Availability of Coal Resources in the Fruitland Formation, San Juan Basin, Northwest New Mexico

By

Gretchen K. Hoffman and Glen E. Jones

New Mexico Bureau of Mines and Mineral Resources Open-file Report 438 1998

Availability of Coal Resources in the Fruitland Formation, San Juan Basin, northwest New Mexico By Gretchen K. Hoffman, and Glen E. Jones, New Mexico Bureau of Mines and Mineral Resources

Introduction

Coal is an important part of New Mexico's economy and contributes substantially to New Mexico's Permanent Fund. The state ranked 16th in the nation in coal production (24.07 million st, 1996) and almost two-thirds of this product is used for electrical generation. Coal-fired power plants are close to mine mouths because of the high cost (\$24.66/st, 1996) of New Mexico coal. Coal prices are high because the seams are lenticular, relatively thin (less than 20 ft), and multiple seams are mined. Compared to other western states, in particular Wyoming, New Mexico coal is expensive to mine, which prohibits transporting the product over long distances. Lack of rail transportation also plays a part in limiting markets for New Mexico coal, particularly for the San Juan Basin (SJB) in northwestern New Mexico. Economics dictate transmitting electricity from the SJB to other western and Pacific Coast states rather than shipping coal there.

Approximately 60% of New Mexico's coal production is from the Late Cretaceous Fruitland Formation. This coal-bearing unit has some of the thickest coals mined in the SJB, and they are less discontinuous over short distances than other coal-bearing sequences in the basin. Three of the six mines in New Mexico are operated by BHP Minerals: the San Juan, La Plata and Navajo mines; and produce coal from this formation. The Navajo mine is the 21st largest mine in the nation, producing over 7 million st in 1996. This mine has been operating for 34 years with total output of over 217 million st.

With the economic and geologic factors mentioned above in mind, four quadrangles on the northeast edge of the Bisti field were chosen for this study (Fig. 1). This area along the Fruitland outcrop has economic potential because of its proximity to the existing power plants and for the relative continuity of the coal seams. The southern extent of BHP Minerals Navajo mine is approximately 16

1

miles northwest of the study area and the recently relinquished leases of the Conpaso mine (El Paso Natural Gas Navajo Lease) are immediately west of the study area. Within this area, two small mines, the De-Na-Zin and Gateway, were in production during the 1980s.

Background and purpose

In the continuing effort to estimate better the coal resources available in New Mexico, the New Mexico Bureau of Mines and Mineral Resources (NMBMMR) participated in a one-year study funded by the Department of Energy to reevaluate coal reserves in the SJB, New Mexico. From this study, the updated demonstrated reserve base (DRB) estimate is 11.24 billion short tons (st) of surface and deep coal. This updated total compares with 4.43 billion st in the Energy Information Administration's DRB for all of New Mexico, and 2.81 billion st for the SJB, as of January 1, 1993. These new estimates of "remaining" coal resources include significant adjustments for past production and recovery rates (through 1994). The updated estimates also incorporate analyses of available sulfur, heat, and ash content for characterizing New Mexico's remaining coal resources. Coal quality data (sulfur, ash, and Btu content) are examined along with coal resource data. The preliminary remaining, minable DRB estimate for the Bisti field is 2,040.76 million st of subbituminous low-sulfur coal (Hoffman, 1996a).

This study, funded by the US Geological Survey as part of the Coal Availability Program, looks at a small area (238 sq. mi.) of the westernmost Bisti field. The purpose of this study is to calculate the available resources by coal zone in a small area of the Fruitland Bisti field using the Geographic Information System (GIS) Arc Info. By applying the technological and land use restrictions, a more realistic available resource is obtained. Differences between this study and the DRB include:

- Use of GIS for resource calculations rather than hand calculation of reliability categories and drawing of coal thickness and overburden maps.
- (2) Grouping the Fruitland coals by zones for quality analyses and resource calculations

2

- (3) Recoverability of the available resource is not calculated. Recoverability involves calculating the resource that is economically minable with today's mining techniques. USGS personnel will do this.
- (4) Although coal quality is considered, the available resource is not categorized by quality categories the same way as in the DRB study.

Geologic setting

Fruitland Formation exposures (Fig. 1) within the Bisti field trend southeast from the eastern boundary of the Navajo Indian Reservation, more or less parallel to the Late Cretaceous shoreline (N55°W). The Bisti field is about 35 mi long, and arbitrarily separated from the Star Lake field at the boundary between R9W and R8W. The entire coal field is within San Juan County and on the Toadlena and Chaco Canyon 1:100,000 quadrangles. The project area is at the western edge of the Bisti coal field and is entirely on the Toadlena quadrangle.

The Bisti field lies within the Chaco Slope physiographic area (Fig. 2), in gently dipping strata $(3-5^{\circ}NNE)$. The study area encompasses a four-quadrangle area including Bisti, located on Fig. 2 at the western edge of this field. Significant faulting and high–angle dips are lacking, making surface mining more economical in the Bisti field. Erosion of the Fruitland Formation and overlying Kirtland Formation lithologies result in badlands topography and clinker (naturally burned coal) deposits. Overburden and interburden lithology of the Fruitland coals is largely mudstone, siltstone, and fine–grained friable sandstone.

Coal geology

The Fruitland Formation has four recognizable coal zones in the study area. Exploration projects, such as the El Paso Natural Gas Navajo Lease (Conpaso-Burnham) and the Bisti project by Public Service Co. of New Mexico, defined these four zones. The zones are from top to bottom: Yellow, Blue,

Figure 1. Location map for Bisti study area.

Green, and Red, using El Paso's terminology. In the study area, the average thickness of the coalbearing Fruitland Formation is 102 ft, when the presence or absence of the Yellow zone is not considered. In wells where the Yellow zone is present, the average thickness of the Fruitland is 172 ft. A generalized stratigraphic column (Fig. 3) shows the general relationship of the zones.

Generalized Stratigraphic Column

Figure 3. Generalized stratigraphic column of Fruitland Formation with coal zones in Bisti study area.

Other characteristics of the zones are in the following table:

Zone (no. of data points)	Y	ellow (16	57)	E	Blue (263)	G	reen (28	0)	Red (438)				
(In ft.)	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min		
Coal Seam Thickness (>=2.5 ft)	5.88	19.50	2.50	5.89	28.00	2.50	7.92	30.00	2.50	5.97	21.00	2.50		
Total Coal Thickness in Zone	7.66	29.00	2.50	8.19	30.00	2.50	9.04	40.00	2.50	8.52	45.50	2.50		
Zone Thickness	14.48	205.00	1.00	13.88	106.00	1.00	10.97	84.00	0.60	13.69	78.50	1.00		
Number of Seams in Zone	1	4	1	1	4	1	1	3	1	2	3	1		
Interburden Thickness	14.12	120.00	0.10	10.24	94.00	0.03	5.52	24.00	0.40	7.34	52.00	0		
Included Parting Thickness	0.53	2.00	0	0.95	2.00	0	1.11	2.00	0	0.78	2.70	0		

Table 1. Coal zone characteristics

From Table 1, it is apparent that there is great variability within and between the zones. Zone thickness averages 11 to 14.5 ft. The Red zone averages two seams, but the remaining zones average one seam. Individual seam thickness averages from 6 to 8 ft, with the thickest being in the Green zone. The maximum interburden and zone thickness for the Yellow is misleading. Presumably, there is a zone above the Yellow with a few thin coals, which was not recognized in this study. The lenticularity of these zones is illustrated in cross sections (Fig. 4) along strike (Fig. 5., A-A') and down dip (Fig. 6, 7, - B-B', C-C'). Correlation of seams on these cross sections and for resource calculation is by zone rather than by bed, meaning that one coal does not necessarily represent the same bed in the adjacent section but rather the same zone.

Coal quality

The western Bisti field was considered suitable for the coal availability project in part because of the sulfur quality characteristics that indicated a potential compliance coal resource (0.41-0.60 Lbs of Sulfur/Mbtu, EIA, 1993). Weighted averages of Fruitland coal in the Bisti field (Hoffman, 1996b) are:

	Average	Std. Dev.	No. of Samples
Moisture (%)	13.93	3.33	44
Ash (%)	19.29	5.42	44
Volatile matter (%)	31.13	2.85	44
Fixed carbon (%)	35.60	4.46	44
Sulfur (%)	0.52	0.09	44
Calorific value (Btu/lb)	8754	883	44
Lbs of Sulfur/MBtu	0.61	0.12	48

When the available coal analyses for the study area are weighted by zone within each drill hole, the average sulfur values (Table 2) are within the same range as those from the entire field. However, the number of weighted samples for each zone is quite low therefore, the values are less statistically valid, particularly for the Green zone. The values derived suggest these coals would meet the New Source Performance Standards of the Clean Air Act of 1.2 pounds of sulfur dioxide emissions per million Btu of coal burned. About 0.1% of the total sulfur in these samples is pyritic sulfur, which might be removed by washing. The minimum sulfur values indicate that with blending, these coals could meet compliance standards.

Coals in the study area are nonagglomerating Subbituminous A, with relatively high ash yield, a common characteristic of Fruitland Formation coals. An average of the few oxide analyses available reveal the major constituent of the ash is SiO_2 (58%), followed by AlO_2 (25%), Fe_2O_3 (4%), CaO (3.5%), and Na₂O (1.9%). The remaining oxides are less than 1%.

Zone (no. of Samples)	Y	ellow (2	2)		Blue (24)		Green (9)	Red (26)			
	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	
Moisture (%)	14.88	19.09	10.60	15.19	25.28	9.00	15.99	20.43	12.70	15.91	20.75	12.60	
Ash (%)	21.52	29.80	12.20	17.00	28.50	8.24	15.30	31.40	9.21	18.91	30.80	12.30	
Volatile Matter (%)	29.89	33.40	20.70	30.49	34.70	22.90	32.41	35.40	28.80	30.22	34.30	23.50	
Fixed Carbon (%)	32.77	43.80	23.00	35.67	45.70	28.70	36.24	40.60	25.60	35.02	47.80	26.30	
Sulfur (%)	0.55	0.80	0.35	0.52	0.70	0.35	0.49	0.62	0.40	0.67	0.34	1.80	
Btu/lb	8307	9621	6852	8932	10075	7710	9228	7170	10336	8745	9851	6909	
MMFBtu /lb	10817	11569	8957	10956	11473	9878	11051	11898	10287	10996	10165	11412	
Lbs Sulfur/MM Btu	0.66	0.92	0.46	0.58	0.82	0.35	0.53	0.63	0.45	0.79	2.31	0.36	

Table 2. Weighted Average Analyses by Coal Zone from Fruitland Formation Bisti area.

Available data

The database for this study is a subset of the data collected and entered by the NMBMMR into the National Coal Resource Data System (NCRDS) as part of a long-term (19 years) cooperative grant with the USGS. Several exploration projects in the study area have resulted in a clustered data set (Fig. 4). Many of the drill holes are concentrated in the surface-minable area so less data is available for the deep coal area except where oil and gas logs are available. Other sources of drill hole data are mine plans, coal resource occurrence and coal development potential maps (CROCDP), NMBMMR drilling, and USGS investigations. Additional data were entered into the database after the project had begun in part to help fill in gaps. These data were obtained from the Bureau of Land Management (BLM) offices in Farmington, New Mexico. The additional data were from recently relinquished leases and Preference

Right Lease Applications on Federal lands.

The four quadrangles (and the number of data points) involved in this study are:

Alamo Mesa West: 67 Bisti Trading Post: 101 Tanner Lake: 64 The Pillar 3 NE: 7 TOTAL 238

The surrounding quadrangles with point data are:

Alamo Mesa East: 15 Burnham Trading Post: 75 Carson Trading Post: 48 Moncisco Wash: 64 Newcomb SE: 2 Pretty Rock: 95 The Pillar: 17 **TOTAL** 316

Methodology

Fruitland coals in the Bisti area are subbituminous (Table 2); therefore, resource calculations are based on a minimum thickness of 2.5 ft and 1770 tons/ac ft. The following parameters, which conform to USGS Circular 891 (Wood, et al., 1983), were used to calculate resources for each zone. Because of the lenticularity of the coals, resource calculations are based on total coal (\geq 2.5 ft) within a zone instead of individual seams. Coals that are less than 2.5 ft and above or below coals meeting the thickness criteria and are separated by a parting less than the thickness of the thinner coal are included in the calculation. The following are the resource criteria used in this study:

Thickness (ft):	Depth (ft):	Reliability
2.5-5	15:1 stripping ratio	Measured (1/4 mi)
5-10	0-250	Indicated $(1/4-3/4 \text{ mi})$
10-20	250-500	Inferred (3/4-3 mi)
>20	500-1000	× ,
	>1000	

The reliability categories are limited to measured, indicated and inferred. Because of the lenticularity of these coal beds, the hypothetical category was not used in this study.

Line data for the Pictured Cliffs-Fruitland contact was digitized from USGS maps by O'Sullivan, Mytton, and, Strobell, 1986; O'Sullivan, Scott, and Heller, 1979; and Scott, O'Sullivan, and Mytton, 1979. Additional Fruitland crop line data were digitized from Beaumont, 1998. These line data form a boundary mask between areas of coal and no coal. Data files with elevations for tops of coal zones were gridded in Arc Info and overlain with a grid from the 1:100,000 Toadlena Digital Elevation Model (DEM). From this combined layer, the overburden maps for each zone were generated. The zero depth line for each zone is determined from the overburden layer.

From the original database, files for each zone with latitude, longitude, total thickness, and point identification were created. These files included data from quadrangles surrounding the four-quadrangle study area. By using data from surrounding quadrangles, reliability categories that overlap into the study area were included in the resource calculations. The data files were used to produce coal thickness grids and polygon files for the reliability categories. The reliability polygons were gridded and each cell assigned a thickness from the thickness grid. By overlaying the overburden layer onto the reliability layers, the total area (in m²- converted to ac) for each thickness, depth, and reliability category were determined for the four-quadrangle area. Volumes (ac ft) were calculated using the thickness attribute of the cells, and finally multiplied by 1770 tons/ac ft to result in original resource tonnage (Tables 3-6) for each zone.

Land use restrictions were digitized from the 1:100,000 Toadlena quadrangle Digital Line Grid (DLG). The De-Na-Zin and Gateway mines were digitized from mine plan outlines drawn onto the 1:100,000 quadrangle. The mined-out-area layer was applied to the original resource layers to obtain remaining resources. Technical restriction filters were applied to the remaining resource layers for each zone. Appropriate buffers, as discussed under "Land Use Restrictions", were assigned to the digitized

9

land use restrictions. These restriction layers were consecutively overlain on the combined overburden, reliability, and thickness layers with the mined-out areas and technical restrictions to calculate the resource tonnage removed by these different restrictions (Tables 3-7, Fig. 8).

Factors Affecting Availability of Coal Resources

Previous mining

The De-Na-Zin and Gateway mines, operated by Sunbelt Mining are within the study area (Figs1, 8). These small mines produced 1.8 million tons from 1980 through 1988. These areas are subtracted from the original resources for the 0-250 ft depths and 15:1 stripping ratio to a depth of 250 ft to obtain remaining resources. It is difficult to know what beds/zones were mined at these two operations, but it is assumed that all zones were mined within 250 ft of the surface.

Technical restrictions

Technical parameters that influence the resources of this study are:

1) Coal too close to the surface.

Coal with less than 20 ft of overburden is subtracted from the remaining resource estimate. Coal with less than 20 ft of overburden is removed because SJB coal within this interval is generally weathered or sometimes burned and can not be used for energy production. Most operating mines in the SJB use the greater-than-20-ft depth guideline for calculating mine reserves

2) Coal too thin at depth.

Coal beds 2.5ft to 5 ft thick are not considered minable at depths greater than 250 ft. The original resources are calculated for this depth category but these results are removed under the technical restrictions.

Land use restrictions

Restrictions to mining in the project area are few, but some are significant. The restrictions considered are those listed in the New Mexico Coal Surface Mining Regulations 19 NMAC 8.2. The Bisti Wilderness area is 3,946 ac, entirely within the study area, removing a significant area of surfaceminable coal. A small part of the De-Na-Zin Wilderness area is within the study area. In 1996, the area linking the Bisti and De-Na-Zin Wilderness Areas was officially made a wilderness area. This addition to the Wilderness Area withdrew 16,000 ac from the resource evaluation (Fig. 1). The De-Na-Zin and Hunter washes cut across the study area. These are intermittent streams, but are major washes in the area. These streams are not considered Alluvial Valley Floors because they do not support agriculture. However, during certain times of the year, significant water flows in these washes. A major highway from Farmington, State Highway 371, a few county roads, a pipeline, and powerline transect the eastern side of the area (Fig. 8). These restrictions were digitized from the 1:100,000 Toadlena DLG. The Bisti Trading Post and a few hogans are the only buildings in the area. The buildings were digitized from the 7½' quadrangles. Although archeological sites are within the study area, they would likely be mitigated, and were not considered.

The following is a list of restrictions that were considered for this area. The buffers applied to these restrictions adhere to the New Mexico Coal Surface Mining Regulations 19 NMAC 8.2, which follow the Federal regulations.

Restrictions	Buffer	
County Roads	200 ft	
State Highway 371	200 ft	
Pipelines, Powerlines	100 ft	
Buildings, Public or Private	300 ft	
Wilderness Areas	(entire area)	
Streams	100 ft	

The areas covered by these restrictions along with the mined-out areas and Fruitland outcrop are shown

on Fig. 8.

Results

Coal availability calculations- likely restrictions to mining

The original resources for the Bisti study area are 5.14 billion tons (Table 7). Production at the surface Gateway and De-Na-Zin mines totaled 1.8 million st. Removing the mine plan areas for these two mines from the 0-250 ft-depth category decreased the original resource by 43 million st. Calculating the 15:1 stripping ratio category for the mined area (Table 3-6), for coal within 250 ft of the surface subtracted 35 million st from the original resource. Both of these figures are much larger than the actual production, but as was stated, it is hard to determine the actual coal zones mined in the area.

The technological restrictions, removing near surface coal (0-20 ft) and thin coal (>=2.5-5 ft) at depths greater than 250 ft, removed 693 million st from the total resource. The largest depletion of remaining resources is the Bisti-De-Na-Zin Wilderness Area. This restriction removes 1.25 billion st or 28.5 % from the remaining resource. Of this total, the 1996 addition to the wilderness area removes 1.1 billion st. The wilderness area removes the greatest tonnage from the Green zone, which has on average the thickest seams. The pipeline, powerline, and major roads in the study area remove 77 million st. It is unlikely that State Highway 371 would be mitigated, although some of the county roads might be considered. Fig. 9a-d shows the proportion of coal removed by these restrictions and the available resource for each of the zones.

			Likely restriction	ons to Mining					Restriction	ns with potent	ial for
									mitigation		
Coal	Original	Mined-	Technological	Land Use	Land Use:	Total	Available	%Available	Buildings	Land Use	Total Land
zone	Resources	out areas	Restrictions	Restrictions:	Pipelines,	Restrictions			_	Restrictions:	Use
Name				Wilderness	Powerlines,					Streams	Restriction
				Area	roads						
Yellow	823	10	77	184	15	285	537	65%	3	1	202
Blue	1,199	12	267	215	11	506	693	58%	3	17	247
Green	1,490	6	123	513	22	663	827	55%	4	14	552
Red	1,628	15	226	341	29	611	1,016	62%	5	19	394
Overall	5,139	43	693	1,253	77	2,066	3,073	60%	15	51	1,395

Table 7. Summary of coal resources and available coal, by zone in millions of short tons for the Bisti study area.

Figure 9a-d. Coal resources removed by likely restrictions to mining and available resources

Coal availability calculations- restrictions with potential for mitigation

The restrictions applied to the remaining resource with potential for mitigation are buildings, perhaps with the exception of the Bisti Trading Post, and the drainage areas. Buildings remove 15 million st from the remaining resource. If mining were to take place these buildings, which are Navajo hogans, would be moved and the owners compensated. The De-Na-Zin and Hunter washes remove 51 million st from the remaining resources. These washes are not Alluvial Valley Floors and lack flow except during rainy seasons, consequently mining might not be restricted in the wash areas.

Comparison with other resource studies

The DRB study estimate of 2 billion st for the entire Bisti field is difficult to compare to the available resource for the four-quadrangle area (1.4 billion st). The DRB did not include calculations for inferred reliability, and for depths greater than 1000 ft. For this study, large amounts of point source data were added from BLM files, increasing the accuracy and filling in areas of no data. The impact of the wilderness area to the entire Bisti field was significantly greater for this study in part because the addition between the Bisti and De-Na-Zin Wilderness areas did not exist at the time of the DRB study. Consequently, land use restrictions have a greater influence on the available coal for this study.

Summary

Four coal zones were recognized in the study area. These zones, Yellow, Blue, Green, and Red are highly variable, but the average seam is 6 to 8 ft thick. The Fruitland Formation in the Bisti study area contains high-ash, low-sulfur, Subbituminous A-rank coals. This resource does meet compliance coal standards of less than 0.6 lbs sulfur/million Btu, except for the Red Zone, with blending or washing all these coals potentially could meet this guideline.

Using Arc Info facilitates calculating resources for areas with many restrictions and allows for faster recalculation of resources with new data. Original resources for this study area are 5.14 billion st and are greater than previous studies because the inferred category is included. Significant amounts of point-source data were added, also increasing the resource. Technical restrictions and previous mining removed about 0.7 billion tons from the original resource. The Bisti-De-Na-Zin Wilderness area is the largest land use restriction, removing 28.5% of the remaining resource, about 1.3 billion st. The 1996 addition linking the two wilderness areas is significant, removing 1.1 billion st of the total 1.3 billion st. The 1916 addition linking the two wilderness areas is significant, removing 1.1 billion st of the total 1.3 billion st. The 1916 addition linking the two wilderness areas is significant, removing 1.1 billion st of the total 1.3 billion st. The available resource is 3 billion st for this study area. Of this available resource, 0.7 billion st is within the 15:1 stripping ratio category.

References

- Anderson, O. J., Jones, G. E., Green, G. N., 1997, Geologic Map of New Mexico: U. S. Geological Survey, Open-file report 97-052, scale 1:50,000.
- Beaumont, E. C., 1998, Distribution of near-surface coal deposits in the San Juan Basin, New Mexico: New Mexico Bureau of Mines and Mineral Resources, Resource Map 19, scale 1:250,000.
- Energy Information Administration, 1993, U.S. Coal reserves: An update by heat and sulfur content: Energy Information Administration DOE/EIA–0529(92) 86 p.
- Hoffman, G.K. 1996a, Demonstrated reserve base for coal in New Mexico, modified from final report for cooperative agreement DE-FC0193EI23974: New Mexico Bureau of Mines and Mineral Resources, Open-file report 428, 89 p., 2 appendices.
- Hoffman, G.K., 1996b, Coal resources of New Mexico: New Mexico Bureau of Mines and Mineral Resources, Resource map 20, 22 p. text, 1 sheet, scale 1:1,000,000.
- O'Sullivan, R.B., Mytton, J.W., and, Strobell, J.D., Jr., 1986, Preliminary geologic map of the Tanner Lake quadrangle, San Juan County, New Mexico: U.S. Geological Survey, Miscellaneous Field Studies Maps MF-1864, 2 sheets, scale 1:24,000
- O'Sullivan, R.B., Scott, G. R., and Heller, J. S., 1979, Preliminary geologic map of the Bisti Trading Post quadrangle, New Mexico: U.S. Geological Survey, MF-1075, scale 1:24,000
- Scott, G. R.; O'Sullivan, R. B.; and Mytton, J. W., 1979, Reconnaissance geologic map of the Alamo Mesa West quadrangle, New Mexico: U.S. Geological Survey, MF-1074, scale 1:24,000
- Wood, G.H., Kehn, T. M., Carter, M.D., and Culbertson, W.C., 1983, Coal resource classification system of the U.S. Geological Survey: U.S. Geological Survey, Circular 891, 65 p.

Table 3. Estimated Resources of the Fruitland Formation, Red zone, (Bisti Trading Post, Alamo Mesa West, Tanner Lake, The Pillar 3 NE quadrangles) In Thousands of short tons)

.

.

	in mousant	IS OF SHOLL (U	loscurod					1													
Origanal Mined Out	15:01 0-250 250-500 500-1000 >1000	2.5-5 5 6,795 20,435 6,057 1,715 0	-10 1 55,836 115,360 20,998 0 87	0-20 67,056 83,432 13,687 4,653 115	20 20,975 17,771 13,728 7,958 0	Total 150,662 236,998 54,470 14,326 202	2.5-5 13,638 26,699 26,235 18,461 126	5-10 53,596 101,122 55,274 3,363 5,931	10-20 45,027 62,812 35,216 26,874 13,266	>20 30,079 4,632 90,093 68,745 0	Total 142,340 195,265 206,817 117,443 19,323	2.5-5 4,498 7,707 20,980 103,074 14	5-10 48,917 51,149 51,011 61,568 9,770	10-20 3,715 4,469 5,611 111,452 33,221	>20 4,418 0 63,095 259,707 0	Total 61,548 63,325 140,697 535,800 43,006	2.5-5 24,93 54,84 53,27 123,25 14	10tai 5-10 0 158,350 0 267,631 2 127,282 0 64,931 0 15,788	10-20 115,799 150,714 54,514 142,979 46,602	>20 55,472 22,403 166,916 336,410 0	Total 354,550 495,588 401,985 667,570 62,531 1,627,673 Total
Surface	15:01 0-250	0 0	4,145 6,177	1,860 1,860	0 0	6,006 8,038	478 561	1,883 3,804	2,696 2,733	0 0	5,057 7,098	0 0	0 0	0 0	0 0	0 0	47 56	8 6,029 1 9,981	4,556 4,593	0 0	11,063 15,135
Remaining	15:01 20-250	6,795 20,435	51,691 109,182	65,196 81,572	20,975 17,771	144,657 228,960	13,160 26,138	51,712 97,318	42,331 60,079	30,079 4,632	137,283 188,167	4,498 7,707	48,917 51,149	3,715 4,469	4,418 0	61,548 63,325	24,45 54,27	3 152,321 9 257,650	111,243 146,121	55,472 22,403	343,488 480,452
Restrictions Technologic	al- >20 ft and 15:01 20-250 250-500 500-1000 >1000	250 for 2.5 775 749 6,057 1,715 0	5-5 ft 5,491 5,538 0 0 0	3,062 3,027 0 0 0	0 418 0 0 0	9,328 9,731 6,057 1,715 0	4,547 4,059 26,235 18,461 126	12,972 12,898 0 0 0	6,774 6,202 0 0 0	0 536 0 0 0	24,293 23,695 26,235 18,461 126	2462.07 2,520 20,980 103,074 14	11577.57 12,061 0 0 0	1,435 1,612 0 0 0	0 0 0 0	15,475 16,194 20,980 103,074 14	7,78 7,32 53,27 123,25 14	4 30,040 8 30,497 2 0 0 0 0 0	11,271 10,841 0 0 0	0 954 0 0	49,096 49,620 53,272 123,250 140 275,378
Land-Use Wilderness	15:01 20-250 250-500 500-1000 >1000	65 4,588	3,745 19,387 10,100 0 0	1,766 6,645 7,572 1,221 0	11,933 8,312 13,323 0 0	17,511 38,931 30,994 1,221 0	536 6,758	6,505 24,430 22,424 1,257 0	3,444 9,737 29,026 6,740 0	27,706 1,722 79,969 0 0	38,191 42,646 131,419 7,997 0	0	0 11 2,949 80 0	0 41 2,588 17,622 0	4,418 0 62,210 2,664 0	4,418 51 67,747 20,366 0	60 11,34	2 10,250 6 43,827 0 35,473 0 1,336 0 0	5,211 16,422 39,186 25,584 0	44,057 10,034 155,502 2,664 0	60,120 81,629 230,160 29,584 0
Buildings	15:01 20-250 250-500 500-1000 >1000	0 0	158 425 53 0 0	76 76 0 0 0	0 0 395 0	234 501 53 395 0	96 143	142 398 409 0 96	349 457 35 80 143	0 0 0 0	586 998 444 80 239	28 32	427 395 23 198 0	0 126 0 244 0	0 0 1,299 0	455 552 23 1,742 0	12 17	4 726 5 1,218 0 485 0 198 0 96	425 658 35 324 143	0 0 1,694 0	1,274 2,051 520 2,216 239 5,027
Pipelines, Powerlines, roads	15:01 20-250 250-500 500-1000 >1000	327 724	1,057 1,816 1,104 0 0	827 862 466 301 0	0 0 0 0	2,211 3,402 1,570 301 0	365 690 -	361 568 1,112 244 0	386 421 96 329 129	0 0 0 0	1,112 1,680 1,207 573 129	53 60	3,742 3,756 248 2,901 0	27 27 0 1,956 0	0 0 10,755 0	3,821 3,843 248 15,611 0	74 1,47	5 5,160 4 6,140 0 2,464 0 3,145 0 0	1,239 1,310 561 2,586 129	0 0 10,755 0	7,144 8,924 3,025 16,486 129 28,564
Hydro	15:01 20-250 250-500 500-1000 >1000	566 3,096	3,724 6,556 0 0 0	6,915 7,526 0 0 0	0 0 0 0	11,206 17,178 0 0 0	358 467	614 936 0 0 0	637 710 0 0 0	0 0 0 0	1,609 2,113 0 0 0	. D	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	92 3,56	4 4,338 3 7,492 0 0 0 0 0 0	7,553 8,236 0 0 0	0 0 0 0	12,815 19,291 0 0 0
Available	15:01 20-250 250-500 500-1000 >1000	5,060 11,278 0 0 0	37,517 75,460 9,740 0 87	52,550 63,437 5,650 3,131 115	9,041 9,041 405 7,563 0	104,168 159,217 15,795 10,694 202	7,259 14,020 0 0 0	31,118 58,088 31,329 1,862 5,836	30,741 42,553 6,059 19,725 12,994	2,374 2,374 10,124 68,745 0	71,492 117,034 47,512 90,332 18,829	1,954 5,094 0 0 0	33,172 34,927 47,792 58,389 9,770	2,253 2,664 3,023 91,629 33,221	0 0 885 244,989 0	37,379 42,685 51,700 395,007 42,992	14,27 30,39	3 101,807 3 168,476 0 88,861 0 60,251 0 15,693	85,544 108,653 14,732 114,485 46,330	11,415 11,415 11,415 321,297 0	213,039 318,936 115,008 496,034 62,023 992,000 Total

· ·

92,U

-

Table 4. Estimated Resources of the Fruitland Formation, Green zone, (Bisti Trading Post, Alamo Mesa West, Tanner Lake, The Pillar 3 NE quadrangles)

.

	in Thousand	ds of short to	ns)					استر من من من					Interred					Total			
Original	15-04	2.5-5 5	1easured -10 1	0-20 >	20 1	Total	2.5-5	5-10 ·	10-20	>20	Total	2.5-5	5-10 33.072	10-20	>20	Total	2.5-5 ÷	5-10 73 990	10-20	>20 - 177 400	Total 400.038
	15:01 0-250	6,080 18,847	38,542	12,381	22,300 9,832	58,860 80,516	49,004	56,914	47,907 47,870	28,281	182,069	23,888 51,780	38,181	39,597	1,648	131,205	119,631	133,637	100,761	39,761	393,790
	250-500	1,216	13,459	8,625	16,068	39,368	7,836	60,805	72,938	112,317	253,896	10,604	62,391	59,137	72,388	204,520	19,656 33,704	136,655	140,701 241 920	200,773	497,784 542 291
	500-1000 >1000	466 0	3,625	4,940 119	0	9,031 227	3,434 0	28,968 6,629	33,386 11,491	0	18,119	29,605	8,854	203,594 29,040	2,890	37,905	11	15,590	40,650	2,000	56,251
Mined Ou	t				_											4.550	2.046	20	0	0	2 070
Surface	15:01 0-250	506 699	0 0	0 0	0 122	506 821	982 2,577	32 558	0	0 87	1,014 3,221	1,558 1,885	0	0	28	1,558	5,161	558	0	237	5,956
Remainin	g 15:01 20-250	5,574 18,148	18,098 38,542	12,381 13,294	22,300 9,710	58,353 79,694	13,958 46,427	21,886 56,357	47,907 47,870	111,391 28,194	195,143 178,848	` 24,330 49,895	33,973 38,181	41,452 39,597	43,708 1,620	143,464 129,291	43,862 114,469	73,958 133,079	101,740 100,761	177,400 39,524	396,960 387,834
Restriction	ns hical, 520 fi ar	nd >250 for 3	25-5 ft																		
1001110105	15:01	1,696	2,420	3,112	0	7,227	6,321	9,156	16,796	0	32,272	10324.41	7839.33	11,378	0	29,541	18,341	19,415	31,285	0	69,041
	20-250 250-500	1,566 1 216	2,444 0	3,220	0 D	7,230 1,216	6,627 7,836 ⁻	9,429 0	17,447 0	0	33,503 7,836	10,310 10.604	7,639	10,907 0	0	28,856 10,604	18,504 19,656	19,512	31,573 0	0	19,656
	500-1000	466	0	Ō	Ō	466	3,434	Ō	0	0	3,434	29,805	0	0	0	29,805	33,704	0	0	0	33,704
	>1000	0	0	0	0	0	U	U	U	Ų	U	13	U	U	.U	11		Ū	0	U	192,001
Land-Use Wildemes	s 15:01	115	839	5,799	18,920	25,672	1,508	248	23,994	109,271	135,021	662	0	4,896	43,708	49,266	2,285	1,087	34,688	171,899	209,959
	20-250	858	2,820	6,636	6,330	16,643	7,738	6,515	23,373	26,074	63,701	8,084	0	3,161 59 575	1,620	12,864	16,680 D	9,335 46.429	33,170 140 071	34,023 200 773	93,208 387 272
	250-500 500-1000		6,907 0	6,558 0	10,000	31,533 0		29,424 3,572	72,938 382	112,317	3,954		6,284	19,004	2,890	28,178	0	9,855	19,387	2,890	32,133
	>1000		0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0	0
Buildings	15:01	0	0	0	0	0	Ŭ 140	404 504	358 358	0	761	21	227	228 191	· 0 0	476 504	21 423	630 696	586 549	0	1,237 1.667
	250-250	101	0	ŏ	0	0	140	250	0	0	250	126	32	0	Õ	32	0	281	0	Ō	281
	500-1000 >1000		65 0	0	0	65		200	156 131	0 n	356 237		713 0	970 0	0	1,683 0	0	· 106	1,126 131	0	2,105 237
Diselines	~1000		Ũ	0	J	Ŭ		100	101	Ū	201		•	, -	-						4,290
Powerline	is A Frida	007	000	•	0	6.80	205	44.0	074	0	099	673	2 769	2 768	0	6 200	1 266	3 478	3 043	0	7 786
, roads	15:01 20-250	297 349	372	0	0	589 720	296 481	1,064	347	0	1,892	1,545	3,037	2,936	ŏ	7,519	2,375	4,473	3,283	õ	10,131
	250-500		641	0	0	641		466	0	0	466		237	0 3 600	0	237	0	1,343 5 142	0 5 223	0 Ú	1,343 10 365
	>1000 >1000		0	478	0	4/8		0	14	0	14	•	5,142	3,890 0	0	0	õ	0,142	14	õ	14
																					21,854
Hydro	15:01	345	3,657	1,193	0	5,195	324	2,611	37	0	2,972	0	0	0	0	0	669 2 790	6,268	1,230	0	8,167 13,702
	20-250 250-500	7,234	5,075 0	1,195	0	7,503	1,000	4,007	35 0	0	0,199	Ū	0	0	0	ő	2,750	0,002	0	Õ	0
	500-1000 >1000		0 0	0 0	0 0	0 0		0 0	0 0	0 0	0 0		0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
Available	15:01	3.121	10.891	2.278	3.381	19,670	5,510	9,050	6,448	2,120	23,129	12,650	23,139	22,182	0	57,971	21,281	43,080	30,908	5,501	100,770
	20-250	13,979	27,831	2,244	3,381	47,436	29,885	34,237	6,310	2,120	72,552	29,833	27,313	22,401	0	79,547	73,697	89,381	30,956	5,501	199,536 89 231
	250-500 500-1000	0	5,912 3,559	67 4,462	0	5,979 8,022	0	30,665 25,196	0 32,092	0	30,665 57,288	0	52,024 219,045	179,630	0	398,675	0	247,800	216,184	0	463,984
	>1000	Ō	108	119	0	227	0	6,522	11,346	0	17,868	0	8,854	29,040	0	37,894	0	15,484	40,505	0	55,989 808,740

08,740 Total

.

.

,	
 Table 5, Estimated Resources of the Fruitland Formation 	on, Blue zone, (Bisti Trading Post, Alamo Mesa West, Tanner Lake, The Pillar 3 NE quadrangles)

Table 5, B	stimated Reso In Thousand	ources of the	e Fruitland I ns) Jeasured	Formation, 8	Blue zone, i	(Bisti T r adıng	Post, Alamo Mesa We	est, Tanner	Lake, The F	Pillar 3 NE o	juadrangles)		oferred					Iotal			
Original	2 15:01 0-250 250-500 500-1000 >1000	2.5-5 5 6,682 17,891 6,620 1,212 0	-10 31,361 52,650 1,228 2,459 0	10-20 79,436 81,353 7,869 0 0	>20 24,095 22,304 1,712 0 0	Total 141,573 174,198 17,429 3,671 0	2.5-5 11,232 30,232 29,890 7,790 0	5-10 38,430 75,836 22,612 15,870 0	10-20 92,005 101,495 43,638 0 0	20 49,987 29,120 20,950 0 0	Total 191,654 236,683 117,089 23,660 0	2.5-5 5,508 6,429 43,333 94,334 7,641	5-10 1 11,501 12,926 55,373 178,281 18,130	10-20 67,979 69,848 16,574 52,289 0	>20 17,514 1,007 47,156 22,546 0	Total 102,502 90,210 162,436 347,451 25,771	2,5-5 23,422 54,551 79,843 103,336 7,641	5-10 81,293 141,412 79,213 196,610 18,130	10-20 239,419 252,696 68,081 52,289 0	20 91,596 52,431 69,818 22,546 0	Total 435,730 501,091 296,955 374,782 25,771 4 202 502 Sublets
Mined Ou Surface	15:01 0-250	5 18	2,749 3,119	1,092 1,030	0 0	3,846 4,167	27 27	3,949 4,441	2,225 2,253	0 0	6,200. 6,721	0	1,274 1,306	85 200	0 0	1,359 1,506	32 44	7,972 8,866	3,402 3,483	0 0	11,406 12,394
Remainin	3 15:01 20-250	6,676 17,873	28,612 49,532	78,344 80,323	24,095 22,304	137,727 170,032	11,206 30,205	34,481 71,395	89,780 99,242	49,987 29,120	185,454 229,962	5,508 6,429	10,227 11,620	67,894 69,648	17,514 1,007	101,143 88,704	23,391 54,507	73,320 132,546	236,017 249,212	91,596 52,431	424,324 488,697
Restriction Technolog	ns ical- >20 ft an 15:01 20-250 250-500 500-1000 >1000	d >250 for 2 1,952 1,828 6,620 1,212 0	2.5-5 ft 3,064 2,974 0 0 0	4,211 4,098 0 0 0	0 0 0 0 0	9,227 8,900 6,620 1,212 0	4,827 4,696 29,690 7,790 0	5,140 5,064 0 0 0	21,196 20,865 0 0 0	0 0 0 0	31,163 30,625 29,890 7,790 0	3646.2 3,653 43,333 94,334 7,641	3357.69 3,416 0 0 0	29,587 29,347 0 0 0	0 0 0 0	36,591 36,416 43,333 94,334 7,641	10,425 10,178 79,843 103,336 7,641	11,562 11,454 0 0 0	54,994 54,309 0 0 0	0 0 0 0	76,981 75,940 79,843 103,336 7,641 343,741 Subtotal
Land-Use Wildernes	15:01 20-250 250-500 500-1000 >1000	446 4,616	6,634 14,217 0 0 0	11,510 11,716 7,128 0 0	979 979 0 0 0	19,569 31,527 7,128 0 0	296 8,268	7,381 19,316 4,434 807 0	29,888 35,090 30,455 0 0	18,426 5,285 13,346 0 0	55,990 67,959 48,234 807 0	0 795	329 1,644 14,422 17,127 0	1,949 4,561 9,142 0 0	6,071 779 10,834 301 0	8,349 7,779 34,398 17,427 0	742 13,679 0 0 0	14,344 35,177 18,856 17,934 0	43,347 51,367 46,724 0 0	25,476 7,043 24,180 301 0	83,909 107,266 89,760 18,235 0
Buildings	15:01 20-250 250-500 500-1000 >1000	0 48	182 324 0 55 0	202 202 0 0 0	0 0 0 0	384 573 0 55 0	0 32	35 239 99 188 0	373 342 0 0 0	0 0 0 0	409 612 99 188 0	0 0	0 200 347 96	143 143 0 462 0	0 0 0 0	143 143 200 809 96	0 80 0 0 0	218 563 299 589 96	719 687 0 462 0	0 0 0 0 0	936 1,329 299 1,051 96 2,775 Subtotal
Pipelines, Powerline: , roads	5 15:01 20-250 250-500 500-1000 >1000	73 377	198 99 19 0 0	736 630 0 0 0	0 0 0 0	1,007 1,106 19 0 0	143 492	860 926 276 0 0	1,053 878 0 0 0	0 0 0 0	2,057 2,296 276 0 0	60 35	809 766 749 3,544 11	2,299 1,351 0 1,181 0	0 0 0 0 0	3,168 2,152 749 4,724 11	276 9D4 0 0 0	1,867 1,791 1,044 3,544 11	4,089 2,859 0 1,181 0	0 0 0 0 0	6,232 5,554 1,044 4,724 11 11,333 Subtotal
Hydro	15:01 20-250 250-500 500-1000 >1000	908 977	5,259 5,255 0 0 0	7,307 7,317 0 0 0	513 513 0 0 0	13,987 14,063 0 0 0	280 381	2,062 2,066 0 0 0	722 722 0 0	0 0 0 0	3,064 3,168 0 0 0	0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1,188 1,358 0 0 0	7,321 7,321 0 0 0	8,029 8,039 0 0 0	513 513 0 0	17,050 17,231 0 0 0
Available	15:01 20-250 250-500 500-1000 >1000	3,298 10,027 0 0 0	13,275 26,663 1,209 2,404 0	54,378 56,360 742 0 0	22,603 20,812 1,712 0 0	93,553 113,862 3,662 2,404 0	5,660 16,337 0 0 0	19,003 43,784 17,803 14,875 0	36,547 41,345 13,183 0 0	31,561 23,835 7,604 0 0	92,771 125,302 38,590 14,875 0	1,802 1,945 0 0 0	5,731 5,793 40,002 157,265 18,024	33,915 34,246 7,432 50,647 0	11,443 228 36,322 22,245 0	52,891 42,213 83,756 230,157 18,024	10,760 28,309 0 0 0	38,009 76,241 59,014 174,543 18,024	124,840 131,952 21,357 50,647 0	65,607 44,875 45,638 22,245 0	239,216 281,377 126,008 247,435 18,024 672,844 Total

Table 6. E	stimated Reso In Thousand	ources of the	e Fruitland กร)	Formation,	Yellow zone	e, (Bistí Tradi	ng Post, Alamo Mes	a West, Tanr	er Lake, The Pills	ar 3 NE	e quadrangles) .									
o			leasured					Indicated					Inferred					Total			
Original	45,04	2.0-0 0 0760	-10 -	20 040	>20	10121	2.5-5	5-10	10-20 >20		Total	2.5-5	5-10	10-20 >2	о т	otal	2.5-5	5-10	10-20 >	20	otal
	0.250	17 694	40,470	30,040	2,407	94,676	10,25	5 57,367	38,555	0	106,179	4,044	22,056	4,931	0	31,032	23,052	124,893	81,533	2,407	231,886
	250 500	17,004	4 671	6 100	2,407	121,904	30,34	92,037	40,192	0	176,375	34,883	51,234	13,567	0	99,685	87,914	202,759	104,943	2,407	398,023
	500-1000	n n	4,071	0,122	0	10,793	29.	2 20,102	19,596	0	46,070	7,101	140,338	0454	0	217,138	7,443	1/3,191	95,368	. 0	276,001
	>1000	ő	0	0	υ Ω	0		, 0 , 0	0	0	Ů	17,509	112,260	2,154	0	131,923	17,509	112,260	2,154	0	131,923
	-1000	Ŭ	Ū	v	Ŭ	Ū		, ,	U	U	U	10,004	U	U	Ų	10,004	10,004	U	U	U	16,604
Mined Ou	t																				822,003 Subiotai
Surface	15:01	375	1 150	1 075	Δ	3 510	83	2 2 2 0 8	1 612	0	4760	200	1 000	0	•	1 457	* 440	4 606	2 500		0.700
Canado	0.250	202	1 112	2 0 2 8	0	3 433	00.	2,000	1,012	Ň	4,700	240	1,220	426	0	1,407	1,443	4,090	3,366	0	9,720
	0.700	202	1,112	2,020	Ū	0,402	00		1,040	0	4,700	225	1,104	120	U	1,040	1,047	4,000	3,011	0	9,740
Remaining	a 16:01	8 377	44 310	36 071	2 407	01 166	0.44	55.050	36 0/3	0	101 /10	2 040	20.020	4 024	^	00 E7E	04 640	400 407	77.045	0.407	000 400
T Containin 1	20-250	17 392	57 576	A1 156	2,407	118 532	24 64	00.544	16 5 16	<u> </u>	101,413	3,010	20,020	4,931	0	29,070	21,010	120,197	11,940	2,407	222,100
	20-200	17,002	51,570	41,100	2,407	110,002	54,01	30,544	40,340	U	171,007	34,000	50,050	13,431	0	90,139	80,007	198,171	101,132	2,407	386,278
Restriction	he						•										•				
Technoloc	ical⊾>20 ft an	d >250 for 2	5-5 ft																		
reonnolog	15-01	2 200 101 2 2 351	5 602	3 712	٥	11 664	4 10	10 202	2 063	0	10 204	1035 40	49.46.00	60	•	6740		00 774	6 70F	•	07.000
	20-250	2,001	6 0 4 1	2 880	0	11,004	4,100	12,323	2,903	0	19,394	1635.49	4846.26	60	0	6,74Z	8,294	22,771	6,735	U O	37,800
	260-200	2,000	0,041	2,000	0	11,209	. 4,01	0 12,409	1,740	0	10,473	1,283	4,324	0	U	5,607	7,970	22,775	4,625	0	35,370
	500-1000	0	0	ŏ	0	ő	25.		0	0	292	7,101 47,500	0	Ű	0	7,101	7,443	U	U	U	7,443
	>1000	Ő	ň	ň	0	0			0	Å	0	17,009	U O	U	0	17,509	17,009	0	U	0	17,509
	-1000	0	0	0	U	0	· ·	, 0	0	U	U	10,004	U	U	0	10,004	16,604	U	U	U	76,604
I and Use																					76,926 Subiolar
Wildemes	15.01	1 846	8 517	3 544	n	13 907	1 513	0 703	7 926	n.	10 166	40	0	4 697	~	4 5 9 4	3 444	40.040	40.000	~	27 667
Thuch too	20.250	6 930	13 776	2 830	ň	23 536	20 72	0,120	6 353	0 0	40.592	40	14 004	4,037	0	4,004	3,411	10,240	10,000	0	37,007
	250-500	0,000	2 /00	2,000	0	5 471	20,72	47 759	4 975	ő	45,000	22,101	11,201	3,362	0	37,000	00,443	47,510	12,700	0	110,719
	500-1000		2,-30	2,001	Ő	0,4/1		17,730	4,210		22,033		32,007	3,289	0	30,175	U	53,135	10,544	0	63,679
	>1000		0	0	0	Ő		0	0	0	0		9,192	0	0	9,192	U	9,192	U	U	9,192
	-1000		U	U	Ų	v		Ū	U	U	Ū		U	U	U	U	U	U	0	U	U
Ruildings	15.01	89	30	131	0	258	2	266	147	0	408	•	10	0	•	10	110	200	070	•	700
Denaingo	20.250	80	81	131	ő	200	<u></u>	200	370	0	420	170	10	0	0	10	110	320	2/3	0	103
	250-500	00	96	101	0	282	·	52	250	ő	410	170	0	0	0	170	257	352	503	0	1,112
	500-1000			0	0	30		00	359	0	412		281	281	0	203	U	430	641	0	1,071
	51000		о л	0	0	0		0	0	, v	0		5//	0	U	5//	U	5//	0	U	5//
	-1000		v	U	U	U		Ū	0	U	U		U	U	U	U	0	0	0	U	
Pipelines																					2,759 Subtotal
Doworline	-																				
roade	15-01	64	716	420	0	1 200	2	0.47	000	~	4 400	447	4 404	•	~	4 554					
110000	20.250	24	1 0 4 1	1 200	0	1,205		94/	202	0	1,102	115	1,435	U	0	1,551	212	3,098	632	0	3,942
	20-200	20	1,241	1,299	0	2,000	2	1,142	369	U	1,752	637	1,729	U 1 T (D	U	2,366	687	4,112	1,889	0	6,687
	200-000		U O	94	0	94		892	504	0	1,397		2,398	1,742	0	4,140	0	3,290	2,340	0	5,630
	>1000		0	0	0	0		U	0	0	0		2,602	U	0	2,602	0	2,602	0	0	2,602
	>1000		U	U	U	0		Ų	Û	U	U		0	O	0	U	0	0	0	0	0
																					14,919 Subtotal
Wideo	15-01	204	60	0	•	040	00/		~	~	047	-	-	-	-	~	-		-	-	050
nyulo	20.250	201	00	0	0	342	290	21	U O	0	317	U	U	0	0	U	5//	81	0	0	658
	20-200	004	00	0	0	202	333	11	U	U	343	U	U	D	0	-0	837	71	0	0	908
	200-000		0	U	0	0		U	0	0	Q		0	0	0	0	0	0	0	0	0
	000-1000		0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0	0
	>1000		0	0	0	Û		0	0	0	0		0	0	0	0	0	0	0	0	Ο,
A	45-0-	0747	00.077	~~~~~~	A 407					_											
Available	15:01	3,/4/	29,377	28,255	2,407	63,785	3,44	31,780	25,711	0	60,932	1,818	14,530	335	0	16,682	9,006	75,687	54,300	2,407	141,400
	20-250	7,482	35,317	34,016	2,407	80,282	9,11(54,208	37,487	0	100,805	9,781	32,766	9,848	0	52,396	26,373	123,351	81,351	2,407	233,482
	250-500	0	2,085	3,048	0	5,133	(9,478	14,457	0	23,936	0	104,77 2	64,338	0	169,109	D	116,335	81,843	0	198,178
	500-1000	U	0	0	0	0	(0	0	0	0	0	99,890	2,154	D	102,044	0	99,890	2,154	0	102,044
	>1000	Û	0	0	0	0	(0 0	0	0	0	0	0	0	0	0	0	0	0	0	0
																					533,705 Total

*

Figure 4. Geologic map of study area with drill hole data and cross sections. Geology from Anderson, Jones, and Green, 1997. Scale 1:300,000

108°

Figure 8. Mined out and land use restrictions in Bisti study area. Scale 1:250,000