594	7 23.9027
Geom. Std.Dev.	6.0954	5.3365	4 3.673	3.577	12 2.1091	3 1.97389	2.81045	5 5.0486	53 2.2704	5 2.60099
	U	Au	Ag	Cu	Pb	Zn	Мо	Nb	Fe	Ba
Cases	267	263	263	278	278	271	266	27	260	260
Mean	18.7326	216.205	5.5349	2122.75	5511.6	589.173	104.132	97.1111	2.83415	5105.25
Std.error	2.93341	19.7947	0.45515	530.204	1824.2	96.0582	17.9655	10.3444	0.403	501.313
Std.deviation	47.9323	321.016	7.38134	8840.27	30415.5	1581.32	293.008	53.7511	6.49827	8083.42
Minimum	1.2	5	0.2	2	2	2	1	3	5.00E-02	2
Maximum	700	1711	42	89200	3.71E+05	10202	1319	184	56	79000
Range	698.8	1706	41.8	89198	3.71E+05	10200	1318	181	55.95	78998
Sum	5001.6	56862	1455.68	5.90E+05	1.53E+06	1.60E+05	27699	2622	736.88	1.33E+06
10th Percentile	3.6	11	0.7	8.9	18	25.2	2.7	12.2	0.651	2
25th Percentile	5.1	21	4	16.75	35.75	51	5.75	57	1.0225	125
Median	8.6	54	4	73	95	113	13	94	1.545	2200
75th Percentile	17	329	4	438.25	503.75	323	40.25	135	2.69	7250
90th Percentile	37.68	611	9.32	4263.7	6625.7	1144.6	182.8	182.2	4.398	15590
95th Percentile	69.6	611	27.86	10478.8	21440	3371.8	1196.6	183.6	4.859	18065
99th Percentile	195.32	1709.36	40.36	54267	2.14E+05	10201	1317.33	*****	50.3224	39458
Geom. mean	9.92846	71.7888	3.40207	107.592	174.628	141.048	16.9083	73.3424	1.65995	583.646
Geom. Std.Dev.	2.59338	4.72707	2.75504	10.2459	9.60548	4.65031	5.32604	2.64873	2.33774	29.0815

FIGURE 16. Geochemical anomaly map and statistical plots (box plots, histogram, cumulative frequency distribution plot for all samples) of total REE (rare earth elements, ppm) of samples from the Gallinas Mountains. Chemical analyses are from Schreiner (1993) and this report (Appendix 2). Mines identified in Figure 12.

FIGURE 17. Geochemical anomaly map and statistical plots (box plots, histogram, cumulative frequency distribution plot for all samples) of copper (ppm) of samples from the Gallinas Mountains. Chemical analyses are from Schreiner (1993) and this report (Appendix 2). Mines identified in Figure 12.

FIGURE 18. Geochemical anomaly map and statistical plots (box plots, histogram, cumulative frequency distribution plot for all samples) of gold (ppb) of samples from the Gallinas Mountains. Chemical analyses are from Schreiner (1993) and this report (Appendix 2). Mines identified in Figure 12.

Trace-element composition of fluorites from the Gallinas Mountains are characterized by relatively flat to LREE-enriched chondrite-normalized REE patterns, with no Eu anomaly (Fig. 19; Gagnon et al., 2003). The earliest generation of fluorite is similar to the composition of the trachyte/syenite. The fluorite samples plot in the hydrothermal and pegmatitic field according to the classification of Möller et al. (1976; Gagnon et al., 2003), which is consistent with a magmatic-hydrothermal origin.

FIGURE 19. Chondrite-normalized REE plot of average fluorite from the Gallinas Mountains (from Gagnon et al., 2003). Red is P1 (1st stage, early), green is P2 (2nd stage), and blue is P3 (3rd stage; late). Purple is trachyte/syenite (Schreiner, 1993).

FIGURE 20. Log Tb/Ca verses log Tb/La plot of fluorite samples from the Gallinas Mountains (from Gagnon et al., 2003). Pegmatitic, hydrothermal, and sedimentary fields are from Möller et

al. (1976). The arrow indicates the compositional trend from earliest (P1) to latest (P3). See Gagnon et al. (2003) for more detailed discussion.

DISCUSSION

Mineral zonation, sequence of events and paragenesis of the mineral deposits

The mineral zonation for the Gallinas Mountains was determined by mineralogy and chemistry of the individual deposits (Figs. 15-18) and is shown in Figure 21. The sequence of events in the Gallinas Mountains is summarized as:

- Emplacement of the trachyte/syenite about 30 Ma
- Sodic fenitization
- Deposition of the iron skarns
- Faulting and brecciation
- Formation of the magmatic-hydrothermal breccia pipes
- Potassic fenitization
- Additional brecciation
- Deposition of the REE-F and Cu-REE-F veins
- Late stage deposition of quartz and calcite

The paragenesis as determined from petrographic studies by Schreiner (1993), Williams-Jones et al. (2000) and field observations by the author is summarized in Figure 22. A schematic model showing the formation of the deposits in the Gallinas Mountains is shown in Figure 23.

Relationship of the mineral deposits in the Gallinas Mountains to other REE deposits in New Mexico and elsewhere

The REE deposits in the Gallinas Mountains are among the highest potential for REE in New Mexico. Chemically, samples from the Gallinas Mountains are similar in REE chemistry to Bayan Obo, Lemhi Pass, and Olympic Dam deposits and are different from Capitan deposits (Fig. 24). The Gallinas Mountains deposits are similar in size and grade to small- to medium size deposits found elsewhere in the world (Fig. 25). Estimated resources amount to at least 537,000 short tons of 2.95% total REE (not NI-43-101 compliant; Jackson and Christiansen, 1993; Schreiner, 1993). Drilling is required identify a better resource estimate. However, the Gallinas Mountains has not been extensively drilled and future exploration could identify additional resources.

FIGURE 21. Mineral zoning in the Gallinas Mountains, Lincoln County, New Mexico, based upon predominant mineralogy and chemistry of the known deposits.

FIGURE 22. Simplified paragenesis of the REE deposits in the Gallinas Mountains (modified from Perhac, 1970, Schreiner, 1993, William-Jones et al., 2000, and field observations by the author). Temperature estimates are from Williams-Jones et al. (2000).

FIGURE 23. Schematic model of formation of the mineral deposits in the Gallinas Mountains, Lincoln County, New Mexico (modified in part from Schreiner, 1993; Richards, 1995; Williams-Jones et al., 2000).

FIGURE 24. Differentiation of different types of REE deposits by La/Lu or La/Yb verses normalized Eu/Eu* (from Samson and Wood, 2005; Castor and Hedrick, 2006; Gillerman, 2008). Samples from Gallinas Mountains are similar in REE chemistry to Bayan Obo, Lemhi Pass, and Olympic Dam deposits and different from Capitan deposits. Note also that there are different compositions within some districts (i.e. Lemhi Mountains, Gallinas, Capitan).

FIGURE 25. Grade and size (tonnage) of selected REE deposits, using data from Oris and Grauch (2002) and resources data from Schreiner (1993) and Jackson and Christiansen (1993) for the Gallinas Mountains. Deposits in bold are located in New Mexico. Additional exploration could identify additional resources in most of these areas.

PRELIMINARY CONCLUSIONS

- The igneous rocks in the Gallinas Mountains are metaluminous to peraluminous, alkaline volcanic rocks, and have chemical compositions similar to A-type granitoids (Fig. 11, Appendix 3). Trachyte/syenite and latite are possibly related, but the rhyolite could be a separate magmatic event. Detailed dating and geochemical analyses are required to confirm this hypothesis. These data suggest a crustal source for the igneous rocks.
- Resources amount to at least 537,000 short tons of 2.95% total REE (not NI-43-101 compliant; Jackson and Christiansen, 1993; Schreiner, 1993). Drilling is required identify a better resource estimate.
- District zonation is defined by Cu-REE-F (±Pb, Zn, Ag) hydrothermal veins that form center of the district, surrounded by REE-F hydrothermal veins (Fig. 21). The magmatic-hydrothermal breccia pipe deposits form a belt partially surrounding the veins. Iron skarns formed at the top and edge of the trachyte/syenite body and are likely the earliest stage of mineralization. The iron skarns are probably related to the REE-F and REE-F-Cu veins and breccias because they typically contain bastnaesite and fluorite and are similar in trace element geochemistry (Fig. 15).
- Most fenites are more enriched in REE than unaltered igneous rocks (Appendices 1, 2).
- Sequence of events
 - o Emplacement of the trachyte/syenite about 30 Ma
 - Sodic fenitization
 - Deposition of the iron skarns
 - Faulting and brecciation
 - o Formation of the magmatic-hydrothermal breccia pipes
 - Potassic fenitization

- Additional brecciation
- Deposition of the REE-F and Cu-REE-F veins
- Late stage deposition of quartz and calcite
- The paragenesis is defined by four stages of brecciation and faulting with three stages of fluorite deposition. REE minerals were deposited during the 1st and 2nd stage of fluorite deposition (Fig. 22).
- A genetic model is summarized by intrusion/extrusion of crustal-derived igneous source rock in an extensional terrain possibly related to alkaline-carbonatite complex with mineralization related to mixing of magmatic-hydrothermal and formation fluids (Fig. 23).

RECOMMENDATIONS FOR FUTURE STUDIES

The most important future research activity needed is the precise dating of the igneous rocks in the Gallinas Mountains to fully understand the temporal relationships and to better delineate the timing of igneous activity and associated mineralization and alteration. Additional detailed outcrop geologic mapping along with geochemical analyses are needed in the Gallinas Mountains to better define the local structural framework and to establish the framework for interpretations of the temporal relationships. Any additional geologic mapping also should be focused on defining the extent of the alteration and defining any alteration zonation. Highly altered areas could be indicative of higher grades of mineralization. Additional geochemical studies, including isotopic studies, of igneous rocks, mineralization, and alteration will aid in a better understanding of the systematics of igneous intrusion and mineralization in the Gallinas Mountains. REE and radiometric isotope analyses are invaluable in differentiating between mantle and crustal sources.

ACKNOWLEDGEMENTS

This work is part of ongoing research of the economic geology of mineral resources in New Mexico at NMBGMR, Peter Scholle, Director and State Geologist. Mark Mansell and Charles Knowles provided technical assistance. Charles Knowles and Malcomb Bucholtz reviewed an earlier version of this manuscript. This work was funded by the NMBGMR. Some geochemical analyses were funded by Strategic Resources, Inc. (http://www.strategicresourcesinc.ca/, accessed 5/14/2010). Matt Zimmerer provided the geochronology summary. Finally, I would like to thank Russ Schreiner for his prior work in the area and sharing his insights and information over the years.

REFERENCES

- Adams, J.W., 1965, Rare earths; in Mineral and water resources of New Mexico: New Mexico Bureau of Mines and Mineral Resources, Bulletin 87, p. 234-237.
- Aldrich, M.J., Jr., Chapin, C.E., and Laughlin, A.W., 1986, Stress history and tectonic development of the Rio Grande Rift, New Mexico: Journal of Geophysical Research, v. 91, no. B6, p. 6199-9211.
- Allen, M.S. and Foord, E.E., 1991, Geological, geochemical and isotopic characteristics of the Lincoln County porphyry belt, New Mexico: implications for regional tectonics and mineral deposits: New Mexico Geological Society, Guidebook 42, p. 97-113.
- Allen, M.S. and McLemore, V.T., 1991, The geology and petrogenesis of the Capitan pluton, New Mexico: New Mexico Geological Society, Socorro, Guidebook 42, p. 115-127.

- Anderson, E.C., 1957, The metal resources of New Mexico and their economic features through 1954: New Mexico Bureau of Mines and Mineral Resources, Bulletin 39, 183 p.
- Aredt, J.W., Butz, T.R., Cagle, G.W., Kane, V.E. and Nicols, C.E., 1979, Hydrogeochemical and stream sediment reconnaissance procedures of the National Uranium Resource Evaluation project: Oak Ridge Gaseous Diffusion Plant, Report GJBX-32(80), 56 p.
- Bachman, G.O. and Mehnert, H.H., 1978, New K-Ar dates and the late Pliocene to Holocene geomorphic history of the central Rio Grande region, New Mexico: Geological Society of America, Bulletin, v. 89, p. 283-292.
- Bartsch-Winkler, S.B., ed., 1997, Geology, mineral and energy resources, Mimbres Resource Area, New Mexico: U.S. Geological Survey, Open-file Report 97-521, CD-ROM
- Bartsch-Winkler, S.B. and Donatich, A.J., ed., 1995, Mineral and Energy Resources of the Roswell Resource Area, East-Central New Mexico: U.S. Geological Survey, Bulletin 2063, 145 p.
- Bonham, H.F., Jr., 1988, Models for volcanic-hosted epithermal precious metal deposits; *in* Bulk mineable precious metal deposits of the western United States: Geological Society of Nevada, Symposium Proceedings, p. 259-271.
- Bounessah, M. and Atkin, B.P., 2003, An application of exploratory data analysis (EDA) as a robust non-parametric technique for geochemical mapping in a semi-arid climate: Applied Geochemistry, v. 18, p. 1185-1195.
- Cagle, G.W., 1977, The Oak Ridge analytical program; in Symposium on hydrogeochemical and stream sediment reconnaissance for uranium in the United States: U.S. Department of Energy, Report GJBX-77(77), p. 133-156.
- Campbell, A.R., Banks, D.A., Phillips, R.S., and Yardley, B.W.D., 1995, Geochemistry of the Th-U-REE mineralizing fluid, Capitan Mountains, New Mexico, USA: Economic Geology, v. 90, p. 1273-1289.
- Campbell, A.R., Heizler, M.T., and Dunbar, N.W., 1994, ⁴⁰Ar/³⁹Ar dating of fluid inclusions in quartz from the Capitan pluton, New Mexico: Proceedings, Pan-American Conference on Research on Fluid Inclusions, v. 5, p. 11.
- Castor, S.B. and Hedrick, L.B., 2006, Rare earth elements; in Kogel, J.E, Trivedi, N.C., Barker, J.M., and Krukowski, S.T., ed., Industrial Minerals volume, 7th edition: Society for Mining, Metallurgy, and Exploration, Littleton, Colorado, p. 769-792.
- Chamberlin, R.M, 2009, Rare-earth geochemical anomaly at Sierra Larga, New Mexico: NURE stream-sediment data suggest a monazite placer deposit in the Permian Gloria Sandstone: New Mexico Geological Society Guidebook 60, p. 71-73.
- Clark, K.F., 1989, Metallogenic provinces and epochs in Mexico: 28th International Geological Congress, Abstracts, v. 1, p. 1-300.
- Clark, K.F., Foster, C.T., and Damon, P.E., 1982, Cenozoic mineral deposits and subductionrelated magmatic arcs in Mexico: Geological Society of America Bulletin, v. 93, p. 533-544.
- Committee on Critical Mineral Impacts of the U.S. Economy, 2008, Minerals, Critical Minerals, and the U.S. Economy: Committee on Earth Resources, National Research Council, ISBN: 0-309-11283-4, 264 p., http://www.nap.edu/catalog/12034.html
- Cox, D.P., and Singer, D.A., 1986, Mineral deposit models, U.S. Geological Survey, Bulletin 1693, 379 p.
- Dean, R.S., 1944, Bastnaesite at Corona, New Mexico: American Mineralogist, v. 29, p. 157.

- De la Roche, H., Leterrier, J., Grandclaude, P. and Marchal, M., 1980, A classification of volcanic and plutonic rocks using R1, R2-diagrams and major element analysis—its relationships with current nomenclature: Chemical Geology, v. 29, p. 183-210.
- DeMark, R.S., 1980, The Red Cloud mines, Gallinas Mountains, New Mexico: Mineralogical Record, v. 11, no.2, p. 69-72.
- DeMark, R.S. and Hlava, P.F., 1993, Spangolite and other secondary minerals from the Buckhorn mine, Lincoln County, New Mexico (abstr.): New Mexico Geology, v. 15, p. 19.
- Douglass, S.E., 1992, Characterization of alkaline rock-hosted precious and base metal mineralization in the Nogal mining district, Lincoln County, New Mexico (M.S. thesis): New Mexico Institute of Mining and Technology, Socorro, 122 p.
- Douglass, S.E. and Campbell, A.R., 1995, Characterization of alkaline rock-related mineralization in the Nogal mining district, Lincoln County, New Mexico: Economic Geology, v. 89, p. 1306-1321.
- Dunbar, N.W., 1999, Cosmogenic ³⁶Cl-determined age of the Carrizozo lava flows, north-central New Mexico: New Mexico Geology, v. 21, p. 25-29.
- Dunbar, N.W., Campbell, A.R., and Candela, P.A., 1996, Physical, chemical, and mineralogical evidence for magmatic fluid migration within the Capitan pluton, southeastern New Mexico: Geological Society of America Bulletin, v. 108, p. 318-333.
- Eaton, G.P., 1980, Geophysical and geological characteristics of the crust of the Basin and Range Province; *in* Burchfield, C., Silver, E., and Oliver, J., eds., Continental tectonics, National Research Council Studies in Geophysics: Washington, D.C., National Academy of Sciences, p. 96-113.
- Eckerman, H.V., 1966, Progress of research on the Alno carbonatite; in O.F. Tuttle and J. Gittins, eds., Carbonatites: New York, John Wiley and Sons, p. 3-31.
- Ellinger, S., 1988, Stream sediment geochemical survey of the eastern half of the Capitan Mountains, Lincoln County, New Mexico: M.S. thesis, West Texas State University, Canyon, Texas, 108 p. 108.
- Ellinger, S. and Cepeda, J.C., 1991, A geochemical survey of ferrous and selected base metals in the eastern half of the Capitan Mountains, Lincoln County, New Mexico: New Mexico Geological Society, Guidebook 42, p. 299-304.
- File, L., and Northrop, S.A., 1966, County township, and range locations of New Mexico's mining districts: New Mexico Bureau of Mines and Mineral Resources, Circular 84, 66 p.
- Frost, B.D., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., and Frost, C.D., 2001, A geochemical classification for granitic rocks: Journal of Petrology, v. 42, no. 11, p. 2033-2048.
- Fulp, M.S. and Woodward, L.A., 1991, Mineral deposits of the New Mexico alkalic province (abstr.): Geological Society of America, Abstracts with Programs, v. 23, p. 23.
- Gagnon, J.E., Samson, I.M., Fryer, B.J., and Williams-Jones, A.E., 2003, Compositional heterogeneity in fluorite and the genesis of fluorite deposits: insights from LA-ICP-Ms analysis: Canadian Mineralogist, v. 41, p. 365-382.
- Gibbons, T.L., 1981, Geochemical and petrographic investigation of the Jones Camp magnetite ores and associated intrusives, Socorro County, New Mexico (M.S. thesis): Socorro, New Mexico Institute of Mining and Technology, 156 p.

- Gillerman, V.S. 2008, Geochronology of Iron Oxide-Copper-Thorium-REE Mineralization in Proterozoic Rocks at Lemhi Pass, Idaho, and a Comparison to Copper-Cobalt Ores, Blackbird Mining District, Idaho: final report, U.S. Geological Survey, Mineral Resources External Research Program, report 06HQGR0170, 148 p., http://minerals.usgs.gov/mrerp/Gillerman-06HQGR0170.pdf
- Glass, J.J. and Smalley, R.G., 1945, Bastnaesite {Gallinas Mountains, New Mexico]: American Mineralogist, v. 30, p. 601-615.
- Grainger, J.R., 1974, Geology of the White Oaks mining district, Lincoln County, New Mexico (M.S. thesis): Albuquerque, University of New Mexico, 69 p.
- Griswold, G.B., 1959, Mineral deposits of Lincoln County, New Mexico: New Mexico Bureau of Mines and Mineral Resources, Bulletin 67, 117 p.
- Haggerty, S.E. and Mariano, A.N., 1983, Strontian-loparite and stronio-chevkinite: Two new minerals in rheomorphic fenities from the Parana Basin carbonatites, South America: Contributions to Mineralogy and Petrology, v. 84, p. 365-381.
- Hansel, J.M. and Martell, C.J., 1977, Automated energy-dispersive X-ray determination of trace elements in streams: U.S. Department of Energy Report GJBX-52(77), 8 p.
- Harrer, C.M. and Kelly, F.J., 1963, Reconnaissance of iron resources in New Mexico, U.S. Bureau Mines, Information Circular 08190, 112 p.
- Hawkes, H.E. and Webb, J.S., 1962, Geochemistry in mineral exploration: Harper, New York.
- Haxel, G.B., 2002, Geochemical evaluation of the NURE data for the southwest United States (abstr.): Geological Society of America, Abstracts with Programs, v. 34, no. 6, p. 340.
- Haxel, G.B., Hedrick, J.B., and Orris, G.J., 2002, Rare earth elements—critical resources for high technology: U.S. Geological Survey, Fact Sheet 087-02, 4 p., http://pubs.usgs.gov/fs/2002/fs087-02/fs087-02.pdf
- Hedrick, J.B., 2009, Rare earths (advanced release): U.S. Geological Survey, 2007 Minerals Yearbook, 20 p.
- Jackson, W.D. and Christiansen, G., 1993, International strategic minerals inventory summary report—rare-earth oxides: U.S. Geological Survey, Circular 930-N, 76 p.
- Johnston, W.D., Jr., 1928, Fluorspar in New Mexico: New Mexico Bureau of Mines and Mineral Resources, Bulletin 4, 128 p.
- Jones, F.A., 1904, New Mexico mines and minerals: Santa Fe, New Mexican Printing Company, 349 p.
- Kelley, K.D. and Luddington, S., 2002, Cripple Creek and other alkaline-related gold deposits in the southern Rocky Mountains, USA: influence of regional tectonics: Mineralium Deposita, v. 37, p. 38-60.
- Kelley, V.C., 1949, Geology and economics of New Mexico iron ore deposits: University of New Mexico, Publications in Geology, no. 2, 246 p.
- Kelley, V.C., 1971, Geology of the Pecos country, southeastern New Mexico: New Mexico Bureau Mines Mineral Resources, Memoir 24, 75 p.
- Kelley, V.C., Rothrock, H.E., and Smalley, R.G., 1946, Geology and mineral deposits of the Gallinas district, Lincoln County, New Mexico: U.S. Geological Survey, Strategic Minerals Investigation Preliminary Map 3-211, scale 1:62,500.
- Kelley, V.C. and Thompson, T.B., 1964, Tectonics and general geology of the Ruidoso-Carrizozo region, central New Mexico: New Mexico Geological Society, Guidebook 15, p. 110-121.

- Korzeb, S.L., and Kness, R.F., 1992, Mineral resource investigation of the Roswell Resource Area, Chaves, Curry, De Baca, Guadalupe, Lincoln, Quay, and Roosevelt Counties, New Mexico: U. S. Bureau of Mines, Open-file Report MLA 12-92, 220 p.
- Kresten, P. and Morgan, V., 1986, Fenitization at the Fen complex, southern Norway: Lithos, v. 19, p. 27-42.
- Kucks, R.P., Hill, P.L., and Heywood, C.E., 2001, New Mexico magnetic and gravity maps and data; a web site for distribution of data: U.S. Geological Survey, Open-file Report 01-0061, http://greenwood.cr.usgs.gov/pub/open-file-reports/ofr-01-0061/ (January 2009).
- Laughlin, A.W., Cole, G.L., Freeman, S.H., Aldrich, M.J., and Maassen, L.W., 1985, A computer assisted mineral resource assessment of Socorro and Catron Counties, New Mexico: Geology and Geochemistry Group, Earth and Space Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico, unclassified report LA-UR-85-375.
- Le Bas, M.J., 1987, Nephelinites and carbonatites; in J.G. Fitton and B.G.J. Upton, eds., Alkaline igneous rocks: Geological Society, Special Publication No. 3, p. 53-83.
- Le Bas, M.J., LeMaitre, R.W., Streckusen, A., and Zanettin, B., 1986, A chemical classification of volcanic rocks based on the total alkali-silica diagram: Journal of Petrology, v. 27, p. 745-750.
- LeMaitre, R.W., ed., 1989, A classification of igneous rocks and glossary of terms: Blackwell Scientific Publications, Oxford, Great Britain, 193 p.
- Lindgren, W., 1915, The igneous history of the Cordilleras and its problems: Yale University, p. 284-286.
- Lindgren, W., 1933, Mineral deposits: 4th edition, New York, McGraw-Hill, 930 p.
- Lindgren, W., Graton, L.C., and Gordon, C.H., 1910, The ore deposits of New Mexico: U.S. Geological Survey, Professional Paper 68, 361 p.
- Marvin, R.F. and Dobson, S.W., 1979, Radiometric ages: Compilation B, U.S. Geological Survey: Isochron/West, no. 26, p. 3-32.
- Mason, G.T., Jr. and Arndt, R.E., 1996, Mineral resources data system (MRDS): U.S. Geological Survey, Digital Data Series DDS-20, CD-ROM.
- Matschullat, J., Ottenstein, R., and Reimann, C., 2000, Geochemical background—can we calculate it?: Environmental Geology, v. 39, no. 9, p. 990-1000.
- Maynard, S.R., Martin, K.W., Nelson, C.J., and Schutz, J.L., 1989, Geology and gold mineralization of the Ortiz Mountains, Santa Fe County, New Mexico: Society of Mining Engineers, Preprint No. 89-43, 9 p.
- Maynard, S.R., Nelson, C.J., Martin, K.W., and Schutz, J.L., 1990, Geology and gold mineralization of the Ortiz Mountains, Santa Fe County, New Mexico: Mining Engineering, August, p. 1007-1011.
- McAnulty, W.N., 1978, Fluorspar in New Mexico: New Mexico Bureau of Mines and Mineral Resources, Memoir 34, 64 p.
- McLemore, V.T., 1983, Uranium and thorium occurrences in New Mexico—distribution, geology, production, and resources; with selected bibliography: New Mexico Bureau of Mines and Mineral Resources, Open file Report 182, 950 p., also; U.S. Department of Energy Report GJBX11 (83).
- McLemore, V.T., 1984, Preliminary report on the geology and mineral resource potential of Torrance County, New Mexico: New Mexico Bureau of Mines and Mineral Resources, Open-file Report 192, 202 p.

- McLemore, V.T., 1991a, Base-and precious-metal deposits in Lincoln and Otero Counties, New Mexico: New Mexico Geological Society, Guidebook 42, p. 305-309.
- McLemore, V.T., 1991b, Gallinas Mountains mining district, New Mexico: New Mexico Geological Society, Guidebook 42, p. 62-63.
- McLemore, V.T., 1996, Great Plains margin (alkaline-related) gold deposits in New Mexico; in Coyner, A.R. and Fahey, P.L., eds, Geology and ore deposits of the American Cordillera, Symposium Proceedings: Geological Society of Nevada, Reno, p. 935-950.
- McLemore, V.T., 2001, Silver and gold resources in New Mexico: New Mexico Bureau of Mines and Mineral Resources, Resource Map 21, 60 p.
- McLemore, V.T., 2010a, Rare earth elements (REE) deposits in New Mexico, including evaluation of the NURE stream sediment data: New Mexico Bureau of Geology and Mineral Resources, Open-file Report, in press.
- McLemore, V.T., 2010b, Use of the New Mexico Mines Database and ArcMap in Uranium Reclamation Studies: Society of Mining, Metallurgy and Exploration Annual Convention, Phoenix, Feb 2010, Preprint 10-125
- McLemore, V.T. and Chamberlin, R.M., 1986, National Uranium Resource Evaluation (NURE) data available through New Mexico Bureau of Mines and Mineral Resources: New Mexico Bureau of Mines and Mineral Resources, pamphlet, 11 p.
- McLemore, V.T., Donahue, K., Breese, M., Jackson, M.L., Arbuckle, J., and, Jones, G., 2001, Mineral-resource assessment of Luna County, New Mexico: New Mexico Bureau of Mines and Mineral Resources, Open file Report 459, 153 pp., CD-ROM, http://geoinfo.nmt.edu/publications/openfile/downloads/OFR400-499/451-475/471/ofr 471.pdf
- McLemore, V.T., Hoffman, G., Smith, M., Mansell, M., and Wilks, M., 2005a, Mining districts of New Mexico: New Mexico Bureau of Geology and Mineral Resources, Open-file Report 494, CD-ROM.
- McLemore, V. T., Krueger, C. B., Johnson, P., Raugust, J. S., Jones, G.E., Hoffman, G.K. and Wilks, M., 2005b, New Mexico Mines Database: Society of Mining, Exploration, and Metallurgy, Mining Engineering, February, p. 42-47.
- McLemore, V.T., North, R.M., and Leppert, S., 1988a, Rare-earth elements (REE), niobium and thorium districts and occurrences in New Mexico: New Mexico Bureau of Mines and Mineral Resources, Open-file Report OF-324, 28 p.
- McLemore, V.T., North, R.M., and Leppert, S., 1988b, Rare-earth elements (REE) in New Mexico: New Mexico Geology, v. 10, p. 33-38.
- McLemore, V.T., Ouimette, M., and Eveleth, R.W., 1991, Preliminary observations on the mining history, geology, and mineralization of the Jicarilla mining district, Lincoln County, New Mexico: New Mexico Geological Society, Socorro, Guidebook 42, p. 311-316.
- McLemore, V.T. and Phillips, R.S., 1991, Geology of mineralization and associated alteration in the Capitan Mountains, Lincoln County, New Mexico: New Mexico Geological Society, Guidebook 42, p. 291-298.
- McLemore, V.T. and Zimmerer, M., 2009, Magmatic Activity and Mineralization Along The Capitan, Santa Rita, And Morenci Lineaments In The Chupadera Mesa Area, Central New Mexico: New Mexico Geological Society Guidebook 60, p. 375-386.
- Modreski, P.J., 1979, Rare earth elements in agardite and in other minerals from the Red Cloud district, New Mexico (abstr.): New Mexico Minerals Symposium, University of New Mexico, Albuquerque, New Mexico.

- Modreski, P.J., 1983, Agardite-(La), a chemically complex rare-earth arsenate from the Gallinas district, Lincoln County, New Mexico (abstr.); in Oxidation mineralogy of base metal deposits: 5th Joint Mineralogical Society of America, Friends of Mineralogy Symposium, Tucson, Arizona.
- Modreski, P.J. and Schreiner, R.A., 1993, Silver and copper mineralization at the Buckhorn mine, Gallinas Mountains, New Mexico (abstr.): New Mexico Geology, v. 15, p. 20.
- Möller, P., Parekh, P.P. and Schneider, H.J., 1976, The application of Tb/Ca-Tb/La abundance ratios to problems of fluorspar genesis: Mineralium Deposita, v. 11, p. 111-116.
- Moore, D.G., Jr., 1965, The niobium and tantalum content of some alkali igneous rocks: M.S. thesis, New Mexico Institute of Mining and Technology, Socorro, 100 p.
- Moore, S.L., Thompson, T.B., and Foord, E.E., 1991, Structure and igneous rocks of the Ruidoso region, New Mexico: New Mexico Geological Society, Socorro, Guidebook 42, p. 137-145.
- Mutschler, F.E., Griffin, M.E., Stevens, D.S., and Shannon, S.S., Jr., 1985, Precious metal deposits related to alkaline rocks in the North American Cordillera-an interpretive review: Transactions Geological Society of South Africa, v. 88, p. 355-377.
- Mutschler, F.E., Mooney, T.C., and Johnson, D.C., 1991, Precious metal deposits related to alkaline igneous rocks-a space-time trip through the Cordillera: Mining Engineering, v. 43, p. 304-309.
- Nakamura, N., 1974, Determination of REE, Ba, Fe, Mg, Na and K I carbonaceous and ordinary chondrites: Geochimica et Cosmochimica Acta, v. 38, p. 757-775.
- Naumov, A.V., 2008, Review of the world market of rare-earth metals: Russian Journal of Nonferrous Metals, v. 49, p. 14-22.
- New Mexico Bureau of Geology and Mineral Resources, 2003, Geologic map of New Mexico: New Mexico Bureau of Geology and Mineral Resources, scale 1:500,000.
- New Mexico Bureau of Mines and Mineral Resources, New Mexico State University Southwest Technology Institute, and TRC Mariah Associates, Inc., 1998, Mineral and energy resource assessment of the McGregor Range (Fort Bliss), Otero County, New Mexico: New Mexico Bureau of Mines and Mineral Resources Open-file report 456, 543 p., http://geoinfo.nmt.edu/publications/openfile/downloads/OFR400-499/451-475/456/ofr-456.pdf
- North, R.M., and McLemore, V.T., 1986, Silver and gold occurrences in New Mexico: New Mexico Bureau of Mines and Mineral Resources, Resource Map 15, 32 p., scale 1:1,000,000.
- North, R.M., and McLemore, V.T., 1988, A classification of the precious metal deposits of New Mexico; *in* Bulk mineable precious metal deposits of the western United States Symposium Volume: Geological Society of Neva, Reno, Symposium proceedings, p. 625-659.
- Northrop, S.A., 1996, Minerals of New Mexico: University of New Mexico Press, Albuquerque, New Mexico, 356 p.
- Oris, G.J. and Grauch, R.I., 2002, Rare earth elements mines, deposits, and occurrences: U.S. Geological Survey, Open-file Report 02-189, 174 p.
- Pearce, J.A., Harris, N.B.W. and Tindle, A.G., 1984, Trace element discrimination diagrams for the tectonic interpretation of granitic rocks: Journal of Petrology, v. 24, p. 956–983.
- Perhac, R.M., 1961, Geology and mineral deposits of the Gallinas Mountains, New Mexico: Unpublished Ph.D. thesis, Ann Arbor, University of Michigan, 224 p.
- Perhac, R.M., 1968, Notes on the mineral deposits of the Gallinas Mountains, New Mexico: New Mexico Geological Society, Guidebook 15, p. 152-154.

- Perhac, R.M., 1970, Geology and mineral deposits of the Gallinas Mountains, Lincoln and Torrance Counties, New Mexico: New Mexico Bureau of Mines and Mineral Resources, Bulletin 95, 51 p.
- Perhac, R.M., and Heinrich, E.W., 1964, Fluorite-bastnaesite deposits of the Gallinas Mountains, New Mexico and bastnaesite paragenesis: Economic Geology, v. 59, p. 226–239.
- Phillips, R.S., 1990, Geochemistry of hydrothermal Th-U-REE quartz/fluorite veins from the Capitan pluton (M.S. thesis): Socorro, New Mexico Institute of Mining and Technology, 202 p.
- Phillips, R.S., Campbell, A.R., and McLemore, V.T., 1991, Th-U-REE quartz/fluorite veins, Capitan pluton, New Mexico: evidence for a magmatic/hydrothermal origin: New Mexico Geological Society, Guidebook 42, p. 129-136.
- Poe, T.I., III, 1965, The intrusive sequence of igneous rocks in the Gallinas Mountains, New Mexico: M.S. thesis, New Mexico Institute of Mining and Technology, Socorro, 41 p.
- Porter, E.W. and Ripley, E.M., 1985, Petrologic and stable isotope study of the gold-bearing breccia pipe at the Golden Sunlight deposit, Montana: Economic Geology, v. 80, p. 1689-1706.
- Prodehl, C. and Lipman, P.W., 1989, Crustal structure of the Rocky Mountain region; *in* Pakiser, L.C. and Mooney, W.D., eds., Geophysical framework of the continental United States: Boulder, Colorado, Geological Society of America Memoir 172, p. 249-284.
- Rawson, D.E., 1957, The geology of the Tecolote Hills area, Lincoln County, New Mexico (M.S. thesis): Albuquerque, University of New Mexico, 77 p.
- Reimann, C., Filzmoser, P. and Garrett, R.G., 2005, Background and threshold: critical comparison of methods of determination: Science of the Total Environment, v. 346, p. 1-16.
- Richards, J.P., 1995, Alkalic-type epithermal gold deposits—a review; *in* Thompson, J.F.H., ed., Magmas, fluids, and ore deposits: Mineralogical Association of Canada, Short Course Series, v. 23, p. 367-400.
- Rollinson, H., 1993, Using geochemical data: evaluation, presentation, interpretation: Pearson Education Ltd., Essex, England, 352 p.
- Ronkos, C.J., 1991, Geology, alteration, and gold mineralization in the White Oaks mining district, Lincoln County, New Mexico (abstr.): Geological Society of America, Programs with Abstracts, v. 23, p. 88.
- Rothrock, H.E., Johnson, C.H., and Hahn, A.D., 1946, Fluorspar resources of New Mexico: New Mexico Bureau of Mines and Mineral Resources, Bulletin 21, 245 p.
- Rudnick, R.L. and Gao, C., 2005, Composition of the continental crust; in R.L. Rudnick, ed., The Crust: Treatise on Geochemistry, v. 3, Elsevier, San Diego, California, p. 1-64.
- Salvi, S. and Williams-Jones, A.E., 2005, Alkaline granite-syenite deposits; *in* Linnen, R.L. and Samson, I.M., eds., Rare-element geochemistry and mineral deposits: Geological Association of Canada, GAC Short Course Notes 17, p. 315-341.
- Samson, I.M. and Wood, S., 2005, The rare-earth elements: behavior in hydrothermal fluids and concentration in hydrothermal mineral deposits, exclusive of alkaline settings; *in* Linnen, R.L. and Samson, I.M., eds., Rare-element geochemistry and mineral deposits: Geological Association of Canada, GAC Short Course Notes 17, p. 269-297.
- Schreck, P., Schubert, M., Freyer, K., Treutler, H. and Weiss, H., 2005, Multi-metal contaminated stream sediment in the Mansfeld mining district: metal provenance and source detection: Geochemistry: Exploration, Environment, Analysis, v. 5, p. 51-57.

- Schreiner, R.A., 1993, Mineral investigation of the rare-earth-element-bearing deposits, Red Cloud Mining district, Gallinas Mountains, Lincoln County, New Mexico: U.S. Bureau of Mines, MLA 99-93, 189 p.
- Seagerstrom, K. and Ryberg, G.E., 1974, Geology and placer-gold deposits of the Jicarilla Mountains, Lincoln County, New Mexico: U.S. Geological Survey, Bulletin 1308, 25 p..
- Sharp, R.R., Jr. and Aamodt, P.L., 1978, Field procedures for the uranium hydrogeochemical and stream sediment reconnaissance by the Los Alamos Scientific Laboratory: U.S. Department of energy, Report GJBZ-68(78), 64 p.
- Sheridan, M.J., 1947, Lincoln County iron deposits, New Mexico: U.S. Bureau of Mines, Report of Investigation 3988
- Sillitoe, R.H. 1985, Ore-related breccias in volcanoplutonic arcs: Economic Geology, v. 80, p. 1467-1515.
- Smith, S.M., 1997, National geochemical database: reformatted data from the National Uranium Resource Evaluation (NURE) Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) Program, version 1.4 (2006): U.S. Geological Survey Open-file Report 97-492. http://pubs.usgs.gov/of/1997/ofr-97-0492/
- Soulé, J.H., 1943, Gallinas fluorspar deposits, Lincoln County, New Mexico: U.S. Bureau of Mines, War Minerals Report 125, 14 p.
- Soulé, J.H., 1946, Exploration of Gallinas fluorspar deposits, Lincoln County, New Mexico: U.S. Bureau of Mines, Report of Investigations 3854, 25 p.
- Staatz, M.H., 1992, Descriptive model of thorium-rare-earth veins; *in* Bliss, J.D., ed., Developments in mineral deposit modeling: U.S. Geological Survey, Bulletin 2004, p. 13-15.
- Taylor, S.R., and McClennan, S.M., 1985, The Continental Crust; its composition and evolution: Blackwell Science Publishers, Oxford, 312 p.
- Thompson, T.B., 1968, Hydrothermal alteration and mineralization of the Rialto Stock, Lincoln County, New Mexico: Economic Geology, v. 63, p. 943-949.
- Thompson, T.B., 1973, Mineral deposits of Nogal and Bonito mining districts, New Mexico: New Mexico Bureau of Mines and Mineral Resources, Circular 123, 29 p.
- Thompson, T.B, 1991a, Genesis of gold associated with alkaline igneous rocks (abstr.): Geological Society of America, Abstracts with Programs, v. 23, p. 99-100.
- Thompson, T.B., 1991b, The Bonito-Nogal district, Lincoln County, New Mexico (abstr.): Geological Society of America, Abstracts with Programs, v. 23, p. 99.
- Thompson, T.B., 1991c, The Lincoln County porphyry belt, New Mexico (abstr.): Geological Society of America, Abstracts with Programs, v. 23, p. 99.
- Thompson, T.B., 1992, Mineral deposits of the Cripple Creek district, Colorado: Mining Engineering, v. 44, p. 135-138.
- Thompson, T.B., Trippel, A.D., and Dwelley, P.C., 1985, Mineralized veins and breccias of the Cripple Creek district, Colorado: Economic Geology, v. 80, p. 1669-1688.
- U.S. Bureau of Mines, 1927-1990, Mineral yearbook: Washington, D.C., U.S. Government Printing Office, variously paginated.
- U.S. Bureau of Mines, 1995, MAS/MILS CD-ROM: U.S. Bureau of Mines, Special Publication 12-95, CD-ROM.
- U.S. Geological Survey, 1902-1927, Mineral resources of the United States (1901-1923): Washington, D.C., U.S. Government Printing Office, variously paginated.

- Van Alstine, R.E., 1976, Continental rifts and lineaments associated with major fluorspar districts: Economic Geology, v. 71, p. 977-987.
- Watrus, J.M., 1998, A regional geochemical atlas for part of Socorro County, New Mexico: M.S. thesis, New Mexico Institute of Mining and Technology, Socorro, NM, 176 p., also New Mexico Bureau of Geology and Mineral Resources, Open-file Report OF-445, http://geoinfo.nmt.edu/ publications/openfile/details.cfml?Volume=445
- Weber, R.H., 1971, K-Ar ages of Tertiary igneous rocks in central and western New Mexico: Isochron/West, no. 1, p. 33-45.
- Whalen, J.B., Currie, K.L., and Chappell, B.W., 1987, A-type granites: geochemical characteristics, discrimination and petrogenesis: Contributions to Mineralogy and Petrology, v. 95, p. 40-418.
- Williams-Jones, A.E., Samson, I.M., and Olivo, G.R., 2000, The genesis of hydrothermal fluorite-REE deposits in the Gallinas Mountains, New Mexico: Economic Geology, v. 95, p. 327-342.
- Williams, F.E., 1966, Fluorspar deposits of New Mexico: U.S. Bureau of Mines, Information Circular 8307, 143 p.
- Woodward, L.A. and Fulp, M.S., 1991, Gold mineralization associated with alkali trachyte breccias in the Gallinas mining district, Lincoln County, New Mexico: New Mexico Geological Society, Guidebook 42, p. 323-325.
- Woolley, A.R., 1987, Alkaline rocks and carbonatites of the world, Part 1: North and South America: University of Texas Press, Austin.
- Zandra, J.B., Engel, A.L., and Shedd, E.S., 1952, Concentration of bastnaesite and other cerium ores, with analytical methods: U.S. Bureau of Mines, Report of Investigations RI-4919, 15 p.
- Zumlot, T.Y., 2006, Environmental evaluation of New Mexico stream sediment chemistry using the National Uranium Resource evaluation (NURE) program: Ph.D. dissertation, University of Texas at El Paso, El Paso, 252 p.

APPENDIX 1. GEOCHEMICAL ANALYSES OF IGNEOUS ROCKS

TABLE A1-1. Geochemical analyses of igneous rocks from the Gallinas Mountains from Schreiner (1993) and this study. Major elements are in percent and trace elements are in parts per million (ppm). UTM locations are in meters in NAD 27.

	FFFFFFFFFFFFF								
Sample	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃ T	MnO	MgO	CaO	Na ₂ O	K ₂ O
21	51.4	1.1	18	8.17	0.18	3.77	6.45	4.84	2.64
23	60.2	0.36	18.7	3.11	0.17	0.15	0.38	4.6	8.46
29	67.9	0.16	15.5	1.19	0.03	0.08	0.41	5.16	6.25
36	63.9	0.34	11.7	2.63	0.34	0.17	4.7	3.17	5.88
38	52.4	0.73	13.2	5.08	0.46	0.32	9.42	3.86	5.62
54	66.1	0.2	17.7	2.11	0.09	0.06	0.16	6.75	5.52
72	65.6	0.28	16.8	1.86	0.52	0.06	0.16	4.01	9.08
85	68.5	0.23	16.3	1.04	0.13	0.05	0.21	6.62	4.03
95	68.34	0.28	17.01	0.84	0.16	0.05	0.55	9.41	0.98
239	68	0.14	13.7	2.32	0.55	0.13	1.1	3.28	6.95
258	60.25	0.61	17.39	5.07	0.13	0.21	0.13	8.35	2.45
GM10-6	63.55	0.409	16.54	4.76	0.103	1.12	2.32	5.9	3.72
GM10-7	74.55	0.081	13.24	1.1	0.014	0.02	0.38	4.29	4.53
GM10-8	61.26	0.441	16.91	3.86	0.007	0.04	0.05	0.67	14.02
GM10-9	65.16	0.302	17.05	3.26	0.042	0.09	0.58	5.88	4.97
0 1	ЪO	LOI	1	т	C	D	N1 1	G	Г
Sample	P ₂ O ₅	2.67	total	La	Ce 200	Pr	Nd (7	Sm	Eu
21	0.21	2.67	99.43	155	200		6/	12.1	3
23	0.18	1.34	97.65	217	280		69	10	2.5
29	0.15	0.69	97.52	76.4	120		47	7	1.6
36	0.26	4.63	97.72	283	310		64	13.4	2.7
38	0.69	8.5	100.28	310	340		86	14.6	3.3
54	0.12	0.63	99.44	91.1	170		45	7.4	1.7
72	0.22	1.24	99.83	1290	1960	180	412	54.3	10.2
85	0.09	0.78	97.98	83.2	130		42	8.4	1.9
95	0.1	0.83	98.55	297	422	<70	91	16.1	2.9
239	0.25	1.84	98.26	264	350	<50	70	15.4	3.8
258	0.37	2.02	96.98	120	225	<50	76	12.8	3.4
GM10-6	0.27	0.97	99.66	36.9	60.1	7.19	25.9	5	1.48
GM10-7	0.03	0.35	98.59	8.3	30.7	1.32	3.5	0.6	0.28
GM10-8	0.14	1.1	98.5	206	229	21.9	60.6	7.9	1.7
GM10-9	0.13	1.01	98.47	90.2	168	17.2	53.7	8.4	1.8/
	<u>C1</u>	T	P	TT	Г	т	371	T	X7
Sample	Gđ	Ib	Dy	Но	Er	Im	Yb	Lu	Y 22
21		<1				<2	5.1	0.41	33
23		<1				<2	2.5	0.33	30
29		<1				<2	2.4	0.27	27
36		1.4				<2	4.2	0.5	57
38		1.4				<2	3.5	0.39	39
54		<1				<2	4.6	0.62	42
72	<200	4.1	18	5.5	<100	3	16	2.36	187
85		<1				<2	4.3	0.63	54
95	<200	1	5.4	2.2	<100	<2	4.3	0.58	52

					_					٦
Sample	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Y	_
239	<200	1.8	11.1	3.7	<100	<2	9.4	1.2	90	
258	<200	1	4.1	<1	<100	<2	3.7	0.56	47	
GM10-6	4	0.6	3.7	0.8	2.3	0.36	2.6	0.46	21	
GM10-7	0.5	0.1	0.8	0.2	0.9	0.18	1.7	0.36	8	
GM10-8	5	0.7	3.8	0.8	2.5	0.41	3	0.53	27	_
GM10-9	5.3	0.8	4.6	0.9	2.9	0.49	3.7	0.67	30	
										_
Sample	Sc	Th	U	Au	Ag	Cu	Pb	Zn	Мо	
21	14.9	30	6.8	<5	<0.2	50	32	83	2	
23	1	71.3	6.4	12	<0.2	17	17	51	<1	
29	0.62	274	8.8	<5	< 0.2	9	10	15	1	_
36	4.5	23	3.1	165	<0.2	193	16	108	7	1
38	17.7	25	4.7	73	<0.2	47	28	144	3	-
54	0.63	63.4	10	9	<0.2	4	8	30	3	7
72	1.9	49	9.8	27	<0.2	9	36	37	20	_
85	0.94	50.5	3.8	<5	<0.2	2	3	11	2	_
95	1.44	43.1	3.7	10	<0.2	29	28	35	1	
239	4.39	11.7	6.4	28	0.2	167	1057	148	5	
258	8.37	33	6.1	94	<0.2	10	6	30	2	
GM10-6	7				0.7	10		70	< 2	
GM10-7	< 1				< 0.5	< 10		90	3	
GM10-8	5				1.7	10		190	20	
GM10-9	2				1.4	< 10		< 30	< 2	
	-		-			-	-			
Sample	Nb	Ni	Со	Ba	Cr	Sr	F	UTM E		UTM N
21		14	18	3700	16	1431		432693.300)7 37	84760.697
23	118	1	4	1800	18	749		432710.809	95 37	84792.531
29		3	2	1800	28	508		432503.888	32 37	84840.282
36		19	10	1600	44	329	395	432223.748	37 37	84808.448
38	52	21	16	2800	41	1104	867	432269.908	31 37	84856.199
54	181	2	2	430	19	107	140	431907	37	85324.159
72		5	3	3300	28	352		432145.755	53 37	85188.865
85	135	3	2	770	17	247	602	431014.851	2 37	85288.983
95		3	2	1700	20	802		430057.410	07 37	86085.98
239		12	4	2600	40	267		432301.867	79 37	84879.461
258		7	8	1900	22	96		432762.724	46 37	85632.565
GM10-6	13	< 20	6	2360	20	1134		433776		3791906
GM10-7	82	< 20	< 1	327	< 20	77		427451		3789638
GM10-8	76	< 20	3	2072	< 20	755		430001		3785737
GM10-9	104	< 20	3	1554	< 20	491		431629		3784695

APPENDIX 2. SELECTED GEOCHEMICAL ANALYSES OF ORE SAMPLES

TABLE A2-1. Geochemical analyses of ore samples from the Gallinas Mountains from Schreiner (1993) and this study. Trace elements are in parts per million (ppm). UTM locations are in meters in NAD 27. opt=ounces per ton.

Sample	Description	UTM E	UTM N
21	fragments of fenitized andesite porphyry dike	430244.619	3786723.96
22	fenitized trachyte dike	430083.547	3786618.12
23	fenitized syenite	430020.269	3786554.84
26	fenitized and fractured trachyte dike	430012.588	3786142.01
27	fenitized trachyte dike	430032.962	3786148.12
28	fenitized trachyte dike	430048.242	3786128.76
29	fenitized gneiss	430057.411	3786085.98
30	fragments of fenitized gneiss in tree roots	430018.7	3786052.36
32	variably fenitized banded gneiss	429978.972	3786026.9
33	fragments of fenitized gneiss in tree roots	430040.093	3786040.14
34	fenitized gneiss	430084.915	3786068.66
42	fenitized sandstone	430140.943	3785971.89
47	outcrop of brecciated sandstone	429944.336	3785925.03
48	fractured sandstone with minor breccia	430097.14	3785895.48
54	outcrop of trachyte	429606.131	3785618.4
85	fragments of fenitized trachyte in tree roots	428581.33	3784275.77
104	fragments of fractured sandstone from dump	431378.555	3784950.11
259	fractured sandstone	432379.748	3783285.52
GM-09-LC-1	brecciated sandstone	431744	3784512
GM-09-LC-4	brecciated sandstone	431542	3784300
153	brecciated sandstone	432694.454	3785257
258	trachyte dike	432289.252	3783403.17
10	brecciated sandstone	430202.05	3786809.1
11	fractured sandstone	430199.749	3786795.3
13	intrusive breccia	430236.565	3786786.09
14	intrusive breccia	430245.769	3786775.74
15	intrusive breccia	430244.619	3786761.93
16	brecciated limestone bed	430214.706	3786787.24
17	brecciated limestone bed	430202.05	3786757.33
18	intrusive breccia	430218.157	3786749.28
19	intrusive breccia	430234.264	3786742.37
24	brecciated trachyte dike in contact with brecciated limestone	430104.257	3786397.22
25	brecciated limestone in contact with brecciated sandstone and trachyte dike (sample 24)	430104.257	3786375.36
46	brecciated zone in trachyte	429895.439	3785911.78
49	fragments of brecciated sandstone and trachyte from dump	430165.392	3785872.05
50	fragments of brecciated sandstone from dump	430154.186	3785843.53
51	fragments of brecciated trachyte from dump	430127.7	3785794.63
52	fragments of brecciated sandstone from dump	430165.392	3785810.93
53	fragments of brecciated sandstone from dump	430225.367	3785693.91
90	fragments of brecciated trachyte from dump	428826.834	3783556.57
91	fragment of brecciated sandstone in float	428429.866	3783228.64

Sample	Description	UTM E	UTM N
92	outcrop of fractured trachyte with minor breccia	429155.871	3783567.78
93	outcrop of brecciated zone in trachyte	429419.975	3783617.88
94	outcrop of brecciated zone in trachyte	429546.573	3783714.24
95	fragments of trachyte from dump	430121.111	3784499.66
105	brecciated trachyte	431666.653	3784743.19
106	fractured and altered trachyte	431665.061	3784722.5
107	brecciated trachyte sandstone contact	431739.871	3784716.13
108	brecciated zone in sandstone	431967.485	3785067.9
109	brecciated zone in sandstone	431936.438	3785267.43
110	brecciated sandstone	431868.799	3785338.48
111	brecciated sandstone	431907	3785324.16
112	brecciated sandstone	431932.467	3785309.83
113	brecciated sandstone	431954.751	3785301.88
114	brecciated sandstone	431969.076	3785293.92
115	brecciated sandstone	432013.644	3785262.08
116	brecciated sandstone	432031.153	3785254.12
117	brecciated sandstone	432045.478	3785247.76
118	brecciated sandstone	432058.212	3785239.8
119	brecciated sandstone	432069.354	3785235.02
120	brecciated sandstone	432077.312	3785230.25
121	brecciated sandstone	432088.454	3785225.47
122	brecciated sandstone	432104.371	3785219.11
123	brecciated sandstone	432115.513	3785211.15
124	brecciated sandstone	432117.105	3785207.97
125	brecciated sandstone	432110.738	3785201.6
126	brecciated sandstone	432105.963	3785190.46
127	fractured sandstone	432094.821	3785185.68
128	brecciated sandstone	432125.063	3785203.19
129	fractured sandstone	432117.105	3785209.56
130	brecciated sandstone	432126.655	3785184.09
131	brecciated sandstone	432145.755	3785188.86
132	brecciated sandstone	432027.174	3785282.62
133	brecciated sandstone	432075.561	3785258.42
134	brecciated sandstone	432172.337	3785196.03
135	brecciated sandstone	432594.004	3785952.59
136	brecciated sandstone	432600.196	3785943.31
138	brecciated sandstone	432613.353	3785923.96
140	brecciated sandstone	432624.188	3785902.29
141	brecciated sandstone	432629.606	3785893
142	brecciated sandstone	432635.797	3785882.94
143	brecciated sandstone	432640.441	3785874.42
144	brecciated sandstone	432602.517	3785912.35
152	fractured sandstone with minor breccia	432655.222	3785547.28
154	brecciated limestone bed	432446.109	3785160.37
155	brecciated limestone bed	432475.397	3785137.45
156	brecciated zone in sandstone	432493.224	3785127.27
157	fragments of brecciated sandstone and limestone from dump	432410.998	3785083.98

Sample	Description	UTM E	UTM N
158	brecciated sandstone-limestone contact	432424.57	3785070.41
159	brecciated sandstone	432429.094	3785054.12
161	brecciated zone in sandstone	432631.97	3785051.45
162	fragments of brecciated sandstone from dump	432639.528	3785021.22
163	fragments of brecciated sandstone from dump	432732.625	3785030.8
178	brecciated sandstone	432723.543	3784830.73
180	brecciated sandstone	432683.751	3784795.71
181	brecciated sandstone	432736.277	3784776.61
182	fragments of brecciated limestone	432693.301	3784760.7
185	fractured sandstone with minor breccia	432580.29	3784827.55
186	brecciated sandstone	432613.716	3784784.57
187	brecciated sandstone	432480.013	3784872.12
188	brecciated sandstone	432503.888	3784840.28
189	fluorite, barite, quartz rich zone	432331.984	3784899.17
190	brecciated sandstone	432317.659	3784894.4
191	brecciated sandstone	432301.742	3784888.03
192	brecciated sandstone	432314.476	3784870.52
193	brecciated sandstone	432301.868	3784879.46
194	brecciated sandstone	432293.784	3784859.38
195	brecciated sandstone	432287.008	3784863.98
196	brecciated sandstone	432279.458	3784873.71
197	brecciated sandstone	432269.908	3784856.2
198	brecciated sandstone	432260.358	3784841.87
199	brecciated sandstone	432223.749	3784808.45
200	fragments of brecciated sandstone from dump	432236.482	3784789.35
201	brecciated sandstone	432201.465	3784736.82
202	brecciated sandstone	432182.364	3784716.13
203	brecciated sandstone	432158.489	3784700.21
204	brecciated sandstone	432125.063	3784692.25
205	brecciated sandstone	432029.561	3784698.62
206	brecciated sandstone and conglomeratic sandstone	432008.869	3784679.52
207	brecciated sandstone	431961.118	3784631.77
213	brecciated sandstone	432889.08	3784708.17
217	fragments of vuggy trachyte	433030.742	3784611.08
218	brecciated sandstone	432912.956	3784596.75
219	brecciated sandstone	432900.222	3784582.43
220	brecciated sandstone	432897.039	3784563.33
221	fragments of brecciated sandstone from dump	432881.122	3784429.62
222	fractured and brecciated siltstone	432922.506	3784400.97
223	brecciated siltstone and sandstone	433008.458	3784356.4
224	breccia zone in sandstone	432411.57	3784334.12
225	breccia zone in sandstone	432281.05	3784315.02
239	fenitized gneissic granite	431945.367	3783914.47
240	trachyte dike-gneissic granite contact	431960.073	3783897.5
241	calcite vein in sandstone	431445.54	3783716.13
242	fragments of sandstone	431591.033	3783746.36
243	fractured sandstone	431706.861	3783697.05

Sample	Description	UTM E	UTM N
244	fractured sandstone with minor breccia	431679.652	3783709.14
245	brecciated sandstone	431649.419	3783701.58
246	fractured sandstone with minor breccia	431798.311	3783663.34
247	brecciated sandstone	432092.423	3783688.23
248	brecciated sandstone	432093.554	3783669
249	brecciated sandstone	432095.817	3783650.9
250	brecciated sandstone	432099.21	3783635.06
251	brecciated sandstone	432109.391	3783631.67
GM-09-LC-3	fluorite breccia	431488	3784705
4088		431825	3784047
4089		431825	3784047
4090		431825	3784047
4091		430712	3785314
4092		432463	3785172
4093		430160	3785872
6	carbonatized and fenitized intrusive breccia	430223.91	3786868.93
9	carbonatized and fenitized brecciated trachyte	430144.524	3786805.65
12	brecciated sandstone	430219.308	3786802.2
20	fragments of brecciated sandstone from stockpile	430203.2	3786774.59
89	fractured trachyte with minor breccia	428827.853	3783580
137	brecciated sandstone	432605.613	3785932.47
139	brecciated sandstone	432620.318	3785911.57
145	brecciated sandstone	432719.384	3785725.44
146	brecciated sandstone	432742.602	3785683.65
147	brecciated sandstone	432748.02	3785672.04
148	brecciated sandstone	432752.663	3785679
149	fragments of brecciated sandstone and a few fragments of limestone from dump	432762.725	3785668.94
150	fragments of brecciated sandstone and a few fragments of limestone from dump	432768.142	3785645.72
151	brecciated sandstone	432762.725	3785632.57
160	brecciated sandstone and limestone	432446.285	3785045.08
164	brecciated sandstone	432765.141	3785022.31
165	brecciated sandstone	432780.692	3785056.24
166	brecciated sandstone	432879.875	3784820.18
167	fluorite rich zone	432769.382	3784995.45
168	fluorite rich zone	432775.037	3784989.8
169	fluorite rich zone	432779.279	3784985.56
170	fluorite rich zone	432779.279	3784981.32
171	brecciated zone in sandstone	432745.349	3784961.52
172	brecciated zone in sandstone	432796.761	3784860.97
173	brecciated sandstone	432846.104	3784797.31
174	fractured sandstone with minor breccia	432838.146	3784827.55
175	brecciated sandstone	432865.205	3784814.81
176	brecciated sandstone	432876.852	3784832.27
177	brecciated sandstone	432898.63	3784818
179	brecciated sandstone	432710.809	3784792.53
183	brecciated sandstone	432616.899	3784854.61
184	brecciated sandstone	432610.532	3784827.55

Sample	Description	UTM E	UTM N
208	fragments of brecciated sandstone	432628.041	3784614.26
209	brecciated sandstone	432564.373	3784649.28
210	fractured and brecciated sandstone	432487.971	3784649.28
211	brecciated sandstone-dolomite contact	432464.096	3784607.89
212	brecciated sandstone-dolomite contact	432671.017	3784568.1
214	brecciated sandstone	432998.907	3784652.46
215	brecciated sandstone	433025.966	3784655.64
216	fractured sandstone	433024.375	3784630.18
226	fractured and brecciated sandstone	431865.052	3784057
227	fractured and brecciated sandstone	431872.97	3784041.16
228	brecciated sandstone	431834.509	3784018.54
229	brecciated sandstone	431834.509	3784001.57
230	brecciated sandstone	431819.804	3783990.26
231	brecciated sandstone	431816.41	3784053.61
232	fragments of brecciated sandstone from dump	431823.255	3784056.81
233	brecciated sandstone	431953.285	3784009.49
234	brecciated sandstone	431967.991	3784012.88
235	brecciated sandstone	431978.172	3784016.28
236	brecciated sandstone	431971.385	3783997.05
237	fragments of brecciated sandstone	431807.005	3783985.6
238	fragments of conglomerate from dump	432040.388	3783969.9
252	fenitized and fractured trachyte dike	432258.71	3783708.59
253	fenitized and fractured trachyte dike	432258.71	3783695.02
254	fragments of brecciated sandstone from dump	432284.727	3783690.49
255	brecciated sandstone	432313.007	3783731.22
256	brecciated sandstone	432315.27	3783718.77
257	fragments of sandstone and brecciated sandstone from dump	432316.401	3783698.41
293	Rio Tinto breccia	432323	3783697
294	Rio Tinto breccia	432323	3783697
295	Red Cloud fluorite breccia	431966	3784008
296	Red Cloud fluorite breccia	431966	3784008
297	Red Cloud copper	431825	3784047
1	fenitized intrusive breccia	430198.598	3786890.79
2	carbonatized and fenitized intrusive breccia	430180.19	3786886.19
3	fenitized intrusive breccia	430196.297	3786879.28
4	fenitized intrusive breccia	430212.405	3786883.88
5	fenitized intrusive breccia	430225.06	3786890.79
7	fenitized intrusive breccia	430134.17	3786857.42
8	carbonatized and fenitized intrusive breccia	430143.374	3786845.92
31	fenitized intrusive breccia	429942.299	3786082.92
35	fragments of fenitized gneiss and intrusive breccia in tree roots	430072.691	3786025.88
36	fenitized and carbonatized intrusive breccia in tree roots	430048.242	3786016.71
37	fragments of fenitized and carbonatized intrusive breccia in tree roots	430011.57	3786015.69
38	fragments of fenitized and carbonatized intrusive breccia from dump	430035	3785979.02
39	fragments of fenitized and carbonatized intrusive breccia from dump	430065.56	3785989.2
40	fragments of silicified intrusive breccia from dump	430082.878	3785999.39
41	fenitized gneiss	430093.065	3786009.58

Sample	Description	UTM E	UTM N
43	carbonatized intrusive breccia	429713.094	3786041.16
44	fenitized intrusive breccia	429406.468	3785972.91
45	intrusive breccia	429390.169	3785840.48
55	fragments of fenitized intrusive breccia from dump	429739.58	3785467.64
56	fragments of fenitized intrusive breccia	429826.168	3785379.01
57	fragments of intrusive breccia	429864.878	3785389.2
60	fragments of intrusive breccia	429780.327	3785029.6
62	fragments of intrusive breccia	429457.403	3784877.81
63	fragments of intrusive breccia	429388.132	3784846.23
64	brecciated zone in sandstone	429495.094	3784784.09
65	fragments of intrusive breccia	429357.571	3784467.28
66	fragments of intrusive breccia	429175.226	3784513.12
67	fragments of intrusive breccia	428540.583	3784725.01
68	fragments of fenitized intrusive breccia	428474.368	3784563.04
69	outcrop of altered intrusive breccia	428392.873	3784598.69
70	fragments of altered intrusive breccia	428297.116	3784532.48
71	intrusive breccia	428649.582	3784338.93
72	fenitized intrusive breccia	428655.694	3784313.46
73	fenitized intrusive breccia	428656.713	3784279.84
74	fragments of fenitized intrusive breccia	428657.732	3784254.38
75	float	428629.208	3784257.43
76	fenitized intrusive breccia	428597.629	3784225.85
77	fenitized intrusive breccia	428601.704	3784213.63
78	fenitized and carbonatized trachyte	428611.891	3784211.59
79	fenitized intrusive breccia	428622.078	3784221.78
80	fenitized intrusive breccia	428601.704	3784189.18
81	fenitized intrusive breccia	428589.48	3784202.42
82	fenitized intrusive breccia	428581.33	3784189.18
83	fractured and fenitized trachyte near edge of intrusive breccia	428497.798	3784228.91
84	fragments of fenitized intrusive breccia	428519.19	3784253.36
86	fragments of fenitized intrusive breccia	428797.292	3784267.62
87	fenitized intrusive breccia	428822.759	3784240.11
88	outcrop of fractured trachyte	428814.61	3784176.96
97	fenitized and carbonatized intrusive breccia	430808.567	3785416.32
98	fenitized and carbonatized intrusive breccia	430821.3	3785416.32
99	fragments of intrusive breccia in float	430983.017	3785324.64
100	intrusive breccia	430998.297	3785299.17
101	brecciated sandstone	431030.131	3785327.18
102	brecciated sandstone	431022.491	3785302.99
103	brecciated sandstone	431014.851	3785288.98
GM-10-1	M&E #13 intrusive breccia	428588	3784201
GM-10-2	Conqueror #4 fluorite breccia	432224	3784714
4094		430175	3786882
58	iron skarn in contact with trachyte	429086.537	3785545.49
59	fragments of iron skarn from dump	428672.571	3785106.37
61	fragments of iron skarn from dump	429535.842	3784926.71
96	fragments of magnetite-hematite with minor quartz from dump	430417.776	3784814.74

Sample		Description						UTM N	
260		magnetite-hematite						3778045.38	
GM-09-LC-2	fragment of iron skarn						31753	3784505	
9671	429093							3785541	
Sample	La	Ce	Nd	Sm	Eu	Dy	Но	Yb	Lu
21	155	200	67	12.1	3			3.1	0.41
22	65.4	76	16	2.8	0.6			2.2	0.27
23	217	280	69	10	2.5			2.5	0.33
26	159	250	48	8.68	1.7	6.5	1.8	5.9	0.9
27	110	193	50	7.11	1.1	3.7	1.7	6.5	1.08
28	96	178	56	7.64	1.4	5.8	2.2	7.5	1.13
29	76.4	120	47	7	1.6			2.4	0.27
30	75.2	120	35	4.7	1.1			2.1	0.28
32	35	49	17	3.6	1.3			1.3	0.17
33	86.5	120	37	5.9	1.2			3.9	0.65
34	29	47	14	3.2	1			1.9	0.22
42	34	58	19	4.5	0.9			1.7	0.26
47	297	285	54	9.79	2.5	7.6	1.7	5.6	0.74
48	91.4	98	24	4.2	0.8			2.7	0.37
54	91.1	170	45	7.4	1.7			4.6	0.62
85	83.2	130	42	8.4	1.9			4.3	0.63
104	88.8	118	36	6.52	1.4	3.1	1.5	3.2	0.47
259	41.1	74	27	6.9	1.6	5.5	1.4	3.9	0.52
GM-09-LC-1	<50	<50	<50			<50	<50		
GM-09-LC-4	82	160	71			<50	<50		
153	450	755	179	25.5	4.4	5.1	1.6	4.2	0.54
258	120	224	76	12.8	3.4	4.1	<1	3.7	0.56
10	2620	2350	315	35.2	7.8	11.6	3.6	5.6	0.61
11	283	300	44	7.11	1.4	2	<1	2.6	0.31
13	2840	2990	438	66.8	14.2	23.9	4.1	7.7	0.85
14	2800	2970	422	63.5	12.4	21.8	5.5	13.4	1.75
15	2450	2410	324	45.3	9.5	17.7	4.1	7.2	0.81
16	902	871	116	18.4	3.9	8	2.6	10.9	1.68
17	780	796	118	18.9	4.1	5.6	1.6	4.2	0.52
18	2650	2370	284	37.3	7.9	8	2.3	7.2	0.93
19	3660	3580	627	77.7	16	20.9	5	14.3	1.7
24	237	390	120	22.2	5.1			8	1
25	1000	1540	470	105	27			28	3.2
46	1500	1570	250	43.3	10.2	11.5	2.1	7.4	0.93
49	522	520	86	15.2	3	10	<1	7.3	1
50	780	793	120	20	4.9	8.5	2.9	7.3	0.93
51	956	1300	297	37.4	10	20.7	5	13.2	1.7
52	512	534	110	16.7	3.8			4.6	0.59
53	1970	2080	295	42.1	8.1	12.7	3.1	6.3	0.7
90	2290	2500	390	68.7	13.9	29.6	8.9	27.3	3.5
91	177	277	62	13.1	2.8	5.4	1.4	4.1	0.6
92	458	514	97	17.5	3.7	6	2.2	6.8	0.99

Sample	La	Ce	Nd	Sm	Eu	Dy	Но	Yb	Lu
93	671	796	125	21	4.4	6.2	2.6	7.7	1.19
94	523	546	92	16	3.7	5.5	2.4	5.2	0.75
95	297	422	91	16.1	2.9	5.4	2.2	4.3	0.58
105	2340	3940	1060	190	45.3	42	8.3	12.9	1.73
106	242	380	108	16.8	3.4	8.8	2.7	8.2	1.22
107	63.3	97	35	7.73	1.8	6.6	1.7	5.2	0.68
108	2370	3410	780	107	20			17	2.1
109	2890	3200	650	61.7	10			7.1	0.83
110	35	58	25	8.4	2.7			5	0.64
111	997	1480	360	46.9	7.8			3.9	0.51
112	2540	3550	840	97.8	16			6.1	0.82
113	2330	2780	560	57.4	10			3.6	0.54
114	1310	1570	320	37.9	7.1			5.3	0.63
115	8880	8340	1450	107	21			7.5	1
116	9000	9310	1500	119	17			5.2	0.93
117	1910	1930	330	32.9	5.5			4.6	0.49
118	9000	11400	1930	155	25	25	6	11	1.3
119	2660	2480	400	33.4	5			5.2	0.6
120	5810	5320	840	63.8	12			7	1
121	9000	9130	1360	120	23			21	1.8
122	5970	5740	950	82.2	15			8.4	0.92
123	3790	3590	620	52.4	10			4.9	0.83
124	9000	8780	1460	112	22			13	1.4
125	2140	2030	370	33.9	6.3			8.3	0.94
126	739	742	140	17.4	3.3			5.5	0.67
127	80	110	40	8.9	2.1			5.9	0.75
128	5670	5260	860	69.9	12			8.2	0.74
129	142	160	48	8.3	1.9			3.7	0.51
130	6750	6320	1090	86.5	13			10.4	1
131	2130	2010	350	32.7	7.3			6.7	0.85
132	5680	5760	1060	92.8	17		• •	10	1.1
133	9000	14400	2160	132	18.6	17	3.9	9.4	1.29
134	5410	4760	780	65.7	11	50.4	10.4	7.1	1
135	4950	8000	1570	282	54.2	59.4	12.4	24.7	2.81
136	1190	1980	410	/9.8	16.6	34.9	6	16.1	2.17
138	1550	2450	486	92.4	19.9	40.6	8.9	17.6	2.18
140	526	900	260	45	10.9	28.7	0.0	12.5	1.53
141	270	4/0	704	28.5	20	22	4.1	10.7	1.32
142	1900	3280	/04	204	29	24.8	9.0	22.5	2.04
143	4370	/4/0	1580	20	00	54.1 16.7	13.3	23.3	3.04
144	220	205	0J 140	20	4.9	10./	26	0.4	1.04
154	203	20000	140	21.2	0.3	14.9	3.0	9.0 21	1.23
154	202	20000	4150	15.6	40			51	0.72
155	203	1100	280	50.2	3.3 11			16	1.0
150	6180	5840	200	90.2	11			10	0.80
15/	0100	10500	1780	168	24			12	1.6
158	9000	10300	1780	108	54			19	1.0
Sample	La	Ce	Nd	Sm	Eu	Dy	Но	Yb	Lu
--------	-------	-------	------	------	------	------	-----	------	-------
159	9000	10500	2050	200	39			19	1.6
161	5080	9860	2410	489	102	49.4	9.8	15.9	1.93
162	1290	2600	670	161	40	45	9.3	18.6	2.11
163	943	1750	486	74.6	15.7	10	1.7	2.2	0.28
178	5880	9570	1940	303	59.3	19.5	2.8	4.5	0.52
180	15700	22700	4100	539	100	24.9	2.9	5.5	0.89
181	3460	5090	1000	150	30.8	21.7	4.8	9.6	1.1
182	330	511	107	22.9	5.4	9.3	2.9	5.2	0.62
185	344	653	200	45.6	11.8	20.1	6.5	12.3	1.47
186	5020	6640	1160	149	29.8	23.3	5.9	10.3	1.23
187	3700	6200	1300	221	46.3	51.5	7.4	15.2	1.83
188	9720	14200	2700	389	71.8	58.4	7	8.7	1.47
189	9000	12000	2180	167	26			5.9	0.78
190	9000	11400	2030	162	28			6.9	0.65
191	2500	2100	360	27.3	5.6			4.8	0.64
192	591	744	140	17.9	3.3			5.9	0.7
193	5720	5310	860	79.9	16			9.5	1.4
194	4630	5200	1030	104	21			94	1.1
195	2700	3210	680	81	16			8.9	0.82
196	383	400	96	13.2	2.8			4.9	0.65
197	6030	5720	1050	94.5	19			9.1	1
198	223	230	62	10.4	2.5			4.7	0.62
199	4350	4290	810	82.4	16			12	1.1
200	3420	3240	560	50.9	10			5.8	0.72
201	9000	9040	1410	102	17			11	1.7
202	8970	8130	1320	107	20			7.4	1
203	520	561	110	12.3	2.2			2.5	0.32
204	2630	2720	480	44.9	7.5			5.7	0.7
205	887	1130	238	33.3	7.2	19	5.1	17.4	2.47
206	19100	19300	3520	390	66.8	70	16	35.4	4.55
207	250	335	85	17	4.5	14	3	8	1.05
213	92.7	186	77	18.9	5.4	12	3.1	7.5	0.95
217	95.8	160	61	11.1	2.5	4.9	1.2	3.5	0.55
218	2830	4900	1250	178	37.7	29	4.4	9.2	1.06
219	1570	2780	760	106	28.7	19.2	3.9	7.4	0.65
220	280	533	160	29.2	7.3	10.7	2.5	5.5	0.7
221	7230	9970	1780	261	53	38	<3	12	0.6
222	278	780	140	23.9	5.9	11	3	12	1.83
223	102	172	56	9.96	2.8	6.9	2.5	7.7	1.15
224	617	1520	580	148	37.7	42.6	5.5	14.8	1.86
225	950	1180	209	38.5	8.5	19.1	3.3	8.5	1.03
239	264	350	70	15.4	3.8	11.1	3.7	9.4	1.2
240	374	502	107	22.7	4.3	12.2	2.9	8	1.1
241	2.7	<5	<10	0.27	<0.1	<1	<1	<0.5	< 0.1
242	16	21	10	2.19	0.6	1	<1	0.7	0.12
243	174	205	49	7.87	1.8	3.4	1	3.5	0.46
244	26	43	18	4.37	1.2	4.1	<1	3	0.42

Sample	La	Ce	Nd	Sm	Eu	Dy	Но	Yb	Lu
245	47	78	36	63	1.6	4.1	<1	2.6	0.38
246	255	360	87	17.7	4.4	13	2.9	9.6	1.3
247	4320	5980	658	77.7	13.6	18.2	6	7.3	1.09
248	831	1320	164	26.9	5.4	15.2	4	10.3	1.4
249	8630	9080	1340	149	27.4	28.3	4.8	12	1.42
250	6480	6430	880	94.9	17	11.1	2.6	9.1	1.03
251	10800	12300	1900	220	39.1	24.3	4.2	9	0.96
GM-09-LC-3	5900	6700	1100			<50	<50		
4088	7290	9040	1380	71	23	25		6.1	
4089	10550	14060	1980	129	36	39		10	
4090	7610	9320	1550	143	40	44		11	
4091	275	230	174	14					
4092	123	7570	2010	425	96	101	5.8	13	
4093	3300	1790	264	26	5.8	23		6	
6	1920	2020	265	35.7	7.3	12.5	2.8	6.2	0.7
9	2100	1960	290	32.4	6.8			8.9	1
12	2570	2440	323	54	12.1	26.4	4.9	9.5	1.07
20	4210	3940	565	86.3	18.8	31	6.8	13.4	1.47
89	7690	8790	1390	231	48.4	53.6	14.7	32.2	3.76
137	3330	5440	1100	200	39.8	47.6	8.2	18.1	2.27
139	1860	3140	780	130	27.8	46	9.4	18.6	2.22
145	1870	3590	770	184	41.1	82.4	16.9	34.3	4.02
146	333	697	160	30	9.4	16.7	4	10	1.25
147	169	270	62	13.8	4.4	6.4	<3	5	0.7
148	847	1110	197	45.3	10.4	15.3	3.3	7.5	0.83
149	799	1720	510	98.9	22.2	32	5.6	13.9	1.74
150	469	934	260	51	12.9	17	3	8.9	1.18
151	72	153	52	18.1	6.1	35.8	6.7	24.2	3.12
160	5670	7940	1800	200	45			11	0.94
164	1380	2230	567	76.8	16.8	17.2	4.4	6.2	0.78
165	7380	10000	1900	254	48.1	21.9	4	9.4	1.05
166	5100	6570	1200	152	27.8	28	6.3	8.3	0.87
167	6130	8020	1520	200	40.1	32	3.9	8.2	0.99
168	10300	13400	2570	315	58	38	7.7	10	0.94
169	10800	13600	2490	291	52.5	31.8	5.9	11.2	1.17
170	10500	12800	2260	260	49.5	22.6	5.2	9.1	1.07
171	312	672	208	43	10	15.6	3.1	7.1	0.89
172	130	273	115	25.8	8.2	14	3.1	5.7	0.73
173	156	306	100	21.5	5.6	11	2.4	4.4	0.51
174	166	304	100	23.8	6	13.4	4.1	8.7	1.08
175	600	1170	320	53.9	13.4	17	3.5	6.7	0.71
176	3400	4450	818	119	24	27	6.3	8	1.18
177	549	952	320	57.6	13.9	18	4.1	8.9	1.03
179	3720	5870	1400	173	33	28.8	6.1	12.6	1.49
183	6040	9450	1960	317	63.8	32.8	6.3	6.5	0.77
184	847	1460	420	79.6	21.7	28	7.3	9.2	1.03
208	3440	5260	1060	173	35.9	40	5.9	9.9	1.16

Sample	La	Ce	Nd	Sm	Eu	Dy	Но	Yb	Lu
209	4070	7560	2100	357	75.3	53.2	9.7	11.7	1.49
210	1310	2110	430	80	17.3	20.7	4	6.7	0.84
211	1060	1940	510	91.6	21.1	29.3	4.7	9.1	1.09
212	3130	5630	1340	282	65	53.3	10.2	16	1.75
214	54.7	77	24	6.76	2.1	6.6	<3	2.4	0.16
215	14	36	20	6.8	2.5	8.3	2	3.6	0.44
216	20	33	18	5.32	2	4.9	<1	3.1	0.41
226	81.7	126	50	7.69	1.9	6.8	1.4	4.2	0.55
227	701	1030	205	42.6	9.1	18.8	2.4	9.9	1.13
228	354	416	119	27.7	7.3	14	4	5.2	0.87
229	113	199	53	15.8	3.9	10.8	2.4	6	0.75
230	625	783	190	36.9	9	13	<9	5.5	0.8
231	44.7	78	40	7.23	1.5	5.9	1.2	4.2	0.53
232	822	1120	204	35.9	7	9.6	3	7.8	0.92
233	3110	3690	615	92.6	17.8	16.9	4.3	7.6	0.81
234	9610	10200	1490	201	40	36	<4	17	1.1
235	734	822	185	25.3	5.1	9.2	2.3	6.3	0.8
236	11700	12800	2040	254	43.2	35	10	25.2	2.6
237	4760	5590	890	124	24	28	<2	11	0.9
238	11600	12900	1920	216	41.1	21.2	2.9	8.3	0.95
252	120	209	63	12.8	3.1	14	2.8	9.4	1.42
253	38.8	74	25	5.05	1.1	4.1	1.2	4.8	0.8
254	92.4	146	60	12.2	3.6	10.7	2.8	4.2	0.45
255	249	370	85	20.7	5	11	1	6.3	0.9
256	84	175	67	15.3	4.2	12	1.9	8.4	1.02
257	467	692	140	26	6	10	<1	5.4	0.8
293		1160		33.5	4			14	0.8
294		3600	840	130	20	22	11	12	1.2
295		2620		70.88				18	2.2
296		5500	1000	140	20	27	6.3	14	1.5
297		180		8.3	5			35	
1	2320	2550	362	50.5	11.7	17.8	3.7	6.9	0.82
2	1230	1570	340	41.7	9			8.8	1.1
3	1190	1290	215	27.3	4.2	9.1	2.3	6.4	0.85
4	1830	1990	291	42.2	9.5	12.2	2.9	5.2	0.68
5	1430	1480	225	27.8	6.1	8.7	2.2	6.5	0.85
7	1160	1410	330	43	8.1			8.1	1
8	754	912	180	26.3	5.2			5.6	0.59
31	149	232	82	13.5	3.1	4.2	<1	3.7	0.5
35	60.7	120	43	7.5	1.9			3.1	0.47
36	283	310	64	13.4	2.7			4.2	0.5
37	106	180	63	12.8	3.2			2.7	0.34
38	310	340	86	14.6	3.3			3.5	0.39
39	139	210	81	14.9	3.7			3	0.39
40	281	340	110	19	4			4.2	0.49
41	49	68	21	3.5	1			1.8	0.24
43	127	210	71	14.1	3.4			3.1	0.43

Sample	La	Ce	Nd	Sm	Eu	Dy	Но	Yb	Lu
44	200	311	94	15.5	3.5	4.8	1.6	3.9	0.55
45	205	327	79	16	3.8	4.1	1.2	3.7	0.55
55	79.5	130	50	10.5	2.4			3.7	0.5
56	113	189	57	13.9	3.3	<4.0	<1	3.8	0.45
57	101	171	48	11.8	2.8	3.3	<1	3.1	0.44
60	100	182	46	10.2	2.5	5.9	1.5	2.9	0.43
62	193	278	66	13.6	2.9	6.5	<1	3.8	0.59
63	159	245	64	13.4	3.3	7	2	3.9	0.5
64	813	966	161	27.8	6.5	18.3	3.6	7.8	0.95
65	107	162	41	9.01	2.1	7.4	1.6	3.3	0.46
66	123	180	53	10	2			3.8	0.51
67	131	198	43	8.76	1.9	6.1	<1	4	0.58
68	112	180	37	8.66	1.7	2.8	<1	3.6	0.52
69	118	183	57	8.65	1.8	4.4	<1	3.7	0.54
70	153	231	48	8.92	1.8	6.1	1.6	4.4	0.64
71	9000	13400	2900	200	67.8	92	17	20.9	1.8
72	1290	1960	412	54.3	10.2	18	5.5	16	2.36
73	698	899	190	32	7.1			16	2.2
74	358	470	130	22.7	4.9			13	1.7
75	18900	22100	4360	514	109	160	34	60.6	6.97
76	4500	4930	732	85.4	14.6	12.2	2.3	11.1	1.43
77	4240	5010	785	103	17.6	16.7	4.6	21.4	2.6
78	466	572	130	18.9	4.1			5.2	0.66
79	8560	9560	1440	169	28.3	33.8	7.4	26.2	3.71
80	11900	15600	2630	337	58.8	59.2	17.9	55	5.97
81	880	1130	197	28.7	5.4	4.4	1.3	6.7	1.01
82	5860	7260	1170	156	27.7	24.8	7.2	19.3	2.64
83	183	230	64	12.1	2.9			8	1
84	158	220	67	14.4	3.4			12	1.5
86	306	380	83	19.5	4.7			40	5
87	8860	11000	2480	330	67.7	89	19.3	43.2	5.26
88	190	299	87	14	3.4	5.3	1.8	5.8	0.83
97	157	226	64	11.3	2.5	<2	<2	3.8	0.51
98	113	175	41	9.34	2.1	4.1	<2	4	0.61
99	190	264	62	12	2.9	4.1	<1	3.3	0.49
100	344	391	68	12.1	2.4	6.7	2.7	5.3	0.65
101	96	112	24	5.14	1	2.9	1.2	2.1	0.3
102	6280	7280	1180	122	21.7	15.7	4.1	7.6	1.07
103	720	755	117	18.7	3.7	8.5	3.6	8	1.06
GM-10-1	410	600	120			<50	<50		
GM-10-2	19000	21000	2700			<100	<100		
4094	1680	3690	563	58	3440	2.4		5.2	
58	436	410	53	5.8	1	2	<1	4.1	1.2
59	62.9	89	13	2.05	0.6	1.6	<1	0.9	0.13
61	177	251	54	8.84	1.7	3.5	1.5	6.5	1.51
96	41.4	47	10	1.9	<0.5	<1	<1	0.6	0.1
260	64.4	86	23	2.9	<1	<1	<1	0.8	<0.1

Sample	La	Ce	Nd	Sm	Eu	Dy	Но	Yb	Lu
GM-09-LC-2	<50	260	<50			<50	<50	-	
9671									
2011									
Sample	Y	Sc	Th	U	Au ppb	Ag	Cu	Pb	Zn
21	33	14.9	30	6.8	<5	<0.2	50	32	83
22	27	0.55	23	8.7	71	<0.2	10	52	43
23	30	1	71.3	6.4	12	<0.2	17	17	51
26	59	0.97	120	23.6	<5	< 0.2	14	178	7
27	57	0.53	120	19	45	<0.2	6	26	8
28	76	0.52	130	23	19	<0.2	5	52	10
29	27	0.62	274	8.8	<5	<0.2	9	10	15
30	14	0.8	34	4.5	<5	<0.2	6	17	21
32	15	4.6	5.1	1.2	25	<0.2	18	10	20
33	33	1.5	36	4.1	12	<0.2	30	102	62
34	11	0.38	56.6	13	<5	<0.2	8	23	20
42	20	5.4	5.3	<1	7	<0.2	12	5	15
47	78	6.81	7.1	2.4	<5	0.4	11	51	41
48	37	5.7	6.3	1.7	<5	<0.2	2	21	29
54	42	0.63	63.4	10	9	< 0.2	4	8	30
85	54	0.94	50.5	3.8	<5	<0.2	2	3	11
104	47	6.86	8.7	2.8	15	< 0.2	5	25	76
259	52	10.5	9.4	2.6	24	< 0.2	7	4	8
GM-09-LC-1	12		<20	<20			21	<10	<10
GM-09-LC-4	180		<20	<20			48	26	1152
153	68	2.92	10	10.8	<5	<0.2	16	26	30
258	47	8.37	33	6.1	94	<0.2	10	6	30
10	74	1.82	5.5	4.5	30	<0.2	81	584	89
11	28	3.21	4.8	2.4	35	0.6	62	350	100
13	66	3.75	6.4	10.5	135	<0.2	415	1869	911
14	134	7.34	9.2	10.2	28	<0.2	158	205	529
15	106	3.96	5.9	13.3	19	<0.2	263	181	297
16	92	2.11	5.9	4	32	0.2	19	81	103
17	61	3.1	20.5	7.7	63	0.9	108	799	547
18	79	4.75	3.2	5.9	33	<0.2	32	321	239
19	126	6.66	14.4	10	80	<0.2	63	519	201
24	101	1	49	14	41	<0.2	18	503	123
25	418	2.8	20	20	19	<0.2	29	711	321
46	106	6.15	27.8	14	21	<0.2	18	63	53
49	64	4.9	18	7	5	<0.5	22	64	156
50	87	6.7	10.3	9.3	<5	<0.2	27	63	87
51	162	6.4	16	18	<5	<0.2	9	84	35
52	57	3.7	19	6.9	<5	<0.2	9	33	88
53	117	5.25	12.4	14.7	14	<0.2	20	70	20
90	<370	2.21	69.7	13	18	<0.2	206	3441	174
91	56	8.14	37.2	5.7	<5	<0.2	19	79	21
92	97	0.82	47.3	6.2	13	<0.2	10	29	23
93	80	2	37.3	7.6	55	<0.2	21	67	77

Sample	Y	Sc	Th	U	Au ppb	Ag	Cu	Pb	Zn
94	68	2.4	45.4	7.4	15	<0.2	17	43	115
95	52	1.44	43.1	3.7	10	< 0.2	29	28	35
105	402	1.5	110	14	49	< 0.2	135	86	51
106	122	0.93	63.6	8.1	32	<0.2	39	12	5
107	79	9.06	9	4.4	116	2.5	40	34	83
108	315	4.8	40	5.7	145	<0.2	14	31	203
109	95	4.8	23	4.9	43	<0.2	3	39	140
110	57	3.2	6.2	2.1	<5	0.5	8	18	52
111	79	1.4	20	5.5	<5	<0.2	109	42	26
112	129	3.8	25	12	6	< 0.2	26	59	54
113	64	4.3	21	4.9	7	<0.2	16	32	109
114	75	4.5	13	4.3	<5	<0.2	12	21	99
115	83	2.4	26	5.6	12	< 0.2	65	80	51
116	89	3.7	28	18	29	<0.2	87	113	117
117	66	3.2	11	6.9	51	<0.2	32	76	93
118	112	3.4	38	19	45	<0.2	196	236	175
119	45	4.7	18	5.5	28	<0.2	126	53	166
120	80	6.5	28	4.3	49	<0.2	9	47	125
121	108	4.9	39	7.1	94	<0.2	166	168	182
122	93	3.1	21	7.4	22	<0.2	31	95	90
123	54	4.5	18	6.3	404	0.2	758	84	858
124	75	4.9	30	12	66	<0.2	39	228	268
125	105	4	15	5.7	78	<0.2	17	35	96
126	85	6.7	12	4.2	98	0.5	16	27	182
127	88	5.9	8.6	3.2	17	0.5	18	27	74
128	74	3.4	24	7.2	755	<0.2	299	66	130
129	30	9	10	3.1	30	0.2	11	9	241
130	96	4	30	13	75	<0.2	22	62	75
131	90	6.1	14	5.8	28	<0.2	5	50	183
132	112	2.7	23	12	<5	<0.2	108	154	110
133	88	2.6	41	65	10	<0.2	19	58	2
134	84	4.5	24	5.1	21	<0.2	138	74	90
135	390	7.93	26	7.1	72	<0.2	270	127	360
136	333	8.2	13	4.9	85	<0.2	405	71	369
138	331	8.35	11.7	3.1	157	1.1	435	95	579
140	229	10.8	10.8	4.2	367	1.2	824	112	247
141	171	11	10	3	329	1	423	129	192
142	356	21.4	12.5	18.2	96	< 0.2	64	405	410
143	416	22.1	27	3.6	118	<0.2	186	1711	423
144	<160	4	6.7	4.1	130	1.4	727	2151	180
152	110	4.16	47.4	12.3	79	2.5	282	55	30
154	84	6.3	68	6.7	29	< 0.2	99	406	152
155	75	9	6.9	4.2	45	0.3	73	236	87
156	218	5.5	10	6.9	21	< 0.2	228	52	225
157	90	5.2	21	4.6	<5	<0.2	211	85	164
158	113	3.8	27	2.9	42	< 0.2	237	88	96
159	97	4.9	49	7.1	14	<0.2	393	82	194

Sample	Y	Sc	Th	U	Au ppb	Ag	Cu	Pb	Zn
161	384	5.49	123	8.9	74	<0.2	216	409	328
162	399	2.66	19	1.6	29	<0.2	575	294	234
163	212	0.71	15	2.6	74	<0.2	448	1680	400
178	<100	2.75	77.3	37.6	150	<0.2	660	13800	726
180	144	7.51	150	19	66	<0.2	423	220	80
181	168	2.55	48.8	16	25	<0.2	314	247	48
182	57	8.51	7.3	5	23	0.5	313	125	160
185	197	12	17.4	9.2	167	1.5	548	72	393
186	175	3.72	55	10.9	107	<0.2	570	510	237
187	183	1.8	40	10	15	<0.2	563	1546	42
188	<200	3.3	93.5	<20	57	<0.2	884	6457	324
189	97	2.4	53.1	4.4	<5	<0.2	42	86	103
190	99	2.2	46	7.2	<5	<0.2	30	93	85
191	74	2.8	12	3.4	13	<0.2	21	29	100
192	75	3.7	11	7	9	<0.2	52	52	235
193	130	2.3	16	3.6	<5	<0.2	7	78	38
194	131	3.3	29	6.4	<5	<0.2	14	80	156
195	116	1.4	45	22	<5	<0.2	10	48	34
196	69	4.5	8.5	3.7	14	<0.2	42	43	86
197	128	4	25	14	23	<0.2	17	84	61
198	77	5.3	8	2	53	0.3	18	31	97
199	134	2.2	12	21	6	<0.2	4	64	41
200	85	3.4	15	6	20	<0.2	7	34	43
201	106	2.4	43	9.1	<5	<0.2	19	99	25
202	92	2.5	28	10	8	<0.2	7	57	9
203	34	2.5	8	3.8	<5	<0.2	13	23	34
204	62	2.6	19	6.7	15	<0.2	13	41	39
205	221	2.64	59	16.6	25	<0.2	45	41	211
206	501	10	30	38	48	<0.2	230	331	690
207	162	4.3	6.2	3.7	28	0.6	22	30	63
213	115	8.38	14	4	23	0.7	186	93	126
217	42	4.41	30	7	15	<0.2	110	18	61
218	203	3.13	52.4	7.7	34	1.9	606	158	578
219	<150	4.09	28.6	16	40	1.9	606	16800	241
220	<110	3	12.5	9	73	4.1	957	3561	166
221	149	5.81	52.4	9	27	5.3	175	70	228
222	155	1.33	77.5	18	18	<0.2	84	38	36
223	96	1.08	90.7	22	28	<0.2	12	86	42
224	263	9.34	27.7	8.6	47	0.7	533	116	694
225	179	3.05	17.6	4.4	7	< 0.2	54	41	61
239	90	4.39	11.7	6.4	28	0.2	167	1057	148
240	75	4.59	50.2	9.7	22	<0.2	156	178	133
241	3	0.13	<0.5	<1	<5	0.3	6	3	45
242	15	2.63	2.6	<1	9	0.4	8	5	8
243	50	6.81	3.8	2.4	36	1.9	543	241	181
244	49	4.26	7.8	2	10	0.7	173	12	44
245	45	2.34	9.2	1.7	7	0.9	171	26	24

Sample	Y	Sc	Th	U	Au ppb	Ag	Cu	Pb	Zn
246	154	6.9	16	3	61	0.9	222	69	208
247	80	9.59	67.1	12.3	41	<0.2	311	440	182
248	95	10.6	28.8	9.1	30	<0.2	148	99	231
249	142	4.47	38.3	41.8	80	<0.2	678	148	624
250	81	4.63	29.4	24.8	29	<0.2	594	171	1463
251	76	4.61	52.9	50.7	63	<0.2	529	200	766
GM-09-LC-3	215		25	<20			43	70	68
4088	186						60	280	
4089	286						130	350	
4090	310						290	2240	
4091	46						40	80	
4092	752						102	430	
4093	181						70	110	
6	58	8.65	32.4	27.2	170	3.7	7220	337	411
9	74	4.5	45	8	54	<0.2	11	47	323
12	<160	2.09	24.1	10.9	496	27.3	4250	29700	182
20	<200	3.76	19.3	42.7	610	11.2	5823	33400	933
89	<350	4.06	122	26	71	2.9	5254	61800	554
137	302	18	22.4	7.2	131	0.7	1482	166	668
139	349	9.46	14	4.2	378	<0.2	1240	157	355
145	<600	9.65	16.2	14	615	22.2	10409	24500	1578
146	<230	6.81	6	25	307	1.52opt	24400	228700	4342
147	<180	1.48	2.2	16	264	10.1opt	89200	370900	3424
148	60	1.6	7.9	13.9	770	14.3	10627	1578	433
149	<220	2.1	7.8	16	1707	2.05opt	45300	29300	2750
150	<180	2	8.7	34	531	5.75opt	88000	98500	3541
151	<270	3.05	9	9	1137	39.7	6648	4094	670
160	129	4.1	63.3	19	289	3.1	3551	575	204
164	120	4.56	19	8.1	163	<0.2	127	348	74
165	<70	4.65	90.6	17	293	3.2	3813	8284	453
166	<90	7.18	52.7	14	594	13.8	8774	4288	986
167	95	5.42	47.8	33.6	246	4.6	4240	3260	2670
168	<70	3.84	69	65	600	<0.2	2577	5429	3337
169	<100	3.91	78.2	52	526	6.9	5174	8144	9726
170	<60	3.26	89	36.5	307	2.5	2800	9219	1935
171	140	4.7	13	7.9	208	0.5	219	115	161
172	<110	3.54	4.7	69	596	36.2	18267	17100	3853
173	82	3.61	6.8	10	25	2.6	365	301	154
174	119	9.2	12.2	6.6	11	1.3	540	296	1115
175	105	7.48	16.4	26.8	99	25.8	19600	1094	2001
176	<140	2.64	60.6	78.9	67	13.6	18118	21400	189
177	117	9.26	24.7	15	20	6	1297	446	317
179	190	5.2	50	15	76	0.9	1749	266	300
183	<130	5.4	85.8	19.6	250	<0.2	1042	14200	792
184	<120	4.43	10	17.9	920	9.4	7297	14300	1259
208	148	1.68	37.8	9.4	107	<0.2	196	411	40
209	209	13	93	10.9	102	<0.2	875	506	827

Sample	Y	Sc	Th	U	Au ppb	Ag	Cu	Pb	Zn
210	117	3.3	22.1	9.8	31	6	376	322	113
211	154	5.51	24.1	50	25	<0.2	222	190	105
212	250	3.17	39.7	23	<5	<0.2	1073	731	128
214	20	3.88	8.5	75	61	2.38opt	37000	1062	5717
215	71	8.16	2.9	5.4	19	36.8	10471	28	841
216	74	6.36	3.1	3	12	9.2	4387	23	549
226	54	4.75	6.9	3.8	7	0.9	270	796	588
227	<150	5.64	13.1	22.5	27	13.1	5962	9815	2778
228	<150	4.37	8.5	70	67	3opt	13067	210600	2128
229	<120	3.8	7.9	13.1	14	4.5	1876	5012	4716
230	54	5.87	12	195	<58	2.44opt	15173	93400	2954
231	59	13.4	10.3	4.5	30	2.6	728	747	397
232	<110	8.32	14.7	17	31	9.4	3798	27600	6914
233	120	5.72	15.1	23.6	24	<0.2	150	115	174
234	173	21	31	19	<19	0.6	73	131	462
235	92	7	10	6.2	7	1.3	201	378	303
236	271	33	50	32.7	5	<0.2	29	125	481
237	153	2.8	16	24	<12	<0.5	135	753	65
238	79	7.03	68.5	28.5	15	<0.2	1832	752	158
252	110	1.45	97.6	16.6	17	<0.2	75	1078	111
253	41	0.45	77	19	8	<0.2	158	764	116
254	<90	5.92	4.2	36.4	93	21	23200	12900	1782
255	43	2.7	10	19	170	13	4727	30000	249
256	<140	2.79	9.2	13.8	149	9	1305	9077	416
257	49	4.1	17	7	94	3.1	903	1987	194
293					39		1679	331	3449
294					170	8	5786	10000	142
295					12		21	60	219
296						11	374	1186	169
297						2.08	15105	10000	10200
1	59	4.13	28.1	26.5	174	0.2	1266	559	309
2	109	4.2	22	6.5	139	0.5	301	141	398
3	44	4.22	38.2	9.2	222	1	223	318	1330
4	54	3.45	25.8	18.9	175	3.5	3121	367	232
5	68	4.39	29.1	11.7	117	2.5	559	278	698
7	113	2.5	67.5	14	37	<0.2	14	68	279
8	62	2.8	38	7.9	31	<0.2	17	22	57
31	51	17	24	5	5	<0.2	26	19	62
35	27	3.9	33	5.2	<5	<0.2	25	71	62
36	57	4.5	23	3.1	165	<0.2	193	16	108
37	26	20.1	23	5	18	<0.2	54	18	120
38	39	17.7	25	4.7	73	<0.2	47	28	144
39	31	19	31	4.9	11	<0.2	53	20	133
40	55	18.2	23	5.5	15	<0.2	30	20	113
41	9	0.37	60.7	6.6	<5	<0.2	10	17	42
43	36	10.2	27	6.2	<5	<0.2	56	12	71
44	55	10.4	27.8	3.9	20	<0.2	34	18	69

Sample	Y	Sc	Th	U	Au ppb	Ag	Cu	Pb	Zn
45	53	10.7	32.5	5.7	12	<0.2	10	19	45
55	46	8.4	18	3.9	<5	<0.2	14	8	25
56	44	6.11	20.5	5.8	12	0.4	48	233	66
57	42	8.3	22.7	3.4	7	0.2	64	52	65
60	32	7.41	20.9	3.2	<5	0.2	22	55	39
62	40	8.59	28	5.5	15	< 0.2	28	88	45
63	48	6.57	31.3	6.2	<5	<0.2	12	26	57
64	144	1.3	56.4	4.5	30	<0.2	86	109	19
65	38	8.82	19.6	4.2	<5	0.5	11	23	32
66	37	5.7	43	9.5	<5	<0.2	7	5	33
67	38	4.82	59.7	11.2	<5	<0.2	41	19	32
68	35	5.14	54	12	<5	<0.2	23	81	78
69	41	4.5	56	11.5	<5	<0.2	5	18	39
70	39	4.45	67.9	12.8	<5	<0.2	16	55	31
71	458	2.2	20	7.6	141	<0.2	6	72	16
72	187	1.9	49	9.8	27	<0.2	9	36	37
73	125	1.6	38	10	58	<0.2	25	1244	52
74	168	1.6	38	7.8	35	<0.2	8	180	24
75	725	2.52	30	13	116	<0.2	108	1353	17
76	110	4.29	47.6	6	19	<0.2	30	402	47
77	177	3.64	36.3	6.8	24	<0.2	15	685	58
78	56	2.2	42	5.3	<5	<0.2	9	78	150
79	221	6.3	52	9.2	29	<0.2	34	1701	82
80	696	3	130	84	17	<0.2	95	64	43
81	66	2.55	47.7	4.1	18	<0.2	178	2124	79
82	235	4.43	42.5	7.2	24	<0.2	14	968	113
83	93	0.68	56.4	7.8	11	<0.2	12	389	43
84	160	2	43	7.5	<5	<0.2	4	148	24
86	548	1.5	40	13	27	<0.2	6	44	6
87	664	1.93	100	17	32	<0.2	11	75	53
88	82	1.5	41.6	6.2	48	<0.2	9	7	58
97	52	6.62	29	5.7	23	<0.2	19	18	74
98	52	6.64	28.5	5.7	17	<0.2	11	13	80
99	101	9.09	28.4	5.2	<5	<0.2	11	25	56
100	85	6.9	9.6	4.1	16	<0.2	10	22	56
101	30	7.27	6.5	2	11	0.2	5	6	11
102	127	3.08	25.5	24.6	7	<0.2	15	255	52
103	112	7.14	8.4	4.8	<5	<0.2	75	11	67
GM-10-1	83		<20	<20			<10	114	76
GM-10-2	100		<50	<50			<50	228	<50
4094	189						8580	22200	
58	16	2.5	8	20	8	0.7	12	13	30
59	8	0.5	13.8	18.9	<5	<0.2	88	31	41
61	28	4.97	3.6	<1	<5	<0.2	70	340	53
96	5	0.56	2.1	8.4	6	<0.2	104	56	77
260	7	0.79	1.8	4	<2	<0.5	13	14	55
GM-09-LC-2	32		83	<20			198	704	<10

Sample	Y	Sc	Th	U	Au ppb	Ag	Cu	Pb	Zn
9671				700		-			
L		I	1		I	1	I	I	I
Sample	Мо	Nb	Ni	Со	As	Hg	Ba	Sr	F
21	2		14	18	<5	< 0.01	3700	1431	
22	2	118	1	1	<5	< 0.01	690	63	907
23	<1	118	1	4	<5	< 0.01	1800	749	1435
26	6		2	<1	13	0.034	1200	168	
27	2		1	<1	<5	0.018	110	47	
28	1		3	<1	<5	< 0.01	50	27	141
29	1		3	2	<5	< 0.01	1800	508	317
30	1	89	4	2	<5	< 0.01	2000	77	
32	2	3	4	5	<5	< 0.01	1500	350	94
33	4	55	11	5	<5	< 0.01	1100	298	79
34	1	150	5	2	<5	< 0.01	2400	896	100
42	<1	9	5	2	<5	0.014	330	453	1231
47	3		6	3	24	0.024	2200	436	
48	4		12	3	<5	< 0.01	700	640	
54	3	181	2	2	<5	< 0.01	430	107	140
85	2	135	3	2	<5	< 0.01	770	247	602
104	2		17	5	<5	< 0.01	580	117	
259	2		24	4	9	0.038	160	116	
GM-09-LC-1	<10	<10	<10	<10	<20			134	
GM-09-LC-4	40	13	42	16	69			82	
153	123		10	4	<5	< 0.01	4700	213	
258	2		7	8	24	< 0.01	1900	96	
10	194		6	2	34	0.042	>20000	>2000	
11	22		10	4	21	0.064	1700	378	
13	364		5	3	42	0.13	18700	1175	
14	44		10	4	40	0.087	>20000	>2000	
15	11		6	8	19	0.052	1/100	>2000	
16	37		5	2	8	0.063	8200	463	
17	93		14	14	20	0.121	/300	1335	
18	22		5	5	20	0.038	> 20000	083	
19	4		3	2	10	0.083	20000	975	
24	41 91		10	6	22	0.031	4000	224	
23	12		10	2	23	0.087	>20000	1260	
40	13		14	<5	38	100	20000	530	
50	7		6		14	0.033	14400	848	
51	6		4	7		<0.033	11000	861	
52	5		т 4	5	10	<0.01	6200	1797	
53	7		4	3	10	0.035	16900	1316	
90	25		7	3	83	0.198	6500	524	
90	<1		15	4	6	0.033	970	534	
91	4		2		<5	0.062	3300	190	
92	4		2	4	8	0.031	2900	309	
94	26		4	3	<5	0.014	2800	178	
74	20		-7	5	~5	0.017	2000	1/0	

Sample	Мо	Nb	Ni	Со	As	Hg	Ba	Sr	F
95	1		3	2	<5	0.036	1700	802	
105	113		4	2	13	0.138	16000	1036	
106	5		1	<1	12	0.067	2100	366	
107	7		14	7	<5	0.117	3100	199	
108	7		17	8	<5	0.045	>20000	528	
109	6		15	8	7	< 0.01	19100	384	
110	3		8	5	14	< 0.01	1800	333	240000
111	11		7	5	50	0.017	10200	430	62500
112	14		9	4	5	0.012	20000	1056	135000
113	14		12	6	12	< 0.01	14900	385	116000
114	8		11	5	<5	< 0.01	8700	342	145000
115	16		5	3	15	0.029	>20000	1836	245000
116	18		12	6	7	0.024	>20000	1900	202500
117	8		14	7	5	0.02	7100	639	107500
118	32		15	6	27	0.19	>20000	>2000	263500
119	23		20	10	12	0.024	9200	>2000	79000
120	9		20	11	<5	< 0.01	16100	>2000	184800
121	19		13	5	14	0.098	>20000	>2000	306500
122	7		9	5	<5	0.018	>20000	1557	295000
123	15		18	11	328	0.373	13300	>2000	168500
124	26		19	8	17	0.039	>20000	1653	219000
125	8		12	5	10	< 0.01	11000	795	168500
126	10		19	10	44	< 0.01	3000	365	85500
127	6		18	5	15	0.012	740	193	47800
128	18		12	7	189	0.73	>20000	>2000	158000
129	1		29	8	23	< 0.01	840	>2000	44500
130	14		8	5	17	< 0.01	>20000	1758	219000
131	9		14	6	6	< 0.01	7800	1080	164000
132	29		7	4	14	0.09	18800	1947	317500
133	4		5	3	<5	0.011	>20000	1153	184800
134	15		7	3	31	0.099	>20000	1222	254000
135	7		27	10	77	0.15	>20000	911	160000
136	5		27	10	83	0.179	11400	436	85600
138	5		26	10	183	0.972	11800	631	147200
140	4		21	8	265	0.601	16000	687	179200
141	3		23	9	210	1.118	8900	460	121600
142	14		30	9	129	0.89	17400	481	35600
143	22		44	15	50	0.196	>20000	553	13500
144	6		17	8	638	0.535	4100	377	26000
152	69		3	2	39	0.166	5000	1827	
154	5		8	3	<5	0.081	>20000	1483	
155	6		15	6	33	0.066	3300	358	
156	17		18	6	47	0.092	13500	510	
157	7		10	5	8	0.059	>20000	1052	
158	5		7	3	17	0.133	>20000	1036	
159	27		11	4	46	0.258	>20000	1085	
161	178		28	7	7	0.229	>20000	1111	

Sample	Мо	Nb	Ni	Со	As	Hg	Ba	Sr	F
162	58		4	1	155	0.192	>20000	980	
163	58		3	1	420	0.149	>20000	941	
178	246		6	4	264	1.47	>20000	>2000	
180	7		5	3	43	0.418	>20000	915	
181	43		6	3	80	0.266	>20000	>2000	
182	6		8	5	65	0.265	3300	426	
185	16		26	8	162	0.271	4000	1541	
186	15		5	2	180	1.156	>20000	1141	
187	3		2	2	101	0.552	>20000	>2000	
188	50		7	4	385	1.188	>20000	>2000	
189	12		6	2	<5	0.02	>20000	>2000	116000
190	9		7	3	<5	0.014	>20000	>2000	156500
191	14		11	4	15	0.042	9200	634	103500
192	20		23	15	28	0.032	6700	777	46000
193	6		3	2	<5	< 0.01	>20000	1579	385000
194	22		8	3	<5	0.049	>20000	1648	355000
195	20		5	3	<5	0.01	15100	737	235000
196	6		15	5	16	0.029	3100	263	62500
197	9		8	4	<5	0.065	>20000	1437	245000
198	6		17	6	24	0.071	1500	269	92300
199	6		3	2	<5	< 0.01	>20000	1744	370000
200	7		6	4	25	0.03	11200	1130	159500
201	29		4	3	<5	0.031	>20000	1232	227000
202	68		3	2	<5	< 0.01	>20000	>2000	306500
203	13		11	5	8	< 0.01	3000	215	38000
204	8		9	5	7	< 0.01	12700	347	88500
205	24		7	3	<5	0.015	4500	236	
206	9		28	9	22	0.186	>20000	588	
207	16		10	3	<5	0.033	3500	168	
213	3		10	10	54	0.646	1500	592	
217	2		9	3	34	0.453	800	976	
218	74		7	3	248	1.317	17300	689	
219	511		5	3	688	19	14800	1427	
220	30		7	9	434	1.077	2400	357	
221	22		17	12	80.5	2000	59100	>2000	
222	6		4	2	12	0.439	2000	153	
223	2		2	<1	<5	0.21	690	94	
224	30		42	8	94	0.398	16700	1073	
225	5		6	2	<5	0.032	5700	410	
239	5		12	4	49	0.059	2600	267	
240	9		10	6	62	0.153	3200	341	
241	<1		1	1	<5	0.017	<20	608	
242	<1		6	2	<5	0.079	640	131	
243	5		19	19	225	0.481	440	282	
244	2		9	4	69	0.232	120	13	
245	2		5	2	54	0.196	180	521	
246	5		17	3	59	0.105	2300	177	

Sample	Мо	Nb	Ni	Со	As	Hg	Ba	Sr	F
247	33		31	23	142	0.233	16700	345	
248	35		32	14	101	0.211	3400	331	
249	27		10	6	114	0.275	18200	708	
250	28		48	9	106	0.213	>20000	1008	
251	13		16	13	54	0.149	>20000	>2000	
GM-09-LC-3	52	32	<10	<10	20			502	
4088									
4089									
4090									
4091									
4092									
4093									
6	9		5	6	124	0.097	8400	>2000	
9	5		6	8	44	0.016	8200	876	
12	618		<1	2	985	1.403	9000	>2000	
20	1316		2	4	1039	2.659	15800	>2000	
89	134		8	5	>2000	5.081	20000	502	
137	7		34	9	276	0.868	>20000	1009	208000
139	2		19	7	393	1.653	>20000	875	252800
145	49		28	12	1852	12.174	>20000	658	
146	1194		5	5	>2000	28	5300	235	
147	136		<1	2	>2000	89	5100	1564	
148	13		7	3	>2000	13.624	>20000	1126	
149	46		6	8	>2000	53	18100	505	
150	65		2	11	>2000	121	11300	1487	
151	12		2	2	>2000	39	2500	1801	
160	56		6	4	788	5.523	>20000	>2000	
164	6		9	4	69	0.125	9400	471	131200
165	246		7	6	1999	5.299	>20000	1903	225600
166	50		7	8	1877	9.371	15500	1285	179200
167	18		12	4	713	4.113	>20000	>2000	296000
168	10		14	7	640	2.465	>20000	>2000	264000
169	35		6	5	1377	4.845	>20000	>2000	264000
170	111		7	3	742	3.86	>20000	>2000	318400
171	20		18	6	79	0.153	2400	179	
172	51		17	4	>2000	22	3300	308	
173	25		8	3	292	1.302	7000	295	
174	35		44	10	232	2.052	2400	225	
175	16		13	6	>2000	46	5300	289	
176	262		2	2	>2000	14.555	12700	794	
177	68		12	6	660	0.692	7500	1003	
179	76		23	8	284	1.215	18700	1331	
183	78		4	3	266	1.139	>20000	>2000	
184	32		6	5	>2000	3.958	>20000	1140	
208	14		3	2	25	0.159	>20000	>2000	
209	96		32	7	206	0.54	>20000	1657	
210	19		12	4	75	0.261	9400	1461	

Sample	Мо	Nb	Ni	Со	As	Hg	Ba	Sr	F
211	13		9	5	40	0.243	10400	1394	
212	5		8	6	200	1.412	>20000	>2000	
214	8		15	6	>2000	154	1600	708	
215	2		10	10	1261	27	250	115	
216	4		11	11	746	9.04	140	155	
226	16		14	5	66	0.173	1300	127	
227	73		13	9	1473	2.024	5700	324	
228	1198		3	3	>2000	54	5600	154	
229	41		14	6	461	1.052	800	152	
230	298		8	<10	>9000	>5000	4400	317	
231	10		26	29	184	0.432	690	172	
232	486		27	13	>2000	3.281	5800	318	
233	13		18	5	48	0.137	19400	453	
234	26		17	26	35	175	79000	942	
235	5		20	8	58	0.225	5000	230	
236	29		20	7	12	0.075	16100	709	
237	15		8	<5	143	395	26900	750	
238	11		10	4	492	1.697	>20000	>2000	
252	153		3	<1	37	0.081	830	76	
253	8		2	<1	71	0.202	400	59	
254	76		44	22	1571	3.61	4500	577	
255	34		6	<5	1270	2800	4100	2091	
256	56		6	2	1688	0.991	1700	287	
257	90		13	<5	386	570	5130	378	
293									
294									
295									
296									
297									
1	6		3	3	50	0.298	>20000	1126	
2	7		9	4	121	0.028	4900	467	
3	8		6	6	123	0.125	13000	966	
4	11		3	3	70	0.1	15600	1174	
5	6		7	4	97	0.096	10700	987	
7	8		5	5	94	< 0.01	6100	943	
8	5		7	7	42	< 0.01	4700	1482	
31	3		22	15	<5	0.02	1900	534	
35	2		14	7	<5	< 0.01	1600	459	201
36	7		19	10	<5	< 0.01	1600	329	395
37	3	57	22	23	5	< 0.01	3000	542	676
38	3	52	21	16	<5	< 0.01	2800	1104	867
39	5	74	24	19	<5	< 0.01	3700	1368	772
40	6	61	25	20	<5	< 0.01	6000	515	889
41	<1	102	3	2	<5	< 0.01	3200	801	131
43	4		17	16	10	0.018	2000	1089	
44	3		18	14	<5	0.044	1500	1375	
45	<1		27	12	7	< 0.01	1400	399	

Sample	Мо	Nb	Ni	Со	As	Hg	Ba	Sr	F
55	<1		19	16	<5	< 0.01	1100	445	
56	9		22	6	34	0.066	1600	68	
57	3		19	9	18	0.069	1500	469	
60	2		17	10	16	0.024	1100	646	
62	12		16	12	<5	0.054	2500	393	
63	11		15	11	12	0.032	2600	559	
64	10		4	2	39	0.04	8100	735	
65	3		14	11	<5	0.037	1100	434	
66	3		15	11	5	0.028	1000	295	
67	1		13	11	16	0.014	820	236	
68	5		13	8	14	0.049	770	309	
69	2		9	6	8	0.067	700	205	
70	2		16	12	<5	0.029	710	332	
71	20	<1	5	2	<5	< 0.01	>20000	1325	>20000
72	20		5	3	<5	0.021	3300	352	
73	41	72	3	2	7	0.013	4000	202	786
74	6	93	5	3	<5	< 0.01	3300	246	345
75	72		3	2	46	0.027	>20000	>2000	
76	63		6	3	26	0.052	11100	428	54800
77	33		5	5	<5	0.041	9500	439	56000
78	10	148	2	8	7	< 0.01	4000	639	10186
79	54		7	3	<5	0.05	9700	496	116800
80	34		3	4	<5	0.044	12900	839	235200
81	232		4	3	49	0.055	3100	566	21500
82	20		4	2	<5	0.052	10500	405	164800
83	9	132	3	2	9	< 0.01	1500	188	187
84	6	102	5	4	<5	< 0.01	2000	140	226
86	46	69	4	2	18	0.014	2700	90	363
87	150		4	3	<5	< 0.01	>20000	437	
88	3		3	3	<5	0.012	3600	168	
97	4		14	7	24	0.021	2200	445	
98	6		15	8	10	0.016	1800	417	
99	3		18	10	13	0.016	1900	481	
100	22		17	7	11	< 0.01	2500	409	
101	2		16	4	14	0.018	1800	85	
102	17		5	5	<5	< 0.01	18700	591	
103	23		15	5	<5	0.133	3000	347	
GM-10-1	343	94	<10	<10	20			279	
GM-10-2	<50	<100	<50	<50	<50			2322	
4094									
58	24		11	120	7	40	280	29	
59	6		11	34	<5	0.027	950	31	
61	<1		6	7	<5	0.073	1000	165	
96	14		10	17	<5	0.054	230	47	
260	7		<1	78	29	30	200	53	
GM-09-LC-2	359	114	<10	21	563			513	
9671									
L	L	L	1	1	1	1	1	1	1

APPENDIX 3. GEOCHEMICAL PLOTS

Turquoise triangles are breccia pipes and fenite samples, red circle is rhyolite, pink diamond is latite, blue diamond is trachyte/syenite, and open blue triangle is fenitized trachyte/syenite. Chemical analyses are from Schreiner (1993) and this report (Appendix 1).

Scatter plots of major elements verses SiO_2 (in percent), showing similar differentiation of igneous rocks. This shows that the igneous rocks are geochemically and likely genetically related.

Scatter plots of trace elements (in parts per million, ppm) verses SiO_2 (in percent), showing similar differentiation of igneous rocks. This shows that the igneous rocks are geochemically and likely genetically related.

Geochemical plots from Whalen, et al. (1987) showing that the igneous rocks from the Gallinas Mountains are similar in chemistry to A-type granitoids.

Geochemical plots from Whalen, et al. (1987) showing that the igneous rocks from the Gallinas Mountains are similar in chemistry to A-type granitoids.