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GEOLOGIC CROSS SECTIONS

Location of geologic cross section

Geologic contact—solid where exposed, dashed where approximately located, dotted where concealed, queried where inferred

Normal fault—showing dip, arrow shows trend and plunge of slickenlines; solid where exposed; dashed where approximately
located; dotted where concealed; ball-and-bar on downthrown side

Reverse fault—showing dip, arrow shows trend and plunge of slickensides; teeth on upthrown side of hanging wall block (combination
of reverse fault teeth and bar-and-ball indicates interpretation of normal reactivation of a reverse fault); solid where exposed;
dashed where approximately located; dotted where concealed

Fault trace—inferred from degraded topographic scarp

Fault trace—inferred from a vegetation lineament

Anticline— trace of axial plane showing direction of plunge; dashed where approximately located, dotted where concealed,
queried where inferred

Syncline— trace of axial plane showing direction of plunge; dashed where approximately located, dotted where concealed,
queried where inferred

Overturned anticline—trace of axial plane showing direction of plunge; dashed where approximately located                                 .

Overturned syncline—trace of axial plane showing direction of plunge; dashed where approximately located                           .

Andalusite isograd

Approximate location of selected high-resolution aeromagnetic anomaly (from USGS and Sander Geophysics, Ltd., 1998)       .

Strike and dip of bedding

Overturned bedding

Strike and dip of S1 foliation, arrow showing trend and plunge of minor F1 fold axis and fold assymmetry in map view              .

Strike and dip of S2 foliation, arrow showing trend and plunge of lineation

Strike and dip of minor dikes and veins

Younging determined by unambiguous cross bedding; the longer line represents the truncation surface and stratigraphic top     .

Location of radiometrically dated sample

Water-supply well

A geologic map displays information on the distribution, nature, orientation and age relationships of rock and deposits and the
occurrence of structural features.  Geologic and fault contacts are irregular surfaces that form boundaries between different types
or ages of units.  Data depicted on this geologic quadrangle map are based on reconnaissance field geologic mapping, compilation
of published and unpublished work, and photogeologic interpretation.  Locations of contacts are not surveyed, but are plotted by
interpretation of the position of a given contact onto a topographic base map; therefore, the accuracy of contact locations depends
on the scale of mapping and the interpretation of the geologist(s). Any enlargement of this map could cause misunderstanding in
the detail of mapping and may result in erroneous interpretations. Site-specific conditions should be verified by detailed surface
mapping or subsurface exploration. Topographic and cultural changes associated with recent development may not be shown.

The map has not been reviewed according to New Mexico Bureau of Geology and Mineral Resources standards.  Revision of the
map is likely because of the on-going nature of work in the region.  The contents of the report and map should not be considered
final and complete until reviewed and published by the New Mexico Bureau of Geology and Mineral Resources. The views and
conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official
policies, either expressed or implied, of the State of New Mexico and the U.S. Government.                                           .

The Bosque Peak quadrangle lies within the southeastern part of the Isleta Indian Reservation and travel within the reservation
(northern half of the quadrangle) is restricted. The area is not accessible by public roads; however, several graded dirt and paved
roads allow access to portions of the study area. The eastern half lies within the Manzanita and Manzano Mountains and has very
limited road access.

CENOZOIC SEDIMENTS
Anthropogenic, colluvial, and stream alluvial deposits

Artificial fill (Historic) — Dumped fill and areas affected by human disturbances.

Alluvium and colluvium, undivided  (Holocene to late Pleistocene) — Poorly consolidated, poorly sorted and stratified, fine-
to coarse-grained, clast- and matrix-supported deposits derived from a variety of mass-movement hill-slope processes, including
debris flow, shallow slump and creep. Clasts are typically angular and composition generally reflects local provenance.  Colluvium
is common on hillslopes, but is differentiated where areally extensive. From 3 to 20 ft (<1 to 6 m) thick.                                        .

Stream alluvium, undivided (Holocene to Historic) — Poorly to moderately sorted, poorly consolidated pebble- to cobble
conglomerate and fine-to coarse-grained sand with local accumulations of cobbles and small boulders as much as 2.5 mi (4 km)
west of the mountain front. Units commonly form narrow to broad streams with elongate cobble and boulder bars and floodplains
that are inset against Qay and Qpa. Bar and swale topography is well developed.  Soils are very weakly developed and possess
disseminated to no pedogenic carbonate. Estimated thickness is 3 to 14 ft (<1 m to 4 m).

Stream alluvium, undivided (upper Pleistocene to Holocene) — Poorly to moderately sorted, poorly consolidated light-brown
and light reddish-brown to gray-brown pebble and cobble conglomerate and sand with minor accumulations of boulders and silt-
to clay-rich beds.  Clasts are subangular to subrounded and typically not weathered nor pitted. Unit forms terraces inset against
unit Qpa.  Bar and swale topography is locally well developed. Terrace tread lies < 16 ft  (<5 m) above modern streams. Estimated
thickness is <14 ft (<4 m).

Piedmont-slope alluvial deposits

Piedmont alluvium, undivided (upper Pliocene to Quaternary) — Undivided piedmont units (Qpa, Qpm, Qpo, and QTp)
shown in Cross Section A-A'.

Piedmont alluvium, undivided (Holocene to lower Pleistocene) — Poorly to moderately sorted, moderately consolidated
pebble and cobble conglomerate and pebbly sand.  Soil development is variable typically possesses multiple (cumulic) buried soils
with Bk horizons that exhibit stage II and IV calcium-carbonate morphology.  The unit forms a complex of piedmont and valley-
floor deposits that marks local base level for mountain front drainages. Unit contains slightly to moderately dissected valley-floor
deposits and terraces inset against unit Qpo.  Unit is locally mantled by QHa and Qay in narrow to broad swales. Forms constructional
surface of the Llano de Manzano piedmont slope. Estimated thickness is <14 ft (<4 m).

Piedmont alluvium (middle Pleistocene) — Poorly sorted, moderately consolidated pebble to cobble conglomerate and pebbly
sand.  Soil development is variable and typically possesses multiple (cumulic) buried soils with Bk horizons that exhibit stage II and
III calcium-carbonate morphology.  The unit forms slightly to moderately dissected valley-floor deposits and terraces inset against
unit Qpo.  Unit is locally mantled by Qay in narrow to broad swales. Base not exposed; estimated thickness is >14 ft (>4 m).

Piedmont alluvium, undivided (lower to middle Pleistocene) — Poorly sorted, poorly to moderately consolidated and calcium
carbonate cemented sand and subrounded to subangular cobble to pebble conglomerate inset against unit QTp. Unit is locally
differentiated into two subunits (Qpo1, older; Qpo2, younger) on the basis of inset relationships.  Soils are partially stripped, but
locally exhibit stage III to IV carbonate morphology. Base not exposed; estimated thickness is >14 ft (>4 m).

Santa Fe Group

Piedmont alluvium (upper Pliocene(?) to lower Pleistocene) — Poorly sorted, calcium-carbonate cemented, clast supported
cobble to boulder conglomerate commonly found on the footwall of the range-bounding faults. Clasts are dominantly granite,
phyllite, greenstone. Minor limestone is present in alluvial fans derived from major drainages (i.e., Ojito, Garcia, Sand, Cañon de
los Seis, Cañon  de los Moyos, and White Rock Canyons). Clasts are commonly highly split, deeply pitted and weathered and
grussified. Sand is composed mostly of grussified Ojito granite. Deposit surface is moderately dissected and locally exposes partially
stripped soils with stage III to IV carbonate morphology. Base not exposed; estimated thickness is >14 ft (>4 m).

Piedmont alluvium (lower Pleistocene(?) to Miocene) — Poorly to moderately sorted, well consolidated, calcium-carbonate
cemented conglomerate and sandstone exposed on the footwall of the Hubbell Springs fault. Unit is not exposed in the study area
and is shown only in cross section A-A'. Deposits are described to about 620 ft (180 m) in well BLL1. Conglomerate is clast supported
and contains abundant granite, metamorphic and minor limestone. North or the study area, the Santa Fe Group rests unconformably
on upper Paleozoic, Triassic, and lower Tertiary deposits (Love et al., 1996; Karlstrom et al., 1997; Thomas et al., 1995). About
6 mi (9.5 km) south of cross section A-A' on the adjacent the Capilla Peak quadrangle, an oil test well (Leroy Bennett Aguayo-
Comanche No. 1, T6N, R5E, Sec. 31; NMBGRL No. 11,695) encountered “Quaternary pediment gravels and sands” (upper Santa
Fe Group) to a depth of 505 ft (150 m), overlying tentatively assigned La Jara Peak basaltic andesite and tuff-bearing Datil Group
deposits (Tld?) to 1,655 ft (505 m). No pre-Tertiary rocks were reported in the log. Unpublished gravity modeling (V.J.S. Grauch,
1999) suggests that Mesozoic and older rocks may be approximately 2-2.4 mi (1.25-1.5 km) below the ground surface and the
Grober-Fuqua No.1 oil test well, drilled about 14 mi (22.5 km) south-southwest of cross section A-A',  encounters Triassic sediments
at a depth of 4,550 ft (1,384 m)(Lozinsky, 1994).                                   .

NEOGENE - MESOZOIC - UPPER PALEOZOIC ROCKS

La Jara Peak basaltic andesite (?) and Datil Group (?), undivided — (Cross section A-A' only) Light-gray to reddish-brown
and orange welded tuff, sandstone, and siltstone encountered in the Aguayo-Comanche No. 1 well described above. Base of Tld?
was not encountered in this well. Exposures of moderately tilted volcaniclastic deposits near the mouth of Trigo Canyon, Capilla
Peak quadrangle, containa basaltic lava flow (Lozinsky, 1988) that has an 40Ar/39Ar date of 26.20±0.18 Ma (W. C.
Macintosh, 2000, personal communication; NMBGRL No. 51633). This date is considerably older than a K/Ar date of about
21 Ma for this flow (Bachman and Mehnert, 1978). The revised date is similar to the top of the La Jara Peak basaltic andesite of
Osburn and Chapin (1983). Although the stratigraphic position of this flow relative to the Aguayo-Comanche No. 1 is not known,
the considerable thickness of volcaniclastic sediment encountered in the well and the 26 Ma date for similar exposures in Trigo
Canyon suggest that these are pre-Santa Fe Group deposits. Unit is more than 1,150 ft (350 m) thick.                                           .

La Jara Peak basaltic andesite (?) / Datil Group (?), Triassic, Permian and Pennsylvanian rocks, undivided — (Cross
section A-A' only) Undivided Tld(?),    mu,    ml,   s, Permian (probably Glorieta Sandstone, San Andres, Yeso, and Abo Fms.) and
Triassic (probably Moenkopi Fm. and Chinle Group) rocks buried beneath the piedmont of the Manzano Mountains. The lower
991 ft (302 m) of the Cenozoic section of the Grober-Fuqua No. 1 well, described above, contains light reddish-brown clay, silty
sandstone, and sandstone that is slightly different than the overlying deposits (Lozinsky, 1988) may be correlative to Tld(?). Thickness
of the pre-Cenozoic portion of this unit, as extrapolated from the northern Sandia Mountains at Placitas (Connell, et al., 1995) is
about 4,900 ft (1,494 m). The Cenozoic part of this unit is 991 ft (302 m) to at least 1,150 ft (350 m).                                         .

PALEOZOIC ROCKS

Upper Pennsylvanian to lower Permian (?)

Madera Formation, upper arkosic unit — Interbedded arkosic conglomeratic sandstone, sandstone, siltstone, mudstone and
limestone; mostly slope to ledge forming. Yellowish to reddish brown and light gray arkosic to feldspathic sandstones and conglomeratic
sandstones are lenticular and grade into pale yellow brown, gray and purplish gray mudstones and micaceous siltstones. Clastic
units locally contain silicified wood. Tabular, ledge-forming, light to dark gray, fossiliferous, limestones are commonly interbedded
with mudstones and may locally contain feldspathic detritus. Red muddy soils are common on the upper arkosic member. Generally
equivalent to Pine Shadow and La Casa Members of Wild Cow Formation of Myers (1973) or    muc and     mud of Myers and
McKay (1970). As much as 400 ft (120 m) thick, with erosional top.

Upper to middle Pennsylvanian

Madera Formation, lower cherty fossiliferous limestone unit — Mostly cliff-forming, gray fossiliferous limestone with minor
interbedded shales and quartzose to feldspathic sandstones and conglomeratic sandstones. Individual massive to nodular limestone
beds are commonly 20–30 ft (3–9 m) thick and may be as much as 60 ft (18 m) thick. Irregular masses of black to reddish orange
chert are common in massive limestone beds. Nodular limestones often weather to mottled gray and brown surfaces. Limestones
are interbedded with light to dark gray and yellowish brown shales, nodular shales and yellowish brown to greenish gray siltstones
that are often micaceous. Siltstones locally grade upward into lenticular to tabular quartz arenites and quartz pebble conglomerates
of light gray to yellowish brown color. Clastic units locally contain silicified wood. Includes Los Moyos Limestone and overlying
Sol se Mete Member of Wild Cow Formation of Myers (1973),   orml and    mub of Myers and McKay (1970). These mostly cliff
forming units are often separated by a gentle slope break (or breaks), but otherwise appear to be lithologically similar. Additional
study of the Wild Cow/Los Moyos contact and its lithologic mapability seems warranted. Approximate thickness 500 to 800 ft
(150–240 m).

Sandia Formation — Mostly slope-forming shales and siltstones grading down into basal quartz pebble conglomerates and up
into thin bedded limestones. Limestones and shales occur in uppermost 20 ft (7 m) near gradational contact into overlying cliff-
forming limestones of Madera Formation. Well indurated (siliceous) basal quartz pebble conglomerates are thickest (20–40 ft;
6–12 m) in northwestern third of quadrangle and generally thin to low ledge-forming conglomerates (1–2 m thick) and sandstones
in southeast quadrant. Sparse metamorphic and limestone pebbles or shell fragments are locally present in thinner (lower energy?)
basal zones. Light gray to yellowish brown conglomerates of basal zone grade upward into yellowish brown, gray and greenish
gray sandstones and micaceous siltstones interbedded with yellowish brown, gray and black shales or carbonaceous shales. Medial
shaley zone is 100–150 ft (30–45 m) thick and commonly mantled with blocky limestone colluvium (generally not mapped) derived
from overlying Madera Formation.

PROTEROZOIC ROCKS

Mesoproterozoic

Diabase dikes — Dark green to black basaltic and diabasic dike composed of labradorite, augite, epidote, chlorite, magnetite,
and  sphene. Chilled margins are very fine grained basalt; dike cores are typical diabase texture consisting of randomly oriented
plagioclase laths in matrix dominated by pyroxene. Dikes are pre-Pennsylvanian and are inferred to be 1.1 Ga based on chilled
margins and regional correlations.

Pegmatite dikes — Dikes, pods, and lenses ranging from <1 in. up to >50 ft (<3 cm to >15 m) in thickness. Dikes are undated but
cross cut foliation and may be ca. 1.4 Ga.                                 .

Aplite and granite dikes — Light gray to pink muscovite-bearing granite, aplite, or pegmatite, post-dates foliation in country rock
and may be ca. 1.4 Ga.

UNIT DESCRIPTIONS
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Paleoproterozoic

Quartz veins — Veins and veinlets of massive, milky-white quartz generally parallel to the regional fabric although smaller veinlets
(2-5 cm) locally cross cut the fabric. In some locations, thin quartz veinlets are folded with the main fabric as axial plane. Mappable
quartz veins consist of white quartz with minor hematite and brown calcite.                              .

Ojito granite — Medium grained massive quartz monzonite composed of quartz, sodic andesine, microcline, biotite, and accessory
hornblende, sphene, epidote, apatite, and tourmailine; U-Pb zircon date of 1,659 ±5 Ma. Comingled with mafic units Xqd, Xqg,
and Xgo, and Xg.

Porphyritic quartz diorite — Porphyritic rock composed of hornblende and plagioclase phenocrysts in a medium grained
groundmass of quartz, andesine, hornblende, biotite, and accessory chlorite, opaques, and apatite; gradational with other mafic
units and the Ojito pluton because of magma mingling and mixing.

Quartz gabbro — Medium grained rock composed of quartz, labradorite, hornblende, and accessory chlorite, epidote, biotite,
opaques, and apatite. Occurs as large intrusive masses and as mafic enclaves in the Ojito granite; gradational with other mafic
units.

Olivine gabbro — Medium grained gabbro containing labradorite (locally sericitized), biotite, hornblende (after pyroxene),
hypersthene, augite, and olivine, with accessory opaques, apatite, muscovite, antigorite, quartz, calcite, and chlorite.                   .

Gabbro and diorite undivided — Mafic plutonic rocks undivided: quartz diorite, quartz gabbro, olivine gabbro, often as enclaves and variably
mingled with Ojito granite.

Schist and phyllite — Mottled quartz-rich schist and phyllite with red, hematitic and green fuchsite-rich (?) zones that occurs as discontinuous layers
of variable thickness. Schistosity is variably injected with lense-shaped quartz pods. Parent rocks for the schist probably consisted of impure quartz-
rich siltstones. This unit may correlate with the Coyote Schist and Coyote Phyllite of Cavin (1985), and with Blue Springs schist of Reiche (1949); occurs
both above and below Xq.

Massive to thickly-bedded, gray- to milky white quartzite — Original bedding in the quartzite consists of 1-5 mm-thick black and red hematite-
rich layers. Cross bedding is locally preserved. Interlayered with the quartzite are greenish-gray micaceous quartzite that contain up to 35% muscovite
and chlorite. Protolith for the thickly bedded quartzite was pure quartzose sands intermixed with impure sandstones and siltstones. Correlates with
the Cerro Pelon and Coyote quartzites of Cavin (1985) and Sais Quartzite.

Lithic arenite — This rock unit consists of a variety of metasedimentary rocks including metawacke, meta-arkose and impure
metaquartzite. Up to 50% of this unit is a brown weathered impure arkosic metaquartzite with light green to gray fresh surfaces.
Schistosity is variably developed throughout most of the unit. Compositional layering (S0) is commonly preserved and is generally
at low angles to the dominant schistosity (S1). Metamorphic grade and field appearance of this unit varies towards the Ojito granite,
indicating development of a contact aureole associated with granite emplacement. Away from the Ojito granite metasedimentary
rocks have a granular appearance with a weak foliation. Samples of metasediments near the Ojito granite are granoblastic schists
with porphyroblasts of sillimanite, andalusite, and chloritoid. Includes the Bosque and Moyas metasedimentary units of Edwards
(1978; interpreted here to be correlative) and the Lower Metaclastic series of Reiche (1949). Includes siliceous lithic arenite lenses
that form resistent outcrops (Xsla).

Phyllite and schist — This rock unit is interlayered and gradational with the lithic arenite but has been mapped as a separate unit
in several zones where it constitutes greater than 90% of the exposure. This unit also occurs in the mafic metavolcanic rock unit
(Xmv) and the lithic arenitie unit (Xla) as <5 m thick beds that were too small to map as individual units. This unit consists of blue to
light grayish green phyllite that become more schistose and massive (high grade) in exposures closer to the Manzanita granite.
Parent rocks for this lithology were siltstones.

Metachert and jasperoid — Metachert occurs as prominent, low-lying outcrops infolded and interlayered with the metasedimentary
and blue phyllite unit. These layers range from several cm to m thickness and are discontinuous along strike frequently pinching
off within phyllitic layers or adjacent to chlorite-rich amphibolites. This unit varies from white to hematite-stained quartz-rich sediment
with narrow micaceous zones parallel to local foliation. Jasperoids consist of red-stained, discontinuous pods of jasper. This unit
marks the transition from volcanic to clastic deposition.

Dacite tuff — The metatuff unit is gray to light grayish green dacite with a well-developed schistosity. Major parts of this unit contains
flattened ovoid shaped fragments of light gray to buff phyllite, chlorite phyllite, metaquartzite and greenstone. These fragments
range in size from 1.5 to 12 in (4 to 30 cm) and are aligned parallel with the schistosity. Towards the gradational contact with
the metasedimentary unit the metatuff contains abundant (up to 80%) blue to blue-gray phyllite fragments. The matrix of the metatuff
is fine grained, gray to greenish gray. The metatuff is interpreted to be the metamorphic equivalent of a crystal and vitric-crystal
tuff that is dominantly dacite with minor andesite. Includes the Lacorocah metatuff of Parchman (1980).                                        .

Intermediate metavolcanics rocks — Buff, schistose bands intimately interfingered with the greenstone (Xmv) and metatuff (Xdt)
units. This unit also defines broad, regional folds. Lithologies within this unit consists of a mixture of volcaniclastic rocks including
quartz-mica phyllites and volcanic rocks with an andesitic composition (Parchman, 1980). In outcrop this unit has a brown to gray-
green color with a moderately well-developed schistosity.

Mafic metavolcanic rocks — Heterogeneous metavolcanic unit composed of basaltic greenstones, intermediate volcanics,
volcaniclastic greenschists (quartz-actinolite-chlorite schists) and metapelites. Rare epidote-rich bands are present in some areas
and may denote margins of metamorphosed pillows. Other primary features include compositional layering defined by white,
plagioclase(?)-rich layers that are parallel to foliation and plagioclase-phenocrystic volcanic rocks. Unit grades upwards to
volcaniclastic rocks (Xdt) and may be interlayered with mappable units of felsic to intermediate volcanic rocks (Xiv), volcanic breccias,
dacite breccia (Xdt), chert (Xc) and fine grained phyllite (Xp). Unit correlates with Coyote greenstone and Isleta greenstone of Cavin
(1985) the lower part of Tijeras greenstone of Connolly (1981), greenstone complex of Reiche (1949), and unnamed greenstone
of Edwards (1978).
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Cross sections are constructed based upon the interpretations of
the authors made from geologic mapping, and available
geophysical (regional gravity and aeromagnetic surveys), and
subsurface (drillhole) data. Cross sections should be used as an
aid to understanding the general geologic framework of the map
area, and not be the sole source of information for use in locating
or designing wells, buildings, roads, or other man-made structures.
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