
FIGURE 1—Pictured is a view to the east from the top of Tortugas Mountain, showing modestly dissected piedmont slope and 
geomorphic surfaces with the Organ Mountains on the skyline. Houses in center midground were built on the Jornada I surface. 
The Jornada I surface consists of both erosional and constructional vgeomorphic surfaces atop the piedmont facies of the Camp Rice 
Formation (Qcp). Dripping Springs Road descends from the Jornada I surface to the Picacho morphostratigraphic unit in the center 
to lower left of the photo.  13S 340504 mE, 3574104 mN NAD83. 

Dripping Springs Road

Camp Rice Formation, undivided—Cross section only. Correlates 
to the upper Santa Fe (USF) unit of Hawley et al. (2020). 

TERTIARY

Santa Fe Group, undivided—Cross section only. Includes the 
Middle Santa Fe and Lower Santa Fe facies of Hawley et al. (2020). 

Undifferentiated volcanic rocks—Cross section only. Lavas and 
ash-flow tuffs derived mainly from calderas in the Organ 
Mountains or Doña Ana Mountains. 

West-side trachyte flows—Porphyritic trachyte lavas that are dark- 
or purplish-gray weathering, reddish-brown, and massive to 
flow-banded. Phenocrysts are altered but include 10–20% crystals 
that are mostly fine to coarse plagioclase (<6 mm; subhedral to 
euhedral laths) with minor biotite and hornblende (Seager et al., 
1981). Two K-Ar ages of ≈33.7 Ma were obtained for nearby flows 
(Seager, 1981; Seager et al., 1981), but more recent 40Ar/39Ar dating of 
the west side lavas by Zimmerer and McIntosh (2013) yield dates of 
35.68 ± 0.09 Ma to 36.28 ± 0.23 Ma. Individual flows are up to 30 m 
thick; the overall thickness is up to 300 m (Seager, 1981). 

Tuff of Squaw Mountain—Cross section only. Densely welded tuff 
derived from the Organ Caldera (Seager, 1981). U-Pb date is 36.215 ± 
0.016 Ma and 40Ar/39Ar date is 36.03 ± 0.16 Ma (Rioux et al. 2016; 
Zimmerer and McIntosh, 2013). 

Orejon Andesite—Cross section only. Gray andesite to dacite lava 
flows and debris flows reported in geothermal well Chaffee 55-25 
south of Tortugas Mountain (Seager et al., 1987). U-Pb dates are 
43–44 Ma (Creitz et al., 2018). 

PALEOZOIC

Upper part of the lower Hueco Formation—Fossil-poor limestone 
that is tan to yellow-orange, cream, or light-gray and thin- to 
medium-bedded. It is found on the west side of Tortugas Mountain. 
Contact with underlying unit Phll is not well-exposed and may be 
gradational over a few meters. The exposed thickness is >5 m. 

Lower part of the lower Hueco Formation—Limestone, dolomite, 
and dolomitic limestone that are light- to medium-gray (less 
commonly dark-gray), mostly massive or medium- to very 
thick-bedded (>20 cm), internally massive or with rare light-colored 
wavy laminae, and fossil-poor to fossiliferous. Recrystallization is 
common. Some beds contain occasional to abundant fusulinids 
that may be disseminated or clustered; these are <1.5–5 mm long. 
Gastropods, bivalves, horn corals, crinoid stems, and burrows are 
less common; crinoids are commonly silicified where preserved. A 
microchonchid tubeworm observed in the lower part of the unit 
may be Helicoconchus elongatus (C. Dunn, pers. comm., 2018). At 
least one white chert bed is observed near the presumed base of the 
unit on the east side of Tortugas Mountain. Otherwise, chert occurs 
as sparse to pervasive lace or, less commonly, as nodules and lenses 
that are white or sometimes gray. Extensive silicification and local 
barite/fluorite mineralization may be encountered along fracture 
zones. The minimum thickness is 305 m. 

Panther Seep Formation—Sandstone, limestone, and breccia that 
are poorly exposed. Breccia consists of mostly white (rare gray), 
angular, pebble- to cobble-sized chert fragments in a reddish- 
yellow, clayey matrix. Sandstone is up to 2 m thick and consists of 
massive to horizontal-planar or perhaps cross-laminated, very fine 
siliceous grains. Below the sandstone is dark-gray limestone 
containing lenses, nodules, and beds of brown (minor white) chert. 
Seager et al. (1987) note that this unit includes shale and siltstone 
elsewhere. The exposed thickness is <45 m. 

Lead Camp Limestone—Cross section only. Limestone and 
dolomite are intercalated with shale and minor sandstone and 
conglomerate in the lower third of the unit (Seager et al., 1987). The 
thickness is about 200 m in the Organ Mountains (Seager, 1981). 

Undifferentiated Cambrian to Mississippian sedimentary rocks— 
Cross section only. Dolomite, limestone, shale, and subordinate 
sandstone.
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Younger alluvium—Pebbly sand or sandy pebble gravel that is 
loose to weakly consolidated and frequently fines upward to loamy 
sediment. Sand is dark-yellowish-brown (10YR 4/3–4) near 
Tortugas Mountain and is internally massive to trough or planar 
cross-stratified. Surface soils feature cambic (Bw) to weak calcic 
horizons featuring stage I carbonate accumulation; the former are 
associated with reddish-brown hues (5–7.5YR). At valley-border 
locations, the deposit underlies a surface graded to as much as 9 m 
below or above the modern Rio Grande valley. Charcoal and shell 
14C ages span an interval from ≈9,400 to 1,100 cal yr BP, with soil 
development indicating a stable period ≈7,000 cal yr BP (Gile and 
Hawley, 1968; Metcalf, 1969; Gile et al., 1981). This unit is correlative 
to the Fort Selden (Fillmore + Leasburg—valley border) and Organ 
and Isaacks’ Ranch morphostratigraphic units (piedmont slope) of 
Ruhe (1962, 1964, 1967) and Gile et al. (1981). The thickness ranges 
from 2–3 m on the piedmont slope up to 16 m along the Rio Grande 
valley border (modified from Gile et al. [1981]). 

Gray younger alluvium—Occupies the same elevation 
position in the landscape as Qvy, but has a grayish-white 
hue in aerial imagery. 

Valley-floor alluvium, undivided—Varying proportions of 
modern (Qvm), historical (Qvh), and younger (Qvy) alluvium 
filling valley-floors and underlying modern channels. See 
detailed descriptions of each unit. 

Valley-floor alluvium, undivided with eolian sand and sheetwash 
component—Varying proportions of modern (Qvm), historical 
(Qvh), and younger (Qvy) alluvium filling valley-floors and 
underlying modern channels. This unit includes a substantial 
component of eolian sand and sheetwash (Qes), mostly as a thin 
mantle on alluvial sediment. See detailed descriptions of each unit. 

Older Alluvial Units

Picacho Alluvium—Sandy pebble to pebble-cobble gravel that is 
weakly to moderately consolidated in massive or medium to very 
thick, tabular to broadly lenticular beds. The deposit is internally 
massive to moderately-well imbricated or locally cross-stratified. 
Gravel are mostly clast-supported, very poorly to poorly sorted, 
subangular to well-rounded, and consist of clasts of rhyolite and 
rhyolitic tuff to the south and felsic extrusives plus monzonite to 
the north. The matrix consists of moderately calcareous, poorly 
sorted, subangular to rounded, fine- to coarse-grained sand. Colors 
mostly range from reddish-brown to brown (5–7.5YR). A stage III 
calcic horizon commonly caps the deposit; rarely, a thin argillic (Bt) 
horizon is preserved above this. Tread height is 18–24 m above 
modern grade. The thickness is <15–21 m (modified from Ruhe 
[1967] and Gile et al. [1981]). 

Alluvial Fan and Piedmont Units

Younger fan-piedmont alluvium—Similar to units Qvy and Qpy 
but occurring in mostly undissected fans, sheets, and lobes readily 
correlated to the Organ or Issacks’ Ranch geomorphic surfaces of 
Ruhe (1964, 1967) and Gile et al. (1981). The thickness is 2–3 m. 

Younger fan-piedmont alluvium, Organ to Isaacks' 
Ranch morphostratigraphic unit—Similar to units Qvy 
and Qpy but occurring in mostly undissected fans, 
sheets, and lobes readily correlated to the Organ or 
Issacks’ Ranch geomorphic surfaces of Ruhe (1964, 1967) 
and Gile et al. (1981). The thickness is 2–3 m. 

Older fan-piedmont alluvium—Pebble–cobble to pebble–boulder 
gravel that is loose to moderately consolidated in medium- to very 
thick (25–60+ cm), tabular to wedge-shaped beds. Gravel are mostly 
matrix-supported, internally massive to vaguely imbricated, very 
poorly to poorly sorted, angular to subrounded pebbles (50–70%), 
cobbles (30–50%), and boulders (<20%). The matrix consists of 
reddish-brown (5–7.5YR) or pale- to yellowish-brown (10YR, less 
common), strongly calcareous, very poorly sorted, angular to 
subrounded, silty, vfL–cU sand. A stage II+ calcic soil horizon is 
observed in the upper 0.8–1.3 m of the deposit. Moderate to strong 
varnish is observed on 10–15% of surface clasts. The deposit likely 
correlates to the Picacho surface of Ruhe (1967) and Gile et al. 
(1981). The thickness is 2–10 m. 

Fan-piedmont alluvium, undivided—Varying proportions of 
younger (Qpy, Qpyoi) and older (Qpo) fan-piedmont alluvium. See 
detailed descriptions of each unit. 

QUATERNARY–TERTIARY

Basin-fill Units

Younger axial-fluvial facies of the Camp Rice Formation—Sandy 
deposits underlying the Jornada I surface in the southern part of 
the quadrangle. Lithologically similar to unit QTcf. The thickness is 
<12–15 m.

Younger piedmont facies of the Camp Rice Formation— 
Pebble–cobble to pebble–boulder gravel that is weakly consolidated 
to carbonate-cemented in massive or in medium to thick (25–80 cm), 
tabular beds. Gravel clasts are matrix-supported (lesser clast- 
supported) and internally massive or with slope-parallel fabric. 
Clasts consist of very poorly sorted, angular to subrounded pebbles 
(40–70%), cobbles (30–45%), and boulders (0–30%). South and west of 
Tortugas Mountain, all clasts are Lower Permian carbonates, 
whereas clast lithologies are dominated (70–75%) by felsic volcanics 
(especially the Tuff of Squaw Mountain) to the east. White to 
pinkish-gray or pink colors (10YR 8/1; 7.5YR 7/2–3) result from 
carbonate cement; reddish-brown to brownish colors (5–7.5YR) are 
common in its absence. Occasionally, beds of tabular sand-silt similar 
to unit Qct are encountered. Gile et al. (1981) note that these facies 
may grade to loam or silt with gravel interbeds at distal piedmont 
positions, may contain buried soils, and that the unit is frequently 
capped by a laminar, petrocalcic horizon (stage IV carbonate 
accumulation). Well logs indicate a maximum thickness of 30–40 m. 

Transitional facies of the Camp Rice Formation—Silt–sand that is 
loose to very weakly consolidated in massive or thin to medium, 
tabular beds. The deposit consists of light-brown to pink (7.5YR 
6/4–7/3), moderately to strongly calcareous, internally massive to 
vaguely low-angle cross-laminated, poorly to moderately sorted, 
subangular to rounded, silt to mL sand composed of 60–70% quartz, 
20–30% lithics (volcanic, ferromagnesian minerals, possible chert), 
and 10–20% feldspar with little clay. Silt-sand is strong brown (7.5YR 
4–5/6) east of Tortugas Mountain. Muddy beds of a similar color 
may also be present and are generally tabular and massive. The 
unit contains occasional buried cambic (Bw) to argillic or calcic (Bt, 
Btk/stage II) soil horizons with abundant small carbonate masses or 
medium to large nodules. Locally, Bw or Bt horizons are eroded, 
leaving only the calcic horizons. These paleosol packages are 
typically 20–80 cm thick. The maximum thickness is about 25 m. 

Older axial-fluvial facies of the Camp Rice Formation—Pebble 
gravel and sand that is loose to moderately consolidated and 
calcite-cemented. Gravel is clast-supported, thin- to medium- 
bedded (7–40+ cm), broadly lenticular, and well-imbricated to 
trough or planar cross-stratified (foresets 20–40 cm tall). Clasts 
consist of poorly sorted, subrounded to well-rounded pebbles 
(75–100%) and cobbles (0–25%) of mostly felsic volcanics with 
subordinate amounts (2–10% each) of intermediate volcanics, basalt, 
quartzite, granite, chert, and sedimentary lithologies. The matrix 
consists of white to very pale-brown (10YR 8/1–2) where 
calcite-cemented, or brown to light-brownish-gray or pale-brown 
(10YR 5/3, 6/2–3), strongly calcareous, very poorly to poorly sorted, 
subangular to well-rounded, fL–cL sand composed of 75–80% 
quartz, 10–15% lithics (volcanic, ferromagnesian minerals, granite, 
chert) with no clay. Gravel underlies weakly to moderately 
calcareous, massive to thick-bedded (55+ cm), lenticular 
(occasionally tabular), internally massive to planar cross-stratified 
(foresets up to 35–40 cm tall), poorly to moderately sorted, 
subrounded to well-rounded, vfL–mL sand. Color and sand 
composition are similar to gravel matrix. Sand is mostly massive in 
the upper 2–4 m of the deposit. Massive clayey to loamy beds are 
locally present. Fossils of the proboscideans Cuvieronius, 
Mammuthus, and Stegomastodon have been recovered from this unit 
locally (Lucas et al., 1999; Houde and Peltier, 2018). Soils are 
generally not observed. Well logs indicate a thickness of 100–215 m. 

Older proximal piedmont facies of the Camp Rice Formation— 
Pebble–boulder gravel/conglomerate that is weakly consolidated to 
carbonate-cemented in thin to medium (5–55+ cm), tabular (rarely 
lenticular) beds. The unit is mostly matrix-supported and 
internally massive with rare open-framework beds. Clasts consist 
of very poorly to poorly sorted, angular to subrounded pebbles 
(55–100%), cobbles (0–30%), and boulders (0–15%) of felsic volcanics 
derived from the western Organ Mountains. Monzonite clasts may 
be present to the north. The matrix consists of dark-reddish-brown 
(e.g., 5YR 3/4), very weakly calcareous, very poorly sorted, angular 
to subrounded, fU–vcL sand composed of 80–85% lithics (volcanic) 
and 15–20% quartz + feldspar with up to 20–25% reddish clay films. 
The unit contains 10–15% thin, tabular beds of pebbly sand similar 
to gravel matrix. Stage III–IV calcic horizons observed in the upper 
1–2 m. The thickness is from 0 to perhaps 90 m. 

QUATERNARY

Anthropogenic Units

Disturbed land and anthropogenic fill—Dumped fill consisting of 
thick accumulations of sand, gravel, and clayey–silty sand. 
Mapped for thick road fill along Interstate 25, flood retention dams, 
and other areas affected by aggregate mining or urban 
development. The fill thickness is 1–10 m. 

Disturbed land and anthropogenic channelization—Mapped where 
existing channels have been modified due to flood control efforts. 

Anthropogenic excavated ground—Excavations associated with 
aggregate mining, landfills, and impoundments. 

Eolian and Hillslope Units

Eolian sand and sheetwash, undivided—Very fine to fine sand 
(<10-20% silt and medium- to coarse-grained sand) that is loosely 
consolidated and forms sheets that mantle high, relatively flat 
terrain or, less commonly, small coppice dunes. Colors range from 
reddish-brown (5YR 5/3–4) to brown (10YR 4–5/3); redder hues 
commonly result from the presence of argillic (Bt) horizons. The 
deposit is similar to unit Qesc but lacks gravelly sediment. On 
sand sheets, sparse to occasional pebbles weathered from 
underlying basin-fill may be scattered on the surface. Coppice 
dunes are vegetated (mostly mesquite, Prosopis juliflora) and 
largely formed 1885–1920 CE (Gile, 1966). The thickness is <2–3 m. 

Eolian sand, sheetwash, and colluvium, undivided—Silty sand 
and pebbly gravel that are loosely consolidated in massive to 
medium (15–30 cm), tabular to wedge-shaped beds and mantle 
footslopes and toeslopes. The sand is composed of yellowish- 
brown (10YR 5/4), weakly calcareous, internally massive to 
laminated or low-angle cross-stratified, very poorly to poorly 
sorted, angular to rounded grains up to cL in size with <15% silt. 
Grains consist of 70–80% quartz, 15–20% lithics (volcanics, 
ferromagnesian minerals), and 10–15% feldspar with trace 
brownish free-grain argillans. This sediment contains 5–15% 
floating subangular to rounded, fine to coarse pebbles with rare 
cobbles of volcanic lithologies and subordinate quartzite and chert. 
On steeper slopes, such gravel dominates the deposit and is clast- to 
matrix-supported; the deposit is massive or has vague to moderate 
slope-parallel fabric. The deposit commonly progrades over unit 
Qvh to a level 0.5–0.8 m above modern grade in larger drainages. 
Elsewhere, it grades laterally to unit Qvy deposits. It may be 
bioturbated by medium to very coarse roots and burrows. In places, 
Qesc may correspond to the Fillmore morphostratigraphic unit of 
Gile et al. (1981). The thickness is 0.75–2 m. 

Colluvium—Pebble–cobble–boulder to cobble–boulder gravel that 
is loosely consolidated, poorly sorted, and angular to subrounded. 
The deposit forms aprons or mantles on the footslopes of Tortugas 
Mountain. The deposit may be clast- to matrix-supported, with 
open-framework in places, and is internally massive or may feature 
slope-parallel fabric. The thickness is <5 m. 

Landslide deposits—An approximately 10,000 m2 slide is found on 
the northeast side of Tortugas Mountain, where it forms a 
prominent toe and consists of blocks of Hueco Formation carbonate 
up to 6.5 m across. The maximum thickness is approximately 15 m. 

Talus and colluvium, undivided—Cobbly to boulder talus 
deposits that are angular to subangular and underly high slopes 
on the north side of Tortugas Mountain with subordinate to 
subequal proportions of colluvium (Qc). The deposit is 
open-framework in many places with internally massive or 
slope-parallel fabric. The thickness is <5–8 m. 

Valley Fan Units

Modern fan alluvium—Pebbly sand and sandy pebble gravel that 
are loosely consolidated and underly fan surfaces that gently grade 
to Qvm or Qvmhr deposits. Color, texture, and bar-and-swale 
topographic relief are similar to Qvm deposits with rare to 
occasional matrix-supported gravels. The thickness is <2 m. 

Historical and modern fan alluvium—Pebbly sand-silt and sandy 
pebble gravel that are loose to very weakly consolidated and 
underly fan surfaces graded at ≈2% slopes to Qvm, Qvh, or Qvmhr 
deposits. Pebble gravels are clast- or, less commonly, 
matrix-supported. Beds are tabular to broadly lenticular, and 
sedimentary textures range from massive to low-angle 
cross-stratified sand or weakly imbricated gravel. Color and 
grain/clast composition and texture are similar to Qvm and Qvh 
deposits found in Fillmore (San Miguel quadrangle) and Tortugas 
Arroyos. Typically non- or very weakly calcareous with little to no 
soil development. Tread height is <1 m above modern grade and 
inset up to 10 m below the Fillmore geomorphic surface of Ruhe 
(1962, 1964, 1967) and Gile et al. (1981) near the western boundary of 
the quadrangle. Surface possibly correlates to the Organ geomorphic 
surface of Gile et al. (1981), where the deposits are found in drainage 
ways on the piedmont slope. The thickness is <2 m in most places. 

Younger fan alluvium—Pebbly sand and sandy pebble gravel that are 
loose to weakly consolidated and underly fan surfaces graded at 2–5% 
slopes to Qvy. Color, texture, and age correlations are similar to Qvy 
deposits; probably <3 ka in most places based on radiocarbon age 
from southeast Robledo Mountains (Gile et al., 1981). Stage I carbonate 
accumulation is common. The thickness is typically <2–4 m. 

Valley-floor Units

Modern alluvium—Pebbly sand and sandy pebble or pebble– 
cobble gravel that are loosely consolidated. The deposit fills 
channels and forms longitudinal bars in ephemeral stream courses. 
Sand is composed of yellowish to light-yellowish-brown (10YR 
5–6/4), horizontal-planar or low-angle cross-laminated, poorly to 
moderately sorted, subrounded to well-rounded, fL–cL grains. 
Grains consist of 65–75% quartz, 15–25% feldspar, and 10–20% 
lithics (volcanics, ferromagnesian minerals; granite and/or chert 
possible) with no clay. Gravels occur predominantly in bars and 
consist of clast-supported, poorly to moderately sorted, subangular 
to well-rounded pebbles (70–100%) and cobbles (0–30%) of mostly 
felsic volcanic lithologies with occasional granite, chert, and 
quartzite where stream courses drain QTcf exposures. The deposit 
features bar-and-swale topographic relief of 0.3–0.5 m. The 
thickness is <2–4.5 m (Gile et al., 1981).

Historical alluvium—Sandy pebble gravel that is loosely 
consolidated in thin to thick(?) (7+ cm), tabular to lenticular beds 
that underly low terraces along stream courses. The deposit is 
internally massive to moderately well-imbricated with occasional 
low-angle cross-stratification. Gravel consist of clast- to matrix- 
supported, poorly sorted, subrounded to well-rounded pebbles 
(>80%) and cobbles (<20%) of mostly felsic volcanic lithologies with 
occasional exotic clasts reworked from various facies of the Camp 
Rice Formation. The matrix consists of brown to yellowish-brown 
(10YR 5/3–4), weakly to moderately calcareous, poorly sorted, 
subangular to rounded, fL–cU sand composed of 55–65% quartz, 
20–25% lithics (volcanic, possible chert), and 15–20% feldspar with 
little or no clay. Occasional (<20%), thin- to medium-bedded (5–15 
cm), massive to horizontal-planar-laminated or planar cross- 
stratified, pebbly sand similar to gravel matrix may be observed. 
The deposit lacks significant soil development. Surface features 
subdued bar-and-swale topographic relief of up to 0.25–0.3 m. 
Tread height is 0.2–0.8 m above modern grade; the deposit surface 
commonly onlaps older surfaces on the piedmont slope or is inset 
3–10 m below the Fillmore geomorphic surface of Ruhe (1962, 1964, 
1967) and Gile et al. (1981) near the western boundary of the 
quadrangle. Probably postdates the Fillmore morphostratigraphic 
unit of Gile et al. (1981), who note that the Fillmore surface was 
stable and occupied by prehistoric peoples by ≈1 ka (p. 45). 

Modern and historical alluvium, undivided—Modern and 
subordinate historical alluvium, undivided. See descriptions for 
Qvm and Qvh. 

Modern and historical alluvium of the Rio Grande floodplain— 
Sandy to clayey deposits that are grayish or light- to dark-brown 
(likely 10YR) with lesser pebble gravel underlying the Rio Grande 
floodplain in Mesilla Valley. Sand is fine- to coarse-grained. The 
deposit is frequently capped by loamy, organic-rich topsoil outside 
of modern and former channels. Portions of this unit mapped as 
Rop1844 and Rfp1844 indicate Rio Grande alluvium deposited 
before 1844 in a meander loop or floodplain (Ruhe, 1962). 
Radiocarbon ages from logs at depths of 5–7 m in correlative 
deposits west of Las Cruces suggest an age of <200 years old (Gile 
et al., 1981). Well logs indicate that the unit is less than 12–15 m 
thick in the southwest corner of the quadrangle (NMOSE, 2020). 
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Description of Map Units

Comments to Map Users

A geologic map displays information on the distribution, nature, orientation, and age relationships of rock 
and deposits and the occurrence of structural features. Geologic and fault contacts are irregular surfaces 
that form boundaries between different types or ages of units. Data depicted on this geologic quadrangle 
map may be based on any of the following: reconnaissance field geologic mapping, compilation of 
published and unpublished work, and photogeologic interpretation. Locations of contacts are not 
surveyed, but are plotted by interpretation of the position of a given contact onto a topographic base map; 
therefore, the accuracy of contact locations depends on the scale of mapping and the interpretation of the 
geologist(s). Any enlargement of this map could cause misunderstanding in the detail of mapping and 
may result in erroneous interpretations. Site-specific conditions should be verified by detailed surface 
mapping or subsurface exploration. Topographic and cultural changes may not be shown due to recent 
development.

Cross sections are constructed based upon the interpretations of the author made from geologic mapping 
and available geophysical and subsurface (drillhole) data. Cross sections should be used as an aid to 
understanding the general geologic framework of the map area, and not be the sole source of information 
for use in locating or designing wells, buildings, roads, or other man-made structures. 

The New Mexico Bureau of Geology and Mineral Resources created the Open-file Geologic Map Series to 
expedite dissemination of these geologic maps and map data to the public as rapidly as possible while 
allowing for map revision as geologists continued to work in map areas. Each map sheet carries the 
original date of publication below the map as well as the latest revision date in the upper right corner. In 
most cases, the original date of publication coincides with the date of the map product delivered to the 
National Cooperative Geologic Mapping Program (NCGMP) as part of New Mexico’s STATEMAP 
agreement. While maps are produced, maintained, and updated in an ArcGIS geodatabase, at the time of 
the STATEMAP deliverable, each map goes through cartographic production and internal review prior to 
uploading to the Internet. Even if additional updates are carried out on the ArcGIS map data files, 
citations to these maps should reflect this original publication date and the original authors listed. The 
views and conclusions contained in these map documents are those of the authors and should not be 
interpreted as necessarily representing the official policies, either expressed or implied, of the State of 
New Mexico, or the U.S. Government.
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 Geologic Cross Section A–A'

Contact—The identity and existence are certain or questionable 
where queried. The location is accurate where solid, approximate 
where dashed, or concealed where dotted.

Internal contact—The identity and existence are certain. The location 
is approximate.

Gradational contact—The identity and existence are certain. The 
location is approximate.

Fault (generic; vertical, subvertical, or high-angle; or unknown or 
unspecified orientation or sense of slip)—The identity and 
existence are certain. The location is approximate where dashed or 
concealed where dotted. Tick represents a vertical or near-vertical 
fault. Arrow represents an inclined fault showing dip value and 
direction. Diamond tick represents a inclinded slickenline, groove, 
or striation on a fault surface showing bearing and plunge.

Normal fault—The identity and existence are certain. The location is 
accurate where solid, approximate where dashed, or concealed 
where dotted. Ball and bar on downthrown block. Arrow represents 
an inclined fault showing dip value and direction. Diamond tick 
represents a inclinded slickenline, groove, or striation on a fault 
surface showing bearing and plunge.

Head or main scarp of landslide—Inactive, subdued, indistinct, and 
(or) location is approximate. Hachures point down scarp.

Syncline—The identity or existence are questionable. The location 
is accurate.

Eastern limit of Camp Rice fluvial facies.

Cross section line and label.

Horizontal bedding.

Inclined bedding—Showing strike and dip.

Inclined flow banding, lamination, layering, or foliation in igneous 
rock—Showing strike and dip.

Paleocurrent transport direction determined from imbrication.

Unconformity shown in the Correlation of Map Units.

Fault (in cross section)—Arrows show relative motion.

Well location (in cross section)—The location and depth of a well 
used to establish stratigraphy and geologic unit depth.
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