Latest Pennsylvanian and earliest Permian fusulinid biostratigraphy, Robledo Mountains and adjacent ranges, south-central New Mexico

Gregory P. Wahlman and William E. King
NEW MEXICO BUREAU OF GEOLOGY AND MINERAL RESOURCES
Peter A. Scholle, Director and State Geologist
a division of
NEW MEXICO INSTITUTE OF MINING AND TECHNOLOGY
Daniel H. López, President

BOARD OF REGENTS
Ex Officio
Gary E. Johnson, Governor of New Mexico
Michael J. Davis, Superintendent of Public Instruction

Appointed
Sidney M. Gutierrez, President 2001–2007, Albuquerque
Anthony L. Montoya, Jr., Secretary/Treasurer 2001–2003, Socorro
Ann Murphy Daily, 1999–2004, Santa Fe
Randall E. Horn, 1997–2003, Albuquerque
Robert E. Taylor, 1997–2003, Silver City

BUREAU STAFF

BRUCE ALLEN, Field Geologist
REUBEN ARCELETA, Metallurgical Lab. Technician
SINDRA H. AZEVEDO, Cartographer II
AUBERT BACA, Lead Maintenance Carpenter
SUSIE KYLE, Receptionist, Administrative Secretary I
JAMES M. BARKER, Associate Director for Operations, Senior Industrial Minerals Geologist
PAUL W. BAUR, Associate Director for Government Liaison, Senior Geologist, Manager of Geologic Mapping Program
LINN A. BRANDVOLD, Senior Chemist
BRAD S. BRITTON, Petroleum Geologist
RON BROADBENT, Associate Director for Industry Liaison, Principal Senior Petroleum Geologist
RICK CASE, Administrative Secretary II (All Office)
STEVEN M. CATHRIN, Senior Field Geologist
RICHARD CHAMBERLIN, Senior Field Geologist
SEAN CONNELL, Albuquerque Office Manager, Field Geologist
REUBEN A. CREPON, Manager, Fleet/General Services
JEANNE DEARDORFF, Assistant Editor
NELIA DUNIAK, Analytical Geochemist
RICHARD ESSER, Geochronology Lab. Technician
ROBERT W. EVELLER, Senior Mining Engineer
KARL FRAZER, GIS Technician
PATRICIA L. FRESH, Assistant Curator of Mineral Museum
LORI O. GALDADROO, Cartographer II
NANCY S. GILSON, Editor
KATHRYN E. GLEASON, Senior Cartographer/Manager, Cartography Section
DEBBIE GORDON, Business Office Coordinator
TERRY GONZALES, Geologic Information Specialist
REMMON HUNDE, Senior Metallurgist
LYNN HEIZER, Education/Outreach Assistant
MATT HEIZER, Assistant Director for Laboratories, Geochronologist
LINDA HEMENWAY, Geologic Information Center Coordinator
GRETHEN K. HOFFMAN, Senior Coal Geologist

PATRICIA JACOBS, Geological Lab. Associate
PEGGY S. JOHNSON, Hydrogeologist
GLENN JONES, Assistant Director for Computer/Internet Services
THOMAS J. KAUF, Cartographer I
PHILIP KYLE, Geochemist/Petrologist
LEWIS LAND, Hydrogeologist
ANNABELLE LOPEZ, Petroleum Information Coordinator
THELMA LOPEZ, Administrative Secretary I
DAVID W. LOVE, Senior Environmental Geologist
JANE A. CALVERT LOVE, Managing Editor
VIRGIL LUETZ, Assistant Director for Public Outreach, Mineralogist/Economic Geologist, Curator of Mineral Museum
MARK MANSELL, GIS Specialist
AMY MATTHIES, Chemical Technicians
DAVID MCCLEARY, GIS Cartographer
WILLIAM MCKINSTRY, Senior Volcanologist/Geochronologist
CHRISTOPHER G. McKee, X-ray Facility Manager
VIRGINIA T. MELMORE, Minerals Outreach Liaison, Senior Economic Geologist
LISA PETERS, Senior Lab. Associate
L. G. REED, Senior Geologist, Chief Editor
ADDAM S. READ, Senior Geologic Lab. Associate
BEN REBICH, Cartographer II
WILLIAM D. RAZET, Petroleum Geologist
MARSHALL A. REITER, Principal Senior Geophysicist
GREGORY SANCHEZ, Mechanics-Carpenter Helper
TERRY THOMAS, Chemistry Lab. Technician I
FRANK TITUS, Senior Outreach Hydrologist
LORETTA TOBE, Executive Secretary
AMY TRUESDELL, Petroleum Computer Specialist
LINEA UBREY, Administrative Secretary II
JUDY M. VAZQUEZ, Assistant Director for Finance
MANUEL J. VAZQUEZ, Mechanic II
SUSAN J. WELCH, Manager, Geologic Extension Service
MAUREEN WILKS, Geologic Librarian, Manager of Publication Sales

EMERITUS

GEORGE S. AUSTIN, Emeritus Senior Industrial Minerals Geologist
CHARLES E. CHAPIN, Emeritus Director/State Geologist
JOHN W. HOWLEY, Emeritus Senior Environmental Geologist

JACQUES R. RENAUD, Emeritus Senior Geologist
SAMUEL THOMPSON III, Emeritus Senior Petroleum Geologist
ROBERT H. WEBER, Emeritus Senior Geologist

Plus research associates, graduate students, and undergraduate assistants.
Latest Pennsylvanian and earliest Permian fusulinid biostratigraphy, Robledo Mountains and adjacent ranges, south-central New Mexico

by Gregory P. Wahlman¹ and William E. King²

¹BP Amoco, P.O. Box 3092, Houston, Texas 77253
²New Mexico State University, Las Cruces, New Mexico 88003

New Mexico Bureau of Geology and Mineral Resources

A Division of New Mexico Institute of Mining and Technology

Socorro 2002
Latest Pennsylvanian and earliest Permian fusulinid biostratigraphy, Robledo Mountains and adjacent ranges, south-central New Mexico

Copyright © 2002 by
The New Mexico Bureau of Geology and Mineral Resources
A Division of New Mexico Institute of Mining and Technology
801 Leroy Place
Socorro, NM 87801
(505) 835-5410
http://geoinfo.nmt.edu
Excerpts of this publication may be reproduced for educational purposes.

Project Editor
Jeanne Deardorff

Layout
Jeanne Deardorff

Cartography
Kathryn E. Glesener
Thomas J. Kaus

Editorial Assistance
Gina D’Ambrosio
Jane A. Calvert Love
L. Greer Price

Library of Congress Cataloging-in-Publication Data
Wahlman, G. P. (Gregory Paul)
Latest Pennsylvanian and earliest Permian fusulinid biostratigraphy, Robledo Mountains and adjacent ranges, south-central New Mexico / by Gregory P. Wahlman and William E. King. p. cm.
Includes bibliographical references.
ISBN 1-883905-11-7
QE772.W34 2001
561'.994—dc21
2002000002
CIP

Published by authority of the State of New Mexico, NMSA 1953 Sec. 63-1-4 Printed in the United States of America First Printing

Cover Photo
The Robledo Mountains from the south; photo © Tom Till
The Robledo Mountains of south-central New Mexico, and the Dona Ana and San Andres Mountains to the east, expose rocks of Late Pennsylvanian and Early Permian age (290 million years old). The Robledo Mountains contain one of the most continuous marine carbonate sections through the Pennsylvanian—Permian boundary in the southwestern United States. These strata contain the fossil remains of fusulinids, tiny single-celled animals now extinct. The abundance, diversity, and visibility in these rocks of these microfossils allow a detailed understanding of the age of these strata, and allow the authors to correlate these rocks with rocks of similar age in other parts of the United States. The authors describe this unique stratigraphic section in some detail with an emphasis on fusulinid remains, including descriptions of new species not previously reported from this area. Based on their detailed work in the field and the laboratory, the authors propose the Robledo Mountains section as a new reference for the Pennsylvanian—Permian boundary in southwestern North America.
Table of Contents

ABSTRACT ... 1
INTRODUCTION .. 1
MATERIALS AND METHODS ... 1
ACKNOWLEDGMENTS .. 1

PENNYSYLVANIAN–PERMIAN BOUNDARY .. 2

STRATIGRAPHY ... 3
LITHOSTRATIGRAPHIC NOMENCLATURE ... 3
UPPER PENNSYLVANIAN ... 3
FRESNAL GROUP (VIRGILIAN) ... 4
BURSUM FORMATION-EQUIVALENT ("BURSUMIAN") ... 4
LOWER PERMIAN (WOLFCAMPIAN) .. 7

Hueco Group ... 7

DEPOSITIONAL HISTORY ... 8

PREVIOUS BURSUM–HUECO FUSULINID STUDIES FROM THE OROGRANDE BASIN REGION .. 9

FUSULINID FAUNAS AND CORRELATIONS OF THE ROBLEDO, DONA ANA, ORGAN, AND
SOUTHERN SAN ANDRES MOUNTAIN RANGES ... 10
ROBLEDO MOUNTAINS .. 10
DONA ANA MOUNTAINS ... 10
SOUTHERN SAN ANDRES MOUNTAINS ... 10

REGIONAL FUSULINID CORRELATIONS .. 11

SUMMARY AND CONCLUSIONS .. 11

SYSTEMATIC DESCRIPTIONS ... 12
Leptotriticites aff. L. gracilitatus ... 12
Leptotriticites sp. A. ... 12
Schwagerina andresensis ... 12
Schwagerina sp. A. ... 13
Pseudoschwagerina robleda .. 13
Pseudoschwagerina morsei .. 13
Pseudoschwagerina cf. P. uddeni .. 14
Pseudoschwagerina texana ... 14
Pseudoschwagerina texana ultima .. 15
REFERENCES .. 15

Figures

1—Map of south-central New Mexico .. vi
2—Chart showing correlation of traditional Hueco Limestone lithostratigraphic subdivisions in the Robledo Mountains, which are used in this paper with the new formation names proposed by Lucas et al. (1998) .. 3
3—Chart showing the stratigraphy of the Upper Pennsylvanian and Lower Permian strata of the
Robledo Mountains ... 5
4—The Robledo Mountains fusulinid-bearing measured sections of Seager, Kottlowski, and Hawley (in press), stratigraphy, suggested correlation, and the location of fusulinid samples, sample numbers, and fusulinid faunas .. 6
5—Chart showing proposed correlation of the uppermost Pennsylvanian and Lower Permian stratigraphic sections of the Robledo Mountains and Hueno Mountains ... 7

Plates

1—Leptotriticites aff. L. gracilitatus, Leptotriticites sp. A., Schwagerina andresensis, Schwagerina sp. A.,
Pseudoschwagerina robleda .. 21
2—Pseudoschwagerina robleda, Pseudoschwagerina morsei .. 23
3—Pseudoschwagerina cf. P. uddeni, Pseudoschwagerina texana ultima, Pseudoschwagerina texana, Pseudoschwagerina texana ... 25
FIGURE 1—Map of south-central New Mexico showing distribution of mountain ranges, the study area (rectangle), and a general outline of the Orogrande Basin marine depositional area during latest Pennsylvanian and earliest Permian time. The western shelf area is termed the Robledo shelf, and the more narrow eastern shelf between the basin margin and the Pedernal uplift is termed the Sacramento shelf (adapted from Kottlowski, 1963, fig. 1).
Abstract

Latest Pennsylvanian and earliest Permian fusulinid foraminifera from the Robledo, Doña Ana, and southern San Andres Mountains, Doña Ana County, south-central New Mexico, are described, and their biostratigraphic significance and correlation are discussed. New collections of fusulinids from the Bursum Formation—equivalent and lower Hueco member contain a few additional species not previously reported from the area and provide better material for some other previously reported species. Descriptions of the following species from the new collections are given: *Leptotriticites aff. L. gracilitatus* Skinner and Wilde, *L. sp. A.*, Schwagerina andresensis Thompson, S. sp. A., Pseudofusulina robleda Thompson, Pseudoschwagerina mortei Needham, P. cf. *P. uddeni* (Beede and Knicker), *P. texana* Dunbar and Skinner, and *P. texana ultima* Dunbar and Skinner.

The Robledo Mountains contain one of the most continuous marine carbonate sections through the Pennsylvanian—Permian boundary interval in the southwest United States of America, and therefore it has potential significance as a reference section for correlation of the new international Carboniferous—Permian boundary from Eurasia to North America. The newly proposed Pennsylvanian—Permian boundary is designated in the Robledo Peak section at the Bursum—Hueco contact, which is placed at the top of a sandy limestone interval that lies above the occurrences of *Leptotriticites hughensis, L. gracilitatus, L. aff. gracilitatus, L. sp. A., Pseudofusulina robleda, and Schwagerina grandensis*, and below the basal occurrences of *Pseudoschwagerina mortei, P. texana, P. texana var. ultima, P. cf. P. uddeni, Schwagerina andresensis, and Leptotriticites tumida*. The stratigraphically higher fusulinid assemblage correlates well to the faunas of the Neal Ranch Formation (Nealian) of the Wolfcampian stratotype section in the Glass Mountains of west Texas.

Introduction

The Robledo Mountains, Doña Ana Mountains, Organ Mountains, and southern San Andres Mountains are located in Doña Ana County, south-central New Mexico (Fig. 1). During Late Pennsylvanian and Early Permian time, the area now occupied by the Robledo and western Doña Ana Mountains was situated on the southwestern shelf of the Orogrande Basin, and the area now occupied by the eastern Doña Ana Mountains, southern San Andres Mountains, and Organ Mountains was situated along the basin margin.

The Robledo Mountains contain one of the most continuous Upper Pennsylvanian through Lower Permian marine carbonate stratigraphic sections in the southwestern United States. With the recent establishment of a new international Carboniferous—Permian boundary in Eurasia (Davydov et al., 1998), the conodont-based correlation of that boundary to the midcontinent United States (Ritter, 1995), and the subsequent redefinition of the Pennsylvanian—Permian boundary in North America (Baars et al., 1994; Ross and Ross, 1994; Wahlman, 1998), the Robledo Mountains section takes on new significance as a potential reference section for the North American systemic boundary.

In the Orogrande—Permian Basin region of New Mexico—west Texas, the redefinition of the Pennsylvanian—Permian boundary shifts that systemic contact upward from the base to the top of the interval represented by the Bursum Formation. As a result, the Bursum Formation is no longer included in the Lower Permian Wolfcampian Stage, but rather is now considered uppermost Pennsylvanian. However, this creates a problem of the stadial classification of the Bursum interval. Some think it unadvisable to attach the Bursum interval onto the already well-defined underlying Virgilian Stage. As a solution to this problem, Ross and Ross (1987, 1994, 1998) have suggested naming this homeless time interval between the Virgilian and Wolfcampian by the new stage name "Bursumian". They further suggested that the "Bursumian" stratigraphic section of the Robledo Mountains should be evaluated as a potential stadial stratotype. The nomenclature for the interval is still under debate, but for lack of any other currently accepted name, "Bursumian" will be used herein.

The abundance, diversity, and visibility in the field of fusulinid foraminifera makes them primary biostratigraphic tools for late Paleozoic marine strata, and they are undoubtedly the most widely used index fossils in the Orogrande—Permian Basin region. This paper discusses the fusulinid biostratigraphy of the uppermost Pennsylvanian ("Bursumian") and Lower Permian (Wolfcampian) stratigraphic sections of the Robledo Mountains, Doña Ana Mountains, Organ Mountains, and southern San Andres Mountains, and correlations are made between those mountain ranges and other key sections in the southwestern and midcontinent United States.

Materials and methods

The Robledo Mountains stratigraphic sections discussed here were measured and described by Frank Kottlowski (New Mexico Bureau of Mines and Mineral Resources) and William R. Seager (New Mexico State University). The lithostratigraphic descriptions for the Robledo Mountains given here are summaries of measured sections in Seager, Kottlowski, and Hawley (in press). Seager and W. E. King collected the fusulinid samples discussed (Figs. 2-4). The new Robledo Mountains fusulinid collections were made from the Bursum-equivalent unit and lower Hueco member in three measured sections (Figs. 2-4): section J (W1 sec. 12 T22S R1W), section K (sec. 7 T22S R1E), and section L (sec. 35 T21S R1W).

A few additional fusulinid collections from the adjacent Doña Ana Mountains and southern San Andres Mountains are also discussed. Seager, Kottlowski, and Hawley (1976) discussed the stratigraphy of the Doña Ana Mountains, and Seager (1981) discussed the stratigraphy of the Organ Mountains and southern San Andres Mountains, and so only the biostratigraphic aspects of those areas will be covered in this paper.

Acknowledgments

The authors wish to acknowledge the late Frank E. Kottlowski, and William R. Seager (New Mexico State University). We would like to thank and George Sanderson and George Verville (Amoco Production Company) for their advice and assistance toward the completion of this report. In particular, Drs. Kottlowski and Seager generously shared their unpublished manuscript containing Robledo Mountains measured sections and lithostratigraphic descriptions, discussed and offered advice on stratigraphic prob-
lems, and reviewed a draft of the manuscript. We would also like to thank Charles A. Ross (Western Washington University, Bellingham) and Ronald Broadhead (New Mexico Bureau of Geology and Mineral Resources) for reviewing the final manuscript and making numerous helpful suggestions. Finally, thanks to Dr. Vicki Harder, who made some of the thin sections. The New Mexico Bureau of Geology and Mineral Resources granted financial assistance for field and laboratory work, and the Department of Geological Sciences of New Mexico State University provided laboratory facilities. Thanks also to the Exploration and Production Technology Group of Amoco Corporation, and subsequently BP™Amoco, Houston, Texas, for providing support to complete the study.

Pennsylvanian—Permian boundary

The Lower Permian Wolfcampian Stage in the southwestern United States has been generally divided into three parts (substages), which are characterized by the fusulinid faunas of, in ascending order, the Bursum Formation ("Bursuman") of south-central New Mexico, and the Neal Ranch (Nealian) and Lenox Hills (Lenoxian) Formations of the Glass Mountains Wolfcampian stratotype of west Texas (Ross, 1963, 1984; Ross and Ross, 1987; Wilde, 1962, 1971, 1975a, 1975b, 1984, 1990). In the Permian Basin, Ross (1963) referred to these fusulinid assemblages zones as, in ascending order, the Trinitites-Schwagerina zone, Pseudoschwagerina-Triticitites zone, and Pseudoschwagerina-Monoecidina zone. Wilde (1990) referred to the same three zones as the Trinitites-Schwagerina zone, the Main zone of Pseudoschwagerina, and the Monoecidina zone, respectively. This study is concerned only with the lower two of these zones and their contact, which very nearly coincides with the new North American Pennsylvanian—Permian boundary.

The North American Pennsylvanian—Permian boundary that has been generally accepted for over 60 yrs was defined in the midcontinent region by Moore (1936, 1940), who placed the boundary at the base of the Admire Group (top of Brownsville Limestone). As justification for this boundary placement, Moore cited a widespread unconformity at that level, often marked by deep-cut sandstone channels and the basal occurrence of the fusulinacean Schwagerina, an Early Permian index fossil, in the lower Admire Group. That Permian boundary placement was perpetuated by M. L. Thompson's (1954) monograph on "American Wolfcampian fusulinds" in which the "early Wolfcampian" fusulinid faunas of the midcontinent Admire—lower Council Grove Groups were correlated to faunas of the Pueblo Formation in north-central Texas and to those of the Bursum Formation of New Mexico. The distinctive fusulinid fauna characterizing that interval is transitional between Late Pennsylvanian (Virgilian) and Early Permian (Wolfcampian, Nealian) fusulinid faunas, and consists of large Trinitites spp. (e.g., Trinitites creekensis, T. ventremanus, T. edmanus), smaller Lephtotritites spp. (e.g., L. noceienta, L. exenta, L. americana, L. hogbenosi, L. g廉政), primitive species of Schwagerina (e.g., S. grandensis, S. campensis), and primitive species of Pseudoschwagerina (e.g., P. robusta).

Ross (1963) described the Wolfcampian stratigraphy and fusulinid faunas of the Glass Mountains section in west Texas, which was designated as the Wolfcampian stadal stratotype by Adams et al., (1939). That stratotype section consists of two unconformity-bound formations, the Neal Ranch Formation and the overlying Lenox Hills Formation. The Neal Ranch unconformably overlies the Late Pennsylvanian Gaptank Formation. The uppermost unit of the Gaptank is known as bed 2 of the Gray Limestone, and although Bostwick (1962) and Wilde (1971) have reported what they considered to be Trinitites and Schwagerina characteristic of the lower third of the Wolfcampian interval in that unit, Ross (1963, 1965, 1984) has interpreted fusulinds from that unit to be Virgilian in age. Ross (1986a) claimed that latest Virgilian and earliest Wolfcampian strata in the Glass Mountains were removed in a pre-Neal Ranch erosional event and redeposited in the adjacent foredeep. That post-Bursum/pre-Neal Ranch unconformity is widespread throughout the southwestern United States, and is thought to be related to one of the last major thrusting events in the Marathon orogenic belt (Ross, 1986b).

Ross (1963, fig. 11) suggested that the Eurasian Carboniferous—Permian boundary correlated to the base of the Neal Ranch Formation in the North American Wolfcampian stratotype, and therefore the lower third of the Wolfcampian was actually latest Carboniferous. However, although the boundary fusulinid faunas in Eurasia and North America have similarities, they are sufficiently distinct so as to prevent a definite intercontinental correlation based solely on fusulinds.

Recently, a new international stratotype for the Carboniferous—Permian boundary was designated in the southern Ural Mountains of northern Kazakhstan (Davydov et al., 1995, 1998). The new international boundary was placed at the base of the Asselian Stage and was defined by the basal occurrence of the conodont Streptognathodus isolatus. The basal appearance of the inflated schwagerinid fauna of the Sphaeroenschwagerina fusuliformis-S. vulgaress zone occurs just above that conodont base. Just before the new systemic boundary designation, Baars et al., 1992, 1994) proposed to raise the North American Pennsylvanian—Permian boundary in Kansas to the Neva Limestone Member of the Grenola Limestone, because that unit contained the basal occurrences both of inflated schwagerinid fusulinaeans (Paraschwagerina kansoensis) and typical Permian conodont faunas (i.e., the first Sweetognathus and Streptognathodus cf. S. longissimus (Ritter, 1995)) in the midcontinent region. However, they noted that when final documentation of the new Pennsylvanian—Permian boundary was completed, the mid-continent boundary might be placed at a somewhat lower stratigraphic position. Then a conodont-based correlation of the new Eurasian boundary was made to the North American midcontinent in Kansas, where the basal occurrence of the Streptognathodus isolatus zone was found slightly lower than the Neva Limestone, at the contact between the Glenrock Limestone and Bennett Shale Members of the Red Eagle Limestone, lower Council Grove Group (Ritter, 1995; Chernykh and Ritter, 1997). Significantly, the Glenrock Limestone Member contains the uppermost "Bursuman" fusulinid faunal, consisting of Trinitites rochefuis, Leptotritites g廉政 and Schwagerina campa (see Thompson, 1954). The next higher fusulinid assemblage in the Kansas section is in the Neva Limestone, which contains the inflated schwagerinid Paraschwagerina kansoensis, as well as larger species of Leptotritites (L. tenua, L. osea, and L. boxmanni) and Schwagerina longissimoides (Thompson, 1954). The redefinition of the North American Pennsylvanian—Permian boundary makes it necessary to reassess the traditional lower third of the Wolfcampian. The Pennsylvanian—Permian boundary has shifted from the base of the previously recognized "early Wolfcampian" interval (Trinitites-Schwagerina zone) to its top, and that interval is now considered to be latest Pennsylvanian (Wahlman, 1998). Ross and Ross (1987, 1994, 1998) have proposed the name "Bursuman" for the orphaned interval, based on the Bursum Formation of the Orogande Basin area in south-central New Mexico. However, some workers believe that the Kansas or north-central Texas stratigraphic sections
would make better stratotypes because they have more diverse fusulinid faunas, and better-known conodont and ammonoid faunas. Some other workers do not think that an additional stage is needed. This subject will probably be a matter of debate for some time before a resolution is reached.

The base of the Permian (Wolfcampian) in North America is now defined by the basal occurrence of the Neal Ranch Formation (Nealian) fusulinid fauna (Ross, 1963), which includes *Pseudoschwagerina uddeni*, *P. texana*, *P. beedei*, *Paraschwagerina gigantea*, larger *Leptotriticites* (e.g., *L. koschmanni*, *L. tumida*), and more advanced *Schwagerina* (e.g., *S. pyncaulus*) in the stratotype. However, it should be noted that the Neal Ranch Formation is an unconformity-bound unit, and therefore it might not contain the earliest Wolfcampian (Nealian) fusulinid fauna. Probable earlier Nealian fusulinid faunas are represented in the mideocent-
tinental by such species as *Schwagerina jewetti* and *S. verrilli*, and in the Orogenade—Permian Basin areas by those species along with *S. andreensis*, *Pseudoschwagerina nevadensis*, *P. rhodesi*, and *P. morsei* (Wahlman, 1998).

Stratigraphy

During the Late Pennsylvanian and Early Permian, the Robledo Mountains area was located on the southwestern shelf of the Orogenade Basin, often called the Robledo shelf (Fig. 1). Through most of that time interval, Robledo shelf sedimentation was characterized by the cyclic deposition of normal to restricted marine carbonate strata, punctuated by periods of subaerial exposure that are commonly represented by relatively thin red bed siliciclastic units. As the Orogenade Basin filled with sediments and Abo—Hueco depositional system prograded southward, restricted marine to transitional marine-terrestrial and non-marine paleoenvironments became generally more common upward through the Wolfcampian section. In Figure 1 here, there is drawn a very general outline of the marine depositional basin during latest Pennsylvanian and earliest Permian time. Meyer (1966, figs. 50-55), Kottlowski (1969, fig. 11), Kottlowski and Stewart (1970, fig. 13), Jordan (1971, 1975), Wilson and Jordan (1988, fig. 3), and Candelaria (1988, fig. 6) have presented various maps showing the thickness and distribution of the lithofacies in the Orogenade Basin region during this period of time. Kottlowski's (1969, fig. 11) schematic Wolfcampian paleogeologic /lithofacies map shows particularly well how the Abo red beds covered central New Mexico, prograded southward over the Bursum facies in the northern Orogenade Basin, and are transitional in the central basin with the Hueco limestones that covered the southern basin area.

Lithostratigraphic nomenclature

Traditionally, the Hueco Limestone in the Robledo Mountains has been divided into informal members, which are, in ascending order, lower Hueco member, middle Hueco member, Abo Tongue, and upper Hueco member (Kottlowski, 1960, 1963; Jordan, 1971, 1975; Seager et al., 1976; Seager, Kottlowski and Hawley, in press); Fig. 2. Because the measured stratigraphic sections and unit boundaries of Seager, Kottlowski, and Hawley (in press) were employed in this study, that lithostratigraphic nomenclature was also adopted. However, as this paper was being prepared for press, we became aware of the recent publication by Lucas et al. (1998), who proposed new formation names to replace the informal members of the Hueco Limestone used in most earlier publications (Fig. 2). Closer comparison of the traditional informal units and the new formation units is needed, but the stratal compositions and contacts for Lucas et al.'s (1998) Community Pit, Robledo Mountain, and Apache Dam Formations appear to closely approximate the middle, Abo Tongue, and upper members of Seager, Kottlowski, and Hawley (in press) and this paper (Fig. 2). Initial evaluation indicates some disagreement between the stratal compositions and contacts in the Bursum-lower Hueco member and Shalem Colony inter-
val that will have to be studied more closely. It should be further pointed out that Krainer, Lucas, and Kues (2000) have agreed with Seager, Kottlowski, and Hawley (in press) and this paper, by rejecting the use of the stratigraphic name Bursum Formation in the Robledo Mountains, and supporting the inclusion of those Bursum-equivalent carbonate strata in the Hueco Group. Additional field work and evaluation will be required to determine if those Bursum-equivalent strata should be included in the Shalem Colony Formation, given a new formation name, or even possibly included with underlying Virgilian strata.

FIGURE 2—Chart showing correlation of traditional Hueco Limestone lithostratigraphic subdivisions in the Robledo Mountains, which are used in this paper, with the new formation names recently proposed by Lucas et al. (1998).
Finally, it should be noted that Thompson (1942) placed the Upper Pennsylvanian Virgilian strata of the Robledo Mountains in his Fresnal Group, and that term has been used here, but many other authors have used the term Magdalena Group for Pennsylvanian strata in the Orogrande Basin region. However, recently, Kues (2000) rejected the name Magdalena because "it has been applied in so many contradictory ways as to be meaningless", and advocated the use of the northern New Mexico term Madera Group for Pennsylvanian strata throughout most of New Mexico, including the Orogrande Basin area.

Upper Pennsylvanian

The Upper Pennsylvanian of the Robledo Mountains consists mostly of a carbonate stratigraphic section and includes Desmoinesian, Missourian, Virgilian, and "Bursumian" strata. The fusulinid faunas of Desmoinesian -Virgilian interval are planned to be the subject of a future paper, but it is instructive to begin this discussion of the lithostratigraphy of the Robledo section in the Virgilian.

Fresnal Group (Virgilian)

Thompson (1954) assigned the Virgilian strata of the Robledo Mountains to the Fresnal Group (Fig. 3). Thompson (1942) had named the Fresnal Group for most late Virgilian strata in southern New Mexico, and had designated the type section as Fresnal Canyon in the Sacramento Mountains, near La Luz, Otero County, New Mexico where the 530-ft-thick section is composed of interbedded limestone, sandstone, conglomerate, and shale. Although Thompson noted marked variations in thicknesses and proportions of different sedimentary rock types within the Fresnal Group through the outcrop area, he did not name any formations.

In the Robledo Mountains, the 210-ft-thick Fresnal Limestone consists predominantly of medium- to light-gray, cliff-forming limestones with interbedded thin shales, shaly to nodular limestones and near the base and top of the unit, red to reddish-brown shales (Fig. 3). Many of the limestone units are shallowing-upward sequences. Most of the limestones are micritic, but skeletal sands are common throughout. The biota is typified by phylloid algae and fusulinids, but also commonly contains brachiopods, crinoid ossicles, and solitary horn corals. The late Virgilian fusulinid _Triticites boecki_ was identified by Thompson (1954, fig. 8) near the top of the unit in the Robledo Mountains and just below the first occurrence of _Leptotriticites_ (Figs. 3-4).

Virgilian strata in the Dona Ana Mountains, Organ Mountains, and southernmost San Andres Mountains are assigned to the Panther Seep Formation (Seager, Kottlowski, and Hawley, 1976). Significantly, whereas the Panther Seep is mainly Virgilian in age, the basal part is probably Missourian, and the upper few hundred feet are believed to be "Bursumian" and early Wolfcampian in age (Kottlowski et al., 1956; Seager, 1981). The Panther Seep represents cyclic basinal sedimentation within the Orogrande Basin, and it differs markedly from the correlative shelfal limestones exposed in the Robledo Mountains (Wilson, 1967; Schodterbek and Chafetz, 1988). The Panther Seep Formation consists of approximately 2,000 ft of mostly fine- to medium-grained, dark-gray to brown, siliciclastic strata with interbedded silt to sandy micrites and biomicrites. As discussed by Wilson (1967), the Panther Seep appears to represent alternating episodes of shallow restricted marine deposition and deep water basinal deposition within the Orogrande Basin. Cyclic repetitions of algal stromatolites, mud-cracked layers, ripple marks, caliche, gypsum, and gypsiferous dolomite are prevalent throughout much of the formation and indicate intertidal to supratidal depositional environments during relative sea-level lowstands (Kottlowski et al., 1956; Wilson, 1967; Seager, 1981). Intervals of dark-gray, laminated micrite, silt, and peloid represent the intermittent deeper water basinal deposition during relative sea-level highstands. No Virgilian fusulinids have been reported from the Panther Seep in the Organ Mountains or southernmost San Andres Mountains, but farther to the north in the San Andres Mountains, Kottlowski et al., (1956) reported Virgilian-aged species of _Triticites_ and _Dunbarinella_ from the formation. Presumably, the intervals of shallow restricted marine Panther Seep facies within the Orogrande Basin correlate to exposure surfaces on the adjacent shelves of the basin, and correspondingly, the shelf sections must be missing significant intervals of Virgilian time. Soreghan (1994) has discussed the factors controlling Late Pennsylvanian sedimentation and cyclicity in the Virgilian of the Orogrande and Pedregosa Basins.

Bursum Formation-equivalent ("Bursumian")

The Bursum Formation was named by Wilpolt et al. (1946) for an interval of interbedded red beds and limestones that lies between Virgilian limestones and Lower Permian Abo red beds in the Oscura Mountains, in the northwestern Orogrande Basin area. Otte (1959) named the Laborcita Formation for strata of similar facies and age that are exposed in the northern Sacramento Mountains, on the western shelf of the basin. As discussed earlier, the distinctive Bursum fusulinid fauna has traditionally defined the earliest Wolfcampian strata in New Mexico and the adjacent Permian Basin region, but the Pennsylvanian-Permian boundary is now placed at the top of this interval, rather than at the base.

In the Robledo Mountains section, strata containing a typical Bursum fusulinid fauna differs from the Bursum in the type area by consisting predominantly of shelfal limestones and lacking significant interbedded red beds or conglomerates (Fig. 3). Because this Robledo Mountains limestone lithofacies is distinct from the typical Bursum limestone facies to the north, it is referred to here as the Bursum-equivalent limestone unit. Clearly, compared to the type Bursum Formation, the Robledo Mountains Bursum-equivalent limestone unit represents a relatively more distal shelf facies, or at least was deposited farther from the siliciclastic source area.

The Bursum limestones in the Robledo Mountains typically form medium- to thick-bedded cliffs and ledgy slopes and generally consist of light- to medium-gray biomicrite, oomicrite, and oosparite (Seager, Kottlowski, and Hawley, in press). In the western Robledo Mountains, the interval consists of massive cliff-forming phylloid algal biostromes, and the limestones become thinner bedded eastward. The biota is composed of abundant phylloid alga, crinoid ossicles, brachiopods, gastropods, cephalopods, and scattered echinoid spines. Fusulinids occur in three intervals (Figs. 3-4).

It is suggested here that the top of the Bursum-equivalent unit (= the Pennsylvanian-Permian boundary) in the Robledo Mountain section (section L) be placed at the top of bed L122 in the measured section of Seager, Kottlowski, and Hawley (in press), which is 358 ft above base of the Bursum (bed L91) (Fig. 4). During the measuring of the Robledo Mountains sections, Seager, Kottlowski, and Hawley suggested the top of the Bursum be placed at bed L110 in section L; however, they also pointed out that beds from L110 to L122 are more similar to the underlying Bursum than the overlying lower Hueco member. Bed L122 is a marker bed that consists of sandy limestone that weathers brown to "black, contains rounded chert pebbles, and thickens and
<table>
<thead>
<tr>
<th>Measured sections</th>
<th>Stratigraphy</th>
<th>Fusulinids</th>
<th>Lithologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-</td>
<td>upper Hueco member</td>
<td>no fusulinids</td>
<td>Limestone, dark-gray, gastropod-echinoid and phylloid algal biomicrites, wavy to nodular bedding; interbeds of calcareous, gray to yellowish, silty shale and silty limestone; fossiliferous, with common gastropods, echinoids, brachiopods, algae, and cephalopods. At least two interbeds of red Abo siltstone (as much as 20 ft thick).</td>
</tr>
<tr>
<td>1800-</td>
<td>Abo Tongue</td>
<td>no fusulinids</td>
<td>Cyclical red beds, shales, and limestones; seven facies are recognized: (1) limestones with brachiopods, bryozoans, and crinoids; (2) ostracod limestones; (3) ripple-laminated red sandstone; (4) crossbedded channel sandstones; (5) mixed red sandstone and shale with vertebrate trackways, mud cracks, and plant debris; (6) laminated limestone to dolomitic limestone; and (7) shale with carbonate nodules.</td>
</tr>
<tr>
<td>1600-</td>
<td>middle Hueco member</td>
<td>no fusulinids</td>
<td>Limestone, gray to varicolored, micritic, poorly fossiliferous.</td>
</tr>
<tr>
<td>1400-</td>
<td>Lower Permian Wolfcamp</td>
<td></td>
<td>Limestone, gray, micritic, medium-bedded; bellerophontid gastropods, crinoids, echinoids, brachiopods, and phylloid algae.</td>
</tr>
<tr>
<td>1200-</td>
<td></td>
<td></td>
<td>Limestone to dolomitic limestone, mostly micritic; gray to varicolored; vuggy; sparsely fossiliferous; shaly interbeds. Petrified wood at base.</td>
</tr>
<tr>
<td>1000-</td>
<td>Wilhelm Member</td>
<td></td>
<td>Limestone, gray, mostly micritic, often cherty, with phylloid algae and fusulinids.</td>
</tr>
<tr>
<td>800-</td>
<td>Bursarum Formation</td>
<td></td>
<td>Sandy limestone to sandstone, brown, with interbeds of chert-pebble conglomerates, intralacustrine limestone, and micritic to shaly limestones.</td>
</tr>
<tr>
<td>600-</td>
<td></td>
<td></td>
<td>Limestone, mostly light gray with some reddish-brown stained horizons, nodular to massive bedding; mostly micritic. Phylloid algal limestones bioturbational to biothermal. Other biota scattered throughout include: crinoid and echinoid debris, brachiopods, gastropods, cephalopods, and fusulinids.</td>
</tr>
</tbody>
</table>

FIGURE 3—Chart showing the stratigraphy of the Upper Pennsylvanian and Lower Permian strata of the Robledo Mountains; the measured sections of Seeger, Kotkowski, and Hawley (in press); the distribution of fusulinid samples in the section (MLT are Thompson, 1954, samples); the fusulinid faunas; and lithologic summaries of the stratigraphic units.
Distribution of fusulinids in Robledo Mountains sections

<table>
<thead>
<tr>
<th>System</th>
<th>Stage</th>
<th>Rock Unit</th>
<th>Lower Permian (Nealian)</th>
<th>SECTION J</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>75WS56, 7.8.8a, 9.9a, 10</td>
<td>Pschm. morsei, Pschm. texana, Schw. andresensis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>75WS4.5</td>
<td>Pschm. texana</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>300</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>400</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>top of Robledo Mountain</td>
<td>Schw. andresensis, Leptotritodes tumida, Pseudoschwagerina textana, Pseudoschwagerina textana ultima, Pseudoschwagerina cf. uddeni, Pseudoschwagerina morsei</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Upper Pennsylvanian</th>
<th>Bursum-equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virginian</td>
<td>Fresnal</td>
</tr>
<tr>
<td>SECTION K</td>
<td>SECTION L</td>
</tr>
</tbody>
</table>

FIGURE 4—The Robledo Mountains fusulinid-bearing measured sections of Seager, Kottlowski, and Hawley (in press), their stratigraphy, their suggested correlation, and the location of fusulinid samples, sample numbers, and fusulinid faunas.
thins along strike (Fig. 4). The bed's characteristics suggest that it probably represents a sea-level lowstand and probably a period of subaerial erosion. Furthermore, the placement of the boundary at L122 is supported by the fusulinid biostratigraphy. The lower Bursum-equivalent unit is characterized by *Leptotritites bugensis*, *L. glanensis*, *L. aff. graciilatus*, and *L. sp. A* (beds L191-97), and the upper part of the unit is characterized by *Pseudofusulina robleda* (beds L111-112). The uppermost fusulinid sample in the Bursum-equivalent unit contains *Schwagerina grandensis* (bed L120), a typical "Bursuman"-aged fusulinid that was also reported by Thompson (1954) from the Bursum stratotype. Significantly, the lowest Wolfcampian (Nealian) fusulinid assemblage occurs approximately 37 ft above bed L122, in bed L127 (Figs. 3-4).

Lower Permian (Wolfcampian)

Hueco Group

King, King, and Knight (1945) divided the Hueco Limestone in the Hueco Mountains stratotype into three informal subdivisions, termed the lower, middle, and upper divisions. That informal terminology has been applied ever since to the Hueco Limestone throughout southern New Mexico, though some publications have replaced the term "division" with the term "member" (Seager et al., 1976; Seager, 1981; Mack and James, 1986; Figs. 2-5). In adjacent mountain ranges, the upper part of the section is characterized by intertonguing *Abo* siliciclastics and Hueco carbonate facies and is referred to as the Abo-Hueco member. In the Dona Ana Mountains, the upper Hueco member is missing, probably having been eroded away during the Laramide (Late Cretaceous-Tertiary) uplift, and the Abo-Hueco member is the uppermost unit in the section. In the southern San Andres Mountains, the Abo-Hueco member is overlain by Abo Sandstone, which becomes progressively more predominant northward. In the central Organ Mountains, the section is mostly limestone, similar to the Robledo Mountains, but northward into the southern San Andres Mountains the carbonate part of the section thins as *Abo* siliciclastics thicken, particularly in the upper part of the Hueco (Kottlowski et al., 1956; Bachman and Myers, 1969; Seager, 1981), reflecting the southward progradation of the Abo nonmarine red beds into the Hueco marine carbonate facies belt.

Lower member of the Hueco Limestone—With the redefinition of the top of the Bursum-equivalent limestone unit proposed herein, the lower Hueco member is now considered to be about 476 ft thick in the Robledo Mountains (Fig. 3). The lower part of the lower Hueco member consists of thick-bedded, gray limestones that form cliffs and steep slopes. Two general limestone types are present. The first is micrite to micrite-rich, which is sometimes cherry and is very fossiliferous, containing brachiopods, fusulinids, gastropods, and sparse phylloid algae. The second type of limestones are fine-grained skeletal sands, some of which display large-scale crossbedding. Jordan (1975) interpreted the micrites to be mud-dominated banks and the skeletal sands to be submarine dunes. The upper part of the lower Hueco member consists of thin- to medium-bedded, poorly fossiliferous, micritic limestones and dolomites that are light gray, pale olive, yellow, buff, orange, and cream in color and commonly have vugs filled by quartz and calcite crystals. There are poorly exposed thin interbeds of calcareous shale, oolitic limestone, intraclastic limestone, and phylloid algal limestone. In the area of Two-to-One Canyon, about 150 ft below the top of the member, there are distinctive reddish-brown chert-pebble conglomeratic sandstone channels as much as 20 ft thick. The top of the lower Hueco member is marked at the highest of three bright orange-weathering siliceous micrite beds, each being 1-3 ft thick.

The lower Hueco member represents a general shallow-upward sequence. The lower part of the member represents mostly normal marine shelf paleoenvironments. The upper part represents mostly inner shelf, shallow water,
restricted marine carbonate paleoenvironments. Seager (pers. comm. 1998) believes that the sandstone channels in the upper part of the unit might be marine in origin because they are overlain and underlain by algal limestones and are laterally discontinuous.

Under the discussion of the Bursum-equivalent unit, it was pointed out that in the Robledo Mountains measured section (section L), the first undoubtedy Wolfcampian (Nealian) fusulinid assemblages occur approximately 37. ft above sandy limestone marker bed L122, in beds L127-132, which contain Pseudoschwagerina morsei, P. texana, P. texana var. ultima, P. cf. P. udderii, Schwagerina andresensis, and Lepidotritices tumida (Figs. 3-4). It is further suggested here that bed L122, the only sandy limestone unit in section L, might correlate to beds 1-8 of section K, which, according to Seager, Kottlowski, and Hawley (in press), are a relatively thick succession of sandstones, sandy limestones, conglomeratic limestone, and oolitic limestone. No fusulinids are known from beds K1-8, but in bed K12, Pseudoschwagerina texana, P. morsei, and Schwagerina andresensis occur, again the same assemblage seen in the lower Hueco member beds L127-132 (Fig. 4). As shown in Figure 4, a tentative correlation is suggested here between the Bursum sand units in sections K and L (K1-8 and L122), and the lower Hueco member beds containing the first occurrences of the Nealian fusulinid fauna (K12 and L127-132).

The only other fusulind-bearing Robledo Mountains stratigraphic section, section J, apparently lacks any sandy limestone or sandstone beds, but beds J8-9 and J19-21 contain Pseudoschwagerina cf. texana, P. morsei, and Schwagerina andresensis, again the same assemblage seen in beds K12 and L127-132. Often in such shallow shelf sequences, isolated fusulinid-bearing horizons represent a minor transgressive event that brought more normal marine offshore paleoenvironments into a previously inner shelf zone, and therefore those fusulinid beds can be good time markers across a shelf area. That may be the case in sections J, K, and L, and the lower Hueco member fusulind beds in each section might correlate to one another, representing the maximum transgression during deposition of the lower part of the lower Hueco member. In order to confirm the correlations suggested above, the stratigraphic sections should be analyzed in more detail for depositional facies and sequence stratigraphic interpretations.

Middle member of the Hueco Limestone—The middle Hueco member is about 275 ft thick in the Robledo Mountains and consists of three units (Fig. 3). The lowest unit is a 145-ft-thick micritic dolomite limestone with interbedded shale and shaly limestone, and petrified wood is common in the basal beds. The dolomite micrite is vuggy, slightly fossiliferous, and varies in color from light gray to light olive, yellow, orange, and cream. Chert is absent except for a marker bed 23 ft above the base. The middle unit of the member consists of 80 ft of medium- to dark-gray, medium-bedded biomicrite containing bellerophontid gastropods, echnoids, crinoids, brachiopods, and phylloid algae. The Wolfcampian gastropod Omphalodromus obtusifrons (Shumard) is common in this unit (Dutro and Yochelson, written comm. 1976). The upper unit of the member is 50 ft thick and consists of thin- to thick-bedded, poorly fossiliferous micrite and biomicrite, which are generally light gray, pale yellow, or cream colored.

Fossils are common only in the middle unit of the middle Hueco member, and the assemblage there indicates inner shelf lagoonal conditions. The upper and lower units represent more restricted marine paleoenvironments. No fusulinids have been found from this member. It is noteworthy that the Cerro Alto Formation, the middle formation of the Hueco Group in the Hueco and Franklin Mountains to the south, consists of similar dark, silty, mollusk-rich limestones in which fusulinids are rare to lacking.

Abo Tongue—The 435-475-ft-thick tongue of Abo red beds has a gradational contact with the underlying middle Hueco member (Fig. 3). Mack and James (1986) thoroughly studied this unit and recognized seven lithofacies: (1) bioclastic limestone with a normal marine fauna of brachiopods, bryozoans, crinoids, and echinoderms; (2) ostracodal limestone; (3) ripple-laminated red sandstones; (4) crossbedded channel sandstones as much as 20 ft thick and 300 ft wide; (5) mixed red sandstone and shale featuring ripple laminae, mud cracks, plant debris, and well-developed vertebrate trackways; (6) laminated limestone to dolomitic limestone with wavy stromatolitic laminations, calcite-filled vugs, and breccia horizons; and (7) shale with calcareous nodules that are probably pedogenic in origin. They interpreted the cyclical successions of these facies to represent the nearshore transitional zone between normal marine Hueco carbonate facies and tidal-flat, Abo, red, siliciclastic facies. LeMone et al. (1971, 1975), and the above authors, have reported a diverse fauna of gastropods and pelecypods from the marine limestones in this unit, as well as some brachiopods, crinoid ossicles, and rare nautiloids, but no fusulinids have been found. Of particular note are the famous vertebrate trackway sites in the strandline facies of this unit (Lucas and Heckert, 1995).

Upper member of the Hueco Limestone—The upper Hueco member is the youngest stratigraphic unit in the Robledo Mountains, reaching a maximum thickness of about 350 ft beneath the overlying Tertiary unconformity (Fig. 3). The unit consists of mostly wavy to nodular, 0.5-1.0-ft-thick limestone beds that are separated by thin silty shales or silty limestones. Typically, the limestones are dark-gray, gastro-pod-echinoid biomicrite and phylloid algal biomicrite. There are two red siltstone tongues of the Abo, each as much as 20 ft thick. The biota is fairly abundant and diverse, consisting of gastropods (including Omphalodromus obtusifrons), echinoids, brachiopods, phylloid algae, and cephalopods. The unit represents nearshore, shallow shelf lagoonal to strand-line depositional environments. The absence of fusulinids from this unit suggests paleoenvironmental conditions may have been characterized by variable salinities and/or silty turbid seawater.

Depositional history

The Virgilian through Wolfcampian stratigraphic section in the Robledo Mountains records the general southward progradation of the Hueco-Abo depositional system (Fig. 3), with a superimposed record of relative sea-level fluctuations that were probably related to late Paleozoic continental glaciation and/or regional tectonic movements. The Fresnal-Bursum and the lower part of the lower Hueco member indicates predominantly offshore, normal marine, shallow shelf conditions on the Robledo shelf. The overlying upper part of the lower Hueco member to the upper Hueco member represent fluctuating intervals of inner shelf, onshore, and intertidal deposition.

The predominately limestone sections of the Virgilian, Bursum, and lower part of the lower Hueco member are characterized by phylloid algae, fusulinids, brachiopods, and crinoids, and represent shallow, predominantly normal marine, offshore conditions on the Robledo shelf. Occasional thin red-bed horizons may represent eustatic sea-level lows, or subaerial exposure at the tops of shallow-upward
cycles, or both. Significantly, fusulinids, which are an indicator of open, normal marine conditions, are not known to occur in the Robledo Mountains stratigraphic section above this interval.

The first long-term change in the Robledo shelf depositional conditions to more inner shelf restricted carbonates takes place in the upper part of the lower Hueco member, which consists of light, varicolored, sparsely fossiliferous, vuggy limestones and dolomitic limestones, with sandstone channels near the top. Petrified wood is common in the basal beds of the overlying middle Hueco member, which consists of 145 ft of similar restricted marine, vuggy, sparsely fossiliferous dolomitic limestones.

The middle unit of the middle Hueco member apparently represents a slight sea-level rise. The unit consists of dark biomicrites characterized by a biota of bellerophontid gastropods, productid brachiopods, echinoderms, and phyllloid algae, representing an inner shelf lagoon with shallow, quiet, mostly normal marine waters. Clay-rich soft substrates, turbid seawater, and possibly variable salinities, probably excluded fusulinids and other open marine biota from the inner shelf environment.

A return to nearshore, restricted marine conditions is seen in the upper unit of the middle Hueco member, which consists of light, varicolored, poorly fossiliferous limestones. The overlying Abo Tongue clearly represents an extended period of cyclical normal marine, nearshore restricted marine, and intertidal (tidal flat/tidal channel) conditions. The upper Hueco member represents another long-term, but slight, marine incursion, with the deposition of inner shelf, normal to restricted marine carbonates resembling those of the middle part of the middle Hueco member, and being interrupted periodically by the incursion of red-bed deposition.

Previous Bursum—Hueco fusulinid studies from the Orogrande Basin region

Needham (1937) first described and illustrated fusulinids from the Orogrande Basin area, based on scattered samples from throughout the region. Dunbar and Skinner (1937) described several Early Permian fusulinids from the Hueco and Franklin Mountains in the southern part of the basin. However, Thompson (1954) was the first to present detailed descriptions of Bursum and Hueco fusulinid faunas from measured sections around the Orogrande Basin area, including the Robledo Mountains. In the Oscura Mountains and Los Pinos Mountains, near the northern end of the Orogrande Basin, Thompson (1954) described faunas from the Bursum Formation consisting of Trinitites creckensis, Leptotriticites venticus, Schwagerina grandensis, and S. pinosensis. Myers (1988) described the same general assemblage from the adjacent Manzano Mountains. The interbedded limestones and red beds of the Bursum Formation in this northern Orogrande Basin area are usually less than about 100 ft thick and are overlain by Abo nonmarine red beds. Thompson (1954) also recorded a similar "Bursumian" fusulinid fauna from Fresnal Canyon, Sacramento Mountains, on the east side of the basin. Steiner and Williams (1968) later gave a more detailed account of "Bursumian" fusulinids of the Sacramento Mountains, reporting Trinitites venticus, T. creckensis, Leptotriticites americana, Schwagerina emaciata, and S. campanis from the Laborcita Formation in Laborcita Canyon.

In the San Andres Mountains, Thompson (1954) described sparse Wolfcampian fusulinid occurrences in the Hueco Limestone of Rhodes and Ash Canyons. In Rhodes Canyon (northern San Andres Mountains), he found no fusulinids in limestones that he tentatively assigned to the Bursum Formation, but reported Schwagerina andresensis and Pseudoschwagerina rhodesi in the Hueco Limestone. In Ash Canyon (southern San Andres Mountains), the Bursum Formation is apparently missing, but in the Hueco Limestone he described, in ascending order of occurrence, Schwagerina andresensis, Pseudoschwagerina needhami, Ps. morsei, and Ps. texana. In the Bear Peak area at the south end of the San Andres Mountains, Bachman and Myers (1969) reported Hueco Limestone limestone lying directly on Panther Seep Formation, with no recognizable Bursum present. Fusulinids were reported only from the basal part of the Hueco Limestone, and included Schwagerina andresensis, Pseudoschwagerina cf. P. texana, P. cf. P. uddeni, Schwagerina aff. S. grandensis, and Trinitites sp. indeterminant.

Farther south, in the Robledo Mountain section, Thompson (1954) described Trinitites beedi in the uppermost Virginian; Leptotriticites hughensis and L. aff. L. gennensis from the lower Bursum (7) Formation; Pseudoschwagerina robleda from two horizons in the upper Bursum Formation; Schwagerina grandensis near his Bursum—Hueco boundary; and Schwagerina andresensis, Pseudoschwagerina uddeni, Ps. texana, and Leptotriticites aff. L. tumida from the lower Hueco Limestone. Immediately to the northeast, in the Doña Ana Mountains, Seager, Kottowski, and Hawley (1976) reported Schwagerina andresensis and Pseudoschwagerina sp. from the lower Hueco of the Grande dome shelf section. In the adjacent Organ Mountains, Seager (1981) has reported Pseudoschwagerina morsei in the lower part of the lower Hueco member, and Pseudoschwagerina aff. P. texana in the lower part of the middle Hueco member.

In the Jarilla Mountains, due east of the Organ Mountains area and near the eastern margin of the basin, Schmidt and Craddock (1964) reported a Bursum fusulinid fauna in their unit 13, consisting of Trinitites cellamagnus, T. ventricusus sacramentensis, T. cf. T. gallowayi, T. cf. T. rhodesi, Schwagerina aff. S. emaciata, and S. sp. indeterminant. The last three species of Trinitites had been originally described by Needham (1937) from the upper Magdalena Limestone in the Sacramento Mountains, but in the 1930s essentially all Pennsylvanian—Permian strata below the Abo red beds were included in the Magdalena Limestone. About 800 ft higher in the Jarilla Mountains section, the same authors cited a fusulinid-bearing unit in the Hueco Limestone that contained Pseudoschwagerina morsei, Schwagerina emaciata, and S. emaciata jarillaensis.

Dunbar and Skinner (1937) and Thompson (1954) described much more abundant and diverse fusulinid faunas from the Hueco Limestone of the Hueco Mountains, on the southeast shelf of the Orogrande Basin, and those descriptions were greatly elaborated upon by Williams (1963). Dunbar and Skinner (1937) and Williams (1966) also described prolific Hueco fusulinid faunas from the Franklin Mountains, which are due west of the Hueco Mountains across the southern Orogrande Basin, and lie just south of the Robledo Mountains. Harbour (1972) also listed numerous fusulinids (identified by Lloyd Henbest), and other fossils, from a number of Franklin Mountains localities. Significantly, the Hueco Limestone of these more southern exposures in the Hueco Mountains and Franklin Mountains contain abundant and diverse fusulinid faunas to the top of the upper Hueco sections, indicating a generally open normal marine depositional setting in the southern Orogrande Basin to the end of Wolfcampian time.

Also noteworthy are fusulinid studies in strata correlative to the Bursum—Hueco interval in the Pedregosa Basin area in southwestern New Mexico and southeastern Arizona. From the Horquilla Limestone in the Big Hatchet Mountains of southwestern New Mexico, Skinner and Wilke (1965)
described *Leptotriticites gracilitatus* n. sp., a species reported here from the "Bursumian" of the Robledo Mountain section, from the lower part of the study interval. And from the upper part of the section, in association with species of *Pseudoschwagerina* and *Paraschwagerina*, they described *L. bathetensis*, which is very similar to *L. tumida*, a species reported here from the lower Hueco member on Robledo Mountain. Also, Sabins and Ross (1963) described the "Bursumian" and Early Wolfcampian (Nealian) fusulinid faunas of southeastern Arizona.

Fusulinid faunas and correlations of the Robledo, Dona Ana, Organ, and southern San Andres mountain ranges

Robledo Mountains

The stratigraphic distribution of fusulinids in the Bursum Formation-equivalent unit and the lower Hueco member are illustrated in Figures 3-4. Thompson (1954, fig. 8) previously described the Bursum—Hueco fusulinids in the Robledo Peak section. He recorded *Tritites boebei* from about 20 ft below the top of the Virgilian Fresnal Group. About 10 ft above the top of the Fresnal, Thompson described the type specimens for *Pseudofusulina robleda*, and at about 45 ft he reported *Leptotriticites aff. L. genensis*. In the same paper, he also described the type suites for both of those species from the lower Council Grove Group (Bursum-equivalent) in the midcontinent, but for some reason he called this part of the Robledo section "Bursum (?)." At about 200 ft and 220 ft above the top of the Fresnal, Thompson described the type specimens for *Pseudofusulina robleda*, and he referred that part of the section to the Bursum Formation. At approximately 310 ft above the Fresnal, he described the type specimens of *Schwagerina grandensis*. In the same paper, he also recognized specimens with close affinity to *S. grandensis* in the Bursum of Abo Canyon (Los Pinos Mountains), Oscura Mountains, and San Andres Mountains, but he referred the Robledo type collection to the basal Hueco Limestone, probably because of the relatively pure carbonate facies in the Robledo section. At about 415 ft above the Fresnal, in the Hueco Limestone, he reported the first *Pseudoschwagerina texana* and Ps. uddeni, the latter being a questionable identification from a juvenile specimen. Associated with the *Pseudoschwagerina* were also the first *Schwagerina andresensis*, which occurred again at about 425 ft in association with *Leptotriticites tumida*, and then again at about 450 ft near the top of the section.

In the new Robledo Mountains collections (section L), *Leptotriticites aff. L. gracilitatus* was found in beds (collection 73WS100) just above Thompson's (1954) sample with *L. buhensis* and below Thompson's occurrence of *L. genensis* (Figs. 3-4). There are then approximately 150 ft of sections with no fusulinids, after which there is an interval (beds L11-112) containing *Leptotriticites* sp. A (collection 73WS97) and abundant *Pseudofusulina robleda* (collections 75WS3 and 73WS96). After another approximately 100 ft of barren section, *Schwagerina grandensis* occurs (bed L120) near what is interpreted here to be the top of the "Bursumian" interval (bed L122). At 37 ft above bed L122, the first Wolfcampian (Nealian) fusulinids occur in bed L127 (collections 74WS37, 38, 39), the assemblage consisting of *Pseudoschwagerina morsei*, *P. texana*, *P. texana* var. *ultima*, *P. cf. P. uddeni*, and *Schwagerina andresensis*. The highest fusulinid samples in section L occurs in bed L130 and L132, consisting of *Schwagerina andresensis* and *Leptotriticites tumida*. In section K (bed 12, collection 75WS2) and section J (beds J8-9, collections 75WS4, 5 and J19-21; collections 75WS6, 7, 8a, 9a, 10), the assemblage of *Pseudoschwagerina texana*, *P. morsei*, and *Schwagerina andresensis* again occurred.

Dona Ana Mountains

The Dona Ana Mountains collection 73WS101 contains mostly broken, extensively recrystallized, and silicified specimens that are difficult to interpret (Pl. 3, Figs. 4-5) but are unquestionably referred to *Pseudoschwagerina texana*. That collection is correlated with lower Hueco member *Pseudoschwagerina morsei—P. texana* assemblage of the Robledo Mountains. Collection 73WS101 also includes what may be specimens of *Tritites* juvenaria, which have very large prolocula like *T. meeki* or *T. cremeri*. Also, a specimen unquestionably referred to *Schwagerina* was found in collection 73WS101. Previously, King (in Seager, Kottlowski, and Hawley, 1976) suggested that collection 73WS101 (= fusulinid sample on section D of sheet 3) was of probable Bursum age, but reinterpretation of poor specimens as probable *Pseudoschwagerina texana* indicates a correlation to the lower Hueco member. According to George Verville (Amoco, pers. comm. 1980), a sample from about 100 ft higher in the same section contains silicified but identifiable specimens of *Pseudoschwagerina texana* and *P. aff. P. morsei*.

Dona Ana Mountains collections 74WS2 and 74WS41 correlate with the *Schwagerina andresensis—Pseudoschwagerina morsei* assemblage in the lower Hueco member of the Robledo Mountains. Collections 74WS2 and 74WS41 are from the same bed and those numbers represent the fusulinid occurrences cited on section B of sheet 3 in Seager, Kottlowski, and Hawley (1976). The fusulinids from section B are from the shelf facies of the lower Hueco member and are much better preserved than the fusulinids from basinal facies in section D as previously discussed. *Schwagerina andresensis* and *Pseudoschwagerina morsei* are common in the collections of both the Robledo Mountains and Dona Ana Mountains, but the Robledo Mountains assemblage also has *Ps. texana* and *Ps. texana ultima*, and the Dona Ana Mountains collections also have *Schwagerina* sp. A.

Southern San Andres Mountains

Collection 75WS1 from the southern San Andres Mountains is the collection number for the citation of *Pseudoschwagerina morsei* on sheet 3 of Seager (1981), a composite columnar section of the Organ and southern San Andres Mountains. That collection correlates to the lower Hueco member samples of the Robledo Mountains that contain the same species. *Pseudoschwagerina texana* is typical of the lower Hueco member in the Robledo Mountains, but Seager (1981, sheet 3) lists *Pseudoschwagerina aff. texana* in the lower part of the middle Hueco member on the composite columnar section of the Organ and southern San Andres Mountains. This is not problematical because *P. texana* is known to range up into the upper Hueco Group in both the Hueco and Franklin Mountains to the south.

Regional fusulinid correlations

The fusulinid fauna of the Bursum-equivalent unit in the Robledo Mountains contains *Leptotriticites buhensis*, *L. genensis*, L. aff. *gracilitatus*, L. sp. A, *Pseudofusulina robleda*, and *Schwagerina grandensis* (Figs. 3-4). This assemblage correlates well to the faunas described by Thompson (1954) from the Admir—lower Council Grove Groups in Kansas and to the Pueblo Group of north-central Texas, but the Robledo fauna is less diverse. According to Thompson
(1954), the "Bursuman" fusulinid faunas in Kansas and north-central Texas have 13 species and 17 species, respectively. The Robledo assemblage also correlates well to other "Bursuman" faunas around the Orogrande Basin, including the Oscura Mountains Bursum stratotype (Thompson, 1954), the Los Pinos (Thompson, 1954) and Manzano Mountains (Myers, 1988), and the Sacramento Mountains (Thompson, 1954; Steiner and Williams, 1968).

A notable difference in the Robledo assemblage with all the above faunas is the apparent absence of typical "Bursuman" species of Trictites, such as T. crevkenisi, T. ciliatus, and T. ventrinodatus. The "Bursuman" strata are not well understood in the southeastern Orogenade Basin. In the Hueco Mountains, one thin limestone unit containing "Bursuman" fusulinds is exposed at the top of the so-called Reef Hill (Toomey and Babcock, 1983; Pol, 1988) (Fig. 4), and is part of a thick, unnamed, post-Virgilian and pre-Nealian, predominantly siliciclastic sequence (Cys, 1975). In the Franklin Mountains, the Hueco Group limestones lie with apparent conformity on a poorly exposed, thick, unfossiliferous, largely siliciclastic, Panther Seep-like sequence that is thought to be Missourian, Virgilian, and "Bursuman" in age (Harbour, 1972; Jordan and Wilson, 1971). Stewart (1968) believed that the contact was unconformable but did not give any evidence for his conclusion. Jordan and Wilson (1971, p. 81) mentioned finding a possible "Bursuman" species of Trictites in the lower part of their measured section at Tom Mays Park, but this has not been confirmed.

The fusulinid assemblage of the lower Hueco member in the Robledo Mountains and adjacent ranges consists of Schwagerina andresensis, Lephotritictes tumida, Pseudoschwagerina morsei, P. texana, P. texana ultima, and P. cf. P. uddeni. The species P. texana and P. uddeni occur in the Neal Ranch Formation (Nealian) of the Glass Mountains Wolfcampian stratotype section. Both species are characteristic of the hueco Canyon Formation (lowest division of the hueco Group) in the hueco Mountains and Franklin Mountains sections, first appearing in some of the lowest fusulind beds in those sections, but then ranging upward into the lower part of the upper hueco Group (Alacran Mountain Formation; Williams, 1963, 1966). The other three taxa in the Robledo assemblage provide somewhat tighter stratigraphic control. Lephotritictes tumida occurs in the lower Nea Ranch Formation in the Glass Mountains stratotype (Ross, 1963, 1967), and in the Nea Limestone (early Nealian) in Kansas (Thompson, 1954). Pseudoschwagerina morsei has been reported only in the Robledo Mountains and adjacent ranges and the Jarilla Mountains of the central Orogenade Basin. Likewise, Schwagerina andresensis has been reported only from the central Orogenade Basin area where it is also known from the lower Hueco Limestone in Rhodes and Ash Canyon sections of the San Andres Mountains. In those two sections, S. andresensis occurs below the lowest occurrences of Pseudoschwagerina rhodesi and P. neodani, which are two of the smallest species of that genus.

The low diversity of Hueco Limestone fusulind faunas of the central Orogenade Basin area (San Andres Mountains, Robledo Mountains, etc.) can be partially related to their updip depositional facies position. However, the occurrences of Lephotritictes tumida and Schwagerina andresensis indicate an early Nealian age, and those faunas are probably slightly older than the lowest hueco Canyon fusulind faunas to the south in the Franklin Mountains, where the lowest Wolfcampian fusulind samples consist of Pseudoschwagerina texana and P. uddeni (Williams, 1966). Possibly, the lower part of the lower Hueco member in the Robledo Mountains correlates, at least in part, with Williams' (1963) Hueco Mountains Pseudoschwagerina beds, which underlie the Powwow Conglomerate Member of the Hueco Canyon Formation (Fig. 5), but unfortunately the fusulinds in that unit have not yet been studied in detail.

Following deposition of the lower part of the lower hueco member fusulind beds in the Robledo Mountains, the overlying inner shelf carbonate to terrestrial settings in that area were inhospitable to fusulinds, but open marine, fusulind-bearing limestones continued to be deposited in the hueco—Franklin Mountains of the southern Orogenade Basin through the end of Wolfcampian time. Currently, correlations of Wolfcampian units above the lower part of the lower hueco member in the Robledo Mountains to stratigraphic units of the hueco Mountains stratotype must be based on lithofacies characteristics (Fig. 5).

Summary and conclusions

1. The new designation of an international Carboniferous—Permian boundary in Eurasia, and the recent condont-based correlation of that boundary to the midcontinent North America, necessitates the elevation of the Pennsylvanian—Permian boundary in the Orogenade and Permian Basins of west Texas—New Mexico from the base of the interval represented by the Bursum Formation to the top of that interval. Therefore, the Bursum interval is now considered to be latest Pennsylvanian in age, and it has been suggested that it should be recognized as a new stage, for which the name "Bursuman" has been proposed (Ross and Ross, 1994, 1998).

2. The Robledo Mountains have one of the most continuous marine carbonate stratigraphic sections across the new Pennsylvanian—Permian boundary in the American Southwest and could be an important regional reference section. The fusulind faunas of the Bursum Formation-equivalent in the Robledo Mountain section consist of, in ascending order, Lephotritictes hygiosus, L. aff. L. gracilifusus, L. aff. L. gilberti, L. aff. L. gilberti, Pseudofusulina robleda, and Schwagerina grandensis.

3. The basal Permian in North America may be defined by the fusulind fauna of the Neal Ranch Formation (Nealian) of the Wolfcampian stratotype in the Glass Mountains of west Texas. The fusulind fauna in the lower part of the lower hueco member in the Robledo Mountains stratigraphic section consists of Pseudoschwagerina morsei, P. texana, P. cf. P. uddeni, Schwagerina andresensis, and Lephotritictes tumida. This fauna is considered early Nealian in age and is probably slightly older than fusulind faunas in the basal Hueco Group of the Hueco Mountains and Franklin Mountains of the southern Orogenade Basin.

4. Bed L122, which lies between the uppermost "Bursuman" fusulind sample and below the lowermost Wolfcampian (Nealian) fusulind sample in section L of Robledo Mountain, consists of a sandy limestone that weathers brown to black, contains rounded chert pebbles, and thickens and thins along strike (Seager, Kottlowski, and Hawley, in press). The top of that unit probably represents the widespread Bursum—Hueco regional unconformity, and the new Pennsylvanian—Permian boundary is tentatively placed at this level. Additional sedimentologic and stratigraphic studies of this part of the Robledo Mountain section are needed before the boundary placement can be confirmed.
Systematic descriptions

Genus *Leptotriticites* Skinner and Wilde 1965

Leptotriticites aff. *L. gracilitatus* Skinner and Wilde

Pl. 1, Figs. 1-3

Description—The shells are elongate with gently rounded to pointed polar ends and a relatively straight to gently curved axis of coiling. Specimens of seven to seven and one half volutions measure from 7.95 to 8.00 mm in length and 1.90 to 2.40 mm in diameter. The form ratio varies from 3.3 to 4.2. The spirotheca is composed of a tectum and a finely alveolar thin keriotheca. In the seventh whorl the thickness of the spirotheca varies from 72 to 80 p. The septal fluting is quite prominent in the polar ends but is not well developed above the tunnel. Proloculi are spherical and small, ranging from 111 to 128 p in outside diameter. The tunnel angle varies from 27 to 37° in the sixth whorl. The chomata are massive with vertical to slightly overhanging tunnel sides and steep poleward sides in many cases, particularly in the outer volutions.

In some specimens, axial fillings are fairly prominent in the inner volutions, but they are not present to any appreciable degree in outer volutions.

Discussion—*Leptotriticites gracilitatus* is not closely similar to any other described species. The specimens illustrated here are not as elongate as the holotype of Skinner and Wilde (1965), and their volutions expand a bit more rapidly, but they are much closer to *L. gracilitatus* than any other species.

L. aff. *gracilitatus* is longer and more slender than *L. americana* (Thompson) and less inflated than *L. rugosa* (Thompson), two species to which it bears some resemblance. As Skinner and Wilde (1965, p. 101) point out, *L. koschmanni* (Skinner) is larger and more inflated, and *L. victorius* (Dansbar and Skinner) is shorter at maturity and has a narrower tunnel angle.

Occurrence—*Leptotriticites* aff. *gracilitatus* was collected in the lower beds of the Bursum Formation-equivalent in section 1 on Robledo Mountain (collection 73WS100). L. aff. *gracilitatus* occurs just above a collection in which Thompson (1954) found *L. Rugosa* and just below his collection bearing *L. aff. gracilitatus*.

Leptotriticites sp. A

Pl. 1, Figs. 4-6

Description—The shells are very small for the genus, moderately inflated with gently rounded to pointed poles. Specimens of seven to seven and one half volutions measure from 4.95 to 5.50 mm in length and 2.30 to 2.40 mm in diameter with form ratios from 2.05 to 2.49.

The spirotheca is finely alveolar and composed of a tectum and keirotheca. Sphirothecal thicknesses in the sixth whorl vary from 65 to 89 p. There is strong septal fluting in the poles, but fluting is greatly diminished to absent in the central part of the shell. Inner volutions of most specimens exhibit axial fillings.

Proloculi are spherical and quite small, ranging from 111 to 121 p in outside diameter, and the tunnel angle of the sixth volution varies from 22 to 30°. Chomata are prominent and blocky to irregular in character, often with steep tunnel and poleward sides.

Discussion—In the absence of additional better specimens, it is difficult to assign this form to a species with confidence. It most closely resembles some specimens of *Leptotriticites fivensis* (Thompson, 1954, pl. 16, figs. 8-15), but *L. fivensis* has much heavier axial filling and usually has larger and more irregular chomata. The specimens illustrated here are not considered to have enough features in common with the holotype of *Leptotriticites fivensis* to assign them to that species, or even to designate them as *L. aff. fivensis*. *Leptotriticites* sp. A also bears some resemblance to *L. americana* (Thompson), but the Robledo Mountains specimens have a smaller size and thinner walls.

Occurrence—*Leptotriticites* sp. A occurs in collection 73WS97. Section L on Robledo Mountain, where it occurs just below the *Pseudofusulinina robledae* bed.

Genus *Schwagerina* Moeller 1877

Schwagerina andresensis Thompson

Pl. 1, Figs. 7-13

Description—The shell of *Schwagerina andresensis* is moderate to large in size with a straight axis of coiling and broadly rounded to sharply pointed polar ends. Specimens of seven volutions measure from 6.45 to 10.25 mm in length and 3.40 to 3.20 mm in diameter with form ratios varying from 1.8 to 2.2. A specimen of nine volutions measures 7.20 mm in length and 4.00 mm in diameter, with a form ratio of 1.8 (Pl. 1, Fig. 13). A similar specimen (Pl. 1, Fig. 12) has much the same characteristics, but the thin section spirals a bit. The spirotheca is moderately thick and is composed of a tectum of alveolar keirotheca. In the seventh whorl the thickness of the spirotheca varies from 60 to 91 p. Septa are narrowly and highly fluted throughout the length of the shell. Fluting extends to the tops of the septa throughout in most chambers.

Proloculi are small with the outside diameter varying from 126 to 145 p with most near the smaller figure. The proloculi are smaller than those of specimens illustrated by Thompson (1954, pl. 31). The tunnel angle varies from 28 to 38° in the sixth volution. Chomata are high and narrow in the inner volutions and only sporadically present in outer volutions. Thin axial fillings occur in most parts of the shell.

Discussion—Throughout southern New Mexico, *S. andresensis* is characteristic of the lower part of the lower Hueco Group. As Thompson (1954, p. 60) mentioned, this species shows a fair amount of inospecific variability, but it can be consistently recognized on the basis of characteristics like test shape, characteristics of the fluting, axial filling, and the juvenarium.

S. andresensis is a member of a group of early Neanian species (e.g., *S. verricella* and *S. jewelt*) that are characterized by convex test shapes, axial filling, and chomata in the inner whorls. It differs from *S. bellula* Dansbar and Skinner by having a somewhat larger test size, a usually longer test shape, thinner test walls, and the presence of chomata in the inner whorls. It is clearly more primitive than *S. bellula*, which occurs in the Hueco Canyon Formation in the Hueco-Franklin Mountains area, and it is probably in the ancestral species group for that latter species. *S. andresensis* also differs from *S. aculeata* Thompson and Hazzard by having lighter axial fillings, a less inflated central region, and higher septal fluting.

Occurrence—*Schwagerina andresensis* occurs in the lower Hueco member from collection 74WS38, section L, Robledo Mountain, and from collection 75WS9a, section J, Robledo Mountains. In collection 75WS8 of section J, *Schwagerina andresensis* is found in collections 74WS2 and 75WS41, in the lower Hueco member of section B, the Grande dome (see Seager, Kottlowski, and Hawley, 1976, sheet 3).
Schwagerina sp. A.
Pl. 1, Figs. 14-15

Description—A mature shell of seven volutions (Pl. 1, Fig. 14) measures 5.45 mm in length and 2.58 mm in diameter with a form ratio of 2.1. The form ratio from the first to the sixth volution, respectively, is 1.4 mm, 1.5 mm, 1.6 mm, 1.7 mm, 1.6 mm, and 1.7 mm. The shell is regularly inflated with moderately large expansion in the seventh volution as shown by the radius vector measurements of 0.103 mm, 0.176 mm, 0.287 mm, 0.414 mm, 0.640 mm, 0.857 mm, and 1.24 mm from the first to the seventh volution. Poles of volutions are gently rounded.

The spireotheca is 24 p, 33 p, 35 p, 66 p, 78 p, 95 p, and 124 p from the first to the seventh volution, respectively. The walls are composed of a tectum and keriotheca. The proloculus measures 122 p. The tunnel angle is narrow varying from 18° in the third volution, 22° in the fourth, and 23° in the fifth volution.

Chomata, which occur only in the first three-four volutions, are small and blocky with steep tunnel and poleward slopes. Septal fluting is irregular, moderately intense, and high through the first six volutions, becoming somewhat less intense in the seventh volution.

Discussion—Because adequate thin sections, particularly sagittal sections, are not available for study, this specimen is designated Schwagerina sp. A. The irregular septal fluting and possession of small chomata in the early volutions indicate it is a primitive member of the genus. It somewhat resembles some illustrated specimens of Schwagerina grandensis Thompson, but has a much smaller form ratio, a smaller proloculus, and thicker walls than the holotype and specimens with characteristics that are close to the holotype.

Occurrence—Schwagerina sp. A. occurs in collection 74WS2, which is one of the collection numbers for the notation of fusulinids in the lower Hueco member of section B, the Grande dome shelf, Dona Ana Mountains (Seager and Hawley, 1976, sheet 3).

Genus Pseudoschwagerina Dunbar and Skinner, 1931 (amend. Skinner and Wilde, 1965)
Pseudoschwagerina robleda Thompson
Pl. 1, Figs. 16-17
Pl. 2, Figs. 1-3

Description—The shell is highly elongate with an irregular axis of coiling. It has pointed to broadly rounded polar ends and irregular lateral surfaces. Specimens of five and one half to six and one half volutions measure from 7.20 to 11.65 mm in length and 2.40 to 2.90 mm in diameter, giving form ratios of 3.0 to 4.0.

The proloculus is usually small with an outside diameter ranging from 1.54 to 2.07 p. The tunnel angle varies from 38° to 52° in the fifth volution. Chomata are prominent but narrow in inner volutions with steep tunnel and poleward slopes.

The spireotheca is moderately thin for such a large shell, varying from 103 to 109 p in the sixth volution. The shell is loosely coiled throughout, with chambers lowest above the tunnel and higher toward the polar ends.

The septa are irregularly fluted throughout the shell with the most intense fluting in the polar regions.

Discussion—The illustrated specimens (Pl. 1, Figs. 16-17; Pl. 2, Figs. 1-3) are from collection 73WS96 and have the same size range and morphological features as those illustrated by Thompson (1954). P. robleda somewhat resembles Pseudoschwagerina laccisima Dunbar and Skinner (1937), which has been described from the Hueco Canyon Formation in the Franklin Mountains and the Lenox Hills Formation (Lenoxian) of the Glass Mountains Wolfcampian stratotype, but P. robleda has a smaller test, a smaller proloculus, more loosely fluted septa, and is more tightly coiled. P. robleda also has general similarities to primitive species of Schwagerina, such as X. longissimus and X. compactus from the "Bursmanian" strata of the midcontinent and north-central Texas (see Thompson, 1954), but P. robleda has more loosely fluted septa and lacks any axial secondary deposits.

Occurrence—P. robleda occurs in collection 73WS96 and 75WS3 in the lower Hueco member, section L, Robledo Mountain. Collection 73WS96 is from approximately the same beds from which Thompson collected Pseudofusulina robleda on Robledo Mountain (1954, p. 165).

Genus Pseudoschwagerina Dunbar and Skinner 1936
Pseudoschwagerina morsei Needham 1937
Pl. 2, Figs. 4-15

1954. Pseudoschwagerina morsei Thompson, Kansas Univ. Paleont. Contr., Protozoa, art. 5, p. 73, pl. 48, figs. 2,8,11; pl. 49, figs. 6-9; pl. 50, figs. 3-4.

Description—Specimens of Pseudoschwagerina morsei of five and one half to seven volutions measure from 5.55 to 6.65 mm in length and 3.20 to 4.35 mm in diameter with form ratios of 1.5 to 1.7. The shell is medium in size and broadly fusiform. The axis is straight, and the poles are pointed to gently rounded in outer volutions.

The spireotheca is composed of a tectum and keriotheca. In the sixth whorl the thickness of the spireotheca varies from 76 to 128 p. Fluting is slight in the middle of the chambers and more intense in the poles.

Proloculi are small and vary in outside diameter from 149 to 172 p. The tunnel angle in the fourth volution varies from 45 to 63°. Chomata are weak and of highly variable shape, and may be present up to the fourth volution in some cases.

Detailed measurements of the specimen in Plate 2, Figure 5, are as follows: spireothecal thicknesses from the first to the sixth volution are 39 p, 45p, 72p, 601x, 60p, and 84p, respectively; heights of volutions from the first to the sixth volution are 0.62 mm, 0.91 mm, 0.155 mm, 0.380 mm, 0.631 mm, and 0.468 mm, respectively; form ratios from the first to the sixth volutions are 1.2, 1.6, 2.3, 2.3, 2.0, and 1.9.

Discussion—Thompson (1954) did not discuss Pseudoschwagerina morsei in any detail, but he illustrated numerous photographed specimens from the Jarilla Mountains and Ash Canyon in the San Andres Mountains (pls. 48-50), and one specimen from the south side of Robledo Mountain (pl. 50, Fig. 3). Also, in his figure 8, the Robledo Mountains measured section, he showed a line drawing of a small specimen labeled as Pseudoschwagerina addeni that is almost certainly a mislabelled P. morsei (or P. needhami), but it is clearly not the same specimen shown in his plate 50, figure 3.

The several specimens illustrated here (Pl. 2, Figs. 4-15) are smaller than the two type specimens of P. morsei shown by Needham (1937), but they are otherwise similar morphologically. The present specimens are more comparable in size to some illustrated by Thompson (1954, pl. 50). Thompson (1954) said that P. needhami differed from P. morsei by having a smaller test, more nearly uniform expansion of the volutions, and larger chomata. The small test size of these specimens relative to the type suite suggests a possible relationship to P. needhami. It is noteworthy that Henbest (in Harbour, 1972) referred to Pseudoschwagerina morsei var. needhami in lists of fusulinids from the lower Hueco limestones of the Franklin Mountains. The more primitive species of North American Pseudoschwagerina (e.g., P. rhodesi, P. need-
Pseudoschwagerina morsei differs from *P. uddeni* (Beece and Knicker) in being less inflated and globose in shape, having a smaller proloculus, and more prominent chomata. All specimens of *P. morsei* studied are inflated fusiform in shape. *P. morsei* is smaller and more globose than *P. texana* Thompson; it is somewhat larger and more elongate than *P. beedei* and has a better defined juvenarium, and it is consistently larger than *P. rhodesi* Thompson.

Occurrence—In the Robledo Mountains, *Pseudoschwagerina morsei* occurs in the lower Hueco member in: collection 74WS37, section I, on Robledo Mountain (note that collections 74WS37, 74WS38, and 74WS39 are from the same bed); collection 75WS10, at about 130 ft above the base of section J; collection 75WS8a, about 155 ft above the base of section J; and, collection 75WS2, at the same level as collection 75WS8a, but a half mile to the southeast (it was collected after tracing the bed in which 75WS8a was collected across several faults).

One of the specimens illustrated in Plate 2, Figure 14, is badly preserved and obliquely oriented, but it is probably indicative of this species in Dona Ana Mountains collection 73WS101 (see section D, Hueco Basin facies on sheet 3 of Seager, Kottlowski, and Hawley, 1976). No specimens with better preservation have been found. George Verrille (Amoco Production Company, pers. comm. 1980) has sections of poorly preserved specimens tentatively identified as *P. morsei* from a collection about 100 ft above collection 73WS101 (locality is in SW 1/4 SW 1/4 sec. 9 R1E Dona Ana County). A juvenile specimen is illustrated (Pl. 2, Fig. 6) to show the presence of *P. morsei* in collections 75WS2 and 75WS41, which are the collection numbers for the notation of fusulinids in the lower Hueco member of section B, the Grande dome shelf, Dona Ana Mountains (Seager, Kottlowski, and Hawley, 1976, sheet 3).

Specimens of collection 75WS1 are from the lower Hueco member of the southern San Andres Mountains, and are noted on the composite columnar section of the Organ and southern San Andres Mountains, New Mexico (Seager, 1981, sheet 3). The geographic location is NE ½ NW 1/4 NE 1/4 sec. 19 T21S R3E Dona Ana County New Mexico.

Pseudoschwagerina cf. *P. uddeni* (Beece and Knicker)

Pl. 3, Figs. 1

1924. Schwagerina fusulinoides Beece and Knicker (part), Tex. Univ. Bull. 2433, p. 19-23, pl. 1, figs. 4; pl. 7, figs. 1-3, (not pl. 3, figs. 1-4, 8)

1927 [1928]. Schwagerina fusulinoides Dunbar and Condrea (part), Nebr. Geol. Survey Bull. 2, 2nd ser., p. 121-123, pl. 14, figs. 2-5 Q ?? (not pl. 14, fig. 1)

1954. *Pseudoschwagerina texana* Thompson, Kansas Univ. Palcont. Contrib., Protozoa, art. 5, p. 74-75, pl. 47, figs. 1-6, 9-10; pl. 48, figs. 1-3, 7-9, 10; pl. 49, figs. 1-5; pl. 50, figs. 8-9.

1963. *Pseudoschwagerina texana* Ross, Geol. Soc. Amer. Mem. 88, p. 150-152, pl. 25, figs. 1-2; pl. 28, fig. 1.

Description—The shell is quite large, highly elongate and fusiform with narrowly rounded to broadly rounded polar ends at maturity. Inner involutions have pointed to narrowly rounded polar ends. Specimens of seven to eight involutions vary from 8.05 to 10.70 mm in length and 3.55 to 4.45 mm in diameter, giving form ratios from 2.3 to 2.4.

The spirotheca is composed of a tectum and a thick keriotha. In the seventh involutions, the thickness of the wall varies from 72 to 118 p. The septal body are closely spaced throughout the shell and are much more intensely fluted in inner involutions. In outer involutions there is a marked decrease in fluting in the central part of the shell. Proloculi are spherical, and outside diameters range from 151 to 186 p. The tunnel path is relatively straight and gives measurements of 36 to 52° in the sixth involutions. Chomata deposits are quite massive in inner involutions but are sparsely distributed and irregular in outer involutions.

Discussion—The specimens of *P. texana* illustrated in Plate 3, Figures 6-12, are comparable to some of those illustrated by Thompson (1954) from his study of the fusulinids of Texas, Kansas, and New Mexico, but they have greater similarity to the *Pseudoschwagerina texana* illustrated by Dunbar and Skinner (1937, pl. 52). The poorly preserved specimens illustrated in Plate 3, Figures 4-5, co-occur in the same sample as the specimen of *P.*
tions, and the specimens described by Davyov (1997) in Plate 2, Figure 14, but they were tentatively identified as *P. texana* because of their more narrowly fusiform test shape and more pointed poles. In the southwestern United States faunas, *P. texana* is more elongate than *P. uddeni*, and adults are significantly larger than *P. beedei*, *P. morsei*, *P. needhami*, and *P. rhodesi*. Also *P. texana* is not easily confused with *P. robusta* (Meek), *P. arta* Thompson and Hazzard, or *P. muesleri* Thompson and Hazzard, because its septa are more highly and narrowly fluted, its spirotheca is thicker, and it expands more uniformly and gradually.

Occurrence-Two specimens of *P. texana ultima* were found in the lower Hueco member, collection 74WS38, section L, Robledo Mountain. Specimens were also found in collections 75WS4 and 75WS5, section J. And what appears to be another juvenile of *P. texana* was found in collection 75WS9, 135 ft above the base of section J.

P. texana was also found in collection 76WS38, in the lowermost middle Hueco member of the southern San Andres Mountains, as noted on the composite columnar section of the Organ and southern San Andres Mountains, New Mexico (Seager, 1981, sheet 3) at the 5,510 ft level. The geographic location is SE 1/4 SE 1/4 SW 1/4 sec. 13 T21S R5E, Dona Ana County, New Mexico.

Poorly preserved specimens referred with question to *P. texana* were found in collection 73WS101 (Pl. 3, Figs. 4-5) of the Dona Ana Mountains. Collection 73WS101 is the collection number for the notation of fusulinids found on section D of the Hueco Basin facies, on sheet 3 of Seager, Kottlowski, and Hawley (1976). George Verville (Amoco Production Company, pers. comm. 1980) has found additional poorly preserved, silicified specimens tentatively identified as *P. texana* at approximately 100 ft above collection 73WS101. The collection locality is in SW 1/4 SW 1/4 sec. 9 T21S R1E.

Pseudoschwagerina texana ultima Dunbar and Skinner

Description-Specimens of seven to eight volutions measure from 11.95 to 11.60 mm in length and 4.65 to 4.15 mm in diameter for form ratios from 2.6 to 2.8. The shell is very large for the number of volutions and expands more slowly than some specimens of *P. texana*.

The spirotheca is composed of a tectum and coarsely alveolar keriotheca. In the seventh volution the wall thickness varies from 89 to 114 μm. Septal fluting is high and prominent in the polar ends, becoming low and irregular in the central part of the shell in outer volutions.

The proloculus of one specimen is 184 μm. The tunnel of the septicamid test varies from 98 to 114 μm. The spire is prominent in the polar ends, becoming low and irregular in the septicamid test.

The spirotheca is composed of a tectum and coarsely alveolar keriotheca. In the seventh volution the wall thickness varies from 89 to 114 μm. Septal fluting is high and prominent in the polar ends, becoming low and irregular in the central part of the shell in outer volutions.

The proloculus of one specimen is 184 μm. The tunnel of the septicamid test varies from 98 to 114 μm. The spire is prominent in the polar ends, becoming low and irregular in the septicamid test.

The discussion-Dunbar and Skinner (1937) distinguished *Pseudoschwagerina texana* var. *ultima* from the typical *P. texana* by its somewhat larger size, more slender test proportions, less elevated whorls, and more strongly fluted septa. Williams (1963) named *P. geiseri* for a very similar large elongate form in the Hueco Mountains.

The specimens referred here to *P. texana ultima* (Pl. 3, Figs. 2-3) are somewhat larger than other more typical specimens in our collections (Pl. 3, Figs. 6-12), but they are also somewhat more inflated than the type specimens of *P. texana ultima*. Charles A. Ross (written comm. 1999) has suggested to us that alternatively these specimens might be assignable to *Stewartina*, a genus erected by Wilde (1971) for species morphologically intermediate between typical *Schwagerina* and *Pseudoschwagerina*, and characterized by relatively minor inflation of the adult whorls (as compared to *Pseudoschwagerina texana*), low rounded septal folds, and chomata in the first two-three volutions. Wilde (1971) chose *Pseudofusulina moranensis* Thompson (1954) as the genotype of *Stewartina*, and also included the genus *Pseudofusulina robledai* Thompson (1954) and *Schwagerina lascissma* Dunbar and Skinner, 1937. Although the present specimens resemble *S. moranensis* they have somewhat more tightly coiled inner volutions, more loosely coiled adult volutions, and less well-developed juvenile chomata. As pointed out by Wilde (1971), there are strong morphological similarities between his *Stewartina* and the *Pseudoschwagerina texana* group, but the present specimens seem to fall more within the morphological boundaries of the latter.

Occurrence-Two specimens of *P. texana ultima* were found in the lower Hueco member, collection 74WS38, section L, on Robledo Mountain.

References

Plates 1-3
1-3 *Leptotriticites aff. L. gracilitatus* Skinner and Wilde Axial sections from collection 73WS100, Robledo Mountain.

4-6 *Leptotriticites* sp. A. Axial sections from collection 73WS97, Robledo Mountain.

7-13 *Schwagerina andresensis* Thompson Axial sections; 7, 8, 9, from collection 74WS38, Robledo Mountain; 10, 12, from collections 74WS2 and 74WS41, Dona Ana Mountains (12, a poor spiral section, is figured because it is a representative specimen from the Dona Ana Mountains); 11, juvenile specimen from collection 75WS8, section J, Robledo Mountains; 13, from collection 75WS9a, section J, Robledo Mountains.

14-15 *Schwagerina* sp. A. Axial sections from collections 74WS2 and 41, Dona Ana Mountains.

16-17 *Pseudofusulina robleda* Thompson Axial sections from collection 73WS96, Robledo Mountain.
PLATE 2

(All figures x 10)

1-3 *Pseudofusulina robleda* Thompson
Axial sections from collection 73WS96, Robledo Mountain.

4-15 *Pseudoschwagerina morsei* Needham
Axial sections; 4, from collection 75WS8a, section J, Robledo Mountains; 5, 13, 15, from collection 74WS37, Robledo Mountains; 6, juvenile specimen from collections 74WS2 and 75WS41, Dona Ana Mountains; 7, 9, from collection 75WS2, Robledo Mountains; 8, from collection 75WS10, section J, Robledo Mountains; 10, 11, 12, from collection 75WS1, southern San Andres Mountains; 14, from collection 75WS101, poorly preserved specimen, Dona Ana Mountains.
PLATE 3
(All figures x 10)

2-3 *Pseudoschwagerina texana ultima* **Dunbar and Skinner** Axial sections from collection 74WS38, Robledo Mountain.

4-5 *Pseudoschwagerina texana?* **Dunbar and Skinner** Poorly preserved specimens questionably referred to *P. texana* from collection 73WS101, Doña Ana Mountains.

6-12 *Pseudoschwagerina texana* **Dunbar and Skinner** Axial sections; 6, 12, from collection 75WS5 from section J, Robledo Mountains; 7, from collection 76WS38, southern San Andres Mountains; 8, juvenile specimen from collection 75WS9, section J, Robledo Mountains; 9, 11, from collection 75WS4 of section J, Robledo Mountains; 10, juvenile specimen from collection 74WS39, Robledo Mountain.
Selected conversion factors*

<table>
<thead>
<tr>
<th>TO CONVERT</th>
<th>MULTIPLY BY</th>
<th>TO OBTAIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td></td>
<td></td>
</tr>
<tr>
<td>inches, in</td>
<td>2.540</td>
<td>centimeters, cm</td>
</tr>
<tr>
<td>feet, ft</td>
<td>3.048 x 10^2</td>
<td>meters, m</td>
</tr>
<tr>
<td>yards, yds</td>
<td>9.144 x 10^2</td>
<td>km</td>
</tr>
<tr>
<td>statute miles, mi</td>
<td>1.609</td>
<td>kilometers, km</td>
</tr>
<tr>
<td>fathoms</td>
<td>1.829</td>
<td>m</td>
</tr>
<tr>
<td>angstroms, Å</td>
<td>1.0 x 10^10</td>
<td>cm</td>
</tr>
<tr>
<td>Å</td>
<td>1.0 x 10^11</td>
<td>micrometers, µm</td>
</tr>
<tr>
<td>Area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>in^2</td>
<td>6.452</td>
<td>cm^2</td>
</tr>
<tr>
<td>ft^2</td>
<td>9.29 x 10^2</td>
<td>m^2</td>
</tr>
<tr>
<td>yds^2</td>
<td>8.361 x 10^2</td>
<td>m^2</td>
</tr>
<tr>
<td>mi^2</td>
<td>2.590</td>
<td>km^2</td>
</tr>
<tr>
<td>acres</td>
<td>4.047 x 10^6</td>
<td>hectares, ha</td>
</tr>
<tr>
<td>Volume (wet and dry)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft^3</td>
<td>1.639 x 10^3</td>
<td>cm^3</td>
</tr>
<tr>
<td>yds^3</td>
<td>2.832 x 10^3</td>
<td>m^3</td>
</tr>
<tr>
<td>fluid ounces</td>
<td>7.460 x 10^3</td>
<td>liters, l or L</td>
</tr>
<tr>
<td>quarts</td>
<td>9.463 x 10^3</td>
<td>l</td>
</tr>
<tr>
<td>U.S. gallons, gal</td>
<td>3.785</td>
<td>l</td>
</tr>
<tr>
<td>U.S. gal</td>
<td>3.785 x 10^4</td>
<td>m^3</td>
</tr>
<tr>
<td>acre-ft</td>
<td>1.234 x 10^3</td>
<td>m^3</td>
</tr>
<tr>
<td>barrels (oil), bbl</td>
<td>1.589 x 10^4</td>
<td>m^3</td>
</tr>
<tr>
<td>Weight, mass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>avoirdupois, oz</td>
<td>2.8349 x 10^5</td>
<td>grams</td>
</tr>
<tr>
<td>troy ounces, oz</td>
<td>3.103 x 10^5</td>
<td>gr</td>
</tr>
<tr>
<td>pounds, lb</td>
<td>4.536 x 10^3</td>
<td>kilograms, kg</td>
</tr>
<tr>
<td>long tons</td>
<td>1.016</td>
<td>metric tons, mt</td>
</tr>
<tr>
<td>short tons</td>
<td>9.078 x 10^3</td>
<td>mt</td>
</tr>
<tr>
<td>oz, troy</td>
<td>3.43 x 10^2</td>
<td>parts per million, ppm</td>
</tr>
<tr>
<td>Velocity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft/sec (= ft/sec)</td>
<td>3.048 x 10^6</td>
<td>m sec^-1 (= m/sec)</td>
</tr>
<tr>
<td>mi/hr</td>
<td>1.609</td>
<td>km hr^-1</td>
</tr>
<tr>
<td>mi/hr</td>
<td>4.470 x 10^4</td>
<td>m sec^-1</td>
</tr>
<tr>
<td>Pressure, stress</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lb in^2 (= lb/in^2) psi</td>
<td>7.03 x 10^3</td>
<td>kg cm^-2 (= kg/cm^2)</td>
</tr>
<tr>
<td>lb in^2</td>
<td>6.804 x 10^4</td>
<td>atmospheres, atm</td>
</tr>
<tr>
<td>lb in^2</td>
<td>6.805 x 10^4</td>
<td>newtons (N)/m^2, N m^-2</td>
</tr>
<tr>
<td>atm</td>
<td>1.0133</td>
<td>kg cm^-2</td>
</tr>
<tr>
<td>atm</td>
<td>7.6 x 10^4</td>
<td>mm of Hg (at 0°C)</td>
</tr>
<tr>
<td>inches of Hg (at 0°C)</td>
<td>3.453 x 10^2</td>
<td>kg cm^2</td>
</tr>
<tr>
<td>bars, b</td>
<td>1.020</td>
<td>kg cm^2</td>
</tr>
<tr>
<td>dyne</td>
<td>9.8069 x 10^3</td>
<td>atm</td>
</tr>
<tr>
<td>dyne</td>
<td>1.0 x 10^6</td>
<td>megapascals, MPa</td>
</tr>
<tr>
<td>Density</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lb in^3 (= lb/in^3)</td>
<td>2.768 x 10^3</td>
<td>gr cm^-3 (= gr/cm^3)</td>
</tr>
<tr>
<td>Viscosity</td>
<td>1.0</td>
<td>gr cm^-1 sec^-1 or dynes cm^-2</td>
</tr>
<tr>
<td>poises</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discharge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. gal min^-1, gpm</td>
<td>6.308 x 10^4</td>
<td>1 sec^-1</td>
</tr>
<tr>
<td>gpm</td>
<td>6.308 x 10^4</td>
<td>m^3 sec^-1</td>
</tr>
<tr>
<td>ft^3 sec^-1</td>
<td>2.832 x 10^3</td>
<td>m^3 sec^-1</td>
</tr>
<tr>
<td>Hydraulic conductivity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. gal day^-1 ft^-3</td>
<td>4.720 x 10^3</td>
<td>m sec^-1</td>
</tr>
<tr>
<td>Permeability</td>
<td>darcies</td>
<td>9.870 x 10^-10</td>
</tr>
<tr>
<td>Transmissivity</td>
<td>U.S. gal day^-1 ft^-3</td>
<td>1.438 x 10^7</td>
</tr>
<tr>
<td>U.S. gal min^-1 ft^-3</td>
<td>2.072 x 10^4</td>
<td>m/sec^-1</td>
</tr>
<tr>
<td>Magnetic field intensity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gausses</td>
<td>1.0 x 10^8</td>
<td>gauss</td>
</tr>
<tr>
<td>Energy, heat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>British thermal units BTU</td>
<td>2.52 x 10^6</td>
<td>calories, cal</td>
</tr>
<tr>
<td>BTU</td>
<td>1.0758 x 10^6</td>
<td>kilogram-meters, kgm</td>
</tr>
<tr>
<td>BTU lb^-1</td>
<td>5.56 x 10^6</td>
<td>cal kg^-1</td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>°C + 273</td>
<td>1.0</td>
<td>°K (Kelvin)</td>
</tr>
<tr>
<td>°C</td>
<td>1.8</td>
<td>°F (Fahrenheit)</td>
</tr>
<tr>
<td>°F - 32</td>
<td>5/9</td>
<td>°C (Celsius)</td>
</tr>
</tbody>
</table>

*Divide by the factor number to reverse conversions.
Exponents: for example 4.047 x 10^6 (see acres) = 4.047; 9.29 x 10^4 (see ft) = 0.0929.
Colophon
Typeface: Palatino
Presswork: Cottonwood Printing Company, Inc.
Binding: Saddle stitch with softbound cover
Paper: Cover on Kivar 4-12 Linenweave. Text on 70-lb white matte.
Ink: Cover—PMS 320, four color process. Text—Black.
Print run: 1000
Wahlman and King

LATEST PENNSYLVANIAN AND EARLIEST PERMIAN
FUSULINID BIOSTRATIGRAPHY: ROBLEDO MOUNTAINS

New Mexico Bureau of Geology & Mineral Resources

Circular 208