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Cover: The Mimbres River in flood 15 miles upstream of Deming, February 18, 2020.
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Water-level measurements in the Mimbres Basin made in early 2020 were combined with 
data extending back to 1980 to characterize water level trends in the region. The geosta-

tistical method of spatiotemporal kriging was used to create water-level maps every five years 
from 1980 until 2020. Changes in water-levels over these five-year intervals were calculated. 
Compared to traditional spatial kriging, the spatiotemporal approach offers improved preci-
sion, more realistic maps of water levels and water-level changes, fewer artifacts due to chang-
ing well networks over time, and overall less uncertainty in predictions.

Several notable patterns since 1980 are revealed in the sequential maps. From Deming to 
Columbus, water levels have declined up to 75 feet. Water-level declines and expansion of 
cones of depression appear to have slowed south of Deming and increased around Columbus 
in the past ten years. Water levels west of Red Mountain, east of the Florida Mountains, and 
northeast of Columbus have risen as much as 32 feet, presumably as a result of decline in 
pumping for irrigation in these areas that has resulted in flattening of cones of depression. The 
vicinity of Whitewater and Faywood shows net water-level rises over the 40 year period, but 
declines have occurred in the past ten years. Water levels have varied considerably along the 
reach of the Mimbres River south of Faywood, where most of the river’s flow infiltrates.

The spatiotemporal kriging approach is more challenging than other interpolation methods 
traditionally used in hydrogeology. However, the cost in funds and staff-hours of field studies 
to gather water-level data has always been high and continues to rise. Therefore it is prudent 
to analyze the data collected at such great expense with methods that will extract the most 
useful information. The present work builds on other recent studies and demonstrates that 
spatiotemporal kriging of water-level data is superior to spatial kriging in this regard.

E X E C U T I V E  S U M M A R Y
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Figure 1. Location of the Mimbres Basin in southwest New Mexico, USA. Red line marks the boundary of the Mimbres Basin.
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I .  I N T R O D U C T I O N 

The Mimbres Basin watershed and subjacent aquifers 
are located in Doña Ana, Grant, Luna, and Sierra 

Counties of southwest New Mexico (Figure 1). Major 
population centers in the basin include Silver City, 
Hurley, Tyrone, Deming and Columbus. The surface 
extent of the Mimbres Basin in the United States is 
shown in Figure 1, and covers about 11,590 km2 
(4,475 mi2). The topographic basin is closed and the 
watershed and aquifer extend south into Mexico.
The northern boundary of the surface-water basin 
coincides with the Continental Divide north and 
west of Silver City. The Continental Divide also 
forms the western boundary of the basin and extends 
south from the Little Burro Mountains almost to the 
international border. On the east, the basin bound-
ary extends south and east around the Good Sight 
Mountains and across the West Potrillo Mountains 
to the international border. The basin boundaries 
transect a great variety of topographic relief, geologic 
structures, and rock types (Figures 1 and 2).

Agriculture, mining, and ranching form the basis 
of the regional economy. Groundwater is the major 
water supply for agricultural, industrial, municipal 
and domestic uses. Luna County encompasses a large 
portion of the Mimbres Basin and almost all of the 
irrigated acreage. Magnuson et al. (2019) estimated 
that of the 29,880 acres irrigated in Luna County in 
2015, 28,480 acres (95%) were irrigated solely with 
groundwater. Irrigated agriculture and public water 
supply together accounted for 83,100 acre-feet  
of groundwater withdrawals in 2015 (Magnuson et 
al., 2019).

Groundwater has been vital to the development 
of the Mimbres Basin since the early 20th century, 
and thus its importance has long been recognized. 
Groundwater development for agriculture began near 
Deming in 1908 and irrigated acreage and groundwa-
ter use expanded rapidly. Until that time, agriculture 
was limited to lands near the upper Mimbres River 
that could be irrigated with surface water (Hawley 
et al., 2000, and references therein). Water levels in 
wells across the basin have been measured by the 
U.S. Geological Survey (USGS), the New Mexico 
Office of the State Engineer (NMOSE), the New 

Mexico Bureau of Geology and Mineral Resources 
(NMBGMR) and other entities since extensive 
groundwater development began. The database of 
water-level data maintained by the Aquifer Mapping 
Program at the NMBGMR contains measurements 
from the Mimbres Basin dating back to 1910.

Manual measurement of water levels in wells is a 
crucial task for understanding groundwater resources 
(Taylor and Alley, 2001), yet it is labor-intensive, time-
consuming, and expensive. Figure 3 illustrates that the 
overall number and frequency of water-level measure-
ments in the Mimbres Basin has declined greatly since 
1980. Prior to 2020, the last basin-wide water-level 
measurement campaign was in 2012, and far fewer 
measurements were made at that time than in previous 
field studies. Developing water-table or water-level 
elevation maps is a major use of water-level measure-
ments. Such maps convey vital information about an 
aquifer, such as groundwater flow directions, locations 
of recharge and discharge, groundwater-surface water 
interactions, and control of lithology and geologic 
structure on groundwater occurrence and flow. These 
maps can be used to infer aquifer hydraulic properties 
and their spatial variation, and assess the impacts of 
groundwater pumping on water resources. It is critical 
to use high-quality data and robust methods to inter-
polate between the locations of field measurements.

The geostatistical interpolation method of kriging 
was originally developed in the mining industry and 
has a strong theoretical background (Cressie, 2015). 
It is applied regularly across the gamut of earth and 
environmental sciences (Webster and Oliver, 2007) 
and groundwater hydrology in particular (Kitanidis, 
1997), including recent studies in New Mexico 
(Rinehart et al., 2016, Rawling and Rinehart, 2018). 
Spatiotemporal kriging is an extension of spatial krig-
ing to include the additional dimension of time, and it 
derives from an equally well-developed theory (Cressie 
and Wikle, 2011; Gräler et al., 2016; Wikle et al., 
2019). It has also seen use in earth and environmental 
sciences (e.g., Huevelink and Griffith, 2010; Gasch et 
al., 2015) but only recently have there been applica-
tions to groundwater hydrology (Ruybal et al., 2019; 
Varouchakis and Hristopulos, 2019).
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Figure 2. Geologic map of the Mimbres Basin. Geology simplified from New Mexico Bureau of Geology and Mineral Resources (2003).
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The present work was initiated with two main 
objectives. The first was to characterize current 
groundwater conditions by again measuring water 
levels in wells across the Mimbres Basin. The goal 
was to revisit the wells measured in 2012, as these 
wells had been measured many times previously and 
thus new measurements would add to existing water-
level time series. The second was to create a series of 
maps of water levels, and changes in water levels over 
time, using spatiotemporal geostatistical methods. The 
data manipulation and computations were performed 
using the R language (R Core Team, 2018) and the 

gstat, space, and spacetime packages (Pebesma, 2004; 
Pebesma, 2012, Bivand et al., 2013). The spatiotem-
poral approach maximizes the amount of information 
and insight that can be extracted from the new and 
existing water-level data by quantifying the correla-
tion of the measurements in space and time. This 
increases the precision and accuracy of the derived 
water-level maps. The method allows estimates to be 
made of water levels at times when there are no data, 
and in places where there are no data, and provides 
estimates of the uncertainty in both cases. 

Figure 3. Histogram of water level measurements since 1980 in 663 wells in the Mimbres Basin illustrating the overall temporal variability in mea-
surements and decline in frequency since the 1990s.
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Previous Work

The geology of the Mimbres Basin is shown at 
1:125,000 scale on regional geologic maps by Sea-

ger et al., (1982; northeast part of the basin), Seager 
(1995; southern part of the basin), and at 1:250,000 
scale by Drewes et al. (1985; western part of basin). 
Clemons (1998) describes the geology of the Florida 
Mountains, the prominent range that rises near the 
center of the Mimbres Basin. Data from these maps 
and many other sources were compiled by Hawley et 
al. (2000) to create a geologic map of the entire Mim-
bres Basin at 1:500,000 scale, including the portions 
of the basin in Mexico. The aforementioned maps 
all contain geologic cross sections based on surface 
mapping, well data such as cuttings, core, and geo-
physical logs, and interpretation of gravity, magnetic, 
and seismic data. They also contain reference lists of 
older and/or larger scale mapping that was used in the 
geologic compilations. More recent work includes the 
important study of Heywood (2002), who interpreted 
the thickness of alluvial fill and depth to bedrock in 
the Mimbres Basin using isostatic residual gravity 
anomalies.

The earliest groundwater studies in the Mimbres 
Basin were the work of Darton (1914, 1916). Other 
historical regional-scale groundwater studies include 
White (1931), Theis (1939), Conover and Akin 
(1942), and Trauger (1972). McLean (1977) sum-
marized existing hydrologic data and conditions in 
the mid-1970s and Hawley et al. (2000) contains a 
detailed and thorough summary of the geology and 
hydrogeology of southwestern New Mexico, includ-
ing an exhaustive reference list. Kennedy et al. (2000) 
is an overview of the main conclusions of the Hawley 
et al. (2000) study.

Numerous unpublished reports by consultants 
have discussed issues such as regional water plan-
ning and estimates of current and future supply and 
demand (e.g., D.B. Stephens and Associates, 2009, for 
the Deming region), and numerical groundwater flow 
models developed to address particular hydrologic 
questions (e.g., Romero and Cook, 2009, managed 
aquifer recharge near Silver City). Hanson et al. 

(1994) described the hydrogeologic framework of the 
basin and a preliminary two-dimensional numerical 
groundwater flow model. Finch et al. (2008) describe 
a more detailed three-dimensional flow model 
originally developed for the Chino Mines Company. 
The flow model currently used by the NMOSE to 
administer and manage water rights in the Mimbres 
Basin is described by Cuddy and Keyes (2011).

A notable consequence of ongoing groundwater 
pumping in the Mimbres Basin is land subsidence and 
the formation of earth fissures. Galloway et al. (1999) 
provide a review of the mechanisms and consequences 
of land subsidence due to extraction of groundwater. 
Contaldo and Mueller (1991) and Haneberg and 
Friesen (1995) described land subsidence and mea-
sured fissure formation in the Mimbres Basin. 

Regional Geology

Simplified geology of the Mimbres Basin is shown on 
Figure 2. This overview is largely based on sources 
cited in the “Previous Work” section, Clemons and 
Mack (1988), and New Mexico Bureau of Geology 
and Mineral Resources (2003). The landscape 
is characterized by steep and rugged fault-block 
mountains at the basin margins that bound wide 
desert plains formed on the intervening structurally 
down-dropped valleys. This landscape has resulted 
from middle Miocene to late Pleistocene extensional 
block faulting (Clemons and Mack, 1988). The 
Florida, Tres Hermanas, and Victorio Mountains, 
and numerous smaller prominences, are intrabasin 
mountains surrounded by broad, low-relief pediments 
and bajadas (Figure 1). The regional geology is quite 
complex, as the Mimbres Basin lies at the intersection 
of three distinct geologic/tectonic provinces—the 
southern Colorado Plateau, the Basin and Range, and 
the Rio Grande rift (Hanson et al., 1994).

The bedrock in the mountains range from 
Proterozoic to Cenozoic in age. Proterozoic rocks are 
dominantly granite with minor syenite, gneiss, and 
schist, and are abundant in the Big Burro Mountains. 
Lower Paleozoic intrusive igneous rocks are present in 

I I .  B A C K G R O U N D



7

W A T E R - L E V E L  T R E N D S  I N  T H E  M I M B R E S  B A S I N ,  S O U T H W E S T  N E W  M E X I C O

the Florida Mountains. Paleozoic sedimentary rocks 
range from Cambrian to Permian in age. They are 
dominated by limestone and dolomite, with subor-
dinate sandstone, shale and siltstone, and claystone 
redbeds. These units are found in the Florida 
Mountains, Tres Hermanas Mountains, Cookes 
Range, and the Pinos Altos Range. Mesozoic rocks 
consist of Cretaceous sandstone and shale in scattered 
exposures in Cookes Range, the Tres Hermanas 
Mountains, and Pinos Altos Range. Lower Paleozoic 
intrusive igneous rocks are present in the Florida 
Mountains. Mesozoic rocks consist of Cretaceous 
sandstone and shale in scattered exposures in Cookes 
Range, the Tres Hermanas Mountains, and Pinos 
Altos Range. Tertiary sedimentary, volcaniclastic, and 
intrusive and extrusive igneous rocks are widespread 
in all of the mountains. Quaternary basalt flows com-
prise the volcanic field of the West Potrillo Mountains 
at the southeast margin of the area.

The sedimentary basins underlying the valleys are 
filled with Cenozoic sedimentary rocks, with lesser 
amounts of volcaniclastic and volcanic rocks. These 
units host the aquifer system that is the focus of 
this study. The depth to bedrock in the basins varies 
widely (see below), and the thickness of the sedi-
mentary fill varies accordingly (Hanson et al., 1994; 
Seager, 1995; Hawley et al., 2000). As summarized by 
Hawley et al. (2000), regionally a distinction can be 
made between an upper, poorly consolidated basin-fill 
sedimentary unit with thickness ranging from 100 
to 300 m (330 to 990 ft), and a lower, usually more 
indurated unit composed of conglomerate, sandstone, 
and mudstone as much as 1,000 m (3,280 ft) thick. 
The lower unit is often identified as, or correlated 
with, the well-indurated Gila Conglomerate and/or 
Gila Group, which is widely exposed at the northern 
margins of the Mimbres Basin area and in the moun-
tains to the north. The majority of the wells in this 
study are completed in the upper unit, or the upper-
most part of the lower unit. The near-surface deposits 
in the Mimbres Basin are Upper Quaternary in age 
and were deposited by the Mimbres River and San 
Vicente Arroyo drainage systems (Seager, 1995; Love 
and Seager, 1996). These unconsolidated deposits can 
have saturated thicknesses up to 30 m (100ft).

Hawley et al. (2000) proposed a conceptual 
framework of subdividing the basin fill into hydro-
stratigraphic units characterized by distinct lithofacies 
associations. This scheme relates depositional envi-
ronment (e.g., alluvial fan, braided stream channel, 
basin-floor playa) to sediment textural characteristics, 
bedding thickness, spatial geometry, and con-
nectivity, and ultimately hydraulic conductivity and 

groundwater production potential. Although geologi-
cally and hydrologically sound, in practice, these 
classifications cannot be mapped except in a very 
general way in the subsurface in the Mimbres Basin 
due in part to a lack of borehole geophysical data 
(Hawley et al., 2000; see plate 1 therein). The dif-
ficulty of correlating individual beds of gravel, sand, 
silt, and clay using lithologic logs or cuttings was 
noted even in the earliest studies in the basin (Darton, 
1916; Contaldo and Meuller, 1991).

The subsurface geometry and geologic structure 
of the Mimbres Basin consists of numerous sub-
basins with great variations in thickness of the basin-
fill units. Several workers prior to Heywood (2002) 
presented structural-tectonic maps and cross sections 
of the region with various names for the subbasins, 
their mapped or inferred extents, depth estimates 
from limited well, gravity and seismic data, and 
mapped or inferred geometries of bounding faults 
(e.g., Wilkins, 1986, Hanson et al., 1994, Seager, 
1995; Hawley et al., 2000). The gravity study of 
Heywood (2002) clarified the subsurface geometry 
of the basins and clearly identified their shallow and 
deep portions (Heywood, 2002, Fig. 4; also repro-
duced as contours in Finch et al., 2008, Fig. 1). Great 
thicknesses of basin fill exist northeast of Deming, 
and along the northwest-southeast trend of San 
Vicente Arroyo and the lower Mimbres River (Figure 
2). This area corresponds to the Mangas Trench of 
Hanson et al. (1994), also referred to as the San 
Vicente Subbasin by Hawley et al. (2000). The 
northwest-southeast region of thick basin fill west 
and southwest of the Florida Mountains corresponds 
to the Seventy-Six basin of Hanson et al. (1994), 
also referred to as the southern Deming Subbasin by 
Hawley et al. (2000). The Florida graben or subbasin 
east of Cookes Range and the Florida Mountains 
contains three areas of thick basin fill separated by 
saddles of shallower bedrock. Large areas of the 
Mimbres Basin have total basin-fill thickness of less 
than 100 m (330 ft).

The cross sections of Seager et al. (1982) and 
Seager (1995) show that almost everywhere in the 
central and southern Mimbres basin, the basin fill 
sedimentary units overlie middle to lower Tertiary 
volcanic rocks. This is also seen in the oil-test wells 
east and northwest of Deming studied by Clemons 
(1986). Hawley et al. (2000) notes that the upper 
Mimbres River drainage and a region east of the 
Tres Hermanas Mountains in the southern Florida 
subbasin/graben are the only areas in the Mimbres 
Basin where these pre-Gila Group volcanic rocks are 
important parts of the aquifer system.
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Regional Hydrogeology

Hanson et al. (1994), Hawley et al. (2000) and Finch 
et al. (2008) discuss the surface and groundwater 
hydrology of the Mimbres Basin in detail. The 
Mimbres River usually has perennial flow from 
its headwaters to the vicinity of the Grant – Luna 
county line. Flood flows during spring snowmelt or 
exceptional rainfall events often extend further south 
to near Black Mountain northwest of Deming and 
very rarely to Deming itself (Figure 1). Infiltration of 
Mimbres River water is a main source of recharge 
to the Mimbres Basin aquifer (Hawley et al., 2000). 
Small amounts of perennial flow occur in upstream 
reaches of San Vicente Arroyo from urban irriga-
tion and leakage in Silver City and treated effluent 
discharge from the sewage treatment plant. This 
water infiltrates upstream of the confluence with 
the Mimbres River. Flood flows in the normally dry 
drainages (e.g., Cow Springs Draw, Seventy-Six Draw, 
Macho Draw) extending from the basin bounding 
mountains contribute small amounts of recharge. 
Groundwater in the Mason Draw drainage in the 
northeast part of the Mimbres Basin has been shown 
to discharge to the Mesilla Basin to the east (Hawley 
et al., 2000).

Estimates of total recharge vary but all agree that 
it is only a few percent of the annual total precipitation 
over the basin. Potential evapotranspiration is very high 
and areal recharge across the basin floors is negligible. 
Most recharge comes from infiltration of Mimbres River 
water and mountain front recharge (Wilson and Guan, 
2004) along the northern margins of the basin. Little 
or no recharge is derived from the highlands south of 
Deming, except perhaps the largest few watersheds. 
Hanson et al. (1994) developed a water budget and 
estimated total recharge to the United States portion of 
the Mimbres Basin at about 52,000 acre-feet per year. 
Their two-dimensional groundwater model suggested 
this was too high, and that a value of about 55% of this, 
or about 29,000 acre-feet was more reasonable. The 
smaller value is in agreement with results from calibra-
tion of the more elaborate model of Finch et al. (2008), 
who estimated total recharge at 29,050 acre-feet per 
year. Finch et al. (2008) did not specify whether their 
results were for the whole basin or just the portion in 
the United States. These numbers are about one third of 
the estimated groundwater withdrawals in Luna County 
in 2015 (83,100 acre-feet; Magnusson et al., 2019). 
Groundwater pumping and evapotranspiration from 
playas are the main discharges. The latter has largely 
been replaced by the former since large scale groundwa-
ter pumping began (Hawley et al., 2000). 

Groundwater flow is generally south and 
southeast from the northern highlands to the 
international border, with progressively decreasing 
gradient. Gradients and flow directions are highly 
perturbed from pre-development conditions in areas 
with large water-level declines due to pumping. South 
and southeast of Columbus, flow directions have 
completely reversed, and groundwater flows north 
into the United States. Finch et al. (2008) subdivided 
the Mimbres Basin into four major hydrogeologic 
regions based on patterns of recharge and discharge, 
and large scale hydrogeologic properties determined 
by the geologic structure such as the depth to bedrock 
in the basins (Figure 4).

Darton (1916) noted water-bearing zones of 1.5 
to 12 m (5 to 40 ft) in thickness and highly variable 
lateral continuity. Darton (1916) and White (1931) 
described the Mimbres Basin aquifer as overall 
phreatic or unconfined, with local zones of partial 
confinement and subartesian conditions, the latter 
indicating water levels that rise in wells above the 
water-bearing zone, but not flowing at the surface. 
Hawley et al. (2000) noted that the upper 100 m (330 
ft) of the Mimbres basin aquifer “at many localities” 
contains fine-grained material such as playa-lake 
beds and/or is partly indurated, suggesting potential 
for local confined or partially confined conditions. 
Almost all of the wells in this study are located in 
outcrop areas of basin-fill sediment or Gila Group 
(Figure 4) and are assumed to be completed in these 
units. Many irrigation wells have multiple screens and 
likely tap more than one water bearing zone. Water 
levels do not show distinct trends with depth of wells. 
It is assumed that the water levels analyzed here are 
derived from one complex but continuous, regional, 
unconfined aquifer system.
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Figure 4. Map showing locations of wells with water-level measurements since 1980 used in this study. Outliers are explained in the text. Note that 
some wells have both outlier measurements and “good” data. Hydrogeologic zones are defined by Finch et al. (2008). Geology as in Figure 2.
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The last basin-wide set of water-level measurements 
was conducted in late winter and early spring 

2012 by a private consultant under contract to the 
NMOSE. The field notes and records of this work 
were obtained from the NMOSE with the goal of 
revisiting all of the wells for additional measure-
ments in late winter 2020. In 2012, 158 wells were 
measured, in January and February 2020, 107 wells 
were measured. We could not measure numerous 
wells for various reasons, including collapse of the 
well, denial of permission by the owner, locked gates, 
muddy and impassable roads, and flooded crossings 
of the Mimbres River. Water levels were measured 
with a steel tape or an electric water-level sounder if 
the well was unequipped. At least two depth-to-water 
measurements were made at each well to attempt 
repeatability within 0.02 ft (0.6 cm). Well locations 
were recorded with a handheld GPS unit.

In addition to the 2012 and 2020 data, well 
locations and water levels for all wells in the Mimbres 
Basin were obtained from the NMBGMR Aquifer 
Mapping program database. This database contains 
all readily available water-level data from the USGS, 
NMOSE, and NMBGMR for the Mimbres Basin 
since 1910. These data were filtered and processed in 
the following ways: 

1. Only wells with water-level measurements since 
1980 were considered, and only data since 1980 
were included in this study.

2. Hydrographs for each well were viewed in an 
interactive script, where all measurements during 
the normal irrigation season, March through 
October inclusive, were removed. The exception 
was year 2012, in which there were many mea-
surements in March. These were kept unless there 
was an obvious irrigation signal.

3. Measurements with a USGS data quality flag 
were removed. A data flag indicates measurement 
issues, such as the water-level recovering from 
pumping, or adjacent wells were being pumped at 
the time of the measurement.

4. Any other measurements that appeared to be 
significant outliers were removed, based on 
interactive inspection of the hydrographs.

5. All well locations were projected from UTM 
coordinates to Lambert Conformal Conic projec-
tion. This was done because the boundary of 
UTM zones 12 and 13 passes though the study 
area, resulting in well locations in two different 
projections, and in some cases wells in UTM zone 
12 were recorded with UTM zone 13 coordinates. 
These were converted to UTM zone 12 before 
projection to Lambert Conformal Conic.

6. The land surface elevation at each well was 
determined from a 4.5 meter (15 ft) lateral resolu-
tion digital elevation model, and the water-level 
elevation was then determined from the depth-to-
water measurements. 

Water-level data are recorded and used by regula-
tory and management agencies in New Mexico in 
English units (feet, for depth to water and water-level 
elevation), whereas location and elevation data 
for wells may be recorded in English units, metric 
units, or both. In this study all data were converted 
to metric units prior to the analyses. Intermediate 
results of analyses are presented here in metric units. 
Final results such as water-level elevations and their 
changes, and estimates of uncertainty, were converted 
to feet after the analyses were complete. Water-level 
data and well information retained after the filtering 
and processing described above are presented in 
Appendix 4. 

Water-level Analysis

Elevations in the Mimbres Basin range from 3,099 
m (10,170 feet) in the Black Range to 1,207 m 
(3,959 ft) along the international border southeast 
of Columbus, with a strong north to south regional 
topographic gradient (Figure 1). Thus, there is 
similarly strong regional gradient in water-level eleva-
tions. This is a regional water-level trend that must be 
accounted for when modelling the water-level surface. 

I I I .  F I E L D  M E T H O D S  A N D  D A T A  R E V I E W
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Mathematically, the model used here is spatiotempo-
ral regression kriging (Kyriakidis and Journel, 1999; 
Hengl et al., 2007; Heuvelink and Griffith, 2010; 
Ruybal et al., 2019) where the water-level elevation at 
any point Z(s,t) is a function of space (s) and time (t), 
and consists of two parts:

			  Z(s,t) = m(s,t) + ɛ(s,t). 		  (1)

where m(s,t) is a deterministic trend and ɛ(s,t) is 
the stochastic, or random, residual with a normal 
distribution and zero mean. The trend may be a 
function of space and time as shown, of space or time 
alone, or a constant value. Here it is assumed to be 
constant in time; i.e., m(s). This is the “regression” in 
spatiotemporal regression kriging. It can be thought 
of as the long-term baseline pattern of water levels 
and their variation across the region that is controlled 
by factors that are essentially constant in time but 
variable in space on a large scale; e.g., land-surface 
elevation, broad patterns of subsurface geology, long-
term natural patterns of recharge and discharge, etc. 
Deviations from this trend are the residuals and they 
account for the local geometry of water levels and 
how they change with smaller scale spatial patterns of 
discharge, recharge, and variations of these processes 
in time. Quantifying and modelling the correlation of 
the residuals in space and time is what is investigated 
in the “spatiotemporal kriging” part of spatiotempo-
ral regression kriging.

Regional Trend
 
In many geologic situations, the water-table elevation 
of an unconfined aquifer is a subdued replica of the 
land surface topography (King, 1899; Tóth, 1963; 
Desbarats et al., 2002). This suggests a model of the 
regional water-level trend in the Mimbres Basin as a 
function of geographic coordinates and elevation. The 
mathematical form of such a model is subjective and 
nonunique (Huevelink and Griffith, 2010), but ideally 
it is physically reasonable and explains the large scale 
variation. Importantly, the residuals from the model 
(the differences of the data values from the trend 
model predictions) should be normally distributed, 
have zero mean, and exhibit stationarity (Webster and 
Oliver, 2007; Hengl, 2009). The first two conditions 
indicate that, when all of the data are considered, the 
trend model does not tend to over- or under-predict 
the water levels. Stationarity means that the statistics 
of the residuals do not show spatial trends.

Specifically the mean should be constant and the 
covariance or correlation of the residuals at any pair 
of points should only depend on their separation, and 
not their absolute position (Webster and Oliver, 2007).

Rawling and Rinehart (2018) modelled the 
regional trend of water levels in the High Plains 
Aquifer in eastern New Mexico using a third-order 
polynomial function of the easting and northing coor-
dinates of the wells. This approach was not successful 
in the Mimbres Basin, as residuals from polynomial 
functions of the geographic well coordinates are dis-
tinctly bimodal, have non-zero mean and are skewed. 
Experimental spatial variograms calculated from 
these residuals did not reach a constant sill, but rather 
showed continuous increase with increasing spatial 
lag, indicating non-stationarity (Webster and Oliver, 
2007; variograms are discussed in the next section).

Principal Component Analysis (PCA) was used 
to find a better predictor for the regional water-
level trend. PCA is a technique for reducing the 
dimensionality of datasets while minimizing loss of 
information (Abdi and Williams, 2010; Jolliffe and 
Cadima, 2016). It creates new, uncorrelated, variables 
from a dataset under the constraint of maximizing 
the variance explained by the new variables. The new 
variables are called the principal components and 
are linear combinations of the original data, here, the 
easting, northing, and land-surface elevation coordi-
nates for each well location (in meters). The principal 
components are completely defined by the structure of 
the original data, and the solution is unique apart from 
the sign, which is arbitrary (Jolliffe and Cadima, 2016).

The first two principal components together 
explain 96% of the variation in the three-dimensional 
coordinates of the wells (Figure 5; Table 1 and 
Appendix 1), effectively reducing the well locations to 
a two-dimensional space. All three spatial coordinates 
contribute to all three of the principal components 
(Table 1; each coordinate is multiplied by the load-
ing and these are summed to create the principal 
component). The regional water-level trend was then 

PC1 PC2 PC3

Easting 0.53 -0.78 -0.34
Northing 0.57 -0.62 0.54

Land Surface Elevation -0.63 -0.09 -0.77
Standard Deviation 1.53 0.73 0.33
Proportion of Variance 0.78 0.18 0.04
Cumulative Proportion 0.78 0.96 1.00

Table 1. Principal component analysis (PCA) loadings for the three 
principal components.
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Figure 5. Maps of a) principal component 1 (PC1), b) principal compo-
nent 2 (PC2), and c) the third-order polynomial trend model of water-
level elevation in feet above sea level. The principal components are 
derived from the east coordinate, north coordinate, and land surface 
elevation of each well. Only the first two of the three principal compo-
nents are used in the polynomial trend model, as the first two principal 
components account for 96% of the variance of the original data set.

modelled with a third-order polynomial function of 
the first two principal components (Figure 5). This 
trend is constant in time; for most of the wells there 
are multiple water-level measurements, so the trend is 
fit to all of the measurements at each well, regardless 
of the date of measurement. In Figure 5c, the loadings 
of the well coordinates (Table 1) were used to cal-
culate the water-level trend prediction at each point 
of a 1,000 m square grid spanning the study area, 
where elevations for each grid point were determined 
from a 4.5 m digital elevation model. Note that the 
regional trend and subsequent spatiotemporal kriging 
analysis was not extended to the northern terminus 
of the basin due to the lack of data in this region. 
More details of the regional trend are presented in 
Appendix 1.

Figures 6 and 7 show the residuals from the 
regional trend fit to the data. Two criteria were 
combined to identify data points that were not fit, 
or predicted, adequately by the polynomial trend 
function. Data points with standardized residuals 
that are greater than two standard deviations from 
zero are often considered outliers (Schuenemeyer and 
Drew, 2011). One can also calculate Cook’s Distance, 
which is an iterative process wherein the parameters 
of the fitted model are recalculated by dropping each 
data point in turn and using only the remaining data 
to fit the model. One common criteria for a high 
value of Cook’s Distance is any value greater than 
4/n, 0.0012 in this study, where n is the number of 
data (Glen, 2020). Any water-level measurements 
that satisfied both of these criteria were flagged as 
outliers. These water-level measurements were then 
dropped from further analysis, and were not used 
in the spatiotemporal kriging. Well NM-05236 (one 
measurement) was also dropped. The standardized 
residual for this measurement was 3.08 and Cook’s 
distance was 0.011. However, it clearly plots amongst 
the other outlier measurements in Figure 6b. Wells 
with outlier measurements are shown as yellow circles 
in Figure 4. Outlier measurements are shown in red in 
Figures 6b and c. Figure 7 shows the statistics and the 
spatial distribution of the residuals with the outlier 
measurements removed.

One could repeat the above procedure of identify-
ing outliers indefinitely, by repeatedly refitting the 
regional trend model and identifying and removing 
outliers using the same combined criteria as above. 
However, there is no definite end to this process and 
no reason to think that a deterministic trend will 
ever adequately represent all of the data. Most of the 
outlier data points are on the margins of the study 
region, in geologically and topographically distinct 
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areas, where it is plausible that a regional model may 
not represent extreme, local conditions. In addition, 
a polynomial trend model will tend to perform worse 
on the margins of the region, where data is often 
sparse, and it will be overly influenced by regions of 
extreme variation (Webster and Oliver, 2007). The 
outliers are addressed further in the discussion.

Both with and without the outlier points, the 
residuals from the polynomial trend model form a 
minimally skewed, approximately normal distribution 
with near zero mean (Figures 6a and 7a respectively). 
Spatially, they tend to cluster in groups of mostly 
positive and negative values, but many areas have a 
mix of both, and there is no regional trend (e.g., all 
positive values in the south, all negative values in the 
north) (Figure 6d and 7d). The positive and negative 
clusters result in the double peak in the histogram 

(Figure 7a) but the Q-Q plot (Figure 7b) shows that 
the distribution of residuals after removal of outliers 
is very nearly normal. 

Sample and Fitted Variograms

The residuals from the regional trend model are the 
differences of each water-level elevation measurement 
from the time-invariant trend model prediction at that 
point. The spatial and temporal correlation of these 
residuals are investigated by calculating the sample 
spatiotemporal variogram. The variogram is then 
modelled with a mathematical function. The vario-
gram model is then used in spatiotemporal kriging to 
predict water levels at locations and times for which 
there is no data. 

Figure 6. All residuals from the regional trend model, including outliers as described in the text. a) Histogram of all residuals. b) Q-Q plot of all residu-
als, compared with the normal distribution (black line). Outliers are shown in red. Well NM-05236 is discussed in the text. c) Map showing locations 
of outliers (red). d) Map showing magnitude (in meters) of all residuals. Trend-surface predictions above the water level are positive (blue) and below 
the water level are negative (red).
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Figure 7. Residuals from the regional trend model, with outliers removed. a) Histogram of residuals. Note the smaller spread than in Figure 6a. 
b) Q-Q plot of residuals, compared with the normal distribution (black line). c) Map showing wells without outlier measurements. d) Map showing 
magnitude (in meters) of residuals without outliers. Trend surface predictions above the water level are positive (blue) and below the water level are 
negative (red). Note the much smaller range compared to Figure 6d.

in the gstat package (Gräler et al., 2016) were tested 
for the best fit to the sample spatiotemporal vario-
gram. The sum-metric model was chosen based on 1) 
its superior fit based on the optim and MSE param-
eters generated by the numerical optimization scheme 
used by R to fit the model parameters to the sample 
variogram, and 2) comparison of “leave-one-out” 
cross-validation statistics and spatial patterns of cross-
validation residuals generated for each model in turn 
(Cressie and Wikle, 2011; see Appendix 2 for details). 
Cross-validation involves removing each data point 
in turn and predicting the value at that location (and 
time in the spatiotemporal case) using the remaining 
data. It is a measure of the strength of the model and 
how well it can reproduce the actual data. 

where h is the spatial separation, or lag, u is the 
time separation, or lag, and N(u,h) is the number of 
paired residuals separated by spatiotemporal lag (h,u) 
(Heuvelink and Griffith, 2010; Ruybal et al., 2019). 
The variogram value, gamma, is thus the average 
squared difference in residuals at each combination 
of spatial and temporal lag. Because the data points 
are not regularly arranged in space or time, the data 
are grouped into bins of spatial and temporal lags. 
The result is a three-dimensional variogram surface 
describing the correlation of the residuals in space 
and time (Figure 8).

The sample spatiotemporal variogram was fitted 
with a sum-metric variogram model (Snepvangers 
et al., 2003; Gräler et al., 2016). The entire suite of 
available spatiotemporal variograms models available 

The empirical or sample spatiotemporal variogram is calculated as:

Evaluation of water-level trends in the Mimbres Basin…v4 
           1 

 

 1 

   𝑍𝑍(𝑠𝑠, 𝑡𝑡) = 𝑚𝑚(𝑠𝑠, 𝑡𝑡) + 𝜀𝜀(𝑠𝑠, 𝑡𝑡),      (1) 2 

 3 

 𝛾𝛾(ℎ, 𝑢𝑢) = 1
2∙𝑁𝑁(ℎ,𝑢𝑢) ∑ [𝜀𝜀(𝑠𝑠, 𝑡𝑡) −  𝜀𝜀(𝑠𝑠 + ℎ, 𝑡𝑡 + 𝑢𝑢)]2𝑁𝑁(ℎ,𝑢𝑢)

𝑖𝑖=1 , (2) 4 
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where ​​σ​ S,T​ 2 ​  ​and ​​a​ S,T​​ ​are the variance and range of 
the spatial and joint components of the sum-metric 
variogram, ​​σ​ nS,nT,nJ​ 2 ​ ​ is the nugget variance, and ​δ​(h)​ ​ is 
the Kronecker delta, which equals 1 when h = 0 and 0 
otherwise. The nugget variance is present in all three 
components, but has different magnitudes for each, 
and is the sum of spatio-temporal variation in the 
data at ranges smaller than the smallest lag distance 
and measurement errors (Cressie and Wikle, 2011). 

The sum-metric model is the sum of separate spatial, temporal, and joint spatio-temporal variogram compo-
nents. The joint component is a metric variogram, where κ is the space-time anisotropy ratio (space/time) that 
relates spatial and temporal distances into a single space-time distance (Kyriakidis and Journal, 1999; Snepvan-
gers et al., 2003). κ less than one means that, for example, the correlation at 1 m distance equals the correlation 
at 5 days time, and vice-versa if the anisotropy is greater than one (Gasch et al., 2015). 

The best fitting sum-metric model is shown in Figure 8 and is given by:

The general formula for the sum-metric spatiotemporal variogram model is

Circular and exponential (exp) variogram 
models are two of a limited group of functions used 
in geostatistics to model variograms because they 
possess mathematical properties necessary for the 
kriging equations to be solvable (Webster and Oliver, 
2007).  Note that the temporal component ​​γ​ T​​​(u)​ ​is 
a pure nugget variogram; all of the spatiotemporal 
correlation is accounted for in the joint component. 

The structure of the sample and fitted spatio-
temporal variograms in Figure 8 suggests why the 
space-time approach is appealing for prediction of 
water levels in the Mimbres Basin. In the spatial 
domain, the variogram rises rapidly to a well-defined 
sill value (​​σ​ S​ 2​ + ​σ​ nS​ 2 ​​) of about 145 m2, which is the 
“global” variance of the residuals of the water level 
data. This sill is reached at a range of 15,380 m. This 

means that pairs of data points (wells) separated 
by a distance, or lag, larger than this are essentially 
uncorrelated, and a measurement at one provides no 
information about the water level at the other. At lags 
less than 15,380 m, the residuals of the water-level data 
are progressively more strongly correlated as the lags 
decrease. In the time domain, the variogram rises very 
slowly, indicating strong temporal correlation of water 
levels to the largest temporal lags of nearly 22 years. 
The fluctuations, or cyclicity, about the sill value 
of the sample variogram reflect the distribution of 
positive and negative trend residuals in space. Several 
patterns visible in the maps of residuals (Figures 6 
and 7) show up in the sample variogram (Prycz and 
Deutsch, 2003). 

1.	 The lag distance of the first peak reflects the 
average spatial extent of the positive and 
negative groups, about 15,380 m. 

2.	 The lag distance at the first trough is the sum 
of the average extent of the groups and the 
average distance between the groups, about 
20,000 m.

3.	 The distance from the peaks to the troughs is 
the average spacing of the groups. 
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Figure 8. Sample spatiotemporal variogram of regional trend residuals and fitted sum-metric model.

In simple kriging the mean is known and constant 
and is an input to the kriging algorithm. In ordinary 
kriging the mean of the data is estimated from the 
data, rather than assumed constant and/or known 
beforehand. Prycz and Deutsch (2003) note that the 
type of correlation structure described above violates 
the assumption of strong global stationarity inherent 
in simple kriging and that ordinary kriging is more 
appropriate to use. Ordinary spatiotemporal kriging 
was used in this study. The penalty for estimating 
the mean (ordinary kriging) rather than specifying 
a known mean (simple kriging) is higher kriging 
variance (Cressie, 2015). 

The Mimbres Basin covers over 10,000 km2, and 
is geologically and topographically diverse, with a 
variety of land uses. These facts also bear on the issue 
of stationarity: is it appropriate to use a single sample 
variogram and fitted model, or “global” model, to 
describe the correlation structure of the water-level 
data across the entire region? Even with the fluctua-
tions just described, the sample variogram does have a 
well-defined sill that reaches a plateau value and does 
not continually increase. Beyond the range value of 
15,380 m, the residuals have essentially constant vari-
ance upon which the local fluctuations in the residuals 
are superimposed. (Figure 8 and Appendix 2). 

To further explore this issue, the data were 
subsetted into the San Vicente, Deming, and Florida 
hydrogeologic regions identified by Finch et al. (2008, 
Figure 4), with overlap of 5 km along the boundaries. 

The Upper Mimbres region was not investigated 
due to the paucity of data. Sample spatiotemporal 
variograms were calculated for each region and a 
best fitting model was chosen using the same opti-
mization criteria described above. Cross-validation 
statistics and spatial patterns of cross-validation 
residuals were compared for the wells in each region 
using the region-specific model, and the “global” 
model (Appendix 3). In all cases the “global” model 
performed as well or better than any of the region-
specific models, and so only it was used in further 
analyses. 

Spatiotemporal Kriging

Once the spatiotemporal variogram model has been 
chosen, it is straightforward to implement spatio-
temporal kriging at the time periods of interest. An 
important user-specified parameter in spatiotemporal 
kriging is nmax, the maximum number of nearest (in 
the sense of most highly correlated) data points to use 
in calculating the prediction at any given spacetime 
point. This value was set to a neighborhood of 50. 
Increasing this number greatly increases processing 
time and resulted in poorer, not better predictions. 
Using a local neighborhood in kriging also relaxes 
strict stationarity assumptions, and smooth variations 
in the mean, as are seen here, can be accommodated 
(Gräler et al, 2016).
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spatial
2012

spatiotemporal
2012

spatial
2020

spatiotemporal
2020

Mean -0.059 0.45 0.37 -0.019

Mean squared error 110.92 18.49 119.84 40.28

Mean squared normalized error 1.16 0.99 1.57 0.99

Correlation between observed and predicted 0.55 0.94 0.61 0.88

Correlation between predicted and residual -0.034 -0.011 -0.13 0.021

Variance of residuals 111.86 18.44 120.99 40.71
Standard deviation of residuals 10.58 4.29 10.99 6.38
Skewness 0.51 -0.47 0.79 -3.06
Minimum of residuals -30.16 -21.81 -24.73 -40.10

Maximum of residuals 42.12 15.40 47.09 15.26

Table 2. Cross-validation statistics for comparison of spatial and spatiotemporal kriging. Better values are in bold.

Results were calculated for late winter at five-year 
intervals from 1980 to 2020. The water level eleva-
tion is the sum of the trend function prediction at 
each point (which is constant through time) and the 
predicted residual from the spatiotemporal kriging 
calculation, which is unique to each prediction time, 
or instance (Figure 9). Flow direction vectors were 
calculated from the predicted water-level surface for 
each time instance. (Figure 10). Higher resolution 
maps were prepared for the Deming – Columbus 
region, where the majority of the irrigated agriculture 
is located. (Figure 11).  These maps utilize the same 
data with the same 1 km spatial resolution as those 
in Figure 9.  Kriging, whether spatial or spatiotem-
poral, provides an estimate of the variance of the 
predictions, and thus the uncertainty in the results 
is quantified. Figure 12a shows the standard error 
(the square root of the variance; this has the same 
units as the original measurements) of the regional 
trend prediction, and the standard error from the 
spatiotemporal kriging for each instance (Figure 12b). 
The total variance is the sum of the variance of the 
trend surface prediction and kriging variance (Cressie, 
2015; Cressie and Wikle 2011; Hengl et al., 2007, 
Ruybal et al., 2019). The former is constant and the 
latter changes for each instance. Both vary in space. 
The total prediction standard error is the square root 
of the total prediction variance (Cressie and Wikle, 
2011). The changes in water levels over each five-year 
time period are shown in Figure 13, with the net 
water-level change over the 1980–2020 period shown 
in Figure 14. Hydrographs from example wells are 
shown in Figure 15 with field measurements and 
predicted values, and the 95% confidence intervals 
about the predictions. Several of the aforementioned 

figures have an overlay of gray polygons to indicate 
the areas of lithified Cenozoic sedimentary rocks and 
older bedrock. Very few wells are completed in these 
regions so the interpolations and predictions there are 
deemphasized. 

Comparison of Spatial and Spatiotemporal 
Kriging

The improvement in predictive ability gained by the 
use of spatio-temporal kriging versus spatial kriging 
can be demonstrated with the prediction standard 
error and via cross-validation. Figures 16 through 20 
compare the results of the two methods for the years 
2012 and 2020, the last two years with abundant 
water-level measurements. Statistics of the cross-
validation results for the two methods are presented 
in Table 2. The predicted water-level elevation maps 
are very similar in gross appearance at the scale of the 
whole basin and it is difficult to see differences in the 
results from the two methods (Figure 16). Differences 
are more obvious in the maps of water-level change 
between 2012 and 2020 (Figure 17). Spatial kriging 
predicts much larger water-level changes, of up to 150 
feet. These values are unreasonably large for an eight-
year interval, even in areas of intensive irrigation. The 
largest changes are very localized, creating an irregu-
lar yet very smooth map appearance of closed highs 
and lows, and some changes are poorly constrained 
by data, such as between Whitewater and Faywood 
and southeast of Akela. The different well networks 
for the two time-periods may be contributing to this 
effect. Ruybal et al. (2019) showed that changing well 
networks though time is a major source of uncer-
tainty when comparing spatial kriging maps made at 
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different times. The water-level changes predicted by 
spatiotemporal kriging are more reflective of natural 
variability, of much lower magnitude, and the areas of 
largest change coincide with wells, which are the loca-
tions with the highest reliability of prediction (lowest 
standard error, Figures 12 and 18).

The prediction standard error for the spatial-only 
kriging case rises rapidly away from the wells, which 
form “bulls-eyes” of accuracy, to the maximum value 
of about 40 to 50 feet, while overall the uncertainty 
is large (Figure 18a and c). The prediction standard 
error for the spatiotemporal kriging case shows large 
regions of low values (high precision), 20 to 30 feet 
or less (Figure 18b and d). This occurs in many areas 
where there were no measurements in 2012 and 2020, 
showing the beneficial influence of measurements at 
other times on the predictions. The high correlation 
of water-levels in time improves the precision at 
times when there are no data – overall the areas of 
relatively low standard error are much larger when 
using spatiotemporal kriging.

The standard error contributed by the regional 
trend model is not shown on the maps in Figure 18. 
It is the same for both the spatial and spatiotemporal 
kriging cases and is added to the standard error 
from kriging to result in the total standard error of 

prediction (see Figures 12a and 15). Recall that the 
trend surface was calculated using all of the data 
from 1980 – 2020, and was assumed to be constant 
in time. However, one could calculate a trend surface 
for 2012 and 2020 each, using only the data available 
for those two years. The fewer available data would 
result in more uncertainty in the trend surface, and a 
larger total variance of the prediction for either year. 
The use of data through time improves both aspects 
of the water level prediction, the trend surface and the 
kriging results.

Cross-validation histograms and scatterplots 
show the clear improvement of spatiotemporal 
kriging over spatial kriging alone (Figures 19 and 20). 
The latter shows significant bias, under-predicting 
the high values and over predicting the low values 
(Figures 19a and 20a). The spatiotemporal cross-
validation results more closely follow the 1-to-1 line 
and show less spread about that line (Figures 19c and 
20c). Similar results were observed by Ruybal et al. 
(2019). Histograms of the cross-validation residuals 
show a narrower peak and less overall spread (Figures 
19b and d, Figures 20b and d). The cross-validation 
statistics also confirm the improvement in prediction 
using spatiotemporal methods (Table 2).
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Figure 9. Maps of water-level elevation for nine time instances from 1980 to 2020. Contour interval is 50 ft from 3,800 ft to 4,800 ft, and 200 ft from 5,000 to 9,000 ft. Gray shaded areas are lithified Cenozoic sedimentary rocks and older sedimentary, igneous, and metamorphic rocks, undivided.
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Figure 9, continued. Maps of water-level elevation for nine time instances from 1980 to 2020. Contour interval is 50 ft from 3,800 ft to 4,800 ft, and 200 ft from 5,000 to 9,000 ft. Gray shaded areas are lithified Cenozoic sedimentary rocks and older sedimentary, igneous, and metamorphic rocks, undivided.
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Figure 10. Maps of water-level elevation for nine time instances from 1980 to 2020 with flow direction vectors shown in blue.  Gray shaded areas are lithified Cenozoic sedimentary rocks and older sedimentary, igneous, and metamorphic rocks , undivided. Labels of towns are only shown in the first map for clarity
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Figure 10, continued. Maps of water-level elevation for nine time instances from 1980 to 2020 with flow direction vectors shown in blue.  Gray shaded areas are lithified Cenozoic sedimentary rocks and older sedimentary, igneous, and metamorphic rocks , undivided. Labels of towns are only shown in the first map for clarity
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Figure 11. Maps of water-level elevation for nine time instances from 1980 to 2020 focused on the Deming–Columbus region. Major contours are 100 foot intervals. Minor contours are 25 foot intervals.  Gray shaded areas are lithified Cenozoic sedimentary rocks and older sedimentary, igneous, and metamorphic rocks, undivided.
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Figure 11, continued. Maps of water–level elevation for nine time instances from 1980 to 2020 focused on the Deming–Columbus region. Major contours are 100 foot intervals. Minor contours are 25 foot intervals. Gray shaded areas are lithified Cenozoic sedimentary rocks and older sedimentary, igneous, and metamorphic rocks , undivided.
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Figure 12b. Maps of the spatiotemporal kriging standard error, which varies for each time instance of prediction. Wells with measurement in the year of each map are shown as crosses. Wells with more than one measurement are shown as a cross in a circle. The same color scale applies to each map.

Figure 12a. Map of the standard error from the regional trend model. This is constant for each 
time instance of prediction. 
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Figure 12b, continued. Maps of the spatiotemporal kriging standard error, which varies for each time instance of prediction. Wells with measurement in the year of each map are shown as crosses. Wells with more than one measurement are shown as a cross in a circle. The same color scale applies to each map.
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Figure 13. Change in water levels over five-year time periods. Note different color scale on each map. Gray shaded areas are lithified Cenozoic sedimentary rocks and older sedimentary, igneous, and metamorphic rocks, undivided.
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Figure 13, continued. Change in water levels over five-year time periods. Note different color scale on each map. Gray shaded areas are lithified Cenozoic sedimentary rocks and older sedimentary, igneous, and meta-
morphic rocks, undivided.
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Figure 14. Net water-level change over the time period 1980–2020. Pink areas are where the regional trend model is not valid, resulting in predicted 
water-levels above ground level.
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Figure 15. Representative hydrographs with measured (black) and predicted (red) water table elevations. “td” is total depth of well in feet. Error 
bars indicate 95% confidence intervals from regional trend prediction (small bar) and regional trend prediction plus spatiotemporal kriging interpola-
tion (large bar). Note the different vertical scales on the hydrographs. Locations shown on map.
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b) Water-level elevation predicted for 2012 using spatiotemporal kriging. 

a) Water-level elevation predicted for 2012 using spatial kriging. 

Figure 16 a-b. Pink areas in all four maps are where the regional trend model is not valid, resulting in predicted water-levels above ground level. 
Contour interval is 250 ft, starting at 4000 ft. 
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d) Water-level elevation predicted for 2020 using spatiotemporal kriging.

c) Water-level elevation predicted for 2020 using spatial kriging. 

Figure 16 c-d. Pink areas in all four maps are where the regional trend model is not valid, resulting in predicted water-levels above ground level. 
Contour interval is 250 ft, starting at 4000 ft. 
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Figure 17 a–b. Note the different scales on the two figures. Pink areas are where the regional trend model is not valid, resulting in predicted water-
levels above ground level. 2012 measurements are shown as blcack circles; 2020 measurements are shown as red crosses. 

a) Predicted water-level change from 2012 to 2020 using spatial kriging. 

–

b) Predicted water-level change from 2012 to 2020 using spatiotemporal kriging.

–
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Figure 18 a–b. The same scale is used for the four maps. Wells for the time instance of prediction are shown as crosses; wells with more than one 
measurement are shown as crosses in a circle. 

a) Standard error of 2012 spatial kriging prediction.

b) Standard error of 2020 spatial kriging prediction.
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d) Standard error of 2020 spatiotemporal kriging prediction. 

Figure 18 c–d. The same scale is used for the four maps. Wells for the time instance of prediction are shown as crosses; wells with more than one 
measurement are shown as crosses in a circle. 

c) Standard error of 2012 spatiotemporal kriging prediction. 
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Figure 19. Scatterplots and histograms comparing cross-validation results for spatial and spatiotemporal kriging for 2012. 1-to-1 line shown in black on scatter plots. 
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Figure 20. Scatterplots and histograms comparing cross-validation results for spatial and spatiotemporal kriging for 2020. 1-to-1 line shown in black on scatter plots.
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Figure 21. Comparison of outlier water-levels to regional trends, see text for discussion. Water levels from: a) Three deep wells south of Tyrone; 
b) Seven shallow wells south of Tyrone; c) Four wells north of Hermanas; and d) Six wells between Cooke’s Range and the Goodsight Mountains. 
e) Colored circles show the locations of the wells in a-d. See Figure 2 for explanation of geology.
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Figure 22. Annual precipitation in inches from 1964 to 2019 at four stations in the Mimbres Basin. Missing data points are years with incomplete 
records. 
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Figure 23. a) Estimates of irrigated acreage in the Mimbres Basin b) Estimates of groundwater withdrawals and depletions for irrigation in the 
Mimbres Basin. See text for sources of these data. 

a)

b)
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D I S C U S S I O N
Outlier Water-levels and Wells

The paired criteria of high standardized residual (> 2) 
and Cook’s distance > 4/n, where n is the number of 
data, was used to identify outlier measurements not 
adequately represented by the regional trend model. 
This criteria resulted in 144 of 3,376 water-level 
measurements being classified as outliers, which are 
shown in Figures 4 and 6. Most of the outlier data 
are from wells near the perimeter of the study area, 
and 21 of the 46 wells are located in older lithified 
Cenozoic sedimentary units, or older bedrock, rather 
than basin-fill sediments. It is likely these well are not 
completed in basin-fill sediments.

Many of the outlier data are clearly off of the 
regional trends of water-level elevation vs. land 
surface elevation and northing (Figure 21). Three 
wells south of Tyrone are located in bedrock, are 
340 to 555 feet deep and plot below the regional 
water-level versus land-surface trend. They are likely 
completed in a fractured bedrock aquifer (Figure 
21a). Seven wells south of Tyrone in the southeastern 
Big Burro Mountains are less than 100 feet deep 
and have water levels above the regional water-level 
vs. northing trend. They are also likely completed 
in fractured bedrock and/or a local perched aquifer 
(Figure 21b). Four wells northwest of Hermanas and 
one in the Tres Hermanas Mountains are located in 
or near bedrock uplands and plot above the regional 
water-level elevation vs. northing trend. These are 
likely completed in fractured bedrock or local perched 
aquifers (Figure 21c). Six wells between Cooke’s 
Range and the Goodsight Mountains are completed 
in basin fill but have water-levels below the regional 
water-level elevation vs. northing trend (Figure 21d). 
However, overall, the third-order polynomial function 
of the first two principal components of easting, 
northing, and elevation adequately describes the 
regional water-level trend for the majority of the wells 
completed in basin fill.	

Water-level Maps and Patterns of Water-
level Change

It is very important when interpreting the water-level 
maps and changes in water-levels over time to consider 

the patterns of kriging variance (or standard error 
as shown here), as lower values indicates increased 
reliability of the predictions (Figure 12). The spatial 
patterns of standard error reflect the spatial well 
density and the number of measurements at each well; 
values are lowest (precision is highest) in areas with 
many wells and many measurements over time, and 
vice- versa.

The regional pattern of water-level elevations across 
the whole Mimbres Basin appears to change little over 
the time period of the study, 1980 to 2020 (Figure 9). 
The flow direction vectors indicate regional flow to 
the south and southeast away from recharge areas in 
the mountains in the northern part of the basin (Figure 
10). Closed depressions in the water table surface are 
evident as areas of converging vectors representing 
anthropogenic discharge though groundwater pumping 
south of Deming and east of Columbus. Water-level 
declines are notable in the region from Deming south 
to Columbus when viewed at larger scale (Figure 11). 
The maps of water-level change over the eight five-year 
periods reveal large spatial and temporal variations 
(Figure 13), which are summed in the net water-level 
change map (Figure 14). Many of these changes can 
be related to patterns of land use and groundwater 
recharge and discharge. Net water-level declines of up 
to 80 feet dominate the region from Deming south to 
Columbus and Hermanas (Figure 14). These are due to 
groundwater pumping for irrigated agriculture. 

The focused water-level maps (Figure 11) and 
individual change maps (Figure 13) show how the loci 
in space and time of water-level declines have varied 
in this agricultural region. Possible influences on these 
trends are changes in precipitation, land use, and onset 
and cessation of groundwater pumping. Precipitation 
records from four stations in the Mimbres Basin 
since 1964 are shown in Figure 22 (Western Regional 
Climate Center, 2021). Estimates of irrigated acreage 
and groundwater withdrawals and depletions in the 
Mimbres Basin are shown in Figure 23. These data 
were compiled from Sorenson (1977), Sorenson (1982), 
Wilson (1986), Wilson (1992), Wilson and Lucero 
(1997), Wilson et al. (2003), Longworth et al. (2008), 
Longworth et al. (2013), and Magnuson et al. (2019). 
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Withdrawal is the quantity of water taken from a 
ground or surface water source.  Depletion is that part 
of a withdrawal that has been evaporated, transpired, 
incorporated into crops or products, consumed by 
man or livestock, or otherwise removed from the water 
environment. It includes that portion of ground water 
recharge resulting from seepage or deep percolation (in 
connection with a water use) that is not economically 
recoverable in a reasonable number of years, or is not 
usable (Wilson, 1992). The NMOSE stopped calculat-
ing depletions after 2003. Depletions for years after 
that shown in Figure 23 were estimated by using the 
average ratio of depletions to withdrawals from 1975 
to 2000 of 60%. The NMOSE reported depletions but 
not withdrawals for 1969 and 1975. Withdrawals for 
these two years were estimated from average ratios 
of irrigated acreage to withdrawals, and depletions to 
withdrawals, for years in which all three types of data 
were available.

From 1980 to 2005 the closed depression in the 
water table south of Deming defined by the 4100 
foot contour expanded in area and depth, spreading 
to the southwest and southeast. After 2005 it became 
deeper but not much larger. Conversely, the closed 
depression northeast of Columbus defined by the 3900 
foot contour decreased in size from 1980 to 2005, 
but then expanded greatly after 2005. The areas of 
net water-level rise west of Red Mountain, south of 
Akela, and northeast of Columbus all likely represent 
(partial) recovery of water levels and flattening of the 
water table after abandonment of extensive irrigation 
(Figure 14). Figure 23 shows that irrigated acreage, 
and groundwater withdrawals and depletions have 
declined since the 1970s across the Mimbres Basin as a 
whole, but have begun to increase in the last ten years. 
Delineating spatial and temporal trends of irrigated 
acreage within the basin using remote sensing imagery 
is a topic of ongoing research at the NMBGMR, so 
future work may be able to more accurately relate the 
patterns of water-level change seen in these maps with 
irrigation patterns. 

The areas of net water-level rise include two centers 
at Whitewater and Faywood (Figure 14). These are due 
to infiltration of streamflow in San Vicente Arroyo and 
emergence of deep- sourced water at springs around 
Faywood, including Faywood Hot Springs (Hawley et 
al., 2000). The springs at Faywood and associated net 
water-level rise are adjacent to the Silver City fault zone 
on the southwest side of the Pinos Altos Range that 
separates the range from the Mangas Trench or graben 
to the southwest (Figures 2 and 14; Hawley et al., 
2000; Heywood, 2002). Although the net water-level 
change since 1980 is positive (Figure 14), the individual 

water-level change maps show that both of these areas 
have experienced water-level declines from 2010 – 2015 
and 2015 - 2020 (Figure 13). The precipitation trend in 
the Mimbres Basin (Figure 22) shows a steady decline 
since the 1980s. This long-term precipitation trend may 
be negatively affecting stream flow and spring discharge, 
causing the water-level declines.  

The reach of the Mimbres River south from where it 
emerges from the bedrock constriction east of Faywood 
to where it turns to the east, south of Black Mountain, 
is a region of net water-level rise (Figures 2 and Figure 
14). This is the reach where flows in the river usually 
completely infiltrates; flow rarely extends to Deming. 
Groundwater-levels have both risen and fallen in this 
reach since 1980. This is probably due to variation in 
flow of the Mimbres River.

There appears to be minimal structural control of 
the patterns of water-level change (Figure 14). Faults 
between Columbus and the West Potrillo Mountains 
approximately bound areas of water-level rise and 
decline. The Treasure Mountain Fault between Deming 
and Cooke’s Range bounds the Mangas Trench on the 
northeast, separating basin-fill sediments from bedrock 
of the mountains, and also approximately bounds areas 
of net water-level rise and decline. The other mapped 
faults show little relation to the patterns of water level 
change, suggesting there is little structural compart-
mentalization of the basin fill aquifer at the depths 
investigated by the wells in this study.

Water-level predictions and patterns of water-
level change are not reliable northeast of Faywood, 
Whitewater, and Silver City, due to the poor performance 
of the regional trend surface there because of the large 
topographic relief, and the general paucity of data. 
The most obvious manifestation are the areas shown 
in pink in the water level surfaces and change maps in 
this region, which are grid cells where the water level 
is predicted to be above the ground surface (Figures 
14, 16, and 17). These areas are not indicated on the 
earlier figures for clarity, but the pattern is present for 
all of the data. The net water-level rise north of Silver 
City is not considered reliable. Net water-level rises in 
Cooke’s Range and to the northeast are of somewhat 
questionable validity, as this is an area of generally high 
standard error (Figure 12). The same can be said for 
water-level changes along the eastern margin of the study 
area; although the regional trend model fits well here, the 
overall standard error is high.

The area of net water-level rise northwest of Akela 
appears to be largely due to one measurement in well 
NM-05950, on 2/17/2020 (Figures 13, 14, and 15). 
This was a high-quality measurement in that it was 
repeatable, but the last measurement at this well was in 
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2002. Overall, there are few wells and data in this area. 
The sequential water level change maps (Figure 13) 
faithfully reproduce the small water-level changes in 
this well from 1982 to 2002 (Figure 15), yet they also 
reflect that fact that kriging is a smooth interpolator 
and that one data point can be highly influential in 
regions where data is sparse, regardless of the interpo-
lation method used.

The hydrographs in Figure 15 illustrates the variety 
of water level trends across the study area, with rises 
up to 83 feet (well NM-05950) and declines up to 84 
feet (well NM-02018). Measured water levels are plot-
ted with predicted values produced by spatio-temporal 
kriging. The latter includes two error bars, the smaller 
indicating the standard error from the regional trend 
model and the larger indicating the total standard error 
(regional trend plus spatiotemporal kriging). Note that 
the former is constant for each well while the latter 
varies though time. As in purely spatial kriging, the 
standard error estimates are independent of the actual 
data values, and are purely a function of the pattern 
of the measurements in space-time (or space alone in 
purely spatial kriging; Isaaks and Srivastava, 1989).

The total standard error around each predicted 
water-level elevation on the hydrographs is the 95% 
confidence interval about that value, or the 95% con-
fidence about the mean. The meaning of this is rather 
subtle. The entire water-level dataset used here may 
be viewed as a sample from a (normal or Gaussian) 
distribution of water levels spread over space and time. 
If the measurements in space and time that constitute 
the dataset could be repeated 100 times, and the trend 
model and spatiotemporal kriging were recalculated 
for each dataset repetition, then we would expect the 
mean value of all 100 predictions at each well point at 
the chosen prediction times to fall within the error bars 
95 times, or 95% of the time (Ross, 2009, p. 377).

The changes in water levels seen in the hydro-
graphs match the changes in water levels seen on the 
maps through time (Figures 13 and 15). For wells with 
no recent measurements, the width of the confidence 
intervals increases as one moves further away in 
time from the last measurement (Figure 15; wells 
NM-02209, NM-02466, NM-02067), and is lower 
in intervals with abundant data (Figure 15; the early 
periods of wells NM-02209, NM-02246, NM-02018). 
This is a useful illustration of the advantage of the 
spatiotemporal method and can help clarify under-
standing about the reliability of patterns of water-level 
change through time. For wells with very few measure-
ments (Figure 15; well NM-04102), the spatiotemporal 
kriging method allows a systematic “filling out” of 
the time series using data from other wells, and with a 

lower standard error than can be achieved using only 
spatial kriging at any given time instance. A possible 
application of this is to generate realistic, data-based, 
time series for water levels at wells, which could then 
be used for history-matching in calibrating groundwa-
ter flow models.

Spatial vs. Spatiotemporal Kriging

Rawling and Rinehart (2018) and Rinehart et al. 
(2016) used extensive space-time datasets of water-
level data to assess usable aquifer lifetimes and calcu-
late storage changes over time periods of fifty years. 
In both studies, median water levels were calculated 
for each well for each decade, then spatial kriging was 
used to interpolate median water-level surfaces. The 
approach is straightforward and produced reliable 
and useful results in both studies, yet the information 
contained in the temporal correlation of water-levels 
is lost by using median water-levels at each well. In 
addition, at any given decade for which spatial kriging 
was performed, the extent of the interpolation was 
limited to regions within the correlation length (the 
range) around each well, which in some cases results 
in discontinuous prediction maps (Rinehart et al., 
2016). This is significant as groundwater measurement 
networks are rarely spatially consistent through time. 
One can then only present a lower bound on some 
derivative quantity, for example storage changes, as 
a reliable value cannot be calculated in areas where 
predictions were not made. 

In the spatiotemporal kriging method, predictions 
can be made at times for which there are no data, 
“filling out” the time series as described above (Figure 
15, well NM-4102), and allowing the spatial extent of 
predictions to be larger at any given time. In essence, 
every well with a measurement in the study area 
can contribute some information to prediction of a 
groundwater surface at any time the user chooses. 
Evenly spaced five-year intervals were chosen for this 
study, and Figure 12 shows that for most of the time 
instances very few data were available. The standard 
error is larger in areas and at times with sparse data, 
yet a prediction can be rigorously be made, and one 
can take the standard error into account in interpreta-
tion or further analysis. Figure 12 shows that the 
increase in standard error is not significant in the time 
instances with few data—this is because of the high 
correlation in time of the water-level data in this study. 
Spurious patterns of change that are an artifact of 
changing well networks are greatly reduced using the 
spatiotemporal method (Figure 17, Ruybal et al., 2019).
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C O N C L U S I O N S
This study has extended the long history of water-
level measurements in the Mimbres Basin and used 
the geostatistical method of spatiotemporal kriging 
to create water-level maps every five years from 1980 
until 2020. Changes in water-levels over these five-
year intervals were calculated. Compared to spatial 
kriging, the spatiotemporal approach offers improved 
precision, more detailed maps of water levels and 
water-level changes, predictions at times with no data 
as well as at locations with no data, fewer artifacts 
due to changing well networks over time, and overall 
less uncertainty in predictions.

Several important water-level trends since 
1980 are revealed in the maps. In the areas of most 
abundant groundwater pumping for irrigation, from 
Deming to Columbus, water levels have declined 
up to 84 feet. Water-level declines and expansion of 
cones of depression appear to have slowed south of 
Deming and increased around Columbus in the past 
ten years. Water levels west of Red Mountain, east of 
the Florida Mountains, and northeast of Columbus 
have risen up to 42 feet, presumably as a result of 
declining irrigation in these areas that has resulted 
in flattening of cones of depression. The vicinity of 
Whitewater and Faywood shows net water-level rises 
over the 40 year period, but declines have occurred in 
the past ten years. Water-levels have varied consider-
ably along the reach of the Mimbres River south of 
Faywood, where most of the river’s flow infiltrates.

The spatiotemporal kriging approach is more 
mathematically complex than spatial kriging, very 
demanding of computational resources, and multidi-
mensional space-time datasets with thousands of data 
must be manipulated to implement it. The user must 
be familiar enough with the theory, methodology, 
and potential pitfalls to make informed decisions at 
several points during the analysis that will affect the 
final results. However, the cost in funds and staff-
hours of field studies to gather water-level data has 
always been high and continues to rise. Therefore it 
is prudent to analyze the data collected at such great 
expense with methods that will extract the most 
useful information. The present work builds on the 

recent studies of Ruybal et al. (2019) and Varouchakis 
and Hristopulos (2019) to demonstrate that spatio-
temporal kriging of water- level data is superior to 
spatial kriging in this regard.

Any hydrogeologic analysis that is dependent 
on water-level maps should benefit from the 
improvements offered by spatiotemporal kriging. 
This includes assessment of water-level changes (as 
demonstrated here), assessment of storage changes, 
calibration of numerical groundwater-flow models, 
and design and updating of water-level monitoring 
networks. 
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A P P E N D I X  1  –  P R I N C I P A L  C O M P O N E N T 
A N A L Y S I S  A N D  R E G I O N A L  T R E N D  M O D E L

Principal component analysis was used to derive a regional water-level trend model. The easting, northing, and 
land surface elevation coordinate of each well (in meters) was transformed into three principal components as 

shown in Table 1, and repeated here:

PC1 PC2 PC3
Easting 0.53 -0.78 -0.34
Northing 0.57 -0.62 0.54
Land Surface Elevation -0.63 -0.09 -0.77
Standard Deviation 1.53 0.73 0.33
Proportion of Variance 0.78 0.18 0.04
Cumulative Proportion 0.78 0.96 1.00

The three coordinates were centered and standardized prior to the analysis. The three principal components 
are uncorrelated (geometrically orthogonal) and are linear combinations of the original data, where each 
coordinate is weighted by its loading on each component, e.g. 

​

The first two components explain 96% of the variation in the original data. These two components were 
combined in a third order polynomial function to derive a regional trend model. The function was fit to all of 
the water-level elevation data for each well, regardless of time. Ordinary least-squares fitting was implemented in 
R (R Core Team, 2018) to optimize the model. The resulting regional trend model is of the form:

											         
Where PC1 = x and PC2 = y. The coefficients are shown in Table A1.2.

coefficient value standard error t-value Pr(>|t|)
ɑ1 1,282.97 0.53 2431.93 ~ 0
ɑ2 -63.88 0.41 -157.58 ~ 0
ɑ3 -18.30 0.91 -20.18 1.47e-85
ɑ4 10.64 0.22 49.45 ~ 0
ɑ5 9.27 0.52 17.75 1.73e-67
ɑ6 628 0.54 11.55 2.69e-30
ɑ7 0.49 0.053 9.07 1.95e-19
ɑ8 1.20 0.18 6.78 1.43e-11
ɑ9 -2.82 0.33 -8.42 5.51e-17
ɑ10 -2.32 0 -6.15 8.47e-10

Multitude r2 0.99 Adjusted r2 0.99

Table A1.2. Coefficients and statistics of the regional trend model.

Table A1.1. Principal component analysis loadings.

Evaluation of water-level trends in the Mimbres Basin…v4 
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   𝑍𝑍(𝑠𝑠, 𝑡𝑡) = 𝑚𝑚(𝑠𝑠, 𝑡𝑡) + 𝜀𝜀(𝑠𝑠, 𝑡𝑡),      (1) 2 

 3 

 𝛾𝛾(ℎ, 𝑢𝑢) = 1
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𝛾𝛾𝑆𝑆𝑆𝑆(𝑠𝑠, 𝑡𝑡) =  𝛾𝛾𝑆𝑆(ℎ) + 𝛾𝛾𝑇𝑇(𝑢𝑢) + 𝛾𝛾𝐽𝐽 (√ℎ2 + (𝜅𝜅 ∙ 𝑢𝑢)2). (3) 6 

  7 

The best fitting sum-metric model is shown in Figure 8 and is given by: 8 

 𝛾𝛾𝑆𝑆(ℎ)(Circular) =

{ 
 
  𝜎𝜎𝑆𝑆2 (1 −

2
𝜋𝜋 cos

−1 ( ℎ𝑎𝑎𝑆𝑆) +
2ℎ
𝜋𝜋𝜋𝜋 √1 −

ℎ2
𝑎𝑎𝑆𝑆2
) + 𝜎𝜎𝑛𝑛𝑛𝑛2 , 0 < ℎ ≤ 𝑎𝑎𝑆𝑆

𝜎𝜎𝑆𝑆2  + 𝜎𝜎𝑛𝑛𝑛𝑛2 , ℎ > 𝑎𝑎𝑆𝑆
0, ℎ = 0

, (4) 9 

 𝛾𝛾𝑇𝑇(𝑢𝑢)(Nugget) =  𝜎𝜎𝑛𝑛𝑛𝑛2 (1 − 𝛿𝛿(ℎ)),  (5) 10 

and 11 

 𝛾𝛾𝐽𝐽(ℎ, 𝑢𝑢)(Exponential) = {
𝜎𝜎𝐽𝐽2 (1 − exp (−

√ℎ2+(𝜅𝜅∙𝑢𝑢)2
𝑎𝑎𝐽𝐽

)) + 𝜎𝜎𝑛𝑛𝑛𝑛2 , 0 < √ℎ2 + (𝜅𝜅 ∙ 𝑢𝑢)2

0, √ℎ2 + (𝜅𝜅 ∙ 𝑢𝑢)2 = 0
. (6) 12 

where 𝜎𝜎𝑆𝑆,𝐽𝐽2  and 𝑎𝑎𝑆𝑆,𝐽𝐽are the variance and range of the spatial and joint components of the sum-13 

metric variogram, 𝜎𝜎𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛2 is the nugget variance, and 𝛿𝛿(ℎ)  is the Kronecker delta, which equals 14 

1 when h = 0 and 0 otherwise. The nugget variance is present in all three components, but has 15 

different magnitudes for each, and is the sum of spatio-temporal variation in the data at ranges 16 

smaller than the smallest lag distance and measurement errors (Cressie and Wikle, 2011).  17 

 18 

 𝑃𝑃𝑃𝑃1 = 0.53 × 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 0.57 × 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑖𝑖𝑖𝑖𝑔𝑔 − 0.63 × 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. (A.1) 

 19 

 20 
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 𝑎𝑎1 + 𝑎𝑎2𝑥𝑥 + 𝑎𝑎3𝑦𝑦 +  𝑎𝑎4𝑥𝑥2 + 𝑎𝑎5𝑥𝑥𝑥𝑥 +  𝑎𝑎6𝑦𝑦2 + 𝑎𝑎7𝑥𝑥3 + 𝑎𝑎8𝑥𝑥2𝑦𝑦 + 𝑎𝑎9𝑥𝑥𝑦𝑦2 + 𝑎𝑎10𝑦𝑦3, (A.2) 

 21 

 22 
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The standard errors are small relative to the coefficient values. The t-values are a measure of how far the 
coefficient estimates are from zero, in units of standard deviations. Larger numbers here are better. The last 
column (Pr(>|t|)) indicates the probability that the relationship between the term of the model and the predicted 
variable could occur by chance. All of the probabilities are vanishingly small, indicating that all of the terms are 
statistically significant. The multiple r2 indicates the proportion of variance in the data explained by the model. 
The adjusted r2 does the same, but accounts for the number of variables in the model. It is preferred when there 
are many variables in a multiple regression.

The r2 values indicate that globally, 99% of the variance in the water-level elevation data is explained by the 
model. This might suggest that the model is sufficient to explain the water level variations across the study area 
and that spatiotemporal kriging of the trend model residuals is superfluous. This is not the case as illustrated in 
Figure A1.1. The regional trend prediction at any well is constant through time, and the spatiotemporal kriging 
accounts for the temporal fluctuations in the water level.

Ordinary least squares optimization of the regional trend model was used in this study. Ordinary least 
squares assumes that the residuals are independent and normally distributed (Schuenemeyer and Drew, 2011). 
The regional trend predictions were subtracted from the data values and the residuals were then interpolated 
with spatiotemporal kriging. This procedure is straightforward and commonly used with purely spatial krig-
ing under the general name “regression kriging” (Hengl et al., 2003, 2007) The total variance of the resulting 
prediction, which is the sum of the separately calculated variance of the trend model prediction plus the kriging 
variance (spatial or spatiotemporal) is equal to the universal kriging variance, in which the regional trend model 
and the kriging weights are calculated simultaneously (Hengl et al., 2003, 2004). 

Figure A1.1. Example hydrograph showing regional trend model prediction at the well point, measured water levels, and spatiotemporal kriging 
prediction.
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It is known that using ordinary least squares optimization to derive the regional trend model is not ideal 
for several reasons (Webster and Oliver, 2007). The resulting model does not yield minimum variance estimates 
unless the sample sites are selected randomly (although one could argue that the well locations in this study 
are essentially random samples of water levels in the aquifer, at least in space). The variogram calculated from 
the trend model residuals is biased because the residuals are spatially correlated and are nonlinearly dependent 
on the trend model parameters, which are themselves estimated from the same data and have errors. However, 
somewhat fortunately, the bias increases with lag distance in the variogram and the shorter spatial (and tempo-
ral in this study) lags are most important in the kriging interpolation. 

Dealing with this issue rigorously is difficult and entails a significant increase in mathematical and com-
putational complexity (Hengl et al., 2007; Lark and Webster, 2006; Webster and Oliver, 2007). Ordinary and 
generalized least squares optimization are used to estimate the regional trend, with the modelled covariance 
structure of the residuals (i.e., the variogram) from the former used as an input in the latter procedure. Iteration 
is usually required until the generalized least squares model parameters stabilize. Lark and Webster (2006) used 
the residual maximum likelihood method to estimate the regional trend of a geomorphic surface and it’s vario-
gram of residuals and showed variograms that were “substantially different” from previous work that employed 
regression kriging using ordinary least squares. However, in the end, their estimation of the regional trend and 
residual variation did not differ notably from previous work, probably because of the importance of short lags 
in the variogram (Lark and Webster,2006). Hengl et al. (2007, p. 1305) commented that the covariance structure 
of residuals from a regional trend determined by generalized least squares “in practice…will hardly differ from 
the covariance structure of the ordinary least square residuals”. 

Thus it is not clear that, in general, the extra effort required to address the shortcomings of ordinary least 
squares estimation of the regional trend surface is warranted. The issue was briefly explored here by using the R 
package caret (https://cran.r-project.org/web/packages/caret/vignettes/caret.html) to calculate a generalized linear 
model of the third order polynomial function of the first two principal components. This model only relaxes the 
assumption of independent, normally distributed residuals in fitting the model to the data; it does not address 
spatial correlation of the residuals. The resulting trend model coefficients were identical to those generated by 
ordinary least squares. Further calculations and the spatiotemporal kriging used the regional trend model gener-
ated by ordinary least squares. One may conservatively assume that the results presented in the report contain 
some additional measure of bias and uncertainty beyond that shown, though the effect is likely to be small. 

https://cran.r-project.org/web/packages/caret/vignettes/caret.html
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A P P E N D I X  2  –  C O M P A R I S O N  O F  
S P A T I O T E M P O R A L  V A R I O G R A M  M O D E L S  T O 
T H E  E X P E R I M E N T A L  V A R I O G R A M

As was observed by Ruybal et al. (2019), all classes of spatiotemporal variogram models seem to fit well and 
visually appear to capture basic structure of the experimental variogram. The sum-metric is the best-fitting 

model, based on the optim value of 0.0028 and MSE value of 93 (Table A2.1). optim is the mean of the weighted 
squared deviations between the sample spatiotemporal variogram and the variogram model; ideally it should be 
zero. The weights are based on how many data points fall in each space-time lag bin. MSE is the unweighted sum 
of the mean-squared errors between the sample spatiotemporal variogram and the variogram model.

parameter metric product-sum sum-metric separable simple sum-metric
optim 0.0114 0.0034 0.0028 0.029 0.0030
MSE 115 112 93 128 94.32

Table A2.1 Model-fitting parameters for variogram models. Better values are in bold.

“Leave-one-out” cross-validation was performed for each variogram model fit to the experimental spatio-
temporal variogram. The nmax parameter was set to 50 to minimize computation time; only the nearest 50 
datapoints in terms of spatiotemporal correlation were used in the cross-validation (this was also done for the 
kriging interpolations). The statistics also tended to degrade of the value were set higher. The statistics of the 
cross-validation residuals are shown in Table A2.2. All of the models except the simple sum-metric achieve a best 
value of one of the statistics.

Table A.2.2. Leave-one-out cross-validation statistics of spatiotemporal variogram models. Better values are in bold.
parameter metric product-sum sum-metric separable simple sum-metric

Mean -0.025 -0.05 -0.033 -0.056 -0.033

Mean squared error 11.17 8.35 8.41 8.11 8.27

Correlation between 
observed and 

predicted
0.96 0.97 0.97 0.97 0.97

Correlation between 
predicted and residual -0.31 -0.18 -0.21 -0.168 -0.224

Variance of residuals 11.17 8.35 8.41 8.11 8.27

Skewness -0.78 -1.3 -1.24 -1.37 -1.26

Maximum of residuals 23.3 18.29 17.65 17.86 18.32

Minimum of residuals -38.66 -39.4 -40.1 -40.2 -40.17
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Figure A2.1. Cross-validation residuals (cross validation prediction – trend model residual) plotted against the regional trend model residuals. The 
data cluster about zero across nearly the full range of trend model residuals, illustrating accurate predictions across the range of the data. The curve 
is a local smoothing fit, showing a small bias at the lowest and highest values of the regional trend residual.

Figure A2.2. Cross-validation predictions plotted against the regional trend model residuals, with the line x=y for comparison. The data follow the line 
closely, showing that the sum-metric spatiotemporal model provides accurate predictions across the range of data values. 
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A P P E N D I X  3  –  C O M P A R I S O N  O F  G L O B A L 
A N D  R E G I O N A L  V A R I O G R A M  M O D E L S

Results are presented here for comparison of the global spatiotemporal variogram model as applied to the 
Deming, San Vicente, and Florida hydrogeologic zones (Figure 4), and local models fit to the subset of water-

level data from wells in those zones. Table A3.1 compares the model fitting parameters for the best-fitting model 
to the global data, and the best-fitting model to the data in each zone. Figures A3.1–A3.4 illustrate global experi-
mental variogram and best-fitting model, and the local region experimental variograms and their best-fitting 
models. The global model fits the global sample variogram better than any of the regional models fit the regional 
data. Put another way, the regional models are poorer representations of the regional spatiotemporal correlation 
structures, although all models appear to fit the smallest spatiotemporal lags reasonably well, and these are the 
most important for the kriging interpolation. 

The cross validation statistics in Table A3.2 indicate that the global model, when applied to the data from 
the individual regions, performs better in the Deming and San Vicente zone, and about as well in the Florida 
zone. There is no strong justification for choosing the added complexity of individual regional models over the 
global model, and so the global model was used in the subsequent analysis. 

Table A3.1. Model fitting parameters; smaller is better. 

Global, 
sum-metric

 

Deming, 
sum-metric

San Vicente, 
sum-metric

Florida, 
metric

optim 0.0028 0.0049 0.0065 0.0078
MSE 93 566 5549 683

Table A3.2. Cross-validation statistics for comparison of performance of local and global variogram 
models in each hydrogeologic zone.  

Better values are in bold.                                          Deming    San Vicente        Florida
Global Local Global Local Global Local

Mean -0.0038 0.038 -0.026 -0.038 -0.10 -0.074

Mean squared error 7.47 7.72 7.67 9.09 12.68 11.97

Mean squared  
normalized error 0.99 0.99 0.99 0.99 0.99 0.99

Correlation between 
observed and predicted 0.974 0.974 0.975 0.971 0.958 0.961

Correlation between 
predicted and residual -0.195 -0.242 -0.220 -0.155 -0.245 -0.267

Variance of residuals 7.47 7.72 7.68 9.10 12.68 11.97

Skewness 0.32 0.40 -2.34 -1.39 -1.93 -1.56

Minimum of residuals -17.57 -15.68 -35.76 -33.58 -35.11 -36.12

Maximum of residuals 16.71 17.53 17.65 18.73 13.09 26.94
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Figure A3.1. Global sample spatiotemporal variogram and best-fitting model.

Figure A3.2. Sample spatiotemporal variogram and best-fitting model for the Deming hydrogeologic zone.
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Figure A3.3. Sample spatiotemporal variogram and best-fitting model for the San Vicente hydrogeologic zone.

Figure A3.4. Sample spatiotemporal variogram and best-fitting model for the Florida hydrogeologic zone.



New Mexico Bureau of Geology and Mineral Resources
 

A Research Division of New Mexico Institute of Mining and Technology
 

Socorro, NM 87801
(575) 835-5490 
geoinfo.nmt.edu 


	Executive Summary
	I. Introduction 
	II. Background
	Previous Work
	Regional Geology
	Regional Hydrogeology

	III. Field Methods And Data Review
	Water-level Analysis
	Regional Trend
	Sample and Fitted Variograms
	Spatiotemporal Kriging
	Comparison of Spatial and Spatiotemporal Kriging

	Discussion
	Outlier Water-levels and Wells
	Water-level Maps and Patterns of Water-level Change
	Spatial vs. Spatiotemporal Kriging

	Conclusions
	Acknowledgements
	References
	Appendix 1 – Principal Component Analysis and Regional Trend Model
	Appendix 2 – Comparison of 
spatiotemporal variogram models to the experimental variogram
	Appendix 3 – Comparison of global and regional variogram models
	Appendix 4 – Water level trends in the Mimbres Basin (spreadsheet)


