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Mapping of this quadrangle was funded by a matching-funds grant from the STATEMAP program
of the National Cooperative Geologic Mapping Act, administered by the U. S. Geological Survey, 

and by the New Mexico Bureau of Geology and Mineral Resources, (Dr. Peter A. Scholle, 
Director and State Geologist, Dr. J. Michael Timmons, Geologic Mapping Program Manager).
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New Mexico Bureau of Geology and Mineral Resources
Open-file Map Series

OF-GM 166
This draft geologic map is preliminary and will undergo revision. It was produced 
from either scans of hand-drafted originals or from digitally drafted original maps
and figures using a wide variety of software, and is currently in cartographic production. 
It is being distributed in this draft form as part of the bureau's Open-file map series
(OFGM), due to high demand for current geologic map data in these areas where 
STATEMAP quadrangles are located, and it is the bureau's policy to disseminate 
geologic data to the public as soon as possible. 

After this map has undergone scientific peer review, editing, and final cartographic
production adhering to bureau map standards, it will be released in our Geologic Map 
(GM) series. This final version will receive a new GM number and will supercede 
this preliminary open-file geologic map. 
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QUATERNARY COLLUVIAL, EOLIAN, AND LANDSLIDE DEPOSITS 

Qct Colluvium and talus (Holocene to Pleistocene) – Hillslope mantles of quartzite and basaltic gravel in a sandy matrix that form downslope of  
high-level grave deposits and on the northern slopes of Sierra Negra.  Loose to weakly consolidated and probably 1-2 m-thick. 

Qc Colluvium over unidentified Tesuque Formation (Holocene to Pleistocene) –  
Tt Clayey-sandy gravel typically located on slopes beneath terrace surfaces that obscures underlying strata.  Not described in detail, but position 

on the footslope strongly suggests that the material is colluvial.  Probably 1-2 m-thick. 

Qc Colluvium over unidentified Abiquiu Formation (Holocene to Pleistocene) –  
Ta Clayey-sandy gravel typically located on slopes beneath terrace surfaces that obscures underlying strata.  Not described in detail, but position 

on the footslope strongly suggests that the material is colluvial.  Probably 1-2 m-thick. 

Qls Landslide deposits (Pleistocene) – Subsided, deformed and internally faulted blocks of basalt and underlying Tesuque Formation on the steep 
slopes of Sierra Negra.  Surface is hummocky.  Landslide is typically elongated in the transport direction (latter shown by arrows on the map).  
Many landslides have steep head-scarps as tall as 100m.  Locally, the landslide deposits are subdivided by relative age based on inset and cross-
cutting relations as follows: 

Qlso – Older landslide deposits 
Qlsm – Middle landslide deposits 
Qlsy – Younger landslide deposits 

These interpreted ages are relative to surrounding landslides and do not imply that the unit is everywhere the same absolute age.  For example, 
whereas Qlsy is younger than an adjoining Qlsm landslide, it may not be the same absolute age as a Qlsy on the other side of Sierra Negra. 

Qlsb Landslide deposits consisting of factured basalt flows (Pleistocene) – Basalt flows similar to unit Tb that have been displaced downward 
and deformed by mass-wasting processes.  Locally extensively fractured as to leave a dense collection of large boulders on the surface. 

Qse Sheetwash and eolian deposits with minor stream-channel alluvium (Holocene to upper Pleistocene) – Accumulations of fine- to medium-
grained sand with variable amounts of gravel, especially where associated with terrace units.  Mostly mapped as a thin deposit capping the Tg3
surface.  In the higher-elevation parts of this surface, the Qse unit preferentially thickens into shallow channels, although it still consists primar-
ily of fine- to medium-grained sand.  This suggests reworking of primarily eolian materials.  Qse also forms a broad hillslope mantle along the 
margin of an unnamed drainage south of Sage Tank.  The apparent abundance of fine sand, albeit admixed with large quantities of quartzite 
gravel, led us to map this latter area as Qse rather than Qct, but either could be defended at this location.  Unit also locally caps the drainage 
divide east of El Rito Creek.  Here, it consists of light yellowish brown, clayey-silty (estimate 1-10% fines) very fine- to very coarse-grained 
sand (mostly very fine to fine sand) that is massive.  Note that this deposit also covers Pleistocene-age terrace deposits, but we chose not to 
depict it in order to better present the terrace deposits, which we felt were more important.  Sediment is moderately consolidated, non-
cemented, and 1-2 m-thick. 

QUATERNARY AND PLIOCENE ALLUVIAL DEPOSITS 

Qayl Younger alluvium occupying the lower topographic positions on valley floors (i.e., modern stream channels and adjoining floodplains)
(upper Holocene to modern) – Generally sandy gravel and gravelly sand.  Contains abundant quartzite cobbles and boulders where drainage 
basins include Ritito Conglomerate, the upper unit of the Plaza lithosome, or Pliocene-Pleistocene terrace deposits; otherwise, pebbles are the 
main gravel-type.  Pebbles are subrounded to subangular and composed mostly of felsic to intermediate volcanic clasts with minor quartzite 
clasts, whereas cobbles and boulders typically consist of subrounded to rounded quartzite with minor felsic to intermediate volcanic clasts.  
Sand is very pale brown to light gray to gray and very fine- to very coarse-grained (mostly medium- to very coarse-grained), and has a compo-
sition consistent with lithologies present upstream in a given drainage.  Bar and swale topography, in addition to recent stream-related channeli-
zation, produce as much as 1-1.5 m of relief.  Probably only 1-2 m-thick in smaller drainages, and 3-5 m-thick under larger drainages.  Unit 
unconformably overlies thicker sand and gravel interval that is late Pleistocene to Holocene in age.  A cuttings log for a well located approxi-
mately 1 km southeast of El Rito suggests that this older interval is approximately 10 m-thick. 

Qayi Younger alluvium occupying intermediate topographic positions on valley floors (upper Holocene) – Sand, silty sand, and gravel occupy-
ing intermediate terrace positions on valley floors.  Unit is probably a cut-and-fill deposit into unit Qayh or a strath cut into Qayh.  1-3 m-thick. 

Qayh Younger alluvium occupying higher topographic positions on valley floors (middle to upper Holocene) – Very pale brown to pink sand, 
silty sand, and gravel occupying the higher terrace positions on the floor of valleys (below the Qtr and Qtt Pleistocene units).  In the headwa-
ters of Arroyo del Perro this unit is a sheetlike, graded, hillslope mantle of gravelly sand that is a mixture of sheetwash and eolian deposits 
similar to Qse.  This unit differs from Qse in its tendency to form a distinct geomorphic surface and to be continuously traceable from the hill-
slope position down into fill terraces in the fingered headwater tributaries of Arroyo del Perro and the main branch of Alamosa Canyon.  The 
alluvial-fill part of the unit is about 3-m thick and consists of a basal sandy gravel layer about 1 m thick overlain by orange and brown sands 
and local clay-silt beds.  Soil development seems to be minimal in the few places where examined in cut-banks.  Along lower El Rito Creek, 
this unit forms a thick fill at least 6 m-thick.  Here, it consists of medium to thick, tabular to broadly lenticular beds of very fine- to medium-
grained sand with subordinate coarse to very coarse sand and minor pebbles.  Minor thin, tabular beds of silty very fine- to fine-grained sand.  
Also minor very thin- to medium, lenticular beds of sandy pebbles with minor cobbles.  Surface of unit typically rises 1-4 m above adjacent 
active channels.  Base of unit lies unconformably over scoured Tesuque or Abiquiu Formations, except in larger drainages where it likely over-
lies an older late Pleistocene-Holocene gravelly sand-sandy gravel.   A cuttings log for a well located approximately 1 km southeast of El Rito 
suggests that this older interval is approximately 10 m-thick. 

Qayu Undivided valley-floor alluvium (Holocene) – Sand, silty sand, and gravel of deposits Qayh, Qayi, and Qayl that were not individually dif-
ferentiated.

Qao Sandy alluvium occupying the highest topographic positions on valley floors (upper Pleistocene to middle Holocene) – Isolated remnants 
of sandy gravel that are 1-3 m higher than adjoining Qayh deposits.  Up to approximately 3-5 m-thick. 

Qaf Younger alluvial fan deposits (Upper Pleistocene to Holocene) – Sandy gravel to gravelly sand to clayey sand alluvium forming fans at the 
mouths of low-order drainages and along terrace risers on the west side of El Rito valley.  Unit appears to grade with the Qtr4 terrace tread.  
Thickness unknown. 

Qgo1 Older alluvial fan deposits (middle Pleistocene) – Sandy gravel to gravelly sand alluvium forming a broad, east-sloping alluvial fan at the 
headwaters of Alamosa Canyon.  Unit appears to grade with the Qtr1 terrace tread, but its eastward slope suggests deposition by small tributary 
streams or slopewash processes rather than deposition by El Rito Creek.  Unit generally less than 5 m-thick. 

Qtr Quaternary terrace deposits associated with El Rito Creek (Pleistocene) – Sandy gravel terrace deposits along El Rito Creek.  The sand is 
pale brown to light gray and mostly medium- to very coarse-grained.  Gravel consists of pebbles and cobbles, with 2-5% boulders, that are 
clast-supported and imbricated.  Boulders and cobbles are subrounded to rounded and contain >80% quartzite, with the remainder being rhyo-
lite, dacite, and andesite clasts.  Volcanic clasts dominate the pebble fraction in the lower terraces, but higher terraces have an approximately 
subequal volcanic : quartzite ratio and the volcanic fraction is dominated by felsic clasts.  In the pebble fraction, there are also minor myloni-
tized quartzite and 1-2% granitoid clasts.  1-5 m-thick, except where noted, with the lower terraces appearing to be thicker than the higher ter-
races.  Terrace surfaces (treads) are well-preserved , typically extensive, and overlain by 1-2 m of Qse.  Note that Qse was not mapped over 
Qtr terraces because doing so obscures the underlying terrace – we think the latter is more important to depict on the map.  Six main 
levels were recognized that are listed below; note that locally some of these levels are subdivided based on slight differences of tread (terrace 
surface) height (e.g., Qtr4a, Qtr4b, and Qtr4c).  The difficulty in correlating these sub-levels contribute to the irregularity of the profile (Figure
3).  Note that the lower terraces (Qtr6 through Qtr3) diverge slightly in a downstream direction (i.e., about 6 m divergence over 7 km. 

Qtr6 – Lower Pleistocene gravel terrace.  Unit is more discontinuous than the aforementioned older units, being found only locally in the 
southern part of the quadrangle and near Placitas.  Strath is 10-14 m above the modern stream.  Probably correlates to the 15-6 m-high terrace 
of Dethier and Reneau (1995, fig. 2), which has an inferred age of 26-44 ka based on radiocarbon dating.  Probably correlates to the Qtc7 ter-
race on the Medanales quadrangle to the south (Koning et al., 2004).  Inferred age of 26-40 ka. 

Qtr5 – Upper lower Pleistocene gravel terrace.  Strath is 12-21 m above the modern stream (mostly 18 m).  Correlates with terrace deposits 
Qtr4and Qtc6 in the Medanales quadrangle to the south, which in turn have an inferred age of 40-70 ka (Koning et al., 2004; Dethier and Re-
neau, 1995; Dethier and McCoy, 1993); we favor an age closer to 70 ka.  This terrace locally is as much as 6 m-thick. 

Qtr4 – Lower middle Pleistocene gravel terrace.  Strath is 21-38 m above the modern stream.  Correlates with terrace deposits Qtr3 and 
Qtc5in the Medanales quadrangle to the south, which have an inferred age of ca. 130 ka (Koning et al., 2004; Dethier and Reneau, 1995; 
Dethier and McCoy, 1993). 

Qtr3 – Middle Pleistocene gravel terrace.  Strath is 43-61 m above the modern stream.  Correlates wih terrace deposit Qtr1 in the Medanales 
quadrangle to the south, which in turn has an interpreted age of 250-400 ka (Koning et al., 2004; Dethier and Reneau, 1995; Dethier and 
McCoy, 1993). 

Qtr2 – Upper middle Pleistocene gravel terrace.  Strath is 73-88 m above the modern stream.  Probably correlates to terrace deposit Qtc4 in 
the Medanales quadrangle to the south, which has an inferred age of 250-400 ka based on amino-acid ratios of fossil gastropods (Dethier and 
McCoy, 1993). 
.
Qtr1 – Upper Pleistocene gravel terrace.  Strath is 98-104 m above the modern stream.  The extensive surface of Qog1 grades into this sur-
face.  Based on its strath height, this terrace is inferred to correlate with terrace deposits containg the Lava Creek B Ash (620 ka; Sarna-
Wojcicki et al., 1987) along the Rio Chama south of Medanales (Koning et al., 2004; Dethier et al., 1990; Dethier and Reneau, 1995).  Its strath 
height is similar to terrace deposits mapped as Qtv5 and Qtoc5 on the La Madera and Ojo Caliente quadrangles to the northeast and east 
(Koning et al., 2007b and 2005).  These deposits were also correlated to the Lava Creek B ash-bearing terrace deposits along the Rio Chama.   

Qtru Quaternary terrace deposit, undifferentiated (middle to upper Pleistocene) – Sandy gravel deposits deposited by El Rito Creek that were 
not correlated to one of the six terraces listed above.  Lithologic properties are similar to that of Qtr. 1-5 m-thick.  , 

Qtru Quaternary terrace deposit, undifferentiated (middle to upper Pleistocene) – Sandy gravel deposits deposited by El Rito Creek that were 
not correlated to one of the six terraces listed above.  Lithologic properties are similar to that of Qtr terraces. 1-5 m-thick.  , 

Qtt Quaternary terrace deposits associated with tributaries of El Rito Creek (middle to upper Pleistocene) – Sandy gravel terrace deposits 
that underlie distinct treads 6-25 m above modern channel elevations along major tributary drainages to El Rito Creek.  We generally did not 
notice multiple treads within individual drainages (other than the lower Qao), suggesting that Qtt may possibly represent a single aggrada-
tional/degradational cycle that is correlative between drainages.  No effort was made to trench into these deposits to describe texture or soil 
development; description based on surface characteristics.  Correlation between drainages and from place to place within drainage basins was 
generally not attempted, except where such terraces obviously grade into one of the El Rito Creek terrace deposits (Qtr).  In these cases the 
tributary terrace deposits were numbered to match their equivalent El Rito Creek terrace.  1-3 m-thick. 

:
Qtt5 – Upper lower Pleistocene gravel terrace.  Correlates with terrace deposit Qtr5.

Qtt4 – Lower middle Pleistocene gravel terrace.  Correlates with terrace deposit Qtr4.

Qtt3 – Middle Pleistocene gravel terrace.  Correlates with terrace deposit Qtr1.

Tg3 Coarse gravel underlying uppermost, extensive high-level geomporphic surfaces  (upper Pliocene) –  This unit ranges in thickness from 2 
to 8 m thick, suggesting burial of a dissected landscape by alluvial fill.  The fill consists predominantly of cobble to boulder gravel, with clasts 
as large as 1 m across but typically the largest clasts are about 50 cm across.  Clast composition is estimated to be 75-85% gray quartzite, 1-2% 
white vein quartz, generally less than 1% granitic and metarhyolitic clasts, and the remainder being volcanic clasts of widely variable composi-
tion, texture, and color.  Quartzite cobbles and boulders are typically rounded to well rounded;  some quartzite clasts in nearly every exposure 
exhibit partial red cortexes, which may indicate derivation from El Rito Formation outcrops.  The surface of this gravel deposit projects above 
the Guaje-bearing terrace deposit southwest of Medanales and thus is older.  The surface of this deposit may correlate to the higher, extensive 
Pliocene surfaces preserved in the Española Basin (e.g., top of Puye Formation, top of Servilleta Basalt capping Black Mesa, and the Rio del 
Oso surface of Manley, 1976); if so, this surface is likely late Pliocene in age (ca. 2-3 Ma). 

Tg2 Coarse gravel preserved north of El Rito (lower Pliocene) – Sandy gravel located at top of exposure west of the painted “E” north of El Rito.  
This deposit consists of very poorly sorted, sandy gravel of mixed quartzite and felsic volcanic clasts (about 2/3 quartzite and foliate quartzite 
to 1/3 felsic volcanic clast).  Gravel is clast-supported, subrounded to rounded, and contains pebbles with 30-40% cobbles and 10% boulders.  
Beds are vague, thin to thick, and lenticular to broadly lenticular.  Weakly consolidated.  6-12 m-thick. 

Tg1 Coarse gravel above eastern basalt-capped mesa on Sierra Negra (uppermost Miocene) – Subrounded pebbles and cobbles of felsic vol-
canic clasts and quartzite that appear to lie above the basalt that caps the mesa east of Sierra Negra.  It has been reported that similar gravel 
underlies the basalt, but we have not confirmed this. 1-2 m-thick. 

SANTA FE GROUP, BASIN-FILL DEPOSITS  

Tto Ojo Caliente Sandstone Member of the Tesuque Formation (middle Miocene) – Very pale brown, cross-stratified sandstone.  Sand is typi-
cally upper-fine to lower-medium grained.  Redder (oranger) hues are present near known or inferred faults, where cementation is also con-
spicuous.  The largest outcrop area is north of Alamosa Canyon and west of Alamosa No. 2 Tank, where roughly 30 m of nearly flat-lying
(probably gently NE dipping) sandstone is moderately cemented and forms a dissected mesa.  Cross-bedding is clearly apparent in this outcrop 
belt and cross-bed sets are typically 3-5 m thick; wind directions range from southwest to slightly northwest (cross bed dips toward 35o-105o).
Orange, lithified outcrops of Tto also locally form conspicuous buttes on the proximal hanging walls of mapped faults.  Tto was also mapped 
for discontinuous exposures of unlithified, well-sorted, fine-medium sand mantled in quartzite-gravel colluvium both north and south of the 
mouth of canyon through which State Road 137 passes.  A thin interval of this unit is preserved on the hanging-wall of an east-down fault in the 
southeast corner of the quadrangle.  Unit gradationally overlies the Chama-El Rito Member, and interfingers with the upper Chama-El Rito 
Member in Alamosa Canyon (as illustrated in Figure 4).  Weakly to moderately consolidated where not cemented.  Preserved thicknesses are 
greatest (50 m) in upper Alamosa Canyon. 

Ttcf Chama-El Rito Member, Tesuque Formation, fine-grained deposits (middle Miocene) –Very fine- to fine-grained sand (locally lower-
medium sand) and silty sand exhibiting colors of orange, pink, very pale brown, or reddish yellow.  Pink to orange colors seem to be most 
common.  Strata are typically in medium to thick, tabular beds that are internally massive or planar-laminated. Sand locally has minor medium- 
to very coarse-grained volcanic grains and very fine pebbles, either scattered or in very thin lenses.  Minor interbeds of planar-bedded or 
trough-cross bedded, medium to coarse sandstone with dispersed granules of volcanic rock types.  1-5% interbeds of brown, light brown, or 
reddish brown clay and clayey-silty very fine- to fine-grained sand. 1-5% interbeds of pink to very pale brown siltstone.  Unit overlies Ttc in 
the western part of the quadrangle, and is mapped as tongues within unit Ttpm in the eastern part of the quadrangle.  Beds of this unit are com-
mon (15-50% of sediment volume) in unit Ttpu, but were not differentiated there.  Moderately to well consolidated and generally non-
cemented (localized strong cementation).  Maximum preserved thickness of 55 m, but individual tongues mapped within unit Ttpm may be as 
little as 6 m-thick. 

Ttc Chama-El Rito Member, Tesuque Formation (middle Miocene) – Pink to orange, fine-grained sandstone, silty sandstone, and siltstone 
interbedded with gray pebble gravel.  Unit assigned for thick intervals (greater than 30 m) where fine-grained sand is subequal to or exceeds 
volcaniclastic, coarse channel-fills.  Unit contains more volcaniclastic channel-fills than Ttcf.  Fine sand is similar to that described in unit Ttcf
above.  Coarse channel-fills tend to be 1-2 m thick and consist of tightly packed gravel with subangular to subrounded clasts generally 1-4 cm 
and rarely larger than 10 cm across.  Visual estimates of composition indicate about 5-10% quartzite and the remainder volcanic pebbles.  The 
volcanic pebbles are overwhelmingly light-gray to pink, and in some cases white, hornblende-biotite-plagioclases rocks, suggesting andesitic/
dacitic composition; more felsic clasts are very scarce or absent, but exceed 15% in the eastern part of the quadrangle above the upper Ttp unit.  
Although the orange-and-gray striped character of Chama-El Rito outcrops is pretty typical, both the fine and coarse layers are distinctly whiter 
in the vicinity of faults north of Sierra Negra.  This unit gradationally overlies Ttpu in the eastern quadrangle.  Thickness on the east margin of 
the quad decreases northwards from approximately 120 m to 50 m.  Unit is at least 250 m-thick in the southwestern part of the quadrangle, and 
possibly up to 500(?) m-thick. 

Ttpu Upper unit of Plaza lithosome, Tesuque Formation (middle Miocene) –  Coarse channel-fill complexes (up to several meters thick) of peb-
bly sand to sandy gravel, possessing greater than 10% felsite clasts, intercalated with fine-grained, pink to orange sand.  Gravelly sediment is 
clast- to sand-supported and in laminated to very thin to medium beds.  These beds are broadly lenticular to planar (most common), but locally 
lenticular and planar-cross-stratified (up to 2 m-thick foresets).  Gravel includes pebbles with 5-7% cobbles and 1% boulders.  Clasts consist 
predominately of dacite-andesite clasts with 10-50% rhyolite and felsic tuff clasts (welded and non-welded, includes Amalia Tuff), 1-5% inter-
mediate intrusive clasts (e.g., graniodiorite, quartz diorite, and tonalite -- weathered intermediate clasts have a slightly greenish color), 1-3% 
orange granite, 1-5% quartzite, and 1-3% basalt.  Channel-fill sand may have orangish gray to gray colors.  Channel-fill sand is poorly sorted 
and very fine- to very coarse-grained.  Generally non-cemented (about 10% strong to moderate cementation) and weakly to moderately consoli-
dated.  The lesser degree of consolidation and cementation of this unit compared to the underlying Ttpm unit commonly results in a topog-
raphic slope decrease near its basal contact.  In the northeastern quadrangle, the base of this unit was drawn above Ttpm where the percentage 
of felsite clasts exceeded 10%.   However, in the southeastern quadrangle, the upper 20-30 m of the middle unit of the Plaza lithosome (Ttpm)
contains appreciable felsite clasts (at or above 10%).  Because this gradation was difficult to identify precisely, we mapped the base of the 
upper unit above this gradation; specifically, at the base of a thick, orangish, fine sand interval above which fine sands occupied greater than 
15% of the strata (over about a 30 m stratigraphic interval).  Unit interfingers with the Chama-El Rito Member a short distance south of the 
quadrangle’s south boundary, and gradationally underlies this member on this quadrangle.  Unit gradationally(?) overlies Ttpm in the eastern 
part of the quadrangle.  Near the northeastern corner of the quadrangle, this unit may interfinger northeastward with a unit similar to Ttpml, but 
poor exposure there makes this inference uncertain. 120-150 m-thick. 

Ttpw Western tongue of Plaza lithosome, Tesuque Formation (lower to middle Mioccene) – Tongue of volcaniclastic conglomerate mapped 
between lower Arroyo del Perro and Arroyo del Perro del Oeste.    Similar to unit Ttpm in color, bedding, and texture, but with an estimated 
10-20% welded tuff, tuff, and minor rhyolite clasts.  Other minor clasts include: trace to 1% intermediate intrusives (e.g., granodiorite, tonalite, 
quartz diorite), trace to 1% orange granite, trace basalt, and trace quartzite.  Remainder of clasts consists of light to dark gray to purplish gray, 
commonly porphyritic dacite to andesite.  Unit probably correlates with Ttpm to the east.  The slight difference in clast composition between 
this unit and Ttpm is attributed to a more western stream eroding slightly different older sediment in what is now the Tusas Mountains. About 
30 m-thick. 

Ttpm Middle unit of Plaza lithosome, Tesuque Formation (lower to middle Miocene) – Gray to brownish gray to pale brown, slightly tuffaceous 
(estimate 1-5% tuff), sandy pebbles and pebbly sand in very thin to medium, lenticular to broadly lenticular to planar beds.  Locally cross-
stratified and includes about 10% U-shaped, discrete channel-fills 10-50 cm-thick.  Gravel are matrix- to clast-supported and consist of very 
fine to very coarse pebbles and minor cobbles (~5%); the majority of pebbles are very fine to medium.  Clasts consist of purplish gray, porphy-
ritic dacite to andesite, in which many of the coarser pebbles have greater than 10% plagioclase phenocrysts up to 8 mm-long in addition to 3-
10 % hornblende and biotite up to 3 mm.  Other clasts include light gray, white, and pinkish white dacites that often are weathered and have 5-
15% mafic phenocrysts (typically hornblende and minor biotite) and less than 15% plagioclase phenocrysts, 1-12% quartzite, and 1-15% rhyo-
lite and welded tuffs (increasing up-section in the middle to upper part of the unit).  Channel-fill sand is gray to light gray to pinkish gray and 
very fine to very coarse-grained (mostly medium- to very coarse-grained).  Ttpm grades upward into Ttpu and laterally (southward) into unit 
Ttc; this southward transition appears to occur just south of the southern border of the quadrangle.  Most of unit has less than 15% fine sand 
beds similar to unit Ttcf (over a given >30 m stratigraphic interval, excluding mapped tongues of unit Ttcf), although the lower 20-30 m has as 
much as 40-50% of these fine sandstone interbeds .  Unit corresponds to Los Pinos tongue of May (1980 and 1984).  Base of unit placed above 
the highest beds of Tpt, Ttcfl and Ttpl in the southeastern quadrangle.  In the northeastern part of the quadrangle, where unit Tpt is absent, the 
lower and middle parts of lithosome P are similar and lumped in a combined unit (Ttpml) that is lithologically similar to what is described 
here.  Well consolidated and weakly to moderately cemented by calcium carbonate and tuff, locally producing cliffs and ledges in the land-
scape.  Approximately 200-260 m-thick. 

Ttpml Undivided lower to middle Plaza lithosome, Tesuque Formation (lower to middle Miocene) – Generally similar to the middle lithosome P 
unit, but extends down-section past the projected phreatomagmatic interval (Tpt) and so includes strata probably time-equivalent to Ttpl.  300-
400 m-thick. 

Ttpl Lower unit of Plaza lithosome (lower to middle Miocene) – Light-colored, weakly altered, and weakly to strongly cemented channel-fill 
complexes interbedded with subordinate fine sandstone intervals similar to unit Ttcfl.  Channel-complexes include pebbly sandstone and sandy 
pebble conglomerate.  Beds are planar to lenticular to cross-stratified (up to 50 cm-thick foresets), and laminated to very thinly to medium-
bedded (minor thick-bedded).  Cross-stratification seems to be less common than higher in the Plaza lithosome.  Gravel consist of very fine to 
very coarse pebbles with 3-5% cobbles .  Clasts are dominated by altered dacite-andesite, with 1-5% quartzite, 1-10% rhyolite and welded tuff 
(Amalia Tuff is absent to very sparse), trace granite, trace gneiss, and trace to 1% basalt; locally, non-welded tuff is as much as 15%.  Dacite 
clasts are lighter than those higher in lithosome P and possibly have slightly less coarse plagioclase phenocrysts, but otherwise mineral assem-
blages are similar and the apparent difference may be partly due to alteration from hydrothermal(?) waters responsible for the varying degrees 
of silica-cementation (minor calcite) of this unit.  Channel-fill sand is typically light gray to very pale brown, and fine- to very coarse-grained.  
Sand is locally tuffaceous.  More than 120 m-thick. 

Ttcfl – Chama-El Rito Member, Tesuque Formation, lower fine-grained deposits (lower to middle Miocene) – Very pale brown to pinkish gray to 
pink, fine-grained sand and silty fine sand deposits below unit Tpt east of El Rito Creek.  These deposits are lighter colored, better consolidated 
and cemented, and commonly exhibit more distinctive bedding than fine-grained sand intervals up-section.  The lighter color and cementation 
may be partly due to circulation of warm groundwater following emplacement of dikes and phreatomagmatic volcanism in the middle Miocene.
Strata generally consist of thin to thick, tabular to broadly lenticular beds of very fine- to fine-grained sandstone and silty sandstone.  Beds are 
internally massive to planar-laminated to trough crosss-laminated (also very thin-bedded).  Sand is very fine- to fine-grained.  Locally scattered 
in the sand are medium to coarse, dacitic(?) sand grains.  Sand is locally very slightly tuffaceous and weakly to well cemented.  Minor (3-15%) 
very thin beds or planar-laminations of light brown to light reddish brown clay and clayey very fine- to fine-grained sandstone.  Unit includes 
subordinate volcaniclastic, coarse channel-fills similar to those described in unit Ttpl.

Tlpc Cordito Member of the Los Pinos Formation (upper Oligocene to lower Miocene) – Gravelly sand, sandy gravel, and sand beds.  Gravelly 
sediment is in very thin to medium, broadly lenticular to lenticular beds that may be internally planar-laminated.  Gravel is composed of rhyo-
lite (including minor possible rhyodacite) with subordinate welded and non-welded tuff, trace to 5% quartzite, and minor dacite (generally 
porphyritic).  Rhyolite clasts are commonly banded and grayish, or crystalline with quartz phenocrysts.  Gravel consists of pebbles and cobbles 
with very minor boulders.  Sand is commonly in medium to thick, tabular to broadly lenticular beds.  Common sand colors include pinkish 
gray, pink, to light brownish gray.  Sand is very fine- to very coarse-grained (mostly fine- to very coarse-grained).  Estimate 0-5% tuff.  Unit 
gradationally overlies the more tuffaceous, white-colored Abiquiu Formation and gradationally underlies the grayer Plaza lithosome (Tesuque 
Formation).  Upper contact placed where felsite clasts (i.e., rhyolite and felsic tuff clasts) are less than 10% of the gravel assemblage.  In the 
quadrangle to the north, this unit is mapped lower in the section and interfingers southwestward with the Abiquiu Formation.  Unit is well con-
solidated and non-cemented.  Approximately 30-60 m-thick. 

Ta Abiquiu Formation (upper Oligocene to lower Miocene) – Tuffaceous, pebbly sandstone, sandstone, and clayey-silty sandstone with minor 
conglomerate; colors range from white and beige to red-brown to orange near faults north of Sierra Negra.  Volcanic clasts include a variety of 
intermediate to felsic rocks types, with rhyolitic clasts prominent in all outcrops and clasts of Amalia Tuff seen at numerous localities.  Quartz-
ite pebbles and cobbles are commonly present as well; quartzite typically composes less than 10% of the gravel size class but some beds con-
tain >90% quartzite.  This formation comprises the bulk of the hills north of El Rito.  Gravel here includes pebbles and local cobbles plus minor 
boulders.  Clasts here are composed of welded tuff and tuff, rhyolite, and 1-20% quartzite.  Sand is fine- to very coarse-grained (mostly me-
dium- to coarse-grained).  Moderately to well consolidated and weakly to moderately cemented by tuff.   In the quadrangle to the north, and 
partly on this quadrangle, this unit interfingers northeastward into the Corditto Member of the Los Pinos Formation.  Greater than 250 m-thick, 
except on the immediate footwall of the Potrero fault. 

Talpc Undivided Abiquiu-Los Pinos Formations (upper Oligocene to lower Miocene) – Interfingering Abiquiu and Los Pinos Formations 
(Corditto Member), where exposure was too poor to differentiate.  See descriptions of the two units above.  Approximately 30 m-thick where 
mapped on this quadrangle (near the northern boundary). 

Tr Ritito Conglomerate (Oligocene) – Quartzite-rich pebble to cobble gravel with lenses and layers of white, quartzofeldspathic sand as much as 
8 m thick.  North of El Rito, a prominent arroyo immediately west of the painted “E” offers exposures of medium to thick, tabular to irregular 
beds of sandy gravel and pebbly sand.  Here, pebbles, cobbles, and boulders are matrix-supported and consist of quartzite (boulders and cobbles 
are exclusively quartzite) and felsic volcanic rocks (i.e., rhyolite and tuff) and trace basalt.  Boulders decrease up-section.  Matrix consists of 
white, fine- to very coarse-grained sand that is tuffaceous.   Near the western boundary of the quadrangle, this unit contains 10-15% orange 
granite and metarhyolite, 1-2% white vein quartz, sparse intermediate-volcanic pebbles up to about 1 cm-across, and the remainder of the 
gravel is quartzite.  Rounded to well rounded clasts are overall finer than in Tg3 and better rounded than in El Rito Formation (Ter).  Unit is 
correlative to Ritito Conglomerate (Barker, 1958) and lower member of Abiquiu Formation (Moore, 2000; Smith, 1995).  80-90 m-thick.

Ter El Rito Formation (Eocene?) – Red, lithified conglomeratic sandstone, sandstone, and mudstone.  Well exposed in a horst block in Angel 
Canyon and poorly exposed along the base of Stone Canyon.  Clasts are >90% quartzite and the remainder are vein quartz, granite, and 
metarhyolite.  Clasts are subangular to rounded and range in size up to 1 m across.  The lithified character, red color, and more angular clasts 
distinguish El Rito from Ritito.  30 m-thick where on quadrangle. 

VOLCANIC ROCKS  

Tb Basalt flows (Miocene-Pliocene) – Basalt flows occur at two localities.  Flows that cap the summit and eastern mesa of Sierra Negra are 
sparsely pophyritic basalt with laterally variable textures.  Phenocrysts consist of plagioclase and 1-4% olivine.  Basalt on the summit is only 3-
6 m-thick.  The eastern mesa is underlain by as many as 3 basalt flows having a cumlative thickness of 20-25 m immediately west of the fault 
that crosses the central part of the mesa, and a cumulative thickness of 30-35 m immediately east of this fault (including rubble zones between 
the flows).    The second locality is the low hill southeast of Sage Tank composed of fine-grained basalt containing ~10% olivine phenocrysts 
less than 1 mm across.  The hill is surrounded by younger Tg3 gravel and almost certainly is within a crater defined by the distribution of 
phreatomagmatic tuff outcrops to the southwest and east (Tpt).  Vesicular zones suggest the presence of lava flows such that this hill may rep-
resent a small shield volcano within the hydromagmatic tuff ring crater; alternatively this hill could be an eroded plug within the crater.  The 
basalt flows on Sierra Negra have returned a K/Ar age of ~5 Ma (Baldridge et al., 1980) and a 40Ar/39Ar age of 5.56±0.12 Ma (Maldonaldo and 
Miggins, 2007).  The basalt at the second locality is probably middle Miocene in age (40Ar/39Ar age is pending). 

Tbi Basalt dikes and plugs (Miocene to Pliocene) – Largest dike consists of en echelon segments that form ridges along the western quad boundary 
just east of Madera Cañon.  This basalt is a fine-grained, olivine-phyric rock that is indistinguishable from the Tb hill southeast of Sage Tank.
This map unit also includes a plug on the northern flank of Sierra Negra; this rock contains 2-5% olivine and ~1-2% plagioclase phenocrysts 
0.5-2 mm across.   There is also a 0.5-3.0 m-wide dike mapped 0.5 km east-southeast of CCC spring, which has 2-3% black olivine and 25% 
black-green pyroxene(?) crystals in a black, aphanetic groundmass (both 0.1-1.0 mm).. 

 Tpt Phreatomagmatic tuff and lapilli tuff – Pale green to tan, and locally orange, planar-bedded and cross-bedded hydromagmatic tuff.  Thickest 
deposit is about 30 m-thick below the escarpment SW of Tuck Tank and exhibits easterly to southerly transport, based on cross bedding, which 
is consistent with derivation from a vent centered beneath the basalt hill southeast of Sage Tank.  These deposits also likely correlate to a small 
outcrop area in an unnamed canyon southwest of the basalt hill, where a steep contact with Ttc implies the margin of a crater filled with in-
ward-dipping tuff.  Outcrops in the headwaters of Arroyo del Perro may correspond to the same event, and similar tuffs are found near the top 
of Sierra Negra.  East of El Rito Creek a 3-30 m-thick belt of phreatomagmatic deposits lies between units Ttpm and Ttpl.  These deposits are 
slightly greenish and consist of sandstone and gravelly sandstone that are cross-stratified in various angles.  Sand is very fine- to very coarse-
grained and includes a mix of minor, altered, basaltic sand with more abundant sand similar to that seen in units Ttpl and Ttcfl.   Gravel con-
sists of basalt, dacite-andesite pebbles of the Tesuque Formation, and minor Proterozoic clasts.  Well consolidated and locally cemented. 

PROTEROZOIC ROCKS  

Xoq Ortega Quartzite (Paleoproterozoic) – Light gray, coarse-grained, vitreous, laminated quartzite.  Laminations are planar, wavy, to low-angle 
cross-stratified.  ~5% lenticular pods of vein quartz.  Biotite, as well as aligned silliminite, are concentrated in primary foliation planes, which 
themselves appear to follow original bedding.  Locally present are flattened, very fine to very coarse quartz pebbles that are shortened perpen-
dicular to the primary foliation planes.   60 m of exposed thickness on this quadrangle, but total thickness is much greater. 

DEEP STRATIGRAPHIC UNITS DEPICTED ON CROSS-SECTION BUT NOT LISTED ON MAP 

lPPcu Undivided Cutler Group – Red to orange to brown siltstone, sandstone, and conglomerate.  Sand consists of commonly medium- to coarse-
grained, moderately to poorly sorted, angular arkoses and lithic arenite.  Includes the Arroyo del Agua and El Cobre Canyon Formations 
(summarized from Lucas and Krainer, 2005). 

lPm Madera Group – Limestone with minor sandstone and conglomerate. 
XYu Undivided Paleo and MesoProterozoic rocks – Quartzite, gneiss, and crystalline intrusions.  Includes Ortega quartzite and metavolcanic 

rocks. 
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Mono-directional paleocurrent measurement - 
Solid ball on vector is located at measurement 
location.  Primarily measured using clast 
imbrication (abbreviated as "i").   Different lengths 
of the vector is proportional to the number of clast 
measurements at a site. (5 clast measurements in 
each bin).  The number of clasts measured is 
shown by the number preceeding the i.  
Paleocurrent azimuth value is also listed next to 
the vector

Bi-directional paleocurrent measurement - Solid 
ball on vector is located at measurement 
location.  Primarily measured using channel 
trends (abbreviated as "c") or the trend of a 
single channel margin (abbreviated as "cm").  
Although bi-directional, only one arrow head may 
be depicted that shows the authors' preferred 
direction; this preference is based on surrounding 
mono-directional paleocurrent data and source 
area considerations.   A double-sided arrow is 
shown where there is no preference.  Different 
lengths of vector is proportional to number of 
measurements at a site -- top, upper middle, 
lower middle, and lower vectors to the left (with 
one arrow head) reflect one, two, three, and four 
measurements, respectively.  Paleocurrent 
azimuth value and type of data (e.g., "c" for 
channels) is also listed next to the vector

270

tx
2i
3i
4i

270

gr
2 cm
2 cm, tx

3c, cm

2 cm

PALEOCURRENT DATA ON THE EL RITO 7.5-MINUTE 
QUADRANGLE

Symbols plotted on mapData plotted in rose diagrams

FIGURE 5

PL
IO

C.
M

IO
CE

NE
OL

IG
OC

EN
E

la
te

ea
rly

m
id

dl
e

la
te

ea
rly

ea
rly

5.3

11.2

16.4

23.8

28.5

33.9

0

5

10

15

20

25

30

Ti
m

e 
(M

a)

m
id

dl
e

late

HO
LO

-
CE

NE

Qayi

1

Qayl
FIGURE 2

0.01

scale change

?

Qls

Paleoproterozoic Xoq

40

35

45

EO
CE

N
E 

43.6

40.0

la
te

ea
rly

m
id

dl
e

As old as 55 Ma?

Ter

?

?

?

Qlsb

Ttpu

Ttpml

Ttc
Tto

Ttpl

Ttcf Ttpw Ttpm

Ta

Tr

? ?
Tlpc

?

Tb Tbi Tpt

Tb Tbi
??Tg1

Tg2

Tg3

?

Qtr1~1.6 Ma

Qtr2

Qtr3

Qtr6
Qtr5
Qtr4

Qtu

Qgo1

~620 ka

~70-80 ka
Qaf

Qtt3

Qtt5
Qtt4

Qtt

Qao

Qayh Qayu

?
Qse

?

Qct
Qc
Tt

Qc
Ta

Talpc

EXPLANATION OF MAP SYMBOLS

Beds that dip less than 2 degrees.

07-320
Attitude of bedding; number in front of dash is dip magnitude, number behind dash is 
dip azimuth.

Normal fault - Solid where exposed; dashed where approximately located; dotted where 
concealed; queried where uncertain.  Ball and bar are on downthrown block.  Number by tic 
denotes the location and value of fault dip attitude (dip value - dip azimumth).  Arrow and 
associated number denotes plunge direction and magnitude of slickenside lineations, if any.  
Filled circles denote areas where there is uncertainty of interpretation.

?70-340
45

Cross-section line endpoints

A A'

Geologic contact - Solid where exposed; dashed where approximately located; dotted 
where concealed beneath younger alluvium,; queried where uncertain or inferred.  Filled 
circles denote areas where there is uncertainty of interpretation.

Approximate location of lateral gradation or interfingering contact of units; dotted where 
buried beneath younger alluvium.

?

Syncline - showing trace and plunge of inferred crest line; dashed where approximate.

Anticline - showing trace and plunge of inferred crest line; dashed where approximate.

07 Attitude of overturned bedding; number is dip magnitude.

Eolian cross-stratification dip direction - Solid ball on vector is located at the measurement 
location.  

Water-supply well used in making cross-section

Mono-directional paleocurrent measurement - Solid ball on vector is located at 
measurement location.  Primarily measured using clast imbrication (abbreviated as 
"i").   Different lengths of the vector is proportional to the number of clast 
measurements at a site. (5 clast measurements in each bin).  The number of clasts 
measured is shown by the number preceeding the i.  Paleocurrent azimuth value is 
also listed next to the vector

Bi-directional paleocurrent measurement - Solid ball on vector is located at 
measurement location.  Primarily measured using channel trends (abbreviated as "c") 
or the trend of a single channel margin (abbreviated as "cm").  Although bi-directional, 
only one arrow head may be depicted that shows the authors' preferred direction; this 
preference is based on surrounding mono-directional paleocurrent data and source 
area considerations.   A double-sided arrow is shown where there is no preference.  
Different lengths of vector is proportional to number of measurements at a site -- top, 
upper middle, lower middle, and lower vectors to the left (with one arrow head) reflect 
one, two, three, and four measurements, respectively.  Paleocurrent azimuth value and 
type of data (e.g., "c" for channels) is also listed next to the vector
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