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Mancos Shale, undivided — Dark gray shale, slightly calcareous shale, and septarian nodule-bearing shale,
with rare, thin, black micrite beds and at least two ~10 ft-thick (3-4 m), medium-bedded calcareous sandstone
intervals.  The micrites and sandstones are typically fossiliferous yielding abundant molluscan shell fragments
indicating a late Turonian age for the youngest part of the sequence. Total thickness is approximately 1,300
ft (400 m).

Mancos Shale, sandstone unit — A discontinuous, <5 meter-thick interval of medium-bedded, resistant,
non-argillaceous sandstone with abundant vertical burrows.  In the northerly adjacent Sandia Park
quadrangle, this sandstone unit overlies a fossiliferous shale containing late Turonian guide fossils.  The
sandstone may correlate with the Tocito sandstone, and it appears to pinch-out to the south were its
approximate stratigraphic position is occupied by a massive, non-calcareous sandstone body interpreted
as the northern pinch-out of the Gallup Sandstone.

Dakota Formation — Medium-bedded, pervasively silica-cemented, plane-bedded to tabular cross-stratified,
quartz arenite, typically with abundant vertical, lined burrows, many of which are Diplocraterion traces.
Approximately 300 ft (90 m) thick.

Upper Jurassic

Morrison Formation, undivided — Three members are commonly recognized in northern New Mexico but
are not differentiated in this map area. In descending stratigraphic order, the members are: the Jackpile
Sandstone, the Brushy Basin Shale, and the Salt Wash Sandstone (the Westwater Canyon Sandstone of former
usage, Lucas et al., 1995). The Recapture Shale member has been redefined by Lucas et al. (1995) as the
Summerville Formation of the upper San Raphael Group (Lucas and Anderson, 1997). Due to poor exposure
in the study area, these units are not differentiated. Medium- to thick-bedded, light-colored, generally poorly-
sorted, feldspathic sandstones, with green and red shaley interbeds.  Sandstones contain abundant quartz
granules and greenish mud-chip clasts, and the feldspar grains are typically strongly altered to white clay
minerals.  The upper part of this unit, in some areas, is a moderately to well-sorted, moderately bioturbated
feldspathic sandstone which may be equivalent to the Jackpile Member. Abundant dark grayish-green shaley
intervals with thin dark-colored micritic limestones are present in some areas near the base of the map unit.
Total thickness is approximately 500 ft (150 m).

Entrada and Todilto Formations, undivided — Cross section only. Estimated total thickness is up to 100 ft
(30 m).

Todilto Formation (chiefly Luciano Mesa Member) — In most areas the only part of this unit that is exposed
is the Luciano Mesa Member, a laminated, fetid, dark-gray, micritic limestone.  Laminations in the limestone
appear to be algal in origin and consistently lack of macrofossils.  Rarely, the overlying Tonque Arroyo Member,
a thin-bedded to laminated gypsum unit is preserved.

Entrada Formation — A poorly exposed, light green-colored, massive (bioturbated?) sandstone unit that rarely
displays high-angle cross-stratification.

Upper Triassic

Chinle Group, undivided (probably Petrified Forest Formation) — Mudstone with lenticular beds of
lavender-gray sandstone; mudstones are reddish-brown to orange-tan in the upper part, and purple to reddish-
brown in the lower part. Green reduction spots are common, as are local limestone-pebble conglomerate
lenses, particularly near the base of the unit. Total Chinle Group thickness is about 1,300 ft (400 m).            .

Chinle Group, Agua Zarca Formation — The only distinct sub-unit of the Chinle Group recognized
during this study (differentiated where possible).  It is a tan- to light-grayish pink, resistant, thin- to medium-
bedded quartz arenite and feldspathic arenite. The lower contact with the underlying Moenkopi Formation
(   m) is disconformable. The unit is about 350 ft (105 m) thick.

Middle and Lower Triassic

Moenkopi Formation — A recessive-weathering, dark red-colored micaceous shale, silty shale and thin-
bedded feldspathic sandstone. Approximately 200 ft (60 m) thick.

PALEOZOIC ROCKS
Upper Permian

San Andres and Glorieta Formations, undivided — The upper two lithostratigraphic units of the Permian
are complexly interleaved.  The lithotypes, which may not strictly correlate with formations of the same names,
are gray limestone (San Andres, Ps) and white quartz arenite (Glorieta, Pg). These were differentiated where
possible.

San Andres Formation — Light gray and less commonly tan colored, medium- to thick-bedded limestone.
The limestones are mostly micrites or skeletal wackstones, commonly with some component of quartz sand.
The San Andres Formation is interbedded with the Glorieta Formation (Pg) with a total upper Permian (Ps and
Pg) thickness of approximately 400 ft (120 m).

Glorieta Formation — White and pink (along the contact with the underlying Yeso Formation), massive or
plane-bedded to low-angle planar cross-stratified quartz arenite. Locally, the sandstones are extensively
bioturbated by Macaronichnus, and near the contact with Yeso Formation they are feldspathic. The sandstones
are typically well sorted, but a thin, feldspathic quartz-pebble conglomerate occurs just below the base of the
lowermost San Andres Formation limestone in the Arroyo Armijo area along the boundary between Sandia
Park and Sandia Crest quadrangles. These sandstones and the limestones of the San Andres Formation are
interbedded with each sandstone bed generally less than 30 ft (10 m) thick.

Lower Permian

Abo and Yeso Formations, undivided — The lower two lithostratigraphic units of the Permian represent a
red-colored feldspathic to quartzose siliciclastic sequence that, because of generally poor exposure, was
mapped as a single unit throughout the study area. The Yeso Formation is a reddish to pink or tan-colored,
medium- to thin-bedded, feldspathic sandstone, shale and silty shale with interbedded massive or laminated
micritic gray or tan limestone (Pyc) near the top.  The sandstones are typically cross-stratified and/or cross-
laminated and virtually identical to those within the underlying Abo formation except that, rarely, salt hopper
casts and molds are present. The Abo Formation is a red and locally tan-colored (particularly near the base),
medium- and thin-bedded arkose and feldspathic sandstone interbedded with red, micaceous siltstone and
shale, commonly with green reduction spots.  The lowermost arkoses are typically lighter-colored and coarser-
grained than the younger feldspathic sandstones, and at least one of them is strongly bioturbated (Macaronichnus).

CENOZOIC DEPOSITS
Neogene (Quaternary and Tertiary) System

Colluvial, landslide, eolian, and anthropogenic deposits
Thin surficial deposits derived from wind and mass-movement processes, or extensive areas disturbed by open-
pit aggregate mining or construction.

Artificial fill (Historic) — Dumped fill and areas affected by human disturbances. Locally mapped where
areally extensive or geologic contacts are obscured.                       .

Colluvium and alluvium, undivided (Holocene to upper-middle Pleistocene) — Poorly consolidated,
poorly sorted and stratified, fine- to coarse-grained, clast- and matrix-supported deposits derived from a variety
of mass-movement hill slope processes, including debris flow, shallow slump and creep. Gravel clasts are
typically angular to subangular and composition reflects local provenance. Soils locally exhibit Stage I to III
carbonate morphology. Clasts are typically angular and composition generally reflects local provenance.
Commonly surrounds small undivided inliers of Madera Formation limestone on the eastern dip-slope of the
Sandia Mountains. Differentiated where areally extensive, thick, or where geologic contacts are obscured.
Variable thickness, up to 12 ft (4 m).

Travertine and spring deposits (upper Pleistocene to upper Pliocene?) — Light-gray nodular to massive
constructional mounds of travertine interlayered with mudstone and conglomerate derived from local upland
sources. Unit is commonly associated with springs along the eastern dip-slope of the Sandia Mountains. Variable
thickness, ranging from 3-30 ft (1-10 m).

Stream-valley Alluvium

Typically contains poorly to well sorted and stratified, clast- and matrix-supported sand and gravel with minor
muddy sand interbeds associated with modern and late Pleistocene entrenched arroyos and streams originating
in the Sandia and Manzanita Mountains. Deposits unconformably overlie Santa Fe Group deposits and older
rocks, and are differentiated on the basis of inset relationships and soil-morphology.                                      .

Youngest stream alluvium, undivided (Historic to upper Holocene) — Unconsolidated deposits of brown,
light gray-brown, and yellowish-brown (10YR) sand, silty to clayey sand, and gravel.  Underlies modern arroyos
and inset against younger stream alluvium (Qay). Color and clast composition varies with drainage-basin
composition, but gravel typically contains limestone, gneiss, quartzite, sandstone, granite and metarhyolite.
Deposit surface exhibits no pedogenic development, and unit locally forms small alluvial fans within low-order
tributary drainages of Madera and Tijeras Canyons. Locally divided into an older terrace (QHao) on the basis
of inset relationships. Deposits locally contain asphalt fragments and construction debris. The age is constrained
by radiocarbon dates ranging between 1,000 to 3,000 years BP (Thomas et al., 1995, p. 2-37 and 2-43).
Correlative to units H8 and H9 of Thomas et al. (1995), and correlative to geomorphic surface Q9 of Connell
(1995, 1996). Variable thickness from 0-10 ft (0-3 m).

Younger stream alluvium (Holocene to uppermost Pleistocene) — Poorly consolidated deposits of light-
brown to dark-gray, fine-grained silty sand with minor pebbly sand and clayey sand interbeds;  pebble lenses
are common along basal contact.  Unit forms broad terraces ranging from 8-30 ft (3-9 m) above Tijeras and
Madera Creeks.  Two terrace levels are locally recognized, but not differentiated, within Tijeras Canyon.  Clasts
are chiefly rounded limestone with minor granite, metavolcanic and gneiss within Madera Canyon. The trunk
stream of the Tijeras Canyon drainage is divided into unit Qayt. Locally includes undivided stream alluvium
(QHa) in narrow arroyos. Soils are weakly developed and exhibit Stage I and II carbonate morphology.
Deposit age is constrained by a radiocarbon of about 10,000 years BP (Thomas et al., 1995, p. 2-43).
Correlative to unit H7 of Thomas et al. (1995), and correlative to geomorphic surfaces Q8-Q9 of Connell
(1995, 1996). Variable thickness from 0-20 ft (0-6 m).

Alluvium of Tijeras Creek

Typically contains moderately to well sorted and stratified, clast- and matrix-supported sand and gravel with
minor muddy sand interbeds associated with the Tijeras Creek drainage. Deposits are differentiated into a
trunk stream that interfingers with steeper tributary drainages to Tijeras Canyon (unit Qay). Clasts are commonly
subangular to subrounded granite, metarhyolite, limestone, yellowish-brown and reddish-brown sandstone
derived from the headwaters of the Tijeras Canyon drainage-basin. Unconformably overlie Santa Fe Group
deposits and older rocks, and are differentiated on the basis of inset relationships and soil-morphology.

Younger  stream alluvium of Tijeras Canyon (Holocene) — Deposits contain variable proportions of gneiss,
limestone, sandstone and minor granite within the Tijeras drainage. Locally includes undivided stream alluvium
(QHa) in narrow arroyos. A minimum age is constrained by a radiocarbon date of 1,790±90 years BP (Locality
1, Beta Analytic Labs No. 104958) near the top of the deposit. Correlative to unit H7 of Thomas et al. (1995)
and unit Qa2 of Smith et al. (1982), and correlative to geomorphic surfaces Q8 and Q9 of Connell (1995,
1996). Variable thickness from 0-20 ft (0-6 m).

Middle stream alluvium of Tijeras Canyon, undivided (upper to middle Pleistocene) — Moderately to
well-consolidated gravelly alluvium containing subrounded to subangular clasts of limestone with minor
sandstone, gneiss and metavolcanic rocks.  Unit represents former position of the ancestral Tijeras and Madera
Creeks and is differentiated into three subunits on the basis of inset relationships.  Soils are moderately to well
developed and possess Stage II to III calcic horizons in Tijeras Canyon (Smith et al., 1982).  This unit commonly
contains unmapped inclusions of younger stream alluvium (Qay, Qayt, and QHa). Thickness is variable from
0-15 ft (0-5 m).

Youngest subunit (upper Pleistocene) — Poorly to moderately consolidated deposits of sandy gravel
and cobble to boulder gravel. Unconformably overlies crystalline rocks with an irregular contact. Inset
against stream alluvium of units Qvmt1 and Qvmt2. Correlative to eastern-margin piedmont alluvium
(Qpm3) and units Qf1b and Qf2 of Smith et al. (1982), and generally correlative to unit P6 of Thomas
et al. (1995).

 Middle subunit (upper to middle Pleistocene) — Moderately consolidated deposits of sandy to
cobbly gravel, with local accumulations of boulders.  Minor light-brown to reddish-brown silty sand
interbeds.  Clasts are composed of rounded to subangular limestone, granite, quartzite and sandstone.
 Basal contact is irregular and sits about 50 ft (15 m) above top of the youngest stream alluvium (QHa).
Inset against stream alluvium of unit Qvmt1 and pediment surface Qpx1 and forms gravelly alluvium
within Tijeras Canyon.  Two terraces are recognized near Seven Springs, but not differentiated.  Soils
are moderately developed and exhibit Stage II to III carbonate morphology in gravel. Surface is typically
overlain by thin (<1 ft) layer of grus where inset against the Sandia granite (Ys). Correlative to eastern-
margin piedmont alluvium (Qpm2) and units Qf1a and Qa1 of Smith et al. (1982), and generally
correlative to unit P5 of Thomas et al. (1995).

Older subunit (middle Pleistocene) — Moderately consolidated pebble to cobble gravel. Deposits
surface (top) is approximately 50-55 ft (15-17 m) above Tijeras Creek and represents the highest stream
gravel west of Seven Springs in Tijeras Canyon.  Unit is locally overlain by about 5 ft (1.5 m) of grus
where inset against the Sandia granite (Ys). Soils locally exhibit Stage III carbonate morphology. Clasts
are dominated by granite, with local accumulations of metavolcanic, gneiss, sandstone and limestone.
Correlative to eastern-margin piedmont alluvium (Qpm1) and units Qf1a and Qa1 of Smith et al. (1982),
and generally correlative to units P3-P4 of Thomas et al. (1995).

Well cemented stream alluvium, undivided (middle Pleistocene) — Indurated, scattered lensoidal
accumulations of calcium-carbonate cemented, subangular to subrounded pebbly sandstone and pebble to
cobble conglomerate. Unconformably overlying pediments developed on Sandia granite (Ys). Probably
correlative to older subunit of the alluvium of Tijeras Creek (Qvmt1). Unit is less than 6 ft (2 m) thick.

Eastern-margin piedmont slope deposits

Typically contains poorly to moderately sorted and stratified, clast- and matrix-supported sand and gravel with
minor muddy sand interbeds associated coalescent range-front alluvial fans in the Sandia Mountains and Four
Hills salient. Deposits unconformably overlie Santa Fe Group deposits and older rocks, and are differentiated
on the basis of inset relationships and soil-morphology. Clasts are commonly angular to subangular granite
with minor subrounded limestone.

Younger eastern-margin piedmont alluvium (Holocene to uppermost Pleistocene) — Poorly to moderately
sorted and stratified gravel, sand with minor silt-clay mixtures inset against eastern-margin piedmont alluvium
(Qpm).  Deposit surface (top) is moderately dissected and exhibits well developed to subdued bar-and-swale
topography.  Soils possess Stage I to II carbonate morphology and weakly to moderately developed clay
films. Generally correlative to units H7-H9 of Thomas et al. (1995). Variable thickness from 0-30 ft (0-9 m).

Middle eastern-margin piedmont alluvium, undivided (upper to middle Pleistocene) — Poorly to
moderately consolidated deposits of very pale-brown to strong-brown and light-gray (7.5-10YR) sand and silty-
 to clayey-sand, and gravel. Deposit surface (top) is 30-165 ft (9-50 m) above local base level. Gravel clasts
are predominantly subangular granite and schist with minor subrounded limestone derived from the western
front of the Sandia Mountains and Four Hills salient. Slightly to moderately dissected deposit surface exhibits
subdued constructional bar-and-swale topography on interfluves. Weakly developed soils exhibit Stage II to
III+ carbonate morphology and minor to moderate clay film development. Locally divided into three subunits
(Qpm1, Qpm2, and Qpm3). Variable thickness from 0-30 ft (0-9 m).

Youngest subunit (upper Pleistocene) — Poorly consolidated and poorly to moderately sorted gray-
brown to reddish-brown, subangular to subrounded, pebble to cobble gravel with silty sand interbeds.
Inset against middle subunit Qpm2.  Soils are moderately developed and exhibit Stage II carbonate
morphology. A radiocarbon date of more than 21,000 years BP reported by Thomas et al. (1995, p.
2-36, unit Pf5) indicates a late Pleistocene age. Correlative to stream alluvium of Tijeras Canyon (Qpmt3),
and generally correlative to units P5-P6 of Thomas et al. (1995).

Younger subunit (upper to middle Pleistocene) — Poorly to moderately consolidated and poorly to
moderately sorted deposits of very pale-brown to strong yellowish-brown (7.5-10YR), poorly to moderately
stratified and sorted, silty clay and loamy sand and gravel. Deposit surface (top) along the mountain
front is slightly to moderately dissected and exhibits subdued bar and swale topography on interfluves.
Soils are moderately developed and possess Stage II to III carbonate morphology and few to common,
thin to moderately thick clay films. Correlative to the geomorphic surface Q7 of Connell (1995, 1996).
Correlative to stream alluvium of Tijeras Canyon (Qpmt2), and generally correlative to unit P5 of Thomas
et al. (1995).

Older subunit (middle Pleistocene) — Poorly to moderately consolidated deposits of light- to strong-
brown (7.5YR) and very pale-brown to light-gray (7.5-10YR), poorly to moderately stratified and sorted,
sand clayey sand and gravel. Deposit surface (top) is dissected and commonly exhibits erosional ridge-
and-ravine topography. Moderately well developed soils with Stage III+ carbonate morphology and
many moderately thick clay films. Correlative to the geomorphic surface Q6 of Connell (1995, 1996)
and to stream alluvium of Tijeras Canyon (Qpmt1). Generally correlative to units P3-P4 of Thomas et al.
(1995).

Alluvium of Madera Canyon

Typically contains poorly to well sorted and stratified, clast- and matrix-supported sand and gravel with minor
muddy sand interbeds associated with modern and late Pleistocene entrenched arroyos and streams originating
in the northern Manzanita Mountains. Deposits unconformably overlie pre-Cenozoic rocks, and are differentiated
on the basis of inset relationships and soil-morphology. Clasts are commonly angular to subrounded limestone,
metarhyolite, gneiss, and quartzite.

Middle stream alluvium of Madera Canyon, undivided (upper to middle Pleistocene) — Poorly to
moderately consolidated deposits of very pale-brown to strong-brown and light-gray (7.5-10YR) sand and silty-
 to clayey-sand, and gravel. Deposit top is 30-165 ft (9-50 m) above local base level. Gravel clasts are
predominantly subangular granite and schist with minor subrounded limestone derived from the western front
of the Sandia Mountains and Four Hills salient. Slightly to moderately dissected deposit surface exhibits subdued
constructional bar-and-swale topography on interfluves. Weakly developed soils exhibit Stage II to III+ carbonate
morphology and minor to moderate clay film development. Locally divided into three subunits (Qvm1, Qvm2,
and Qvm3). Variable thickness from 0-30 ft (0-9 m).

Youngest subunit (upper Pleistocene) — Poorly consolidated and poorly to moderately sorted gray-
brown to reddish-brown, subangular to subrounded, pebble to cobble gravel with silty sand interbeds.
Inset against middle subunit Qvm2.  Soils are moderately developed and exhibit Stage II carbonate
morphology. A radiocarbon date of more than 21,000 years BP reported by Thomas et al. (1995, p.
2-36, unit Pf5) indicates a late Pleistocene age. Probably correlative to stream alluvium of Tijeras Canyon
(Qpmt1), and generally correlative to units P5-P6 of Thomas et al. (1995).

Younger subunit (upper to middle Pleistocene) — Poorly to moderately consolidated and poorly to
moderately sorted deposits of very pale-brown to strong yellowish-brown (7.5-10YR), poorly to moderately
stratified and sorted, silty clay and loamy sand and gravel. Soils are moderately developed and possess
Stage II to III carbonate morphology and few to common, thin to moderately thick clay films. Probably
correlative to stream alluvium of Tijeras Canyon (Qpmt1), and generally correlative to units P5-P6 of
Thomas et al. (1995).

Older subunit (middle Pleistocene) — Poorly to moderately consolidated deposits of light- to strong-
brown (7.5YR) and very pale-brown to light-gray (7.5-10YR), poorly to moderately stratified and sorted,
sand clayey sand and gravel. Deposit surface (top) is dissected and commonly exhibits erosional ridge-
and-ravine topography. Moderately well developed soils with Stage III+ carbonate morphology and
many moderately thick clay films. Probably correlative to stream alluvium of Tijeras Canyon (Qpmt1),
and generally correlative to units P3-P4 of Thomas et al. (1995).

Eastern-slope alluvium

Older eastern-slope alluvium (middle to lower Pleistocene) — Poorly to moderately consolidated deposits
of yellowish-brown (10YR), poorly to moderately sorted and stratified, gravel and sand with thin silty-clay
interbeds. Forms alluvial fans that developed along relatively steep tributary drainages to the Arroyo de San
Antonio and Tijeras Creek. Gravel clasts are predominantly subrounded limestone with a greater proportion
of sandstone that in old eastern-slope alluvium (QTp). Overlies a formerly extensive erosional surface (pediment)
developed on the eastern dip-slope of the Sandia mountains. Deposit surface (top) is dissected and soils are
generally stripped, but locally exhibit Stage III carbonate morphology. Deposits grade to high pediment surface
QTpx in Tijeras Canyon. Variable thickness from 0-16 ft (0-5 m).

Old eastern-slope alluvium (lower Pleistocene to upper Pliocene(?)) — Moderately consolidated and
poorly to moderately sorted gravel that forms the highest gravel preserved along the southeastern flank of the
Sandia Mountains. Locally contains two undivided subunits. Contains subrounded to subangular clasts of
limestone with minor (< 5%) sandstone and highly weathered, grussified granite and metamorphic rocks. The
basal contact is about 40-200 ft (12-60 m) above local base level. Deposits cover a formerly areally extensive
pediment developed along the southeastern flank of the Sandia Mountains that may be correlative to the Tuerto
gravel of Stearns (1953). Deposit surface (top) is dissected and soils are generally stripped, but locally exhibit
Stage III+ carbonate morphology. Variable thickness from 0-30 ft (0-10 m).

Santa Fe Group

Piedmont deposits (lower Pleistocene to Miocene) — Subhorizontally stratified to slightly east-tilted, reddish-
brown to yellowish-brown and very pale-brown (7.5-10YR) conglomerate, gravelly sandstone, and sandstone
with subordinate siltstone and rare mudstone. Conglomerate clasts are predominantly composed of subangular
to subrounded granite with subordinate metamorphic rocks, and minor subrounded limestone. Unconformably
overlies Sandia granite (Ys) and is unconformably overlain by eastern-margin piedmont alluvium. A monitoring
well (4H) near the intersection of Tijeras Creek and Four Hills Road (Richey, 1991) encountered 69 ft (21 m)
of eastern-margin piedmont alluvium and Santa Fe Group piedmont deposits just west of the Sandia fault.
These deposits interfinger with and overlie early Pleistocene (Irvingtonian land mammal “age”) fluvial deposits
of the ancestral Rio Grande near the mouth of Tijeras Arroyo (see Lucas et al., 1993). May be correlative with
piedmont-slope and alluvial fan deposits of the Sierra Ladrones Formation (Machette, 1978) exposed at the
southern margin of the Albuquerque Basin. Estimated hydraulic conductivity is low. Base is not exposed, but
deposit thickens to the west across the Sandia fault zone to where it is several thousand feet thick.

Pediments

Pediments, as mapped within the study area, are areally extensive, low-relief surfaces of erosion that were
probably cut by fluvial processes. Pediments grade to the former levels of major piedmont drainages and have
smooth, generally concave-up, surfaces that are commonly marked by tors and corestones. They are primarily
developed on Sandia granite (Ys), but are rarely preserved on Madera Formation, quartzite and metavolcanic
rocks. Pediments are also recognized as short benches preserved on spur ridges along the northwestern slope
of Cerro Pelon.  Two generations of weathering rinds developed on corestones indicate that these surfaces
have experienced multiple periods of erosion (Smith et al., 1982), resulting in the formation of broad weathering-
limited slopes underlain by grus and Sandia granite.  Up to 15 ft (4.5 m) of grussified granite, and rare
interbedded pebble lenses of weathered granite are locally preserved on pediment slopes. Locally divided
into four units on the basis of inset relationships and height above local base level.                                        .

Younger pediment surface — Exposed erosional surface between Sandia granite (Ys) and overlying younger
stream alluvium (Qay).

Middle pediment surface — Broad, relatively low relief erosional surface on the Sandia granite (Ys). Surface
is lower than the pediment surface of Qpx1 and correlated to the base of older eastern-margin piedmont
alluvium (Qpo). Surface projects between 50-100 ft (15-30 m) above Tijeras Creek.                                     .

Older pediment surface — Broad, relatively low relief erosional surface on Sandia granite (Ys). Surface
projects to the basal contact of eastern-margin piedmont alluvium (Qpo). Surface projects between 50-100
ft (15-30 m) above Tijeras Creek.

Oldest pediment surface — Deeply dissected and commonly grussified, formerly extensive south-sloping
surface of erosion cut mostly upon Sandia granite (Ys). Surface projects about 120-200 ft (35-60 m) above
Tijeras Creek. Probably correlative to the basal contact of old eastern-slope alluvium (QTp).                          .

Tertiary Intrusives

Mafic to intermediate dikes (Oligocene?) — Generally deeply weathered mafic to intermediate, steeply
dipping, north trending dikes. Dikes are probably correlative to an Oligocene mafic to intermediate dike
exposed on the northern flank of the Sandia Mountains (cf., Connell et al., 1995).                                        .

MESOZOIC ROCKS
Cretaceous

Mesaverde Group, undivided — A complex unit of marine, marginal marine, and fluvial sandstones, shales,
and siltstones with several intervals of coal-bearing strata.  The sequence is divided into three interbedded map
units: sandstone (Kvs), marine shale (Kvm) and terrestrial shale (Kvt).  Note that these subdivisions are defined
differently from the three subdivisions of the Mesaverde Group as recognized in the northerly adjacent Sandia
Park quadrangle; marine sandstone and shale (Kvm), terrestrial sandstone and shale (Kvt), and shoreface
sandstone (Kvs). The exposed thickness of the incomplete Mesaverde Group section is approximately 1,400
ft (430 m).

Mesaverde Group, sandstone unit — Feldspathic arenite to quartz arenite, locally with abundant
dark-colored chert grains.  Four types of sandstones are included in this unit: 1) resistant, medium- to
thick bedded, trough and wedge-planar cross-stratified, light-colored sandstones, 2) recessive, massive
or flaggy-weathering, argillaceous, greenish-brown colored sandstones and siltstones with abundant
woody debris and mud chip clasts, 3) resistant, clean (non-argillaceous), well-sorted, light-colored, planar-
bedded to low-angle cross-stratified sandstone, and 4) recessive weathering, thin- to medium-bedded,
dark brown to greenish colored, argillaceous and variably calcareous sandstone containing abundant
molluscan shell fragments (chiefly bivalves).  The first two lithotypes were mapped as terrestrial sandstones
(Kvt) in the northerly adjacent Sandia Park quadrangle (Ferguson et al. 1996), and interpreted as alluvial,
or distributary channel sandstones.  The third type, which is also characterized by the upper shoreface
environment restrictive trace fossil Macaronichnus (c.f. Mieras et al., 1993), is interpreted as a shoreface
or beach sandstone which were mapped as Kvs in the Sandia Park quadrangle to the northeast.  The
fourth type is a marine sandstone that was mapped as part of a marine sandstone and shale unit (Kvm)
in the Sandia Park quadrangle.

Mesaverde Group, terrestrial shale unit — Shale and mudstone with thin-bedded siltstone interbeds.
Characterized by the absence of marine fossils, abundant woody debris and common association with
coal seams.  These rocks correlate partially with the terrestrial sandstone and shale unit (Kvt) of the
Sandia Park quadrangle to the north-east (Ferguson et al. 1996).

Mesaverde Group, marine shale unit — Shale and mudstone with thin-bedded, commonly limonitic
siltstone interbeds.  Characterized by a lack of coal seams and abundant woody debris, and by the
presence of molluscan fossils and shell fragments.  These rocks correlate partially with the marine
sandstone and shale unit (Kvm) of the northerly adjacent Sandia Park quadrangle.                              .
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The sandstones are cross-stratified (typically trough and wedge-planar geometries) and the finer grained rocks
are commonly ripple cross-laminated.  In addition, mud-chip clasts and plant debris are common. The upper
contact with the Yeso Formation (Py) is conformable but difficult to distinguish in the field. The lower contact
with the Madera Formation (   m) is gradational with interbedded limestone and reddish-brown mudstone. The
top of the lowermost laterally continuous and relatively thick limestone bed is chosen as the Madera Formation
contact. Total thickness for the Abo and Yeso formations combined is approximately 1,300 ft (400 m).

Yeso Formation, upper limestone unit — Intervals of massive or algal/cryptalgal-laminated limestone
within the upper part of the Yeso Formation.  The limestones are typically micritic, fenestral fabrics are
commonly preserved, and they contain abundant quartz sand. Differentiated where possible east of the
Village of Cañoncito. Generally less than 16 feet (5 m) thick.

Upper and Middle Pennsylvanian

Madera Formation, undivided — Two informal members, an arkosic limestone and a gray limestone, are
recognized but not differentiated. The upper and lower members are respectively generally correlative to the
Wild Cow Formation and Los Moyos Limestone (Formation) of the Madera Group of Myers and McKay (1976).
These informal member names are used because the units were lithostratigraphically defined on the Sedillo
(Read et al., 1999) and Tijeras (Karlstrom et al., 1994) 7.5-minute quadrangles rather than biostratigraphically
defined and may therefore not strictly correlate with the units defined by Myers and McKay (1976). The Madera
Group nomenclature was abandoned because of the gradational contacts between members and the difficulty
of distinguishing these contacts in the field. Total thickness is approximately 1,320 ft (402 m) near Cedro Peak
to the southeast (Myers and McKay, 1976) and 1,260 ft (385 m) on the Crest of Montezuma (Picha, 1982)
to the north (consistent with thickness estimates based on map relationships in the study area).                      .

Madera Formation, upper arkosic limestone — A gray, greenish-gray, olive-gray, tan and buff-brown
fossiliferous limestone (comprises slightly more than half of member) interbedded with intervals of sub-
arkosic sandstone and mudstone. The limestone is thinly to thickly bedded and massive, with sparsely
disseminated chert. Sandstones and mudstones vary from reddish-brown to maroon to greenish-gray
and gray. Sandstones and arkosic sandstones, while sometimes lenticular and laterally discontinuous,
can be often traced over distances of several kilometers (see Read et al., 1998). These arkosic sandstones
are typically coarse- to medium-grained and often contain granules and pebbles. The base of this member
is defined as the first occurrence of a thick and relatively continuous arkosic sandstone bed. Petrified
wood is seen locally throughout this member.

Madera Formation, lower gray limestone — A sequence of often fossiliferous and massively bedded
cliff-forming wavy laminated and cherty micritic limestone interbedded with shales.   Shale is particularly
abundant near the base of this member where it grades into the Sandia Formation. Generally correlative
with the Los Moyos Limestone of Myers and McKay (1976).

Sandia Formation — Consists of a variety of lithologies including, in descending stratigraphic order: interbedded
brown claystone and gray limestone, massive gray limestone, and a lower olive-brown to gray, subarkosic,
fine- to coarse-grained sandstone. The contact with overlying Madera Formation (   m) is chosen at the base
of the lowest thick, ledge-forming limestone. The lower contact is unconformable with the Arroyo Peñasco
Group or Proterozoic crystalline rocks. Isolated thin outcrops in Tijeras Canyon of sandstone and limestone
from the Espiritu Santo Member of the Arroyo Peñasco Group (see Szabo, 1953; Armstrong, 1967; Armstrong
and Mamet, 1974, Kelley and Northrop, 1975) generally remain undifferentiated from the Sandia Formation.
Limestone in the Sandia Formation is distinct from limestone in the overlying Madera Formation as they are
typically thinner-bedded, clast-supported, greenish, and contain abundant siliciclastic material. Approximately
170 ft (50 m) thick.

Mississippian

Arroyo Peñasco Group, Espiritu Santo Formation(?) — A poorly exposed outcrop of sandstone and
limestone along a splay of the Tijeras fault. Several measured sections of thin remnants of the Arroyo Peñasco
Group were described by Szabo (1953) and Armstrong (1967) but remain undifferentiated on this map (see
the Sandia Formation description above).

PROTEROZOIC ROCKS
Mesoproterozoic igneous rocks

Aplite dikes — Light colored, fine- to medium-grained, and often sugary-textured aplite dikes consist of quartz,
orthoclase, accessory muscovite, and in places are garnet-bearing (Kelley and Northrop, 1975). These dikes
are generally thin planar dikes but may also be pods and stringers (up to approximately 500 ft, or 150 m, in
diameter); interpreted to be coeval with the Sandia granite (Ys).

Pegmatite dikes — Pegmatite dikes, pods, and lenses ranging from <1 in to >50 ft (<30 cm to >15 m) in
thickness and up to about 3,000 ft (915 m) in length; interpreted to be coeval with the Sandia granite (Ys).

Sandia granite porphyry — Fine- to med- grained phase of the Sandia granite (Ys) with scattered K-feldspar
phenocrysts (up to several cm). Interpreted to be coeval with the intrusion of the Sandia granite.                   .

Sandia granite — Mainly megacrystic biotite monzogranite to granodiorite. K-feldspar megacrysts, up to
several cm long, are commonly aligned in a magmatic foliation; contains numerous ellipsoidal enclaves of
microdiorite, fine-grained granite, and gabbro (interpreted to be mingled mafic magmas, Ye), and xenoliths
of quartzite, mica schist, and mafic metavolcanic rock. Pegmatites (Yp), aplites (Ya), and quartz veins are
ubiquitous. Various dates are available from geochronologic sample Locality 3: U-Pb zircon plus sphene
1,455±12 Ma (Tilton and Grunenfelder, 1968, recalculated by S. Getty, unpublished); U-Pb zircon of 1,437±47
Ma (Steiger and Wasserburg, 1966, recalculated in Kirby et al., 1995); U-Pb zircon of 1,446±26 Ma (D.
Unruh, unpublished data); Locality 3 also has 40Ar/39Ar analyses from hornblende of 1,422±3 Ma (Kirby
et al., 1995); Locality 2 has an 40Ar/39Ar date of 1,423±2 Ma (Karlstrom et al., 1997b).                           .

Sheared Sandia granite — Plastically deformed megacrystic monzogranite to granodiorite, enriched
in biotite due to depletion of quartz-feldspar from the matrix.

Mafic enclaves — Cross section only. A high density of ellipsoidal enclaves of microdiorite. These mafic
enclaves often define magmatic foliation within the Sandia granite.

Paleoproterozoic rocks

Leucocratic granite and aplitic granite — Light-colored biotite-poor granite in dikes and pods within the
Manzanita granite.

Manzanita granite — Strongly foliated very coarse-grained biotite monzogranite (biotite is chloritized). U-
Pb zircon date of 1,645 ±16 Ma (Brown et al., 1999) from the Mt. Washington 7.5-minute quadrangle
(Karlstrom et al., 1997a).

Biotite granite — Biotite-rich, medium-grained, massive to foliated granite; occurs as mixed zones in the
Manzanita granite.
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Cibola granite, undivided — Biotite-muscovite monzogranite with U-Pb dates of 1,632 ±45 Ma (geochronologic
sample Locality 5), from north of the Tijeras fault and 1,659±13 Ma (Locality 6) from south of the Tijeras fault
(D. Unruh, 1998 unpublished data).

Fine-grained Cibola granite — Leucocratic two-mica granite.

Medium-grained Cibola monzogranite — Equigranular, medium-grained, two-mica monzogranite;
average grain size is 1-3 mm.

Coarse-grained Cibola monzogranite — Two-mica monzogranite, contains scattered cm-size phenocrysts.

Mica schist, quartz-muscovite schist, and phyllite — Commonly rust red from hematitic staining, strongly
crenulated and commonly crowded with boudinaged and folded stringers and lenses of vein quartz. Includes
Coyote schist and Coyote phyllite of Cavin (1985).

Quartzite — Thick-bedded to massive and gray to milky-white quartz arenite with crossbedding and bedding
defined by bands of iron oxides. Pelitic partings and interbeds contain aluminum silicates. Includes Cerro Pelon
and Coyote quartzites of Cavin (1985) and Cibola quartzite of Connolly (1981).  Locality 4 has an 40Ar/39Ar
date of 1,423±2 Ma (Kirby et al., 1995).

Chlorite-amphibole phyllite and schist — Metasedimentary and volcaniclastic rocks that grade from mafic
metavolcanics to lithic arenites. Includes metasedimentary rocks of the Tijeras greenstone of Connolly (1981)
and part of the Coyote phyllite of Cavin (1985).

Metamorphosed lithic arenite — Quartz schist, quartz-chlorite schist, and quartzite (Xq), interlayered with
volcaniclastic schists (Xp); quartzite locally contains alumino-silicates. Includes the Tijeras quartzite of Connolly
(1981) and the Isleta metasediments of Parchman (1981).

Metamorphosed dacitic tuff — Gray to light green metavolcanic and volcaniclastic schist and phyllite with
local fragments of phyllite, chlorite phyllite, greenstone, and jasper.

Mafic metavolcanic rocks — Heterogeneous unit consisting of massive to schistose metabasalt and meta-
andesite with subordinate chlorite phyllite and schist of volcaniclastic origin. Coarse dioritic units may locally
intrude the volcanic rocks. Includes the Tijeras greenstone of Connolly (1981), Coyote greenstone of Cavin
(1985), and Isleta metavolcanics of Parchman (1981).

Metarhyolite and to felsic metavolcanic rock — Coarse-grained, buff to reddish-orange felsic metavolcanic
rock, commonly banded, locally contains quartz and feldspar phenocrysts. Includes Tijeras felsic metavolcanics
of Connolly, (1981).

Location of geologic cross section

Geologic contact—solid where exposed, dashed where approximately located; dotted where concealed
        .
Geologic contact based upon interpretation of aerial photography

Normal fault —Tic showing dip, arrow showing trend and plunge of slickensides where measurable; solid where
exposed, dashed where approximately located, dotted where concealed, queried where inferred; ball and
bar on downthrown side, upthrown (U) and downthrown (D) sides indicated where concealed and/or interpreted

Reverse fault —Tic showing dip; solid where exposed, dashed where approximately located, dotted where
concealed; square teeth on upthrown side

Thrust fault —Tic showing dip; solid where exposed, dashed where approximately located, dotted where
concealed; triangular teeth on upthrown side of thrust

Anticline—Trace of axial plane showing direction of plunge; dashed where approximately located, dotted
where concealed, queried where inferred

Syncline—Trace of axial plane showing direction of plunge; dashed where approximately located, dotted
where concealed, queried where inferred

Overturned anticline—Trace of axial plane showing direction of plunge; dashed where approximately located,
dotted where concealed, queried where inferred

Overturned syncline —Trace of axial plane showing direction of plunge; dashed where approximately located,
dotted where concealed, queried where inferred

Shear zone—Tic showing dip

Breccia or gouge zones

Slickensides on fault or minor fault

Minor fold axis, trend and plunge, with map view sketch of fold

Strike and dip of bedding                                       .

Horizontal bedding; overturned bedding

Strike and dip of joint or fracture; vertical joint or fracture

Strike and dip of S1 foliation, arrow indicates trend and plunge of lineation defined by elongate minerals and
stretched grains

Strike and dip of S2 foliation

Magmatic foliation in granite defined by alignment of mafic enclaves

Magmatic foliation in granite defined by alignment of feldspar megacrysts

Strike and dip of pegmatite or aplite dikes and veins

Metamorphic mineral occurrences and assemblages:  K = kyanite; A = andalusite; A,S = andalusite + sillimanite;
A,S,K = andalusite+sillimanite+K-spar; A,St,Cd = andalusite+staurolite+chloritoid; A,S,Cd =
andalusite+sillimanite+chloritoid; S,K = sillimanite+K-spar

Prospect

Quarry

Geochronologic sample location (U-Pb, 14C, etc.; see table and unit descriptions)

Exploratory or groundwater monitoring well, including abbreviation
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Locality
1
2
3

4
5
6

Date
1,790 ±90 BP
1,423±2 Ma
1,455±12 Ma
1,437±47 Ma
1,446±26 Ma
1,422±3 Ma
1,423±2 Ma

1,632±45 Ma
1,659±13 Ma

Formation
Qayt

Xcm(sz)
Ys
Ys
Ys
Ys
Xq

Xcm
Xcm

Method
14C

40Ar/39Ar (whole rock)
U-Pb zircon + sphene

U-Pb zircon
U-Pb zircon

40Ar/39Ar (hornblende)
40Ar/39Ar (muscovite)

U-Pb zircon
U-Pb

Reference
Sample No. Beta-104958 (this study)
Karlstrom et al. (1997b)
Tilton and Grunenfelder (1968), recalculated by S. Getty (unpubl.)
Stieger and Wasserburg (1966), recalculated in Kirby et al. (1995)
D. Unruh, (unpublished); Karlstrom (1999)
Kirby et al. (1995)
Kirby et al. (1995)
D. Unruh, (unpublished); Karlstrom (1999)
D. Unruh, (unpublished); Karlstrom (1999)
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