




Description of Map Units

Undivided Gatuña Formation (Miocene-Pliocene? to QTg Pleistocene)—The Gatuña Formation generally consists of pale-red sand and mud, with stringers and locally thick lenticular beds of reddish-gray pebbly sand to conglomerate. daf Compacted gravels, sands, and muds underlying dams, roads, The unit is capped by a well-developed calcic paleosol (**Qmc**) areas of intensive agriculture, and other artificial in the map area. The base of the Gatuña Formation is poorly constructions. Only mapped where extensive or concealing exposed in the map area. Near the mouth of Wood Draw underlying geologic relations. Deposit thicknesses are 0 to surface exposures of the Rustler Formation are overlain by Mescalero caliche presumably developed in thin Gatuña deposits. A few meters of Gatuña Formation deposits were observed to overlie the Permian Rustler Formation at the Modern, historic, and younger alluvial deposits (Holocene to surface. Given the single tephrochronology datum and Qar Modern)—Unvegetated or poorly vegetated sands, muds, and observed field relationships, we prefer a Pleistocene age for gravels along active drainage channels or underlying low the entire Gatuña Formation but cannot rule out that the terraces, including some of the youngest and lowest terraces along the Pecos River. Mapped deposits may include areas submerged beneath water on aerial imagery. Deposits are

up-section into, or in proximity to the Mescalero caliche. Conglomerates consist of poorly sorted, clast-supported, rounded to well-rounded pebbles with trace cobbles, of lithologies including common limestone, sandstone,

quartzite, chert, felsic to intermediate volcanics, and absent-to-trace granite. Mud and sand-dominated facies of the Gatuña Formation (Miocene–Pliocene? to Pleistocene)—Dominantly light reddish brown mudstones and sandstones with lesser conglomerates of the Gatuña Formation that underlie caliche in the western portion of the map area. Compared to other

Gatuña mudstones and sandstones, these deposits tend to be darker colored, better cemented, and generally thicker. Sand-dominated facies of the Gatuña Formation (Miocene-Pliocene? to Pleistocene)—Pink to tan to grey, thinto thick-bedded, fine-grained sandstones of the Gatuña Formation, locally interbedded with minor, thin mud-silt and pebble conglomerate layers. Uncommonly include yellow, thin-bedded sandstone layers in the western portion of Cedar Canyon. Occasionally overlain across a variably angular

Qt1 and lesser silty very fine-grained sands overlying light-brown silty sands with trace pebbly channel fills, and bearing a sandy conglomerates (e.g., **QTgsc**). surface soil characterized by a Stage I morphology carbonate horizon. Deposits overall are as much as 8 m thick. massive sandy pebble conglomerate, interbedded with thin- to **Eolian sheet sand** (Holocene)—Windblown fine, distinctive Qe red-brown sands underlying dune fields and wind-sculpted hummocky terrain. Locally color varies to pale-yellow and grey-white. They are principally exposed in a large eolian sand sheet, covered by coppice dunes and other dune-forms, occupying most of the western half of the quadrangle.

Eolian dune deposits (Holocene)—Windblown, orange- to surficial deposits and the underlying Gatuña Formation. Qd tan-yellow silts and sands. Generally expressed as areas of significant coppice dunes forming on top of, and likely derived from alluvial deposits. Rarely form more complex dune forms. More isolated deposits than, and distinct in color from **Qe**. No evidence of notable soil development was observed. Qd deposits are generally less than 2 m thick, with local variations

Miscellaneous Deposits Depression fill (Holocene)—Silts, sands, and clays Permian System accumulating in closed or nearly closed depressions. Ochoan Series Dominantly slope-wash- and eolian-transported muds and very fine sands, with trace coarser material, up to 2 m thick. Colluvium (Holocene)—Colluvial deposits covering slopes Qc below rims of Qmc in canyon walls. Composed of silt to

development observed. Up to 10 m thick.

CENOZOIC ERATHEM

Disturbed ground and artificial fill (Historic to Modern)—

unconsolidated, and no evidence of significant soil

development was observed. Deposit thicknesses are 0 to 4 m.

Alluvially reworked eolian deposits (Holocene to Modern)—

processes in channel floors. Channel walls include exposures

of cemented gravel and variably indurated sands with

variable proportions of pebbles. Subangular to rounded

pebbles dominantly consist of caliche (Qmc), except a single

locality containing red-brown mudstone clasts immediately

adjacent to Pipeline Road in the northern central portion of the

Alluvium (Holocene)—Alluvial sands, muds, and gravels

Qa exposed in canyon floors, minor alluvial fans, and drainages.

thicknesses are 0 to 7 m.

Deposits are up to 4 m thick.

Eolian Deposits

Deposit characteristics vary with the nature of the materials

exposed up-gradient and underlying the deposit. Deposits are

unconsolidated with no evidence of significant soil

development observed. Includes active channels and Qar

where these deposits are too small to map at this scale. Deposit

Younger terrace deposits (Holocene)—Brown, thinly

surface soil development. Sands are dominantly siliceous.

Older terrace deposits (Holocene)—Brown, thinly bedded silts

Deposits are loose with no evidence of notable soil

Qt2 laminated silts and very fine sands exhibiting very weak

Qae Alluvially reworked red eolian sand (Qe), reworked by eolian

Anthropogenic Units

Holocene Series

Alluvial Deposits

medium sand with pebbles to boulders of **Qmc** caliche. Alluvial-colluvial gravel (Holocene)—Alluvial and colluvial quartzite, chert, volcanics, and limestone pebbles. Generally forms low, hummocky mounds thought to represent weathering and reworking of **QTg** conglomerates. Differentiated from **Qac** by a conspicuous lack of caliche clasts derived from **Qmc**.

Alluvial-colluvial deposits (Holocene)—Alluvial and Qac colluvial gravel consisting of sub- to well-rounded pebbles to cobbles of caliche, quartzite, chert, volcanics, and limestone. Generally covers slopes in canyon walls or forms gentle, hummocky mounds thought to represent reworking of QTg conglomerates and Qmc. Differentiated from Qg by the presence of abundant **Qmc** caliche clasts. Pleistocene Series

Cemented conglomerates along the Pecos River (Upper Qcc Pleistocene)—Well-cemented pebble to cobble conglomerates and rare interbedded sandstone lenses. Carbonate cementation is ubiquitous in these units, but does not exhibit pedogenic features. Conglomerates consist of carbonate, siliceous, and volcanic clasts supported by a carbonate-cement matrix.

Mescalero Caliche Mescalero caliche relict calcic soil horizon. Mescalero caliche (Upper Pleistocene)—Relict calcic soil Qmc horizon exhibiting Stage IV+ pedogenic carbonate morphology, with a durable, discontinuously preserved upper horizon of laminated carbonate up to a few decimeters thick. Below the laminated caprock is up to 4 m (typically 1 to 3 m) of clastic alluvium engulfed by white to gray carbonate. The carbonate becomes softer and earthier with depth. The relative proportion of parent material also increases with depth. Pedogenic brecciation and recrystallization structures are rare. Unit is relatively resistant to erosion and forms vertical cliffs along bluff lines. Commonly, the paleosol formed in sand and rounded gravelly deposits (Gatuña Formation), which include clasts of limestone, quartzite, chert, sandstone, and porphyritic igneous rock; in other areas it formed in finer-grained deposits, and locally appears to be present immediately above Rustler Formation strata. Over much of the map area the Mescalero caliche is overlain by windblown sand and/or surface alluvium.

Castile Formation underlies the Salado Formation and, unlike the Salado Formation, is restricted to the Delaware Basin proper (i.e. was not deposited on the surrounding marine shelf). Based on geophysical logs much of the halite in the Castile Formation, particularly in the two lower members (Halite I and II), remains intact in the map area. The thickness ranges from approximately 450 to 550 m along the cross section, and is underlain by the Bell Canyon Formation. formation is partly upper Neogene. According to some Guadalupian Series reports thickness generally varies from a few meters to 10 m **Bell Canyon Formation** (Guadalupian)—Cross section only. or more, reaching up to 100 m in the Pierce Canyon/Cedar Predominately buff to brown, fine-grained, subarkosic sandstone and siltstone, with some shale intervals. Siltstone and fine sandstone are commonly finely laminated and Conglomerate-dominated facies of the Gatuña Formation carbonaceous. The unit contains named carbonate intervals, (Miocene-Pliocene? to Pleistocene)-Well-cemented pebble which thicken and grade into the Capitan Formation along the conglomerates and rare sandstones underlying, grading margin of the Delaware Basin. The uppermost named

limestone, the Lamar, is readily apparent on gamma-ray logs. The top of the Bell Canyon Formation is at the top of a siliciclastic interval (Reef Trail Member) that overlies the Lamar limestone beds. The Bell Canyon is approximately 290 m thick in the map area. Cherry Canyon Formation (Guadalupian)—Cross section only. Predominately buff to brown, fine-grained, subarkosic sandstone and siltstone, with some shale intervals. Siltstone and fine sandstone are commonly finely laminated and carbonaceous. The unit contains named carbonate intervals, which thicken and grade into the Capitan Formation along

carbonate interval (Hegler Member) in the Bell Canyon Formation. The Cherry Canyon Formation is approximately 375 m thick in the map area based on log picks. Brushy Canyon Formation (Guadalupian)—Cross section only. Tan and brown sandstone and siltstone, with shale beds in the lower part. The unit may contain thin beds of gray-brown carbonate and coarse-grained siliciclastic intraformational unconformity by 0.1 to 3 m of subhorizontal, deposits near its base. Sandstone and siltstone are commonly medium-bedded to massive, grey to white sandstones and laminated. The contact between the Cherry Canyon and Brushy Canyon Formations was historically chosen in outcrop at a lithologic change between comparatively coarse-grained Sandy conglomerate facies of the Gatuña Formation sandstone beds in the Brushy Canyon and finer-grained Miocene-Pliocene? to Pleistocene)-Medium-bedded to deposits beneath the Getaway Limestone member of the

Cherry Canyon Formation. Neutron density-porosity logs thick-bedded, white to grey to tan sandstones, of the Gatuña show a distinct, laterally traceable log response compatible Formation underlying, grading up-section into, or in with such a change. The contact between siliciclastic deposits proximity to the Mescalero caliche. Conglomerates consist of at the base of the Brushy Canyon Formation and uppermost poorly sorted, rounded to well-rounded, matrix-supported Bone Spring carbonate mud is readily identified on pebbles, with rare cobbles, of limestone, chert, quartzite, and mafic to felsic volcanics. Undivided Cenozoic Deposits Cisuralian Series Cross section only. Undivided Cenozoic deposits, including Quaternary **Bone Spring Formation** (Cisuralian)—Cross section only. Dark gray to brown, thinly bedded carbonate mudstone, with

Undivided Neogene-Quaternary deposits (Neogene to Modern)—Cross section only. Undivided Cenozoic deposits, including Quaternary surficial deposits, the Gatuña Formation, and possible subsurface Neogene alluvial fill. Well logs suggest a maximum thickness of approximately 160 m along the eastern end of the cross section, and 100 m in the

vicinity of the Pecos River.

PALEOZOIC ERATHEM

Dewey Lake Redbeds (Ochoan)—Red, laminated to thinly Pd bedded coarse siltstone and fine-grained subarkosic sandstone. Planar, ripple, and larger-scale cross sets are common, as are greenish-gray reduction spots and zones in some exposures. Unit is exposed to the north of the map area in the vicinity of Nash Draw, where it stratigraphically overlies the Permian Rustler Formation and underlies the Pennsylvanian Subsystem cross section the unit is estimated to be ≈50 m thick and overlain by late Cenozoic alluvial-fill deposits. However, intervening remnants of basal Triassic strata may be present. Dewey Lake strata may be exposed in the map area near a

gypsum, fine-grained sandstone, and carbonate. Two widespread carbonate intervals named the Culebra (lower in the section) and Magenta members are recognized as stratigraphic markers to subdivide this lithologically heterogeneous formation into members. Unit is present in the subsurface throughout the map area. It is overlain by Cenozoic alluvial deposits or by the Permian Dewey Lake Formation in the eastern part of the map area. Underlain by the halite-dominated Salado Formation (Ps), the Rustler Formation has been variably deformed by solution subsidence and collapse. Based on borehole logs up to 110 m of Rustler strata are present along the cross section. Several poorly exposed outcrops near the mouth of Wood Draw expose variously deformed, broken tilted blocks of carbonate, red and

small gully cut near the mouth of Dog Town Draw.

Salado Formation (Ochoan)—Cross section only. Largely halite with economically important potash zones, several named anhydrite beds, and minor amounts of siliciclastic mud and fine sand. Dissolution of Salado halite beneath the map area is readily apparent from examining well logs, and unit thickness (\$200 to 500 m along the cross section) changes Mississippian Subsystem abruptly. Exposures of variously deformed deposits, consisting mainly of red mud and gypsum, including secondary selenite, have been referred to as "Salado residue" in some reports (e.g., Gard, 1968). Based on lithology, such deposits may represent collapsed Rustler strata, resulting from the dissolution of underlying Salado halite.

yellow mudstone, brown sandstone, and gypsum.

varying amounts of intercalated dark gray calcareous shale.

Contains three regionally recognized sandy intervals (first, second and third Bone Spring sands) consisting of light gray to tan, fine-grained sand with micaceous, shale or calcareous intervals (the stratigraphic position of the lower and upper sandy intervals are indicated on the cross section). The Bone Spring Formation is up to 990m thick in the map area. Wolfcampian Series (Cisuralian)—Cross section only. arbonaceous shale, with some carbonate and siliciclastic

sand. The top of the Wolfcamp lies beneath the third Bone

present. Gamma-ray logs suggest carbonate and shale beds

alternate on a scale of one to several meters. The unit's base is

upper Morrow carbonate interval. Approximately 240 m thick

gamma-ray logs. The Brushy Canyon Formation is

approximately 485 m thick in the map area.

Castile Formation (Ochoan)—Cross section only. Finely

crystalline, pale-gray calcium sulfate, interlaminated with

brown to dark-gray calcite. The unit contains a thin, basal

laminated limestone, and relatively thick halite intervals that

provide a basis for dividing the formation into members. The

the margin of the Delaware Basin. The top of the Cherry

Canyon Formation is placed at the base of the lowest

Spring sand; the base of the unit was chosen on wireline-logs at the top of a sequence of alternating shale and carbonate beds assigned to the Upper Pennsylvanian Canyon-Cisco interval. Approximately 540 m thick in the map area. Triassic Santa Rosa Formation. Along the eastern end of the Cisco Formation and Canyon Group undivided (Upper Pennsylvanian)—Cross section only. Interbedded carbonate and shale, with some sandy siliciclastic intervals likely

placed at the top of a prominent carbonate interval assigned here to the top of the Strawn Formation. The Cisco-Canyon Rustler Formation (Ochoan)—Red, yellow and gray mudstone, interval is approximately 130 m thick in the map area. Strawn and Atoka Formations undivided (Middle (Lower-Upper?) Pennsylvanian)—Cross section only. Interbedded carbonate, sandstone, and shale. Phylloid algal mounds are reported in the Strawn interval to the southeast of Carlsbad, NM, where the unit has been targeted for oil and gas production. The underlying Atoka Formation in the Delaware Basin contains carbonate beds, sandstone, shale, and calcareous shale. The base of the Strawn-Atoka interval is chosen on gamma-ray and resistivity logs at the top of the

> Morrow Formation (Lower Pennsylvanian)—Cross section only. The upper third of the Morrow Formation consists of arbonate and calcareous shale, together with fine- to medium-grained sandstone and shale. The underlying middle and lower Morrow intervals are dominantly fine- to coarse-grained sandstone, with lesser shale. Approximately 410 m thick beneath the map area.

Barnett Formation (Mississippian)—Cross section only. Shale

in the map area.

and silty shale with lesser fine-grained sandstone and siltstone. The Barnett Formation is approximately 75 m thick in the map area, and overlies older Mississippian carbonate strata.

Well location (in cross section)—The location and depth of a well used to establish stratigraphy and geologic unit depth.

sea level

Contour Interval 10 Feet North American Vertical Datum of 1988

New Mexico Bureau of Geology and Mineral Resources

Open-File Geologic Map 299 Mapping of this quadrangle was funded by a matching-funds grant from the STATEMAP program of the National Cooperative Geologic Mapping Act (Fund Number: G21AC10770), administered by the U.S. Geological Survey, and by the New Mexico Bureau of Geology and Mineral Resources (Dr. J. Michael Timmons, Interim Director and State Geologist; Dr, Matthew Zimmerer, Interim Program Manager for Mapping Programs).

Geologic Map of the Pierce Canyon 7.5-Minute

Quadrangle, Eddy County, New Mexico

A geologic map displays information on the distribution, nature, orientation, and age relationships of rock and deposits and the occurrence of structural features. Geologic and fault contacts are irregular surfaces that form boundaries between different types or ages of units. Data depicted on this geologic quadrangle map may be based on any of the following: reconnaissance field geologic mapping, a compilation of published and unpublished work, and photogeologic interpretation. Locations of contacts are not surveyed but are plotted by interpretation of the position of a given contact onto a topographic base map; therefore, the accuracy of contact locations depends on the scale of mapping and the interpretation of the geologist(s). Any enlargement of this map could cause misunderstanding in the detail of mapping and may result in erroneous interpretations. Site-specific conditions should be verified by detailed surface mapping or subsurface exploration. Topographic and cultural changes may not be shown due to recent

Cross sections are constructed based upon the interpretations of the author made from geologic mapping and available

geophysical and subsurface (drill hole) data. Cross sections should be used as an aid to understanding the general

geologic framework of the map area and not be the sole source of information for use in locating or designing wells,

buildings, roads, or other human-made structures.

expressed or implied, of the State of New Mexico or the U.S. Government.

Comments to Map Users

The New Mexico Bureau of Geology and Mineral Resources created the Open-File Geologic Map Series to expedite the dissemination of these geologic maps and map data to the public as rapidly as possible while allowing for map revision as geologists continued to work in map areas. Each map sheet carries the original date of publication below the map and the latest revision date in the upper right corner. In most cases, the original publication date coincides with the date of delivery of the map product to the National Cooperative Geologic Mapping Program (NCGMP) as part of New Mexico's STATEMAP agreement. While maps are produced, maintained, and updated in an ArcGIS geodatabase, at the time of the STATEMAP deliverable, each map goes through cartographic production and internal review before uploading to the Internet. Even if additional updates are carried out on the ArcGIS map data files, citations to these maps should reflect this original publication date and the original authors listed. The views and conclusions contained in these map documents are those of the authors and should not be interpreted as necessarily representing the official policies, either

September 2022

Snir Attia and Bruce D. Allen

Digital layout and cartography by the NMBGMR Map Production Group: Phil L. Miller, Amy L. Dunn, Ann D. Knight, and A.R. Baca New Mexico Bureau of Geology and Mineral Resources, 801 Leroy Place, Socorro, New Mexico, 87801

Magnetic Declination July 2021 6° 56' East At Map Center

..FWS National Wetlands Inventory 1977–2014Bureau of Land Managment 2019

Quadrangle Location

New Mexico Bureau of Geology and Mineral Resources

New Mexico Tech

801 Leroy Place

Socorro, New Mexico

87801-4796

[575] 835-5490

This and other STATEMAP quadrangles are available for free download in both PDF and ArcGIS formats at:

New Mexico

Canyon escarpment Pecos River mean sea 30-015-39768 30-015-34467 30-015-28723 -30-015-35041

Geologic Cross Section A-A