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Middle and Lower Triassic

Moenkopi Formation — A recessive-weathering, dark red, micaceous shale, silty shale and thin-bedded
feldspathic sandstone. The unit is about 200 ft (60 m) thick.

PALEOZOIC ERATHEM
Upper Permian

San Andres Formation — Light gray and less commonly tan colored, medium- to thick-bedded limestone.
The limestones are mostly micrites or skeletal wackstones, commonly with some component of quartz sand.
The San Andres Formation is interbedded with the Glorieta Formation (Pg) with a total upper Permian (Ps and
Pg) thickness of approximately 400 ft (120 m).

Glorieta Formation — White and pink (along the contact with the underlying Yeso Formation), massive or
plane-bedded to low-angle planar cross-stratified quartz arenite. Locally, the sandstones are extensively
bioturbated by Macaronichnus, and near the contact with Yeso Formation they are feldspathic. The sandstones
are typically well sorted, but a thin, feldspathic quartz-pebble conglomerate occurs just below the base of the
lowermost San Andres Formation limestone in the Arroyo Armijo area along the boundary between Sandia
Park and Sandia Crest quadrangles. Interbedded with the San Andres Formation with each sandstone bed
generally less than 30 ft (10 m) thick.

Lower Permian

Abo and Yeso Formations, undivided — The lower two lithostratigraphic units of the Permian represent a
red-colored feldspathic to quartzose siliciclastic sequence that, because of generally poor exposure, was
mapped as a single unit throughout the study area. The Yeso Formation is a reddish to pink or tan-colored,
medium- to thin-bedded, feldspathic sandstone, shale and silty shale with interbedded massive or laminated
micritic gray or tan limestone (Pyc) near the top.  The sandstones are typically cross-stratified and/or cross-
laminated and virtually identical to those within the underlying Abo formation except that, rarely, salt hopper
casts and molds are present. The Abo Formation is a red and locally tan-colored (particularly near the base),
medium- and thin-bedded arkose and feldspathic sandstone interbedded with red, micaceous siltstone and
shale, commonly with green reduction spots.  The lowermost arkoses are typically lighter-colored and coarser-
grained than the younger feldspathic sandstones, and at least one of them is strongly bioturbated (Macaronichnus).
The sandstones are cross-stratified (typically trough and wedge-planar geometries) and the finer grained rocks
are commonly ripple cross-laminated.  In addition, mud-chip clasts and plant debris are common. The upper
contact with the Yeso Formation (Py) is conformable but difficult to distinguish in the field. The lower contact
with the Madera Formation (   m) is gradational with interbedded limestone and reddish-brown mudstone. The
top of the lowermost laterally continuous and relatively thick limestone bed is chosen as the Madera Formation
contact. Total thickness for the Abo and Yeso formations combined is approximately 1,300 ft (400 m).

Yeso limestone — Intervals of massive or algal/cryptalgal-laminated limestone within the upper part
of the Yeso Formation.  The limestones are typically micritic, fenestral fabrics are commonly preserved,
and they contain abundant quartz sand. Differentiated where possible east of the Village of Cañoncito.
Generally less than 16 feet (5 m) thick.

  Upper and Middle Pennsylvanian

Madera Formation, undivided — Two informal members, an arkosic limestone and a gray limestone, are
recognized but not differentiated. The upper arkosic limestone is a gray, greenish-gray, olive-gray, tan and buff-
brown fossiliferous limestone (comprises slightly more than half of member) interbedded with intervals of sub-
arkosic sandstone and mudstone. The limestone is thinly to thickly bedded and massive, with sparsely disseminated
chert. Sandstones and mudstones vary from reddish-brown to maroon to greenish-gray and gray, are commonly
lenticular, and often laterally discontinuous. Arkosic sandstones are typically coarse- to medium-grained and
often contain granules and pebbles. The lower gray limestone is a gray, ledge-forming, cherty limestone
separated by thinner and less resistant intervals of light-brown, pale greenish-brown, tan, greenish-gray, and
gray, argillaceous limestone. The upper and lower members are respectively generally correlative to the Wild
Cow Formation and Los Moyos Limestone (Formation) of the Madera Group of Myers and McKay (1976).
These informal member names are used because the units were lithostratigraphically defined on the Sedillo
(Read et al., 1998) and Tijeras (Karlstrom et al., 1999) 7.5-minute quadrangles rather than biostratigraphically
defined and may therefore not strictly correllate with the units defined by Myers and McKay (1976). The
Madera Group nomenclature was abandoned because of the gradational contacts between members and
the difficulty of distinguishing these contacts in the field. Total thickness is approximately 1,320 ft (402 ft) near
Cedro Peak to the southeast (Myers and McKay, 1976) and 1,260 ft (385 m) on the Crest of Montezuma
(Picha, 1982) to the north (consistent with thickness estimates based on map relationships in the study area).

Madera Formation, sandstone and arkose beds — Sandstones and arkosic sandstones, mapped
as marker units where possible. Up to approximately 60 ft (18 m) thick.

Madera Formation, massive limestone beds — Prominent ledge forming limestone beds, mapped
as marker units where possible. Up to approximately 40 ft (12 m) thick.

Sandia Formation — Consists of a variety of lithologies including, in descending stratigraphic order: interbedded
brown claystone and gray limestone, massive gray limestone, and a lower olive-brown to gray, subarkosic,
fine- to coarse-grained sandstone. The contact with overlying Madera Formation (    m) is chosen at the base
of the lowest thick, ledge-forming limestone. The lower contact is unconformable with the Arroyo Peñasco
Group (Ma) or Proterozoic crystalline rocks. Limestone in the Sandia Formation is distinct from limestone in
the overlying Madera Formation as they are typically thinner-bedded, clast-supported, greenish, and contain
abundant siliciclastic material. Approximately 170 ft (50 m) thick.

Mississippian

Arroyo Peñasco Group, Espiritu Santo Formation — The locally thin and discontinuous Espiritu Santo
Formation unconformably overlies Proterozoic basement.  Generally only the basal Del Padre Sandstone
Member is present, but the limestones, dolomites, and limey mudstones of the unnamed upper member are
preserved in places north of Sandia Peak.  Microfossils from these carbonate rocks near Placitas and other
areas indicate an Osagean age (Armstrong and Mamet, 1974).  No other formations within the Arroyo Peñasco
Group have been recognized in the map area. The thickest section and best exposure of the Arroyo Peñasco
Group in the region of the Sandia Mountains is on the west slope of the Crest of Montezuma east of Placitas
(Armstrong and Mamet, 1974; Connell et al., 1995). The Del Padre Sandstone is a distinctive sedimentary
quartzite and quartz-pebble conglomerate that is generally very white and extremely well lithified. The silicified
finer-grained varieties of quartzite from the Del Padre Sandstone are easily mistaken for metamorphic rocks
but have no apparent foliation and have visible rounded grains on weathered or broken surfaces. Additionally,
these quartzites and associated quartz pebble conglomerates are only seen along the Great unconformity
between Proterozoic basement and the Pennsylvanian Sandia Formation. Mineralized faults and fractures
containing barite-flourite-galena and quartz are often seen in these rocks. Some of these structures apparently
do not extend above the Sandia Formation and are therefore interpreted as the result of pre-Madera Formation
deformation.  The age of the mineralization is unknown.  These rocks were previously considered Proterozoic
metasediments (see Kelley and Northrop, 1975) and some clearly are metamorphic based on recent thin
section study (Read et al., 1999).  However, based on stratigraphic position, the lack of foliation, and on study
of several thin sections, the bulk of the rocks mapped as Arroyo Peñasco Group are sedimentary rocks that
did not experience the high-grade metamorphism typical of Proterozoic supracrustal rocks in this area. Generally
less than 50 ft (15 m) thick where preserved.

PROTEROZOIC ERATHEM
Mesoproterozoic igneous rocks

Pegmatite and aplite dikes — Dikes, pods, and lenses ranging from <1 in to >50 ft (<30 cm to >15 m) in
thickness and perhaps up to 2,600 ft (800 m) in length; interpreted to be coeval with the Sandia granite (Ys).

Old eastern-slope alluvium, Tijeras Canyon unit (lower Pleistocene to upper Pliocene(?)) — Moderately
consolidated, poorly to moderately sorted and stratified gravel and sand. Poorly exposed. Gravel locally
overlies reddish-brown silty sand. Inset against upland gravel (QTug) and recognized at southwestern corner
of map area, within the San Antonio Arroyo drainage (major tributary to Tijeras Arroyo). Probably correlative
to old eastern margin piedmont alluvium (QTp). Approximately 3-10 ft (1-10 m) thick.                                   .

Upland gravel (middle Pleistocene to upper Pliocene(?)) — Well rounded, poorly stratified gravel lag
deposits that mantle a low-relief upland erosion surface (pediment) approximately 330 ft (100 m) above local
base level. May be correlative to the Tuerto gravel of Stearns (1953), or to the gravel of Lomos Altos along
the northern flank of the Sandia Mountains (Connell et al., 1995). Correlative to unit QTug on the adjacent
Sandia Park quadrangle (Ferguson et al., 1996). Thickness is generally less than 3 ft (1 m).                          .

Upper Santa Fe Group

Eastern basin-margin piedmont deposits, undivided (lower Pleistocene to Miocene) — Cross section
only. Poorly to moderately stratified to slightly east-tiled, reddish-brown to yellowish-brown and very pale-brown
(7.5-10YR) conglomerate, gravelly sandstone, and sandstone with subordinate siltstone and rare mudstone.
Buried by eastern-margin piedmont alluvium (Qpm). Conglomerate clasts are predominantly composed of
subangular granite with minor subrounded limestone schist, and angular white quartz (derived from aplite dikes
exposed in the Sandia Mountains). May be correlative with piedmont-slope and alluvial fan deposits of the
Sierra Ladrones Formation (Machette, 1978) exposed at the southern margin of the Albuquerque Basin.
Thickens to the east and interfingers with fluvial deposits of the ancestral Rio Grande to the west (Connell,
1998). Thickness is variable and thickens to the west. Estimated thickness, ranges from 2,000-7,000 ft (610-
2,135 m) to the west.

Paleogene-Cretaceous Systems

Lower Tertiary and Cretaceous sedimentary rocks, undivided (Paleogene-Cretaceous) — Cross section
only. Undivided lower Tertiary and Cretaceous deposits that may include the Unit of Isleta No. 2 (Lozinsky,
1994), Galisteo Formation, and Menefee Formation.

Tertiary Igneous Units

Mafic or intermediate dike (upper Oligocene?) — Generally deeply weathered mafic to intermediate,
steeply dipping, north trending dikes. These are probably correlative to an Oligocene mafic to intermediate
dike exposed on the northern flank of the Sandia Mountains (Connell et al., 1995).                                      .

MESOZOIC ERATHEM
Upper Cretaceous

Menefee Formation, undivided — Cross section only. Gray, tan to orange-tan, cross-bedded, and laminated
to thick-bedded siltstone and sandstone; dark-gray to olive-gray and black shale; dull, dark-brown to shiny
black lignitic coal; and maroon to dark-brown iron concretions. The lower contact between the Menefee
Formation and the Point Lookout Sandstone (Kpl) is interfingering and gradational. Total unit thickness varies
regionally from 680 ft to 1,200 ft (205 m to 365 m) due in part to post-depositional erosion.                       .

Point Lookout Sandstone — Cross section only. Gray-tan to light-tan and drab-yellow, very fine- to fine-
grained, massive, quartz sandstone with limonitic sandstone lenses and interbedded thin gray shale. Unit
thickness ranges from about 240 ft (73 m) near Placitas, to 315 ft (96 m) in the Hagan embayment.

Mancos Shale, upper member — Cross section only. Medium- to dark-gray to olive-gray shale, and silty
shale, with less abundant very fine to fine-grained, locally gypsiferous sandstone. This unit is an upper tongue
of the lower member of the Mancos Shale (Kml). Thickness is variable, but ranges from about 240 ft (73 m)
west of Placitas, to 360 ft (110 m) in the Hagan embayment.

Hosta-Dalton Sandstone — Cross section only. Drab, yellow-gray to yellow-tan, very fine- to medium-grained,
weakly cemented sandstone with olive-brown sandstone lenses. Unit thickness ranges from 210 ft (64 m) near
Placitas to 370 ft (112 m) in the Hagan embayment.

Mancos Shale, lower member — Cross section only. Lithology is similar to the upper Mancos Shale (Kmu)
with subequal proportions of olive-brown to gray to black shale and laminated to interbedded, olive-brown
to gray, very fine grained sandstone, siltstone, and shale. Unit thickness is highly variable regionally and across
the study area, ranging from 850 ft (260 m) west of Placitas to 1850 ft (565 m) in the Hagan embayment.

Dakota Formation — Cross section only. Medium-bedded, pervasively silica-cemented, medium-grained,
yellowish-gray to orange-yellow quartz arenite. Unit thickness ranges from 75 ft (23 m) west of Placitas, to less
than 25 ft (8 m) in the Hagan embayment.

Upper Jurassic

Morrison Formation, Salt Wash Member — Light tan to yellowish white, massive, friable sandstone exposed
only in a highly fractured fault-bounded block of Mesozoic rocks just south of the Jaral fault and Rincon Ridge.
Exposed thickness is approximately 85 ft (26 m) compared to an estimated thickness of 216 ft (66 m) for the
Salt Wash Member exposed near Placitas (see Van Hart, in press).  Total Morrison Formation thickness varies
regionally, ranging from about 850 ft (260 m) near Placitas, to 780 ft (240 m) in the Hagan embayment.

Middle Jurassic

San Raphael Group — Locally includes the Summerville (Js), Todilto (Jt), and Entrada (Je) Formations as
recently defined by Lucas et al. (1995) and Lucas and Anderson (1997). Exposed only within a highly fractured
fault-bounded block of Mesozoic rocks located just south of the Jaral fault and Rincon Ridge (see Van Hart,
in press). Total estimated San Raphael Group thickness in this fault block is 128 ft (39 m).                             .

San Raphael Group, Summerville Formation — Purple-gray, red-brown, and green-gray mudstone
interbedded with tan, gray, and greenish-gray, very fine grained sandstone. These rocks are assigned
to the Summerville Formation based on stratigraphic position (previously called the Recapture Shale
Member of the Morrison Formation--see Lucas et al., 1995; and Lucas and Anderson, 1997). Estimated
exposed thickness is 50 ft (15 m).

San Raphael Group, Todilto Formation (Luciano Mesa Member) — A thinly laminated, petroliferous,
dark-gray, micritic limestone. Fossils are not recognized, but laminations are probably algal in origin.
The overlying Tonque Arroyo Member appears to be absent in this area (Van Hart, in press). A very
small outcrop of this important stratigraphic marker is overlain by the Summerville Formation, underlain
by the Entrada Formation, and is approximately 3 ft (1 m) thick.

San Raphael Group, Entrada Formation — Variably colored, very fine to fine-grained, weakly
cemented, crossbedded, eolian, quartz sandstone with coarser grained components. These rocks are
very poorly exposed south of the Jaral fault. The lower contact with the Chinle Group (     c) is disconformable.
Estimated local thickness of 75 ft (23 m).

Upper Triassic

Chinle Group, undivided (probably Petrified Forest Formation) — Mudstone with lenticular beds of
lavender-gray sandstone; mudstones are reddish-brown to orange-tan in the upper part, and purple to reddish-
brown in the lower part; also locally contains limestone-pebble conglomerate lenses. Exposures confined to
limited outcrop just south of the Jaral Fault and near the Village of Cañoncito (on the southeastern corner of
the map). Total Chinle Group thickness is about 1300 ft (400 m).

Chinle Group, Agua Zarca Formation — The only distinct sub-unit of the Chinle Group recognized
during this study (differentiated near the Village of Cañoncito).  It is a tan- to light-grayish pink, resistant,
thin- to medium-bedded quartz arenite and feldspathic arenite. The lower contact with the underlying
Moenkopi Formation (    m) is disconformable. The unit is about 350 ft (105 m) thick.                          .

Sandia granite — Mainly megacrystic biotite monzogranite to granodiorite—K-feldspar megacrysts, up to
several cm long, are commonly aligned in a magmatic foliation; contains numerous ellipsoidal enclaves of
microdiorite, fine-grained granite, and gabbro (interpreted to be mingled mafic magmas), and xenoliths of
quartzite and mafic metavolcanic rock. Pegmatites, aplites, and quartz veins are ubiquitous. Various dates are
available: U-Pb zircon plus sphene 1,455±12 Ma (Tilton and Grunenfelder, 1968, recalculated by Steve
Getty, unpublished); U-Pb zircon of 1,437±47 Ma (Steiger and Wasserburg, 1966, recalculated in Kirby et
al., 1995); U-Pb zircon of 1,446±26 Ma (Unruh, unpublished data); 40Ar/39Ar from hornblende is 1,422±3
Ma and from muscovite is 1,423±2 Ma (Kirby et al., 1995); apatite fission track dates range from 14±4 Ma
at low elevation to 30±5 Ma at high elevation (Kelley et al., 1992).

Paleoproterozoic metamorphic rocks

Quartz-rich pelitic schist — Quartz-muscovite schist and quartz-chlorite schist locally interlayered with
amphibolites, mafic metavolcanics, and calc-silicates; commonly contains aluminosilicates.                            .

Calc-silicate and calc-pelite — Lensoidal calc-silicate bodies interlayered with quartz-rich pelites (Xqs).

Banded granitic gneiss — Isolated screens (and xenoliths) of banded biotite-rich granitic gneiss intruded by
the Sandia Granite in Madera Canyon as well as larger outcrops in Barrow Canyon beneath the Paleozoic-
Proterozoic unconformity.  May be correlative with pelitic gneiss or the Cibola granite exposed on the Sandia
Park Quadrangle (Ferguson et al., 1996).
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CENOZOIC ERATHEM
Neogene (Quaternary and Tertiary) System

Colluvial, landslide, eolian, and anthropogenic deposits

Thin surficial deposits derived from wind and mass-movement processes, or extensive areas disturbed by open-
pit aggregate mining or construction.

Disturbed land and artificial fill, undivided (Historic) — Dumped fill and areas affected by open-pit
aggregate mining or construction.  Locally mapped where disturbance is areally extensive or geologic contacts
are obscured.

Colluvium and alluvium, undivided (Holocene to upper-middle Pleistocene) — Poorly consolidated,
poorly sorted and stratified, fine- to coarse-grained, clast- and matrix-supported gravel derived from a variety
of mass-movement hillslope processes, including debris flow, shallow slump and creep. May locally include
shallow landslide debris. Gravel clasts are typically subangular to subrounded limestone derived from the
eastern dip-slope of the Sandia Mountains. Commonly surrounds small unmapped bedrock inliers. Supports
distinct vegetative community and associated drainage density, both of which are represented by a distinct
tonal pattern on aerial photographs. Differentiated where areally extensive, thick, or obscures geologic contacts.
Variable thickness, up to 16 ft (5 m).

Scree, talus, and colluvium, undivided (Holocene to upper-middle Pleistocene) — Coarse-grained,
angular, clast-supported talus found primarily in first-order hollows on steep, west-facing slopes of the Sandia
Mountains.

Travertine (Pleistocene) — Constructional mounds of travertine ranging from 1 to 10 m thick, typically found
around active springs. Variable thickness, between 3-30 ft (1-10 m) thick.

Alluvium

Divided into stream-valley alluvium, eastern basin-margin piedmont alluvium, and eastern-slope alluvium. Stream-
valley alluvium typically contain moderately to well sorted, poorly to well stratified, clast- and matrix-supported
deposits associated with modern and late Pleistocene entrenched arroyos across the map area. Eastern basin-
margin piedmont alluvium contains generally poorly sorted, poorly stratified, clast- and matrix-supported
deposits having angular to subangular clasts of granitic, metamorphic, and minor limestone derived from the
western and northern slopes of the Sandia Mountains on the footwall of the Sandia fault (eastern margin of
the Albuquerque Basin). Eastern-slope alluvium typically contain very poorly to moderately sorted, clast- and
matrix-supported deposits associated with drainages developed on the eastern dip-slope of the Sandia
Mountains and headwater region of the Tijeras Canyon drainage.

Stream-valley Alluvium

Youngest stream alluvium, undivided (Historic to Holocene) — Unconsolidated deposits of brown, light
gray-brown, and yellowish-brown (10YR) sand, silty to clayey sand, and gravel.  Underlies arroyos and is inset
against younger stream alluvium (Qay). Very weakly developed soils exhibit no pedogenic carbonate at the
surface and weak Stage I carbonate morphology at depth. Correlative to geomorphic surface Q8 and Q9
of Connell (1995, 1996). Variable thickness, from 0-20 ft (0-6 m).

Younger stream alluvium, undivided (Holocene to uppermost Pleistocene) — Poorly consolidated
deposits of pale-brown to light-brown (7.5-10YR) sand to sandy clay loam and gravel.  Inset against middle
piedmont and western-margin alluvium (Qpm). Surface is slightly dissected and possesses weakly developed
soils with Stage II carbonate morphology. Remnants of the lower pediment surface (Qpx3) is preserved in Juan
Tabo Canyon and probably corresponds to the basal contact of this unit. Correlative to geomorphic surface
Q8 of Connell (1995, 1996). Variable thickness, from 0-25 ft (0-8 m).

Eastern-margin piedmont alluvium

Piedmont and stream alluvium, undivided (Historic to middle Pleistocene) — Cross section only. Undivided
deposits of stream-valley (QHa and Qay) and eastern-margin piedmont alluvium (Qpm).                               .

Younger eastern-margin piedmont alluvium (Holocene to uppermost Pleistocene) — Unconsolidated
deposits of brown, light gray-brown, and yellowish-brown (10YR) gravel, sand, and sandy clay loam.  Gravel
clasts are predominantly cobbles to boulders of angular to subangular, granite with minor subrounded limestone.
Soils possess Stage I to II+ carbonate morphology and few thin clay films. Geomorphic surface Q9 of Connell
(1995, 1996) Variable thickness, from 0-40 ft (0-12 m).

Middle eastern-margin piedmont alluvium, undivided (upper to middle Pleistocene) — Poorly to
moderately consolidated deposits of very pale-brown to strong-brown and light-gray (7.5-10YR) gravel, sand,
and silty to clayey sand. Inset against older eastern-margin piedmont alluvium (Qpo) and inset by younger
stream alluvium (Qay). Gravel clasts are predominantly subangular granite and schist with subrounded limestone,
and angular white quartz (aplite dikes) derived from the western front of the Sandia Mountains. Slightly to
moderately dissected deposit surface possesses subdued constructional bar-and-swale topography on interfluves.
Weakly developed soils exhibit Stage II to III+ carbonate morphology and minor to moderate clay film
development. Locally divided into an older subunit. Correlative to geomorphic surfaces Q6-Q7 of Connell
(1995, 1996). Variable thickness, estimated from 0-140 ft (0-43 m).

Middle eastern-margin piedmont alluvium, older subunit (middle Pleistocene) — Moderately
consolidated deposits of light- to strong-brown (7.5YR) and very pale-brown to light-gray (7.5-10YR),
poorly to moderately stratified and sorted, sand clayey sand and gravel. Dissected deposit surface
exhibits erosional ridge-and-ravine topography. Subdued bar-and-swale constructional topography is
locally preserved on broad weakly dissected interfluves. Much of the deposit surface is dissected by
arroyos and exhibits erosional ridge and ravine topography. Moderately well developed soils with Stage
III+ carbonate morphology and many moderately thick clay films. Geomorphic surface Q6 of Connell
(1995, 1996).

Old eastern-margin piedmont alluvium, undivided (lower Pleistocene to upper Pliocene(?)) — Moderately
consolidated, poorly to moderately sorted and stratified gravel and sand with minor, thin silty-clay interbeds.
Gravel clasts are granite with rare limestone. Granite clasts are commonly grussified and deeply pitted. Remnants
of upper and lower pediment surfaces (Qpx1 and Qpx2) are locally preserved on Sandia granite (Ys) and
probably correspond to the stripped base of unit QTp. Correlative to geomorphic surfaces QT1-Q3 of Connell
(1995, 1996), older eastern-margin piedmont alluvium (Qpo) or the Suela alluvium (Qss) exposed on the
Placitas and Bernalillo quadrangles (Connell, 1998, and Connell et al., 1995, respectively). Variable thickness,
from 0-45 ft (0-14 m).

Gravel of Lomos Altos (upper Pliocene) — Thin gravel lag consisting of subrounded limestone pebbles and
cobbles derived from eastern dip-slope of the northern Sandia Mountains. Probably correlative to the Gravel
of Lomos Altos on the northern flank of the Sandia Mountains (Connell et al., 1995). May also be equivalent
to the Tuerto gravel of Stearns (1953). Approximately 3-30 ft (1-10 m) thick.

Eastern-slope alluvium

Eastern-slope alluvial-fan deposits (middle Pleistocene) — Poorly sorted and stratified, gravel and sand
with minor, thin silty-clay interbeds. Gravel clasts are predominantly limestone with subordinate sandstone.
Deposit surfaces are approximately 100 ft (30 m) above local base level and exhibit modified bar and swale
topography. Soils posses Stage II+ to III+ carbonate morphology. Variable thickness and thickens to the east
to over 60 ft (18 m) thick. Correlative to alluvial fan deposits inset below the Tuerto gravel (unit Qfo) on the
adjacent Sandia Park quadrangle (Ferguson et al., 1996). Probably correlative to eastern-margin piedmont
alluvium (Qpm or Qpo) along western front of Sandia Mountains.

Eastern-slope pediment-alluvial fan complex (middle Pleistocene) — Alluvial fan deposits that overlie
broad, northeast-sloping pediment surfaces cut on older sedimentary rocks. Correlative to piedmont-alluvial
fan complexes (unit Qpf) on the adjacent Sandia Park quadrangle (Ferguson et al., 1996). Variable thickness,
ranging from 10-20 ft (3-20 m).

af

Qca

Qpm

Qpm1

ˇm

Xqs

Ys

Qtr

QHa

Qay

Qp

Qpy

QTpa

Qfo

Qpf

QTug

QTsp

TslaTsla

QTp

TKu

Je

Js

Kmf

Kpl

Kmu

Khd

Kml

Kd

Jm

Jt

ˇz

ˇc

˛m

Ps

Pg

Pay

Pyc

˛ms

˛mc

˛s

Ma

Xcs

Xgn

Location of geologic cross section

Geologic contact—solid where exposed, dashed where approximately located, dotted where concealed, queried where inferred

Fault—Showing dip with arrow showing trend and plunge of slickenlines where measurable; solid where exposed; dashed where
approximately located; dotted where concealed; ball-and-bar on downthrown side of normal fault, teeth on upthrown side of
reverse fault (combination of reverse fault teeth and bar-and-ball indicates interpretation of normal reactivation of a reverse fault);
upthrown (U) and downthrown (D) used where fault dip is unknown

Anticline—Trace of axial plane showing direction of plunge; dashed where approximately located, dotted where concealed,
queried where inferred

Syncline—Trace of axial plane showing direction of plunge; dashed where approximately located, dotted where concealed,
queried where inferred

Monocline with anticlinal bend—Trace of axial plane; short arrow on steeper bend; dashed where approximately located, dotted
where concealed, queried where inferred

Breccia or gouge zones

Strike and dip of minor fault

Slickensides on fault

Strike and dip of bedding, ball indicates that younging is known

Horizontal bedding

Strike and dip of joint or fracture

Strike and dip of S1 foliation

Strike and dip of S2 foliation

Strike and dip of magmatic foliation in granite defined by alignment of mafic enclaves

Strike and dip of magmatic foliation in granite defined by alignment of megacrysts

Strike and dip of pegmatite dikes and veins

Trend and plunge of lineation—defined by elongate minerals or stretched grains

Prospect, mine

Water-supply well, including number assigned by the New Mexico Office of the State Engineer

Exploratory or groundwater monitoring well, including abbreviation. HD-1 and HD-2 data from Geohydrology Associates (1993);
SHO3 and SHOCH and data from G. Hall (unpubl. data, 1998).

Lower pediment surface — Exposed erosional surface between Sandia granite (Ys) and overlying younger stream alluvium
(Qay). Probably correlative to geomorphic surface Q8 of Connell (1995, 1996).

Middle pediment surface — Broad, relatively low relief erosional surface on the Sandia granite (Ys). Surface is topographically
lower than pediment surface of unit Qpx1 and correlated to the base of older eastern-margin piedmont alluvium (Qpo). Provisionally
correlated to geomorphic surfaces Q4-Q5 of Connell (1995, 1996).

Upper pediment surface — Broad, relatively low relief erosional surface on Sandia granite (Ys). Surface projects to the basal
contact of eastern-margin piedmont alluvium (Qpo) and is provisionally correlated to geomorphic surfaces Q2-Q3 of Connell
(1995, 1996).

Tmi

Cross sections are constructed based upon the interpretations of
the authors made from geologic mapping, and available subsurface
(drillhole) data. Cross sections should be used as an aid to
understanding the general geologic framework of the map area,
and not be the sole source of information for use in locating or
designing wells, buildings, roads, or other man-made structures.

  A geologic map displays information on the distribution, nature, orientation and age relationships of rock
and deposits and the occurrence of structural features.  Geologic and fault contacts are irregular surfaces
that form boundaries between different types or ages of units.  Data depicted on this geologic quadrangle
map are based on reconnaissance field geologic mapping, compilation of published and unpublished work,
and photogeologic interpretation.  Locations of contacts are not surveyed, but are plotted by interpretation
of the position of a given contact onto a topographic base map; therefore, the accuracy of contact locations
depends on the scale of mapping and the interpretation of the geologist. Several different scales of mapping
were incorporated into this map; therefore, the user should be aware of significant variations in map detail.
 Site-specific conditions should be verified by detailed surface mapping or subsurface exploration.  Topographic
and cultural changes associated with recent development may not be shown.

Mapping of this quadrangle was funded by a matching-funds grant from the STATEMAP program of the U.S.
Geological Survey, National Cooperative Geologic Mapping Program, to the New Mexico Bureau of Mines
and Mineral Resources (Dr. Charles E. Chapin, Director; Dr. Paul W. Bauer, P.I. and Geologic Mapping
Program Manager). The map has not been reviewed according to New Mexico Bureau of Mines and
Mineral Resources standards.  Revision of the map is likely because of the on-going nature of work in the
region.  The contents of the report and map should not be considered final and complete until reviewed and
published by the New Mexico Bureau of Mines and Mineral Resources. The views and conclusions contained
in this document are those of the authors and should not be interpreted as necessarily representing the official
policies, either expressed or implied, of the State of New Mexico, or the U.S. Government.
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