Geologic Map of the Grants SE Quadrangle, Cibola County, New Mexico

By

Colin T. Cikoski

June 2013

New Mexico Bureau of Geology and Mineral Resources Open-file Digital Geologic Map OF-GM 241

Scale 1:24,000

This work was supported by the U.S. Geological Survey, National Cooperative Geologic Mapping Program (STATEMAP) under USGS Cooperative Agreement and the New Mexico Bureau of Geology and Mineral Resources.

New Mexico Bureau of Geology and Mineral Resources 801 Leroy Place, Socorro, New Mexico, 87801-4796

The views and conclusions contained in this document are those of the author and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Government or the State of New Mexico. Grants SE unit descriptions CT Cikoski

Note: Soil descriptions after Birkeland (1999), colors after Munsell Color (1994), and all proportions are visual estimates.

Artificial units

af Artificial fill. Compacted gravel, sand, and mud underlying roads, railroads, and water tanks. Up to 5 m thick.

Colluvial and slopewash units

Slopewash. Sandy silt and silty sand accumulating in depressions in
landslide areas. Likely up to 2 m thick.
Deflationary pits. Gray to brown (7.5YR 7/2 and 5YR 4/2 measured), generally well-laminated silt and lesser clay with 5-15% fine sand, subangular to subrounded, accumulating in depressions. Likely up to 2 m
thick.
Colluvium. Gravels, sands, and silts transported by mass wasting and thin water flow. Likely up to 2 m thick.
Landslides. Slumps, slides, debris-flow deposits, and associated fine- grained material underlying hummocky terrain along slopes below basalt- capped mesas.

Eolian units

Qes	Eolian sand. Silty fine sand and fine sandy silt forming sand sheets and
	low dunes. Pale brown colors typical, with colors of 7.5YR 7/3 to 7/6 and
	N 9 measured. Little evidence of soil development. Likely up to 2 m thick.
Qes/Qb_	Eolian sand over basalt. Hybrid unit that locates areas of basalt flows
	largely buried by thin (0-1 m thick) eolian sand cover.
Qesd	Dune sand. Clean to silty fine sand and fine sandy silt forming dune forms
	of variable development and sandsheets with mounded microrelief.
	Variably vegetated, with the more vegetated dunes displaying weak soil
	development such as Stage I gypsum accumulation. As much as 5 m thick.
Qae	Alluvial and eolian sand, undivided. Silty sand and sandy silt transported
	by wind, slopewash, and confined water flow. Variably vegetated,
	typically does not exhibit signs of soil development. <1/2 to 2 m thick.

Alluvial units

Rio San Jose alluvium

Qaj Alluvium associated with the Rio San Jose, undivided. Sand and silt with lesser gravel and rare clays. Typically further subdivided into age units.
Qajh Historic alluvium associated with the Rio San Jose. Alluvium found along the current floodplain of the Rio San Jose that does not exhibit signs of soil development. Deposits are typically poorly to moderately sorted angular to rounded silt/sand grains and fine pebbles. Likely up to 1 m thick.

Qajhf	Historic alluvium associated with thin alluvial fans from the termini of gullies and channels along the Rio San Lose floodplain. Likely up to 1 m
	thick.
Qajy	Younger alluvium associated with the Rio San Jose. Alluvium underlying terrace treads up to 2 m above the active channel, with typical soil
	development including a weak reddened Bw horizon and up to Stage I Bk development. Colors of 10YR 5/4 to 5/6, 7.5YR 5/3 to 5/4, and locally
	5YR 4/4 and 7/4, measured. Likely not more than 3 m thick.
Qajo	Thin deposits of sand and gravel associated with the Rio San Jose at relatively high elevations along the active channel. Largely only
	identifiable by the presence of sparse granitic and siliceous pebbles that do not occur in underlying strata. No signs of soil development observed. 0-1 m thick.

Las Ventanas Ridge and Horace Mesa alluvium

Qaf	Alluvial fan material from Mezosoic-cored highlands, undivided. Pebbly sand and silt derived from small drainages in the flanks of Las Ventanas Ridge and Horace Mesa. Typically subdivided based on age inferred from geomorphology and soil development.
Qafh	Historic alluvial fan material from Mesozoic-cored highlands. Likely up to 1 m thick.
Qafy	Younger alluvial fan material from Mezosoic-cored highlands. Alluvium underlying fan surfaces inset upon those of Qafo and bearing weak soils (A/Bw at most), with colors of 10YR 6/3 measured. Likely up to 6 m thick.
Qafo	Older alluvial fan material from Mezosoic-cored highlands. Alluvium underlying fan surfaces inset upon by those of Qafy and bearing buried soils and evidence of a strong active soil. Buried soils have Bt and up to Stage II Bk horizons and colors of 10YR 6/3-6/4 and 2.5Y 7/4. Evidence for a Stage III K horizon at the top of these deposits, but this was not observed in outcrop. Likely up to 10 m thick.

El Malpais valley alluvium

Qay	Younger alluvium of the El Malpais valley. Fine sand and mud with local
	fine pebbles, mainly along shallow, low gradient drainages. Active soils
	and buried soils are typically weak, A/Bw to A/Bt/Bk (Stage I), with clay
	as fine films on ped faces and bridging grains. Likely up to 2 m thick.
Qaec	Calcareous alluvium and eolian material. Fossiliferous sand, mud, and
-	sparse fine pebbles with rare dark gray organic material accumulations.
	Soil analyzes by White (1989) indicate deposits are up to 100% carbonate.
	Fossils are mollusk shells, and carbonate casts of grasses and roots are
	also locally common. Likely up to 3 m thick.
Qazo	Older alluvial fan material from Zuni Canyon. Gravel, sand, and silt
	bearing clasts indicative of derivation from the Zuni Mountain interior,
	specifically fine pebbles of granite, red siltstone, quartz sandstone,
	siliceous material, and arkosic sandstone. Distribution suggests transport

from Zuni Canyon into the El Malpais valley prior to the eruption of Qbz but probably after eruption of Qbc. Thickness unknown, possibly tens of meters in the El Malpais graben.

Zuni Mountains piedmont alluvium

Qp	Alluvium of the Zuni Mountains piedmont, undivided. Typically subdivided based on age inferred from geomorphology and soil development. Units are extended from work to the west by Timmons and
Qpy	Cikoski (2012). Younger alluvium of the Zuni Mountains piedmont, undivided. Combined unit of Qpy1, Qpy2, and Qpy3 of Timmons and Cikoski (2012), mapped where finer subdivision is not readily possible at this scale. Likely up to 3 m thick.
Qpy3	Youngest alluvium of the Zuni Mountains piedmont. Brown silty fine to coarse sand with little soil development. Contains sparse very fine carbonate nodules (Stage I carbonate horizon morphology). Colors of 5YR 6/4 to 7.5YR 5/3 measured. 0-1 m thick.
Qpo	Older alluvium of the Zuni Mountains piedmont. Pale to medium reddish brown pebbles to boulders and silty sands with strong soil development. Stage III carbonate horizon morphology common in outcrop. Colors of 5YR 5/4 to 8.5/2 measured, with color controlled by abundance of carbonate. Likely up to 10 m or more thick.
Lava flows	
Qbm	McCartys flow. Dark gray basalt flow largely unconcealed by eolian material or vegetation. Variably porphyritic, from <1% to 20% phenocrysts, principally of subhedral, <1 mm across pyroxene, but also rare (<3%) plagioclase as subhedral, clear, <1 mm across prismatic crystals. Age estimates range from 2.4 to 3.9 ka (Table 1). Likely 0 to 6 m thick.
Qbb	Bandera flow. Lithologically similar to Qbm, though with more fine- grained eolian cover. Consistent age estimates range from 9.17 to 12.5 ka (Table 1). Likely 0 to 6 m thick.
Qbz	Zuni Canyon flow. Dark gray to black, generally phenocryst-poor basalt. Up to 3% phenocrysts of translucent greenish pyroxene and olivine, both <1/2 mm across, typically anhedral, and variably degraded to translucent reddish iddingsite(?). Likely 0 to 4 m thick.
Qbh	Hoya de Cibola flow. Basalt flows burying Qbc, and buried by Qbm and Qbb, locally concealed by eolian material and vegetation though typically only partially concealed. Likely 0 to 5 m thick.
Qbc	El Calderon flow. Dark gray to black basalt with rare fine phenocrysts. Up to 5% phenocrysts <1/2 mm across of mainly subhedral translucent greenish pyroxene and lesser (up to 1% of rock) anhedral translucent greenish olivine. Basalt surface is often largely concealed by eolian material and vegetation, with actual basalt cropping out mainly at breaks in slope, areas of erosion, and areas with relatively high microrelief. Age

	of eruption uncertain due to a wide spread in results, from 34 to 130 ka (Table 1). Likely 0 to 7 m thick.
Qbg	Grants flow. Dark gray to black generally phenocryst-poor basalt
	underlying and largely concealed by Qbc. To date, only conclusively
	distinguished as a separate flow by the paleomagnetic work of Cascadden
	et al. (1997). Here, the contact is placed on a well-defined flow break
	along the Rio San Jose, and an inferred flow break along the western
	margin of the El Malpais valley; only the former contact is verified by
	paleomagnetic work. Rock mass is up to 4% phenocrysts of pyroxene (up
	to 1 mm across, subhedral, translucent greenish) and <1-2% olivine
	(euhedral, <1 mm across, translucent greenish). Likely 0 to 7 m thick.
Ttbp	Porphyritic trachybasalt capping Horace Mesa on this quadrangle.
-	Medium gray basalt with up to 5% phenocrysts of mainly plagioclase (up
	to 6 mm across, translucent white to chalky white, lathe-like subhedral or
	fractured anhedral shapes, 2-4% of rock mass) and pyroxene (<1-6 mm
	across, black to dark translucent green, anhedral to subhedral, <1-2% of
	rock mass). K-Ar age of 3.24 ± 0.09 Ma from Laughlin et al. (1993)
	thought to be from this flow. 15-25 m thick.
	-

Mesozoic strata

Mesozoic st	Mesozoic strata		
Kc	Crevasse Canyon Formation, undivided, including associated tongue of the Mancos Shale. Generally subdivided into constituent members		
Kcda	Dalton Sandstone Member. White to pale brown quartz-rich, variably silty fine to medium sandstone. Thin bedding, typically 10-60 cm thick, with common 1-5 mm thick cross-laminae. Colors of 2.5Y 8.5/1 and 2.5Y 7/2 measured for fresh faces. 34-40 m thick.		
Kmm	Mulatto Tongue of the Mancos Shale. Yellowish brown mudstone, mostly siltstone. Strongly planar laminated/bedded mudstone, with wavy beds 2 to 30 mm thick. Colors of 2.5Y 7/4 to 8/3 measured for fresh surfaces, 10YR 7/6 measured for weathered surface. Includes a thin quartz-rich very		
	fine sandstone interval. 50-60 m thick.		
Kcs	"Stray" Sandstone Member. Pale brown quartz-rich clean fine sandstone. Thinly bedded, 10-40 cm thick, and massive to weakly internally cross- stratified. Colors of 2.5Y 8/3 to 7/4 measured on fresh surfaces. Includes a 2-3 m thick shale interval, as well as local mudstone interbeds (<5% of exposures). 20-25 m thick.		
Kcdi	Dilco Coal Member. Heterolithic unit of interbedded pale brown to gray siltstone, pale brown to tan sandstone, and black coal. Thin bedding to thick laminae; sandstone beds are typically 5-25 cm thick and massive or internally cross-laminated with 1-4 mm thick laminae, while mudstone beds are 3 mm to 3 cm thick, and coal beds are up to 1 cm thick and discontinuous. Sandstone color of 2.5Y 8/4 measured on a fresh face. 35-45 m thick.		
Kg	Gallup Sandstone, undivided, including associated tongues of the Mancos Shale. Generally subdivided into constituent members.		

Kgc	Gallup Sandstone tongue "C". Pale brown to light yellowish gray quartz- rich silty fine sandstone. Thinly bedded (5-30 cm thick) with common internal cross-laminae 1 mm to 1 cm thick. Color of 10YR 8/4 measured
	for a fresh face. Designation as unit "C" after Molenaar (1983), previously referred to as "Gallup, main body" by Thaden et al. (1967) and Zeigler et al. (2012). 12-20 m thick.
Kgm2	Upper tongue of Mancos Shale intercalated with the Gallup Sandstone. Poorly exposed, thinly laminated mudstone and siltstone located stratigraphically between Kge and Kgc. 30-36 m thick
Kge	Gallup Sandstone tongue "E". Pale brown to light yellowish brown, quartz-rich silty-clayey fine sandstone. Thinly bedded (3-50 cm thick), massive with vertical tubular burrows to well cross-laminated, with 1-3 mm thick laminae. Color of 2.5Y 8/4 measured for a fresh face. Unit is capped by a distinctive brown, well indurated, calcite-cemented, muddy fine sandstone, with colors of 10YR 5/4 to 6/3. Designation as unit "E" after Molenaar (1983), previously referred to as "Gallup, upper tongue" by Thaden et al. (1967) and Zeigler et al. (2012). 15-25 m thick.
Kgm1	Lower tongue of Mancos Shale intercalated with the Gallup Sandstone. Poorly exposed, thinly laminated mudstone and siltstone located stratigraphically between Kgf and Kge. 10-15 m thick.
Kgf	Gallup Sandstone tongue "F". Pale brown to pale yellow to gray quartz- rich silty fine sandstone and fine sandy siltstone. Thinly bedded (4-30 cm thick), commonly massive with burrows at the base, grading up into cross- laminated (1-4 mm thick laminae). Colors of 2.5Y 7/1-8/3 measured. Designation as unit "F" after Molenaar (1983), previously referred to as "Gallup, lower tongue" by Thaden et al. (1967) and Zeigler et al. (2012). 12-15 m thick
Km	Mancos Shale, undivided. Claystone to siltstone, with very rare sandstone beds. Typically divided into tongues based on stratigraphic location
Kmrd	Mancos Shale, equivalent to the Rio Salado and D-Cross Tongues. Light gray to medium gray to pale brownish gray, well-laminated gypsiferous siltstone to claystone and rare sparry gypsum beds. Thinly bedded, with beds up to 6 cm thick, commonly internally laminated, with laminae <1 to 1 mm thick. 45-55 m thick.
Kd	Dakota Sandstone, undivided. Sandstone, siltstone, and mudstone. Typically divided into tongues based on stratigraphic location.
Kdt	Dakota Sandstone, Twowells Tongue. Light yellow to white, quartz-rich, variably silty fine sandstone and local siltstone. Typically more massive and thicker bedded base, and more cross-bedded and thinner bedded top. Beds from 1 m thick at base to 25-40 cm thick at top. Color of 2.5Y 7/4 measured on a fresh face. Gradational basal contact. 9-11 m thick.
Kmw	Mancos Shale, Whitewater Arroyo Tongue. Light gray to dark gray siltstone to claystone. Generally very poorly exposed. Color of 2.5Y 7/2 measured. 4-6 m thick.
Kdp	Dakota Sandstone, Paguate Tongue. Light yellow to pale brown, variably silty fine to medium sandstone. A massive base grades up into a bedded

	but internally massive middle, followed by a bedded and internally cross- stratified top. Beds are 4-20 cm thick, cross-strata 1-12 mm thick. Unit tends to coarsen upsection, from silty very fine to clean fine-medium sandstone. Colors of 2.5Y 7/3-8/3 measured on fresh faces. 9-12 m thick.
Ктс	Mancos Shale, Clay Mesa Tongue. Black to brown claystone to siltstone. Brown color of 10YR 5/4 measured; brown color may be an iron oxide stain, 18-24 m thick.
Kdc	Dakota Sandstone, Cubero Tongue. Pale brown to light yellow variably silty fine sandstone. Thinly bedded, particularly where not bioturbated (30-50 cm thick where massive, 2-12 cm thick where cross-bedded). Vertical and subhorizontal burrows common. Unit includes a ~2 m thick medial section of mudstone, separating two sandstone intervals. 9-12 m thick.
Kdou	 Dakota Sandstone, upper Oak Canyon Member. Black to pale brown gypsiferous claystone to siltstone. Strongly laminated mudstone, commonly wavy, up to 4 mm thick. Local very fine sandstone beds up to 3 cm thick. Colors of 2.5Y 5/3, 7/2, and black (value <2.5, chroma ~1) measured. Unit includes a ~2 m thick sandstone interval dividing two mudstone intervals. 26-30 m thick.
Kdol	Dakota Sandstone, lower Oak Canyon Member. Pale brown to white, variably silty fine to medium sandstone and lesser pebbly sandstone and siltstone. Thin beds (1-10 cm thick beds) that are typically more massive at the base and internally planar and cross-laminated toward the top. Vertical and subhorizontal burrows are common. Locally carbonaceous. Pebbles at the base are up to ½ cm across, poorly sorted, generally well rounded, and principally of light to medium brown siliceous material with rare quartzite and sparse granite. 8-10 m thick.
Jm	Morrison Formation, undivided. Interbedded pale yellow to light brown sandstone, varicolored mudstone, and lesser conglomerate. Lower sandstones are of silty fine sand, typically pale yellow in color (2.5Y 8/3 measured), and are indistinctly bedded with cross-laminae. Upper sandstones and conglomerates are pale brown to white, of quartz-rich silty fine to coarse sand, generally in thin beds (5-8 cm thick) with common, well-expressed cross-laminae. Pebbles, only observed in the upper part of the unit, are up to 1 cm across, moderately sorted, subrounded to rounded, and mainly of siliceous material with rare granites (up to 2% of beds) and sparse white to gray quartzites (<<1%). Mudstones are clay to silt, with colors of 5YR 5/3, 5GY 8/1, and 5Y 8/2 measured. Use of Jm here differs from the previous maps of Thaden et al. (1967) and Maxwell (1986) in that the strongly cross-bedded sandstones and conglomerates between the varicolored mudstones and bioturbated lower Dakota sandstones are included in the Morrison and not considered a part of the Oak Canyon Member of the Dakota. Pinches out to the south. 0-30 m thick.
Jb	Bluff Sandstone. Light gray to strong olive colored, strongly cross-bedded, dominantly eolian sandstone with local fluvial sandstone. Variably silty fine to medium sands, mainly of quartz. Thin to medium beds (up to 1.5 m

	thick observed), tabular and wedge-shaped, with steep, large-scale, eolian cross-laminae. Local fluvial beds are thinner, up to 20 cm thick, with low-angle, small-scale cross-laminae. Colors of 5Y 8/2 and 2.5Y 6/6 measured. Forms bold cliffs, 85-90 m thick.
Js	Summerville Formation. White to pale yellow, very poorly exposed sandstone, mudstone, and limestone conglomerate(?). One poor exposure suggests the presence of limestone pebble conglomerate channels, with subrounded to rounded, poorly sorted fine to medium pebbles in a silty fine to coarse sand matrix; given the poor exposure, however, it is possible this conglomerate is actually a caliche-cemented Quaternary deposit inset upon the Summerville sandstones. Colors of 2.5Y 8/1 to 7/3 measured. 13- 16 m thick.
Jt	Todilto Formation. Gypsiferous light to dark gray fine-grained limestone. Typically $<5\%$ of fresh faces is visible grains (locally up to 20%), with $<1-2\%$ fine (<1 mm across) circular fossils. Thinly bedded, 0.5 to 10 cm thick. Colors of 2.5Y 6/1 to 7/1 measured. 5-7 m thick.
Je	Entrada Sandstone. Pink to light reddish brown silty fine sandstone and siltstone. Grains are moderately to poorly sorted, very silty with rare medium sand grains. Indistinctly thinly bedded (2-10 cm thick), but well cross-bedded. Color of 2.5YR 7/4 measured. 45-50 m thick.
Ћu	Triassic, undivided. Cross-section only. Includes both kc and km. 540- 550 m thick.
Ћ С	Chinle Formation, undivided. Poorly exposed red mudstone at the top, reddish brown sandstone and pebble conglomeratet at the base; middle of unit is not exposed. Basal contact placed on the first pebble conglomerate.
Τ̈́Μ	Moenkopi Formation. Slope-forming red to reddish brown mudstones along the eastern edge of the quadrangle. Poorly exposed. Less than 5 m thick.

Paleozoic and older strata

Psa	San Andres Formation. Light to dark gray limestone and dolomite.
	Exposed only along the eastern margin of the quadrangle. 75-80 m thick.
Pg	Glorieta Sandstone. Cross section only. 40-45 m thick.
Ру	Yeso Formation. Cross section only. 380-385 m thick.
Pa	Abo Formation. Cross section only. 285-290 m thick.
₽u	Pennsylvanian strata, undivided. Cross section only. Only locally present
	in the Zuni Mountains, ~150 m thick in the Gottlieb #1 lithologic log.
p€u	Precambrian rocks, undivided. Cross-section only.

Intrusive rocks

Tib Intrusive basalt. Dark gray to dark brownish gray and black pyroxeneplagioclase basaltic porphyry dikes. Rock mass is up to 10% greenishtranslucent subhedral pyroxene, 1-3% clear to white subhedral plagioclase, and sparse reddish translucent crystals, possibly iddingsite replacing olivine. All phenocrysts <1 mm across. Dikes are 0 to 1 m wide.

References

- Birkeland, P.W. 1999. Soils and geomorphology: New York, Oxford University Press, 430 p.
- Cascadden, T.E., Geissman, J.W., Kudo, A.M., and Laughlin, A.W. 1997. El Calderon cinder cone and associated basalt flows: *in* Maberry, K., *ed.*, Natural history of El Malpais National Monument: New Mexico Bureau of Geology and Mineral Resources, Bulletin 156, p. 41-51.
- Champion, D.E., and Lanphere, M.A. 1988. Evidence for a new geomagnetic reversal from lava flows in Idaho discussion of short polarity reversals in the Bruhnes and late Matuyama polarity chrons: Journal of Geophysical Research, v. 93, p. 11,667-11,680.
- Dunbar, N.W., and Phillips, F.M. 2004. Cosmogenic ³⁶Cl ages of lava flows in the Zuni-Bandera volcanic field, north-central New Mexico, USA: *in* Cather, S.M., McIntosh, W.C., and Kelley, S.A., *eds.*, Tectonics, geochronology and volcanism in the southern Rocky Mountains and Rio Grande rift: N.M. Bureau of Geology and Mineral Resources, Bulletin 160, p. 309-317.
- Kelly, T.E., and Reynolds, C.B. 1989. Structural geology of the Malpais Valley, San Rafael, New Mexico: *in* Anderson, O.J., Lucas, S.G., Love, D.W., and Cather, S.M., *eds.*, Southeastern Colorado Plateau: N.M. Geological Society, Guidebook 40, p. 119-121.
- Laughlin, A.W., and WoldeGabriel, G. 1997. Dating the Zuni-Bandera volcanic field: *in* Maberry, K., *ed.*, Natural history of El Malpais National Monument: New Mexico Bureau of Geology and Mineral Resources, Bulletin 156, p. 25-29.
- Laughlin, A.W., Perry, F.V., Damon, P.E., Shafiqullah, M., WoldeGabriel, G., McIntosh, W.C., Harrington, C.D., Wells, S.G., and Drake [Drakos], P.D. 1993.
 Geochronology of Mount Taylor, Cebollita Mesa, and Zuni-Bandera volcanic fields, Cibola County, New Mexico: New Mexico Geology, v. 15, p. 81-92.
- Laughlin, A.W., Poths, J., Healey, H.A., Reneau, S., and WoldeGabriel, G. 1994. Dating of Quaternary basalts using the cosmogenic ³He and ¹⁴C methods with implications for excess ⁴⁰Ar: Geology, v. 22, p. 135-138.
- Maxwell, C.H. 1986. Geologic map of El Malpais lava field and surrounding areas, Cibola County, New Mexico: US Geological Survey, Miscellaneous Map I-1595, scale 1:62,500.
- McIntosh, W.C. 1994. ⁴⁰Ar/³⁹Ar geochronology of late Miocene to Pleistocene basalts of the Zuni-Bandera, Red Hill-Quemado, and Potrillo volcanic fields, New Mexico (abs.): New Mexico Geology, v. 16, p. 60-61.
- Molenaar, C.M. 1983. Principal reference section and correlation of Gallup Sandstone, northwestern New Mexico: *in* Hook, S.C., *ed.* Contributions to mid-Cretaceous paleontology and stratigraphy of New Mexico – Part II: New Mexico Bureau of Geology and Mineral Resources, Circular 185, p. 29-40.
- Munsell Color. 1994 edition. Munsell soil color charts: New Windsor, N.Y., Kollmorgen Corp., Macbeth Division.
- Thaden, R.E., Merrin, S., and Raup, O.B. 1967. Geologic map of the Grants SE quadrangle, Valencia County, New Mexico: US Geological Survey, Geologic Quadrangle Map GQ-682, scale 1:24,000.

- Timmons, J.M., and Cikoski, C.T. 2012. Preliminary geologic map of the San Rafael quadrangle, Cibola County, New Mexico: New Mexico Bureau of Geology and Mineral Resources, Open-file Geologic Map OF-GM-232, scale 1:24,000.
- White, W.D. 1989. Geohydrologic and environmental indicators of a dewatered wetland: Ojo del Gallo, San Rafael, New Mexico: *in* Anderson, O.J., Lucas, S.G., Love, D.W., and Cather, S.M., *eds.*, Southeastern Colorado Plateau: N.M. Geological Society, Guidebook 40, p. 337-345.
- Zeigler, K.E., Cikoski, C.T., Drakos, P.D., and Riesterer, J. 2012. Preliminary geologic map of the Grants quadrangle, Cibola County, New Mexico: New Mexico Bureau of Geology and Mineral Resources, Open-file Geologic Map OF-224, scale 1:24,000.

Table 1: Summary of geochronologic data for the Grants SE basalt flows.

Unit	Age ¹ (ka)	$\frac{\pm 2\sigma}{2}$	Type ³	Ref. ⁴	Latitude	Longitude	Comments
Qbm	2.97	0.12	^{14}C	L94	34°56.01'N	107°50.33'W	
	3.01	0.14					
	2.5	1.1	³ He	L94	35°05.16'N	107°46.52'W	
-	2.4	0.6					
	3.9	1.2	³⁶ Cl	DP04	34°55.97'N	107°50.45'W	Weighted mean
							of 0 mm/kyr and
							5 mm/kyr
							erosion rate
			14				assumptions
Qbb	9.17	0.14	¹⁴ C	L94	35°00.32'N	108°04.35'W	
	9.81	0.12	3				
	11.0	1.1	JHe	L94	34°59.64'N	108°05.22'W	
	10.0	1.8	3				
	12.5	1.4	³ He	L94	34°59.57'N	108°05.48'W	
	11.2	0.6	⁵⁰ Cl	DP04	34°59.55'N	108°05.30°W	Weighted mean
							of 0 mm/kyr and
							5 mm/kyr
							erosion rate
	41	7	A = / A =	M04			Inconsistent age
	41	/	AI/AI	10194			nossibly from
							excess argon
Qbh	50	14	Ar/Ar	LWup			Uncertain age,
							possibly suffers
							from excess
Oha	120	22	V An	CLOO			argon
Qbc	128	50	K-Ar	L02	25007 52'N	107920 55'W	
	34	30	K-Af	L93	35°07.52 N	$107^{\circ}20.33$ W	Weighted mean
	34.7	5.0	CI	DP04	55 04.49 N	107 43.29 W	of 0 mm/kyr and
							5 mm/kyr
							erosion rate
							assumptions
	115-120		PM	C97			Suggested to
	115 120		1 101	077			have erunted
							during the Blake
							geomagnetic
							polarity event
Ttbp	3238	85	K-Ar	L93	35°05.17'N	107°42.50'W	Lower lava flow
1							from
							southeastern tip
							of Horace Mesa

¹: Age as published; no attempt made to normalize values. ¹⁴C ages are not calibrated calendar ages.

²: Uncertainty as published.
³: PM – age from comparison of radiometric ages and paleomagnetic data to established paleomagnetic ¹⁴C ages date material from buried soils immediately underlying the flows; ³He and ³⁶Cl are cosmogenic surface exposure ages; ⁴⁰Ar/³⁹Ar and K-Ar are crystallization ages.
⁴: C97 – Cascadden et al., 1997; CL88 – Champion and Lanphere, 1988; DP04 – Dunbar and Phillips, 2004; L93 – Laughlin et al., 1993; L94 – Laughlin et al., 1994; LWup – Laughlin and WoldeGabriel, 1004

unpublished data, cited in Laughlin and WoldeGabriel., 1997; M94 - McIntosh, 1994.