A Preliminary Report on New Mexico's Geothermal Energy Resources

by W. K. SUMMERS

Prepared for the Mineral Element of the New Mexico Resources Development Plan of the State Planning Office, this material was financially aided through a federal grant from the Urban Renewal Administration of the Housing and Home Finance Agency, under the Urban Planning Assistance Program authorized by Section 107 of the Housing Act of 1954, as amended.

STATE BUREAU OF MINES AND MINERAL RESOURCESNEW MEXICO INSTITUTE OF MINING AND TECHNOLOGYCAMPUS STATIONSOCORRO, NEW MEXICO

NEW MEXICO INSTITUTE OF MINING 8c TECHNOLOGY

Stirling A. Colgate, President

STATE BUREAU OF MINES AND MINERAL RESOURCES

Alvin J. Thompson, Director

THE REGENTS

MEMBERS EX OFFICIO

THE HONORABLE JACK M. CAMPBELL	Governor of New Mexico
LEONARD DELAYO	

APPOINTED MEMBERS

WILLIAM G. ABBOTT	Hobbs
EUGENE L. COULSON, M.D	Socorro
THOMAS M. CRAMER	Carlsbad
EVA M. LARRAZOLO (Mrs. Paul F.)	Albuquerque
RICHARD M. ZIMMERLY	Socorro

Contents

	Page
CONCLUSIONS	1
INTRODUCTION	1
Background	1
Acknowledgements	2
Spring and well numbering	2
SOURCES OF HEAT	3
The "normal" heat of the earth	3
Deep-seated hot rocks	3
Heat of volcanic and shallow igneous rocks	4
GEOLOGIC OCCURRENCE OF STEAM	5
PROSPECTING FOR STEAM IN NEW MEXICO GEOHYDRAULICS OF STEAM	
PROBLEMS THAT ARISE IN THE USE OF STEAM	10
RECOMMENDATIONS	
Sources of information about New Mexico's geothermal energy and selected references on	
the geology of New Mexico	32
Selected references on geothermal energy	
Selected references on geochemistry, thermal dynamics, and fluid mechanics of hot water	
and steam Selected references on infrared	
REFERENCES	37
APPENDIXES	

Illustrations

TABLES 1. Thermal gradients observed in selected oil tests in New Mexico	3
2. Information about thermal springs and wells for which no chemical analyses are available1	12
3. Information about thermal springs and wells including chemical analyses1	4
FIGURE 1. Approximate temperature of water from nonthermal wells at depths of 30 to 60 feet	7
PLATE 1. Thermal springs and wells in Quaternary and Tertiary igneous rocks in New Mexico	et

Conclusions

Geothermal power could become a potent economic force in New Mexico. The state has all the geologic characteristics associated with steam fields around the world, so it seems likely that several steam fields will be discovered in the state when ever the economic factors involved justify the exploration that is required.

Much remains to be learned about geothermal energy and its development. Research into various aspects of geothermal energy NOW is a must, if the resource is to be used to the best advantage of the state!

Introduction

As an aid to those interested in geothermal power in New Mexico, this circular summarizes the information available on geothermal energy and geothermal power as they apply to this state. Considered are not only the sources of heat in the state, including a summary of the locations and characteristics of warm and hot springs and wells and what has been published about them, but also the pertinent background information on geothermal energy gleaned from world-wide experiences.

In addition, information that needs to be gathered and the research that should be undertaken if we are to make the best possible use of the geothermal resources are reviewed.

Finally, a comprehensive; but not exhaustive, bibliography lists the published sources of information relating to geothermal energy in New Mexico.

A word of caution is in order: Although much has been written about the heat of the earth in its various forms, very little is known about geothermal energy or how to develop it.

BACKGROUND

Geothermal energy is the heat generated in the interior of the earth and conducted to the earth's surface where it is radiated into space. The small, daily radiation of heat from the earth's surface goes unnoticed, because the rate at which the earth radiates heat is low, averaging about 10^{-6} cal/cm². Only where volcanoes, hot springs, or geysers show the impact of extraordinary heat are we aware of the earth as a tremendous reservoir of heat.

If the heat from the earth's interior, which now dissipates into space when it reaches the surface, can be converted into electrical power, it can be transmitted to those places where it is needed.

In practice, the development of geothermal power is the development of natural steam, and the extent to which geothermal energy is available depends upon the quality and quantity of the available natural steam.

The term *geothermal power* has been coined to describe the electrical energy generated by the utilization

of natural steam. According to McNitt (1963, p. 8), "This power is harnessed by releasing steam from natural thermal areas through bore holes and conducting it through a system of pipes to a turbine-generator unit." Natural steam heats homes and other buildings in Iceland, Idaho, Montana, and Alaska. Health spas take advantage of the "medicinal" properties of the hot, mineral waters.

Until 1904, uses of geothermal energy were, at best, token. At Larderello, Italy, for example, Francesco Larderel in 1818 used steam as a source of heat to concentrate acid solutions. In 1904, Prince Conti first used geothermal energy (steam) at Larderello to generate power—enough electricity to light five electric lamps. By 1913, a single 250-kilowatt turbine generator was active there. Now, the town has eight stations generating more than 300,000 kilowatts. In addition to power, the noncondensable gases contained in the steam yield boric acid, borax, carbon dioxide, and sulfur, which are processed from the steam and sold.

From 1921 to 1925, eight wells were drilled at The Geysers in California, but they were not developed as power sources. Development of geothermal energy at Wairakei, New Zealand, began in 1950. Plans there call for the ultimate development of 280,000 kilowatts.

The success of the Italian and New Zealand installations has prompted exploration for and development of other steam sources. A new 12,500-kilowatt plant at The Geysers and a 3500-kilowatt plant at Hidalgo, Mexico, are operating. Development of steam fields is under way in Iceland, Chile, Mexico, El Salvador, Japan, Russia, Nevada, Oregon, Hawaii, and in the Salton Sea and Casa Diablo fields in California.

New Mexico's first steam well was an oil test drilled in 1960 at the Baca Location about twelve miles north of Jemez Springs on Jemez Mountain. Two more wells were drilled in 1963 and a fourth in 1964. Until this program was initiated, New Mexico's heat resource was used only in spas, where the discharging waters of hot springs or the deposits they build attract tourists. Some small use is also made of hot springs as water supplies for irrigation, livestock, or communities, but these uses do not take advantage of thermal properties of the water. In some instances, the temperature of the water detracts from its use.

Tapping the geothermal energy in steam to drive turbines should substantially increase its dollar value and its demand.

ACKNOWLEDGMENTS

Many people around the world contributed to the content of this report, but even though each deserves special thanks, recognition of all individuals would fill several pages.

William E. Bertholf, II, of the Bureau staff initiated this study to add to the information about the state's energy resources as a part of the State Resource Development Plan.

Francis R. Hall of the Institute staff and the graduate students under his direction previewed the available data, made a number of chemical analyses of thermal water, and collected water chemistry data from several other sources. Roy W. Foster of the Bureau staff gathered the information on the northern counties.

The U.S. Soil Conservation Service, Work Unit Conservationists; the U.S. Forest Service, District Foresters; and Fred A. Thompson, New Mexico Department of Game and Fish, deserve special mention, for they took time out of their busy schedules to note the locations of hot springs and warm-water wells that they knew about, thereby contributing greatly to this preliminary inventory.

Henry J. Birdseye and M. Howard Milligan, consulting geologists, opened their files and permitted the use of their information on geothermal steam resources in New Mexico. C. J. Robinove, U.S. Geological Survey, and E. T. Anderson, of Joseph I. O'Neill, Jr., Oil Properties, reviewed technical parts of the text.

Barney Popkin, graduate assistant, helped assemble, organize, and type Tables 2 and 3. Without his help, the project would have been much more difficult.

Mrs. Helen Waxier of the Bureau staff also contributed greatly with her typings of the manuscript from rough drafts.

SPRING AND WELL NUMBERING

The spring and well numbering system employed herein is that used by the U.S. Geological Survey, Ground-Water Branch in New Mexico, which is based on the common units of the township-range system.

The location number consists of four segments separated by periods, as 4S.13W.27.314. The first segment on the left designates the township and the next the range, with the letters indicating direction; the third segment designates the section; and the fourth, or right-hand segment, locates the well or spring within the section, as follows: Each section is divided into quarters numbered from left to right. The northwest quarter is number 1; the northeast quarter, number 2; the southwest quarter, number 3; and the southeast quarter, number 4. Each quarter section is again divided into quarters and numbered in the same order. Each quarter-quarter section is similarly divided and numbered, thus locating a spring or well to the nearest 10-acre tract. Therefore, the first digit (of the fourth segment) locates the quarter section; the second digit, the quarter-quarter section; and the last digit, the 10-acre tract. For a location that cannot be established to a 10-acre plot, the indefinite subdivisions are indicated by zeros; for example, a spring that is known to be in the northwest quarter section but which cannot be located with reference to smaller subdivisions is shown as ".100."

So the location number above, 4S.13W.27.314, places the well in the southeast quarter of the northwest quarter of the southwest quarter of section 27, township 4 south, range 13 west.

In unsurveyed areas, the locations were estimated by superimposing a township grid on the best map available.

Sources of Heat

The earth radiates heat. Measurements made in deep wells and mines show that even in areas where there are no unusual manifestations of heat, the temperature of the earth increases between 0.5° and 1.5° F per 100 feet of depth. In areas of volcanic activity, where the rocks are still warm or even molten, temperatures increase downward at a much greater rate.

In general, the sources of heat can be divided into three broad, overlapping classes that fit the New Mexico situation fairly well:

- 1. "Normal" heat of the earth as it appears in nonthermal areas that are reflected by the slow rate of temperature increase that occurs with depth.
- 2. Heat associated with deep-seated bodies of hot rock that cause anomalies in the heat flow pattern but give no other specific indication at the surface of their presence.
- 3. Heat associated with magma or volcanic rocks that appear at or near the surface.

THE "NORMAL" HEAT OF THE E A R T H

Darton (1920) reported on temperatures measured in 1905 in a water well at the Sandia siding of the Atchison, Topeka, and Santa Fe Railroad, eleven and a half miles southwest of Isleta:

The water stood at a depth of 445 feet in the boring which was 845 feet deep and penetrated Cretaceous shale and sandstone, overlain by sand of the Tertiary Santa Fe formation at the head sheet of recent lava which covers the plateau to the north and east.

He then gives the observed temperatures as follows:

Feet	Degrees F
443	71.7
543	72.1
643	75.6
743	76.7
843	78.1

These figures indicate a thermal gradient of about 1.6° F per 100 feet.

Temperature logs of a few oil well test holes (table 1) indicate that the gradient is somewhat less than this in southeastern New Mexico. This is also the conclusion of Lang (1929, 1930, 1937). Only two temperature logs of wells in other parts of New Mexico were located. One, from Harding County, gives a thermal gradient of 1.8°F per 100 feet; the other, from San Juan County, gives a thermal gradient of 2.6°F per 100 feet.

Such sparse data are hardly conclusive, but they would seem to suggest that the thermal gradient increases from the southeast to the northwest across the state.

COUNTY	INTERVAL FROM (FEET)	LOGGED TO (FEET)	GRADIENT (DEGREES F PER 100 FEEI
Chaves	1300	2250	0.6
	1800	2100	1.0
Eddy	100	1745	0.9
•	1850	2400	1.1
Harding	1958	2158	1.8
Lea	2000	2755	0.5
	1000	1800	0.6
	300	1400	0.9
	9000	11000	0.4
Roosevelt	7040	8800	0.6
San Juan	1200	4205	2.6

TABLE 1. THERMAL GRADIENTS OBSERVED IN SELECTED OIL TESTS IN NEW MEXICO (Based on temperature logs)

At this state of the development of geothermal power, the deep drill hole to take advantage of the "normal" geothermal gradient is beyond the practical limits of economy. The suitability of such deep holes has been considered by the Office of Saline Water (Bell et al., 1959) as a possible source of energy for converting salt water to fresh. That study indicates that a 20,000-foot hole, in granite could be used to tap geothermal energy, but the expense of drilling such a hole and providing generating equipment would run the cost of electricity up to 66 cents a kilowatt hour, whereas the cost of geothermal power from existing facilities ranges from 0.004 to 0.008 cent a kilowatt hour.

DEEP-SEATED HOT ROCKS

Wells 1000 to 2000 feet deep at Larderello, Italy, have been drilled into sedimentary rocks of Tertiary and Mesozoic ages. These wells cross fault zones of Tertiary age that carry water with temperatures ranging from 266° to 446°F. This water is believed to be warmed by deep-seated hot rocks which are a source of extraordinary geothermal energy.

In New Mexico, three lines of evidence suggest that similar sources of heat may exist.

- Two oil tests have encountered anomalous temperatures that suggest a deep-seated source of heat:
 - (a) in Hidalgo County, an oil test (Humble No. 1 State BA) in sec. 25, T. 32 S., R. 16 W., which was drilled to a depth of

14,578 feet, reported the following bottomhole temperatures from electric logs:

Feet	Degrees F
1600	106
5340	115
10875	155
14578	320

(b) in Sierra County, an oil test (15S.2W. 23) 9774 feet deep in dolomite reported the following bottom-hole temperatures from electric logs:

Feet	Degrees F
3497	104
6212	160
9774	236

- (2) Two wells in T. 10 S., R. 1 W. showed a somewhat different anomaly. One drilled in sec. 25 showed a bottom-hole temperature on electric logs of 122°F at a depth of 6059 feet, whereas the other in sec. 27, less than two miles away, showed a bottom-hole temperature of 170°F at a depth of 6352 feet. Here, there is a temperature difference of 50 degrees at a common depth within a comparatively short distance.
- (3) Theis, Taylor, and Murray (1941) believe that the warm waters of the Truth or Con-

sequences area are the product of deeply circulating ground waters being brought to the surface along faults and fractures in Magdalena Limestone.

We may, therefore, conclude that deep masses of warm rock exist in New Mexico. Although those deep hot rocks may ultimately serve as sources of heat energy, for our present needs and with our present technical knowledge, they are, for the most part, *not* economical sources of heat.

HEAT OF VOLCANIC AND SHALLOW IGNEOUS ROCKS

The source of heat for most of the commercial geothermal power stations in the world can be traced to fairly recent igneous activity associated with fault zones.

In New Mexico, warm and hot springs are for the most part in areas of obvious volcanism. Plate 1 shows where igneous rocks of Tertiary and Quaternary ages crop out in the state. Many volcanic cones dot the state's landscape. The preliminary state geologic maps (Dane and Bachman, 1957, 1958, 19'61; Bachman and Dane, 1962) show the location of these cones in considerably more detail than is possible here. Because New Mexico has so many fairly recent volcanoes, the prospects of finding and developing geothermal steam, while not so promising as in California, are still very good. Geothermal steam could become the major energy used to generate power in the state.

Geologic Occurrence of Steam

McNitt (1963, p. 37) summarized the basic characteristics of known steam fields so well that his remarks are quoted here as a sound background for the discussion of New Mexico's steam resource:

All the thermal areas being developed throughout the world are located in regions of Cenozoic volcanism. It appears, therefore, that the source of heat for the thermal areas is related in some manner to the processes of volcanism and magmatic intrusion. If this is true, then it is reasonable to assume that thermal areas derive their heat either from buried flows of volcanic rock, or from still cooling intrusive bodies, which may be wholly or partially crystallized. Although it is difficult to evaluate the relative importance of extrusive rock as compared to intrusive bodies as heat sources, the latter would seem to be the more significant. Certainly at Larderello and The Geysers, where late Cenozoic volcanic flows do not underlie the steam fields, heat must be derived from an intrusive source. Cenozoic lava flows found in the region of these steam fields testify to youthful volcanic activity, and therefore to the probable presence of magmatic activity at depth.

In the thermal areas now under investigation throughout the world, the fissures which conduct thermal fluid to the surface are steeply dipping normal faults. These faults, however, have originated in two distinctly different structural environments. The Geysers and the Italian steam fields are in highland regions which have undergone recent orogenic uplift. These regions are characterized by complex horst and graben structures, which control the location of the thermal areas. Although located in volcanic belts, the thermal fluids do not rise in volcanic rock, but rather in the older, pre-volcanic rocks, which are brought to the surface on structural highs. On the other hand, geophysical evidence in New Zealand, Casa Diablo, and the Salton Sea indicate that these thermal areas are located within large structural depressions, rather than in areas of recent uplift. Even in this environment, however, there is evidence that some of the thermal areas are located near local, structural highs within the depression. These depressions are all closely associated with late Tertiary or Quaternary volcanism and may have a common origin as volcano-tectonic depressions. The geologic processes which relate magma movements to uplift and subsidence structures, volcanism, and thermal activity are not known.

In considering problems of exploration and development, it is important to distinguish between two types of steam fields: (a) the thermal area which yields dry or slightly superheated steam, and (b) the thermal area which produces saturated steam and hot water. The Geysers steam field and the two Italian fields of Larderello and Bagnore are of the dry steam type, while all the other thermal areas drilled thus far yield saturated steam and hot water. The principal factors which give rise to these two types of steam fields are: (a) the initial enthalpy or heat content of the thermal fluid, which is determined by the temperature of the heat source as well as by the thermodynamic and mechanical equilibrium conditions existing between the heat source and the thermal fluid in an open system, and (b) the amount by which the thermal fluid is diluted by cold, nearsurface ground water.

This second factor is controlled principally by the structure and permeability of the rocks underlying the thermal area. If the conducting fissures are located in a structural depression filled with porous sediments and volcanic debris, the ascending thermal fluid will mix with the cold ground water which saturates the porous surface rocks. These conditions result in a thermal area which yields only saturated steam and hot water. If the conducting fissures intersect only impermeable rocks, as at The Geysers, or if they are covered by an impermeable layer which protects them from the downward percolation of near-surface ground water, as in Italy, the thermal fluid will be only slightly diluted by surface water, and the field may yield dry or perhaps superheated steam, depending on its initial enthalpy.

By the above remarks it is not meant to imply that the thermal fluid is entirely of magmatic origin. Whether the fluid is primarily meteoric or magmatic water is a separate problem. . . . When considering the problems of evaluating and developing a steam field, it is more important to distinguish between thermal fluid and cold, locally derived ground water. This is because the problems encountered in producing natural steam are more closely related to the thermal fluid and the local, near surface ground water, than to the equilibrium conditions existing between the thermal fluid and the heat source.

New Mexico has geologic features similar to those associated with known steam fields. Moreover, many of the state's warm and hot springs are associated with these features.

The Rio Grande trough is the largest feature. Joesting, Case, and Cordell (1961) describe it as a series of complexly faulted troughs or basins, arranged en echelon, extending from the northern end of the San Luis Valley in Colorado, southward 450 miles along the course of the Rio Grande in New Mexico, to El Paso, Texas.

The trough is bounded both on the east and west by discontinuous fault zones. Small volcanoes and fissure flows mark the boundaries at several localities. Warm and hot springs are found along the faults which border the trough. Most, but not all, of these springs are on the west side of the trough. Apparently, ground water circulates into zones of hot rock and then finds a convenient conduit to the surface along the faults.

The Animas Valley (Spiegel, 1957) and the Tularosa Basin (Schmidt and Craddock, 1964) are smaller, similar structures. Doubtlessly, others exist as well.

According to Richard D. Holt, exploration staff geologist for Humble Oil and Refining Company (personal communication, May 1965), "The location (of the Humble No. 1 State BA oil test) is close to the zone of faulting between the upthrown Big Hatchet Range and the downdropped Playas Valley bolson. Also, igneous rocks, probably sills, were drilled at 11,180' to 11,198' and 14,192' to 14,218'."

The Valles Caldera (Ross, Smith, and Bailey, 1961; Conover, Theis, and Griggs, 1963) northeast of Jemez Springs and west of Los Alamos is one of the world's largest volcanic calderas. It came into existence fairly recently in geologic time. This caldera is ringed by warm and hot springs, which also appear to be discharging ground water that has circulated down to hot rock and then found a convenient conduit in a fault or fracture zone.

New Mexico's first steam wells are drilled on the caldera to depths ranging from 2600 to 3700 feet. These wells discharge steam at temperatures up to 500°F. This steam may contain juvenile water released by the cooling magma.

West of the Rio Grande trough are numerous small volcanic cones, many of which are associated with faults. A large caldera has been postulated as occurring in the southwest part of the state south of the San Agustin Plains, but whether this is really the case will have to be decided by field exploration.

Plate 1 shows the volcanic and intrusive igneous rocks of Quaternary and Tertiary ages as they were mapped by the New Mexico Geological Society (1961). The major faults, which it also shows, are those shown by the New Mexico Geological Survey plus those inferred by Frank Kottlowski on the basis of his field work in the state (personal communication, April 1965).

On the plate, the extrusive igneous rocks are grouped together, except for the basalts which are shown separately.

The basalts were distinguished from the other extrusive igneous rocks because they cool rapidly. Many basalt flows, are comparatively thin. The lava spreads out over a large surface area. They are, therefore, subject to rapid cooling. Moreover, basalts elsewhere in the world are more permeable than other igneous rocks. In areas where precipitation is abundant, they are excellent aquifers and even thick, relatively recent, flows yield cool water. (Hawaii, with all its volcanoes, is underlain by basalt whose permeability is so great that the passage of recharging ground water has cooled it, and sources of steam seem to be comparatively rare.)

In New Mexico, apparently the basalts are equally permeable, but the aridity of the region has delayed their cooling by circulating ground water. Consequently, many warm springs are associated with the basalts. However, few of these springs are "hot," suggesting that though the basalts are still warm, they are less likely to generate steam than other volcanic rocks.

Prospecting for Steam in New Mexico

The problem in locating sources of steam is to locate suitably hot ground-water reservoirs.

As the demand makes it economically feasible, the search for steam will in all probability start in those areas where there are hot springs and warm-water wells. Next, those areas which show as hot spots in the infra-red aerial surveys will be examined. Third, those areas where conditions are right geologically but no evidence of heat exists at the surface will be explored. Finally, those areas which are located by means of sophisticated subsurface exploration techniques will be investigated.

Figure 1 shows the temperature to be expected in

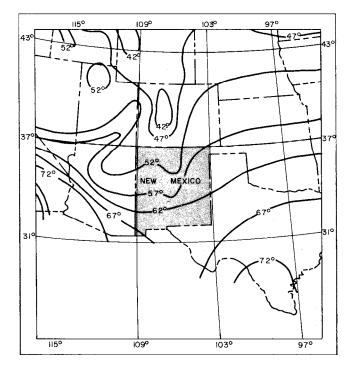


Figure 1 APPROXIMATE TEMPERATURE OF WATER FROM NONTHER-MAL WELLS AT DEPTHS OF 30 TO 60 FEET (after Collins, 1925)

a well tapping ground water in an aquifer 30 to 60 feet below the surface. Temperatures of water from deeper sources can be estimated using this map and adding one degree for every 100 feet of depth. Certainly water discharging at temperatures warmer than those we would predict using Figure 1 reflects an extraordinary source of heat.

Plate 1 shows the locations of the warm and hot springs in New Mexico, as well as those water wells known to yield warm or hot water. Whether the sources of heat of the wells or springs shown here are warm

enough to generate steam is a question that is unanswerable with our present knowledge.

The classification of discharging water according to temperature (as was required for this map) is an arbitrary matter. As we can see from Figure 1, water with a temperature of 52° F is normal for Santa Fe, whereas water with a temperature of 65° F is normal at Columbus. Clearly, the distinction among "cold," "warm," and "hot" must be approximate. Moreover, hot water that could reflect a source of heat suitable for steam may be masked by mixing with cool ground water before it discharges at the land surface.

The springs shown on the map and listed in Tables 2 and 3 are those which have temperatures of 65 degrees or more. The wells have somewhat higher minimum temperatures (75°F), but wherever there was doubt about the inclusion of a particular well or spring, it was included. If it is not significant, the user can disregard it, but at least the data are available.

The springs and wells are located according to the best information available, short of a personal inspection in the field. The locations of individual springs may be subject to considerable correction when they are field-checked.

Most steam wells tap water in a ground-water reservoir, which has come into contact with extraordinarily hot rock and has been heated to an extraordinary degree. But in some places, the steam may be partly or totally juvenile; that is, it may be composed of water released from the cooling rock. These waters are chemically distinct from the circulating ground water. Hence, geochemical evidence (variations in chemistry especially) may be used to locate potential steam fields. Table 3 gives the chemical analyses available for warm and hot water in the state. The bibliography lists several references that will be of interest to anyone attempting to search for steam by geochemical methods.

Infrared photography and imagery have been used to map Hawaiian volcanoes and the thermal areas of Yellowstone National Park (Fischer et al., 1964). These efforts have shown that it is feasible to separate hot springs and other warm terrestrial features using infra-red techniques.

C. J. Robinove makes several pertinent points about infrared imagery (in the July 1965 issuse of the *Journal of the American Waterworks Association*):

1. The value of infrared imagery in water resources research and in geologic and engineering studies has not yet been fully exploited. Collection of data is quite feasible and some interpretive studies have been conducted. Much effort will have to be expended in learning how to interpret infrared imagery, however, before it can obtain its maximum usefulness in hydrology.

- 2. Infrared imagery is beginning to be used in water resources studies for the identification of surface and subsurface thermal anomalies as expressed at the surface and the measurement of apparent water surface temperatures. It will attain its maximum usefulness only when interpretation criteria for infrared imagery are fully developed.
- 3. Although it is possible at this time to identify many features of importance to hydrology by the use of infrared imagery the task remaining is to develop criteria to show the hydrologic significance of the features.

For those interested in the applications of infrared photography and imagery, the bibliography contains a special section on this subject.

Paul Kintzinger (1956) made a geothermal study of a small area southwest of Lordsburg in Hidalgo County, where a well 95 feet deep discharges water of about 210°F. Kintzinger showed the probable extent of the geothermal field there by measuring the soil temperatures at a depth of one meter using resistance ther-

mometers. Subsequent inspection of the aerial photographs showed that the area was also outlined by vegetation changes.

Presumably, the method used by Kintzinger could be used to define and delimit other geothermal areas.

Electrical resistivity is a tool that has not been used in New Mexico to explore for potential steam fields; yet, resistivity is a function of temperature, and warm or hot areas should appear as anomalous areas of low resistivity.

The search for steam fields must also include a study of regional geology, particularly structure and stratigraphy. Steam, in nearly every case where it has been studied, is found in association with fairly recent (geologically speaking) faults and igneous activity. The mapping of known faults and fault zones is a must. Geologically young igneous rocks, particularly young intrusives, are possible sources of heat and should be investigated accordingly.

Steam is frequently confined below rocks with very low permeability, so that only token indications of its pressure appear at the surface.

Geohydraulics of Steam

Information on the rate and direction of movement of steam in a field is limited. The New Zealanders have studied the subject because field pressures are declining; others have considered various aspects of the problem. Jaeger (1964) gives a series of mathematical models to describe the temperature around intrusions of different shapes. Heat exchanges between the fluid in a well bore and the country rock are discussed by Melikov (1964) for circulating mud and by Boldizar (1958) for artesian flow. Facca and Tonani (1964) discuss the relationship between "... the heat source, the permeable payzone, and the impermeable cap rock."

Several points should be made with respect to the dynamics of steam-well behavior:

- 1. Steam wells have pressures that range up to a maximum of about 500 pounds a square inch but usually are much less, 60 to 100 pounds a square inch being the usual range of operating pressure.
- 2. Steam-well discharge is measured in pounds of steam an hour. There is about 1/450th gallon of water in a pound of steam. The discharge rate varies according to the pressure of the steam and the available heat, porosity and permeability of the steam reservoirs, and the degree of interaction between steam wells. At The Geysers, the several wells deliver 250,000 pounds an hour of steam to the turbine at about 100 pounds pressure. This is a water discharge of about 550 gal-ions a minute. The used steam is cooled and discharged as surface water.

- 3. Lowering the pressure at the well head generally increases the flow of steam to a limit, then further reductions in pressure have no effect. At The Geysers, the lower limit of pressure is about 35 pounds a square inch.
- 4. Steam wells have been drilled as close together as 150 feet.
- 5. The yield of the wells at The Geysers has fallen off some since the first wells were drilled in 1922 and shows only minor interaction of pressure or steam flow. In 1964, the New Zealand field, however, has shown a pressure loss. The loss has been interpreted to mean that the hot steam is being replaced by cold water that is not being heated to the same degree as the original steam, possibly because the rate at which the new water moves in is so much faster under conditions of artificial discharge than it was when the warmed water was discharging naturally to springs. Another explanation that has been put forth is that there is an inflowing volume of water from a second reservoir during the production of steam.

Apparently, the best steam reservoirs will have a balance between the amount of heat available to convert water to steam and the amount of water available. On the one hand, where there is too much water, each unit of water is warmed only slightly. On the other, hand, sufficient water must be available for conversion to steam in sufficient quantity to turn turbines.

Problems that Arise in the Use of Steam

Using natural steam for power may seem to be a panacea. It is not. Steam in many cases carries with it corrosive gases that are difficult to dispose of and that cause excessive corrosion of the turbines and steam lines. If the steam is not chemically suited, it may be impossible to develop it economically.

On the other side of the coin is the steam that carries with it gases or solids that may be processed out and sold independently.

Drilling steam wells is made difficult in several ways. There is the additional care necessary to prevent blow-outs. The loss of drilling fluid and its immediate re-placement by steam can lead to costly blowouts as well as serious injury to men on the rig.

High temperature of the rock requires special, generally more expensive, alloys in the tools.

The mineral content of many steam wells is partly deposited as the steam escapes into the borehole. This has led to a buildup of mineral matter in some wells that has finally shut them off completely.

Thermal expansion at the higher temperatures can cause a casing to elongate as much as 3 feet per 1000 feet. Drilling muds must be put together so that they do not break down or bake. In addition, provision has to be made to cool the mud before it recirculates and

water has to be added, as water losses are high. A sodium surfactant mud was used to drill the Sportsman No. 1 well at the Salton Sea steam field. The deepest (8100 feet) and the hottest (800°F) steam well ever drilled was also drilled in the Salton Sea steam field, using compressed air.

The cost of steam wells ranges from \$15,000 or \$20,000 for the wells drilled at The Geysers to more than \$120,000 for deep wells such as those drilled at Salton Sea. E. T. Anderson (personal communication) believes the cost of steam wells around the world ranges between 35 and 50 dollars per foot of depth.

Steam wells are noisy. Working around a discharging steam well requires ear caps or plugs, and all communication is by written message.

The average life of a steam well at Larderello, Italy —the only geothermal power station that has been in operation for a sufficiently long period to arrive at an average—is about 20 years. The New Zealand wells are depreciated over a ten-year period, whereas the Icelandic wells are depreciated over a five-year period. Presumably, the life of the wells in the New Zealand and Iceland fields will be much longer than these depreciation periods.

Recommendations

In reviewing the available literature and surveying the available information on geothermal energy in New Mexico, several omissions, ambiguities, and unknown factors came to light. To make the best use of the resource, we need more information. The following recommendations are offered:

- 1. The need for a field inventory of springs is acute. The hot springs in the state have never been adequately inventoried, and the little work that has been done is generally frustrating to use because locations are all too often inadequate. The tables of springs given here are at best a preview of what might be obtained.
- 2. The chemistry of the springs has been studied by different investigators who chose to measure particular ionic or physical properties of the water and not others. Each spring or group of springs should be sampled and detailed chemical analyses of the water should be made with the idea that water chemistry is a tool to be used to locate other steam fields. Such a chemical study could lead to a much better understanding of hydrothermal phenomena in general, particularly the mechanism of ore emplacement. Steam is a gas. Associated with it are other gases, notably hydrogen sulfide, carbon dioxide, methane, ammonia, and hydrogen. To date, little attention has been given to the gases emitted at the warm and hot springs in New Mexico except to note that the air around some springs has the distinctive smell of hydrogen sulfide. Field studies should include analyses for these gases.
- 3. There are on file some 10,000 electric logs of oil wells drilled in the state which frequently give bottom-hole temperatures of the wells logged. There are also on file temperature and sample logs. A study of these logs should lead to a greater understanding of the geothermal characteristics of the state.
- 4. The need for a comprehensive bibliography embracing all the aspects of geothermal energy is acute. The literature can be divided into several classes, and the workers in one class do not seem to cross very often into the fields of the others. Hot springs, hydrothermal deposits, ground water, geochemistry, volcanism, heat flow, geothermal gradients, and geothermal power are studied by men of different background. The least difficult (but much needed) and convenient way to bring the disciplines together is with a comprehensive bibliography. Also, the questions that developers of geothermal power raise are questions that demand a knowledge of the

world's literature, not only on steam but on geothermal energy in all its ramifications.

5. Despite the huge amount of literature on ground water in general and on hot springs in particular, there is no detailed study of the movement of water, either hot or cold, through and along a fault. Yet much of the movement of the thermal water is speculated to be along or through fault zones. There is, then, a need for a detailed investigation of the dynamic characteristics of water in a fractured area.

Such a study must investigate the geologic framework about a fault and the differences in piezometric head in the fluid as it moves in and around the fault. This would involve the installation of several piezometer groups.

- 6. The data on geothermal characteristics and the data on wells plus various sorts of other data are found in publications, in files of the various state agencies, and in the files of individual workers. These data collectively are of great value, but it takes many hours to obtain and to process them to the point where they can be useful. In most cases, researchers who go to the trouble of digging out specific material bury the raw data in their own files and publish only their interpretations. The result is that the "raw" data are lost to subsequent researchers unless they, too, wish to dig them out. The answer to this problem is a central processing center where data of all kinds are filed and cross-referenced in such a way that a researcher locking for all the information on a particular subject can have the data read out to him in a short time.
- 7. The data on the fluctuation of temperature and the chemical quality of hot springs are sparse. At least a few of these springs should be monitored for changes in flow, temperature, and water quality.
- 8. The mechanics of the movement of steam and hot water in a ground-water reservoir has not been reduced to a suitable mathematical model. As a result, much work needs to be done on the mechanics of ground-water movement in terms of optimum well spacings and well yields under various hydrodynamic and geological conditions.,
- 9. Infrared photography and imagery promises to be a useful tool in the investigation for steam. Some attention should be given to the calibration of images in areas where the heat flow to the surface is known. In New Mexico, this would mean that heat flows would have to be determined.

COUNTY	SOURCE	LOCATION	темр. (°F)	DISCHARGE (GPM)	DISCHARGE FROM (AQUIFER)	depth (feet)	REMARKS (<i>see</i> footnotes at end of table)
Bernalillo	well	10N.2W.21.343	90			1180	U
	spring	11N.2W.32	68	3	Mancos Shale	_	S
Catron	spring	11S.12W.30.100	80	50	lava agglomerate	<u> </u>	S
	spring	11S.14W.25	160	900	_		Т
	spring	12S.13W.7	_	_		—	F
	spring	128.13W.11	151	30	lava		S
	spring	12S.13W.14	100	-		_	Р
	spring	12S.13W.24	<u></u>			<u> </u>	F
Dona Ana	well	19S.2W.9.120	120	100		110	Sc
	Agua Caliente	23S.1E.7				_	Р
	Kilbourne Hole	27S.1W.8	100		<u> </u>	100	LRe
Grant	spring	12S.20W.26	<u> </u>	<u> </u>			U
	spring	13S.13W.20	_	30	lava		S
	spring	14S.16W.3		20	lava	_	S
	spring	14S.16W.16		20	lava		S
	hot spring area	15S.17W.9&10			_		U
	flowing well	15S.17W.29.442	68.5	2	<u> </u>	410	U; cased to 40 ft
	warm spring	168.12W.22	150				Р
	well	168.17W.9.223	85		_	22	U
	well	16S.17W.10.433	90				U
	well	16S.17W.19.213	67	_		180	U
	spring	17S.17W.34		30	Gila Conglomerate	_	Sc
	Hudson's Hot Spring	18S.10W.4.100	142	·	lava		S
	Apache Tejo Warm Spring	198.12W.19.300	89, 97	2000	<u> </u>		SPPa
	warm spring	20S.11W.18.300	_	dry	near rhyolite plug		PaU
	well	208.19W.15.400			<u> </u>		\mathbf{U}
	Fuller's Ranch well	208.19W.15.400	81		—	361	U
Guadalupe	Rock Lake	8N.21E.14	65	2700			Т
Hidalgo	well	208.19W.19.321	81		<u> </u>	361	R
	well	21S.18W.18.180	83	—		—	R
	well	21S.20W.1.410	82	_		—	R
	well	228.19W.23.130	85			_	R
	well	24S.18W.32	_	-	_	—	well used to heat greenhouse
	well	25S.19W.7.143	98				R
	well	258.19W.7.134	84.5			74	R
	well	30S.19W.7			<u> </u>	_	Sc; hot stock well
	spring	30S.19W.7	—	_			Sc; thermal pipe by ro
	Humble Oil and Refining Co. No. 1	32S.16W.25		<u> </u>	·	14588	BH 320°F
McKinley	spring	16N.18W.35		—			Р
	Togay Spring	19N.15W.33	65	20	—		s T
Sandoval	Spense Hot Springs	14N.3E.28	110	100	_	—	F
	spring	18N.1E.24		_		<u> </u>	T
	San Antonio Spring	20N.3E.29	130	150	—		SBaSc
	Westates Petroleum No. 1	20N.3E.35				3675	BH 400+°F
San Juan	spring	24N.18W.3			·	<u> </u>	РЈо
-	spring	25N.18W.34	65	3		. —	S
	spring	25N.18W.	67	7	—		S

TABLE 2. INFORMATION ABOUT THERMAL SPRINGS AND WELLS FOR WHICH NO CHEMICAL ANALYSES ARE AVAILABLE

TABLE 2. INFORMATION ABOUT THERMAL SPRINGS AND WELLS FOR WHICH NO CHEMICAL ANALYSE

COUNTY	SOURCE	LOCATION	темр. (°F)	DISCHARGE (GPM)	DISCHARGE FROM (AQUIFER)
	spring	28N.18W.10	68	3	
San Miguel	well	16N.16E.5.211		—	granite
Sierra	Victoria Land and Cattle Co. No. 2	10S.1W.25	-		
	Victoria Land and Cattle Co. No. 1	10S.1W.27	<u> </u>		
	16 wells	13S.4W.33	98.6-112.5		Magdalena Limestone
	spring	13S.4W.33		—	
	Ojo Caliente	14S.1W.28	—	—	<u> </u>
	8 wells	14S.4W.4	107-116	—	Magdalena Limestone
	springs	14S.4W.4	94-110.8	`	_
	Cabello Springs	148.5W.12.4	136	—	_
	Barney Iorio No. 1 fee	14S.5W.25	90	30	<u> </u>
	Sunray-Midcontinent No. 1	15S.2W.23	\rightarrow	_	_
Socorro	Ojo Caliente	8S.7W.30	89	1350	<u> </u>
	Crater well	9S.1E.18.320		—	basalt
Taos	Warm Sulphur Springs	·	68	—	_
	Glen-Woody Camp Springs	24N.11E.28	<u> </u>		
	Ponce de Leon Hot Spring	24N.13E.7	98	100	_
	Mamby's Hot Spring	26N.11E.1	100		
	Warmsley Hot Spring	27N.12E.31		—	_
	Arsenic Springs	28N.12E.8.100		—	_
	springs	29N.12E.12	_	_	
Valencia	warm spring	5N.1W.16	64-82		Rio Puerco fault
	spring	7N.2W.8	65	3	
	spring	7N.2W.16	67	7	sandstone and shale
	1 0				intruded by porphyry
	Quelities Mineral Spring	8N.2W.17	80	3	_

B = open-file data of the N. Mex. Inst. Min. and Tech., State Bur. Mines and Mineral Res. Ba = Bailey, 1961

- BH = bottom-hole temperature
- F = personal communications April 1965 from District Rangers, U.S. Forest Service
- G = Gilbert, 1875 H = Herron, 1915, plate IV
- J = Jemez Springs quadrangle, 1948 Jo = Jones, 1904
- K = Kelley and Silver, 1956L = Lee, 1907b
- P = Peale, 1886
- Pa = Paige, 1916
- R = Reeder, 1957
- Re = Reiche, 1940
- S = Stearns, 1937
- S = Personal communications May 1965 from the Work Unit Conservationists, U.S. Soil Conserva. Serv. T = Personal communication April 1965 from Fred A. Thompson, N. Mex. Dept. Game and Fish

Th = Theis et al., 1941

U = Unpub. data in the files of the Ground-Water Branch, U.S. Geol. Surv.

V = Valverde quadrangle, 1958 W = Weber, 1963

- Wi = Winograd, 1959

 TABLE 3. INFORMATION ABOUT THERMAL SPRINGS (All constituents in parts)

	٩Ŀ	D.4.	aro.	4.3		~ ~	~	-	~		_				
gpm	°F	Date	SiO ₂	Al	Fe	Mn	Cu	Zn	Ca	Mg	Ba	Na	ĸ	HCO3	CO3
		("Clear W 1t 50 yards			location:	9N.4E.24	.1							Bern	alillo
	69	7-25-45	—	_		—	_	_	218	48	—		234	890	0
Source: Remark		Locatio ss road fro	on: 28.14 m old chi		near cour	t house u	pper end	of Mang	35					Ca	tron
450	72	7-17-63		—	—					<1			62	115	22
		n Springs aken upstr	Locatio eam from	on: 58.16V 1 springs;	V.3.300 "b" takei	n several	hundred	yards do	wnstrean	a from sp	rings. Nı	umerous	springs in	meadow	
2000	70	11-20-52	44				—	-					20	138	0
1000 1500	68 70	11- 8-54 7-16-63	42	0.1	0.05	0.00			21 22	6.6	_	19	3.3 13	$139 \\ 124$	0 0
"a" small		7-16-63		_					22	. 6			24	154	0
ʻʻb"	70	7-16-63		_		_	_		28	6	·		14	146	0
	Frisco	Hot Spring			tion: 58.19										
Remark				n collected	l at old b	ath hous			of Gila	Conglom		out 100 f	t above flo	or of Sar	1
	98 Enices 1	5-22-58	58	— Т			0.00	0.01		—	2.2	66	0.5	57	55
		Hot Spring narges from			ion: 128.2 ary age, a			iging from	n 80°-12	4°F (S); t	emperati	ure <u>—</u> 130	°F (P)		
20+	117.0	5 - 16 - 53	85		_				_				333	130	0
_	$\frac{109}{115}$	6-13-58 7- 6-59	76		—	—	0.00	0.00	<u>-</u> 49		0	280	16	132	0
	115	7- 0-59	—	_		_	_		49	40		289		127 Dona	0
Source: Remark		Location dug wells												Dona	Ana
	69	—				<u> </u>		<u> </u>	120	106			858	171	104
		n Springs (ngs issue a					1S.1W.10. r of lowl		he Rio (Grande: te	emperati	ures — 16	58°, 185°F	(S): rhvo	lite
_		5-17-48	71	_	_	_	_		142	23			1160	427	
—	128	11-17-54	75	0.1	0.15	0.40			126	12	_	1100	161	417	0
10	120 +		66	—			0.0	0.25		—	0.0	1100	155	424	0
_	_	5- 4-62			0.0	0.1		_	131	15		1100	163	416	—
Source:	 11/011	8-31-22 Location	60 • 918 1W		1.2	—	· <u> </u>		138	17		1164	111	429	0
					Drilled w	ell, 21/2 i	inches in	diameter	, 250 ft	deep, cas	ed to 150) ft, wate	r-bearing f	ormation	• <u>—</u>
8-9	"hot"	5-25-58	46		—	-	0.01	0.18	_	_	0.0	227	6.0	534	0
Source: Remark:		Spring arges from		1: 218.1E.2 tuff	23.200										
0.5	65	4-24-58	39		—		0.02	0.00	_		0.0	66	5.5	216	0
	s: Drill		inches i		er, 51 ft d	leep, case	d to 24 ft	, water l	evel 24 f	t below la	and surfa	ice, wate	r-bearing fo	ormation	a 20-
4	68	4-24-58	56			—		—	<u> </u>	,	—	95	6.6	310	0
Source: Remark		Location ed well 120			evel at 59'	7 ft belov	v land sur	face, wa	er samp	le from 10	030-1200	ft			
13.2	90	2-19-55	19	0.02		—			110	1.1			928	55	
		t oil well er was strug		on: 288.21 ft: sampl		aste wate	r numped	hy well	during	irilling ~	ontains d	lotorar	and possib	ly other	
500	3. Wale 113	11-25-61					· Pumpeu				C	1380	. and possib	934	0
			÷											-	rant
Remarks	s: Disch	ot Springs 1arge from	lava (S)	ion: 13 S .1											
25 100	147 147	6-23-57	33 68		0.00			—	11	0.2	—	101	129	109	0
100 Source: 1	147 Hot Sp	7-25-62 ring Lo	68 cation: 1	0.31 35.13W.10	0.00	0.00			12	0		121	3.6	106	0
10	126	6-23-57			··· 4 1			_			_			108	. 0
				·····										~~~	

AND WELLS INCLUDING CHEMICAL ANALYSES per million unless noted)

one of the second se	SO4	Cl	F	NO ₃	PO4	в	Total solids	Total solids (sum)	Total solids (evap)	ness as	Noncarb. hardness as CaCO ₃	$(\mu mnos)$		H₂S	Total $\beta \gamma$ activity $(\mu\mu c/1)$	Ra (µµc/1)	U (µg/1)	Ref.
98 500 - - - 130 742 - 232 - - - - 600 ounty 2 1 - - - 0.0 - 504 9.3 - - - - 7.0 5 0.4 0.5 - - - 7.0 256 - - - - 7.0 1 1.1 383 2.9 4.5 0.6 1.5 - - - 7.0 - - - - 7.0 - <td></td>																		
30 30 30 30 30 100 100 100 100 93 93 93 94 95 95 96 93 95 96 93 95 96 93 93 94 93 93 93 93 93 93 94 93 93 93 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94	ounty	T																
2 1 -	93	300	·		<u></u>			1330		742	_	232	_	_		_		4086
1 1	County	7																
1 1												~ ~ (ED I
70 5 0.4 0.5 - - - 86 0 236 - - 2 11 5.8 29 45 0.6 1.5 0.04 175 80 - 237 7.6 - - - 11 5.8 2 3 - - - - - - - - - - - 11 5.8 2 3 - 237 - 266 182 1.7 - - - - - - 260						_										_	—	FKE
39 45 065 130 $ 0.04$ 175 80 $ 235$ 7.6 $ -$	long	east edge	of can	yon flo	oor (B);	issues from	a lake bee	lssand	, gravel	l, clay—o			an Ag	gustin	(S&B)			
2 3 -			0.4								0							2114
2 3 -	2.9		0.6	1.5	—	0.04					_			—		<0.1	1.1	
2 3 $ 94$ $ 264$ 7.9 $ FR$ Francisco River bed. 130°F at 30 gpm (Sc) 6.6 5.0 1.0 0.8 $ 0.04$ 10 0 284 9.7 $ 5882$ 45 512 1.6 1.5 $ 157$ 50 1930 $ -$	2	3		_														
2 3 - - 23 - - - - - - 588 66 5.0 1.0 0.8 - 0.04 10 0 284 9.7 - - - 588 45 512 1.6 1.5 - - - 157 50 1930 - - - 226 41 434 1.8 1.3 - 0.32 112 34 1660 7.6 - - - - 226 1680 7.8 - - - 456 County 2241 1541 - - - 3019 174 - - - - - 456 225 1680 4.6 2.0 - - 3640 449 - 6060 - - - - - 588 257 510 7.2 - - - NMP 255 1650 4.8 1.1 - - 3738	2	3			—				. <u> </u>	80		267	7.4		. —		—	
6.6 5.0 1.0 0.8 $-$ 0.04 10 0 284 9.7 $ -$ 3882 45 512 1.6 1.5 $ -$	2	3	_	_	—	_				94		264	7.9	. <u></u>		_		FRH
45 512 1.6 1.5 - - 157 50 1930 - - - 2265 41 434 1.8 1.3 - 0.32 142 34 1660 7.6 - - - 3580 Jounty 241 1541 - - - 3019 174 - - - - 3580 265 1680 4.6 2.0 - - 3019 174 - - - - - - 4260 255 1650 4.6 2.0 - - 3540 449 - 6060 -	Franci	sco Rive	r bed,	130°F a	at 30 gp	m (Sc)												
11 131 1.3 $ 0.32$ 142 34 1660 7.6 $ 388$ -460 $ 1020$ 286 182 1780 7.8 $ 426$ 241 1541 $ -$ <t< td=""><td>6.6</td><td>5.0</td><td>1.0</td><td>0.8</td><td>—</td><td>0.04</td><td></td><td></td><td></td><td>10</td><td>0</td><td>284</td><td>9.7</td><td></td><td>_</td><td>_</td><td></td><td>38851</td></t<>	6.6	5.0	1.0	0.8	—	0.04				10	0	284	9.7		_	_		38851
11 131 1.3 $ 0.32$ 142 34 1660 7.6 $ 388$ -460 $ 1020$ 286 182 1780 7.8 $ 426$ 241 1541 $ -$ <t< td=""><td><i>.</i></td><td>510</td><td>1.0</td><td>1.6</td><td></td><td></td><td></td><td></td><td></td><td>157</td><td>. 50</td><td>1930</td><td></td><td></td><td></td><td></td><td>_</td><td>2269</td></t<>	<i>.</i>	510	1.0	1.6						157	. 50	1930					_	2269
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						0.32							7.6		_	—		3886
241 1541 - - 3019 174 - - - - M& 255 1680 4.6 2.0 - - 3540 449 - 6060 - - <t< td=""><td></td><td></td><td></td><td></td><td>`</td><td>-</td><td></td><td></td><td>1020</td><td></td><td></td><td></td><td></td><td></td><td>—</td><td></td><td>—</td><td>4260</td></t<>					`	-			1020						—		—	4260
An 1511 An An Hikes intruded into latitic tuffs overlain by alluvium (S&B) $265 - 1680 - 4.6 - 2.0 3660 - 364 - 6100 - 7.2 - 170 - 0.6 - 18 - 388 - 277 - 1660 - 5.7 - 1.4 - 0.32 380 - 320 - 350 - 320 - 350 - 20 - 3738 - 3707 - 352$	Count	ý :																
An 1511 An An Hikes intruded into latitic tuffs overlain by alluvium (S&B) $265 - 1680 - 4.6 - 2.0 3660 - 364 - 6100 - 7.2 - 170 - 0.6 - 18 - 388 - 277 - 1660 - 5.7 - 1.4 - 0.32 380 - 320 - 350 - 320 - 350 - 20 - 3738 - 3707 - 352$	0.41						9010			174	_	_		_	,			M&F
265 1680 4.6 2.0 - - 3540 449 - 6060 - 10.0 10 <td></td> <td></td> <td></td> <td>_</td> <td>-</td> <td>_</td> <td></td> <td></td> <td></td> <td>1/1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				_	-	_				1/1								
235 1630 4.3 1.1 $ 3620$ 364 $ 6100$ 7.2 $ 170$ 0.6 18 88 277 1660 5.7 1.4 $ 0.32$ $ 380$ 32 5510 7.2 $ 388$ 269 1677 5.3 0.26 $ 3738$ 3707 352 $ -$					uffs overl	lain by allu	uvium (S	&В)				0000						(
237 1600 5.7 1.4 $ 0.32$ $ -$ <td></td> <td></td> <td></td> <td></td> <td>—</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>—</td> <td></td> <td>79</td> <td></td> <td>170</td> <td>. —</td> <td>18</td> <td>S&1</td>					—	_					—		79		170	. —	18	S&1
217 1060 5.7 1.7 3660 390 $ 6100$ 7.2 $ -$						0.32			5020						170		, <u>10</u>	3886
253 1752 $ 3738$ 3707 352 $ -$ <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3660</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>_</td> <td></td> <td></td>							3660							_		_		
126 32 2.2 28 0.13 142 0 1130 8.2 $ 388$ 100 42 1.0 0.3 $ 0.04$ 188 11 627 7.8 $ 388$ 51 ft = latite tuff 49 10 5.2 16 $ 17$ 126 $ 612$ 7.8 $ 388$ 927 910 3.3 $ 2930$ 279 4640 8.6 $ H8$ drilling chemical contaminants; lime of Cretaceous age 736 0 7380 7.3 $ 488$ county 40 104 12 0.5 $ 0.07$ 369 414 421 30 0 638 7.5 $ -$	253				—	_		3707					_		_	_		205
126 32 2.2 28 0.13 142 0 1130 8.2 $ 388$ 100 42 1.0 0.3 $ 0.04$ 188 11 627 7.8 $ 388$ 51 ft = latite tuff 49 10 5.2 16 $ 17$ 126 $ 612$ 7.8 $ 388$ 927 910 3.3 $ 2930$ 279 4640 8.6 $ H8$ drilling chemical contaminants; lime of Cretaceous age 736 0 7380 7.3 $ 488$ county 40 104 12 0.5 $ 0.07$ 369 414 421 30 0 638 7.5 $ -$																		
100 42 1.0 0.3 $ 0.04$ 188 11 627 7.8 $ 588$ 51 ft = latite tuff 49 10 5.2 16 $ 17$ 126 $ 612$ 7.8 $ 388$ 927 910 $ 3.3$ $ 2930$ 279 4640 8.6 $ H8$ drilling chemical contaminants; lime of Cretaceous age 736 0 7380 7.3 $ 488$ 200nty 104 12 0.5 $ 0.07$ 369 414 421 30 0 638 7.5 $ 448$	andesi 126			28	—	0.13				142	0	1130	8.2	_			_	3886
100 12 1.0 0.0 0.01 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																		
49 10 5.2 16 126 612 7.8 388 927 910 3.3 2930 279 4640 8.6 H8 drilling chemical contaminants; lime of Cretaceous age 736 0 7380 7.3 488 County	100	42	1.0	0.3	—	0.04				188	11	627	7.8		_		-	3886
49 10 5.2 16 126 612 7.8 388 927 910 3.3 2930 279 4640 8.6 H8 drilling chemical contaminants; lime of Cretaceous age 736 0 7380 7.3 488 County	51 ft =	<u>-</u> latite t	uff															
927 910 3.3 $ 2930$ 279 4640 8.6 $ H8$ drilling chemical contaminants; lime of Cretaceous age 736 0 7380 7.3 $ 488$ 250 1610 $ 736$ 0 7380 7.3 $ 488$ County 40 104 12 0.5 $ 0.07$ 369 28 $ 653$ 8.2 $ -$ <	49	10	5.2	16	_	.17				126		612	7.8	_		_	—	3884
327 510 510 510 1000 drilling chemical contaminants; lime of Cretaceous age 736 0 7380 7.3 $ 488$ 856 1610 $ 736$ 0 7380 7.3 $ 488$ County 40 104 12 0.5 $ 0.07$ 369 28 $ 653$ 8.2 $ 361$ 45 102 9 0.07 0.00 $ 414$ 421 30 0 638 7.5 $ 48$																		
drilling chemical contaminants; lime of Cretaceous age 856 1610 — — — 488 County — — — 736 0 7380 7.3 — — — 488 40 104 12 0.5 — 0.07 369 28 — 653 8.2 — — — — 361 45 102 9 0.07 0.00 — 414 421 30 0 638 7.5 — — — 488	927	910		3.3			2930			279		4640	8.6			_	*****	H&I
350 1010 \square <th< td=""><td></td><td></td><td>cal cont</td><td>amina</td><td>nts; lime</td><td>e of Cretace</td><td>eous age</td><td></td><td></td><td>796</td><td>0</td><td>7380</td><td>7 9</td><td></td><td></td><td>_</td><td></td><td>4885</td></th<>			cal cont	amina	nts; lime	e of Cretace	eous age			796	0	7380	7 9			_		4885
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				_	_													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		•																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40	104	19	05		0.07	369			28	—	653	8.2		—			3610
					7 0.00		000	414	421								_	489
	22	59								15	0	432	8.1	_				3610

TABLE 3. INFORMATION ABOUT THERMAL SPRINGS

(All constituents in parts

_

gpm	°F	Date	SiO_2	Al	\mathbf{Fe}	Mn	Cu	Zn	Ca	Mg	Ba	Na	к	HCO3	CO
															Fran
	Drilled			15S.17W.											
		Conglome		ter level :		ow surfa	ce; well	300 ft de			m 75-85 f				
10	92	7-14-62	48		0.00	_	_	-	3.0	0.1	—]	150	130	2
	Spring Scila	Locati Conglome		7W.30.224	t										
30	x3. 011a 77	9-14-55		_										109	
	Allen S		Location	a: 16 S .15W	796 419	_		_		—	_		_	123]
		s from fau													
80	77.5	4-2-54	18				_		78	39	-		18	387	
	Drilled			16S.17W.9											
emarl		deep, diar	neter 8″,	cased to 3	36 ft; wate	r level 19	ft below	surface							
	86	6- 8-55	40	. —	0.09				7.5	1.0	—	1	26	241	
	Well	Location	1: 16S.17V	N.34.212											
90	84 84	in orifice; 4-26-55	32			r level +	60 ft belo	ow surfac							
	Spring			 8W.34.314	0.04		_		18	3.0	_		92	232	
		nic tuff of													
0.75		7-28-55				_			_					212	
	Spring		on: 168.2	1 W.20.3 00) (?)						_	_		414	
		g in bed o			(.)										
1	69	9-20-41	_				<u> </u>		536	67		62		164	
ource:	Ash Spi	ring Lo	ocation: 1	17S.15W.2	0.222										
		ite of Prec		age											
0.25		854	15	—	—	—	—		71	21			11	200	
	Spring		on: 178.2	1W.18.200	(?)										
emari 1	69 69	g at fault													
~	Spring	9-17-41		 W.31.340	_	—			56	93	—	83	—	415	1
5	71.5	6-10-52		W.31.340										1.00	
-	Goat Sp		ocation	18S.9W.3	4 194	_						—	_	160	
		bres congl	omerate;	water iss	ues from	joints in	conglom	erate stri	king N. 4	45 W., dii	ning 309	s			
20	66	3-21-57		_		••	_	_				_	_	210	
ource:	Mimbre	es Hot Spr	ings J		18S.10W.1										
emark	s: "a" s	pring upst	ream fro	m Mimbr	es spring;	"b," Gre	en Hors	e Spring;	"c," Min	abres Hot	Spring.	Discharge	: 100 gpn	n at 135°	an
" 10	79	6- 5-52										Ť			
,,	15	0- 5-54			_	—								83	1
10	135.5	6- 5-52			-		_				—			75	2
20	137	6-5-52	53		-	_			12	2.6	_		86	113	_
		d Hot Spr		Location:	208.11W.2	0.243									
emark	s: Sever	al springs	discharg	ing 120 g	om @ 142	°F from h	base of la	va slope;	issues fr	om top of	traverti	ne mound	l 20 ft hig	gh (S); (se	ee
5-20	129.2	6- 5-52	—	·	*****		—	_	_	_			91	282	
50	128	4-19-57	43	0.0	0.1	0.00			38	7.3	—	85	7.8	278	
50	128	below: Pb 11- 9-54	= 0.00	_	_	_	0.0	0.0	37	8.5		<u> </u>		282	
	Well	Location													
emark	s: Drille	ed well 470) ft deep,	water lev	el 443 ft b	elow surf	ace								
<u> </u>	82	5 - 16 - 55	34	—	0.15	—	·	—	44	13		I	23	229	
														Guada	վսր
	Spring		on: 8N.21												
	s: Blue	Hole at or	itlet to U	J.S. Fish H	Hatchery a	it Santa R	losa; yiel	d of 500-	1000 gpm	at 65.5°1	F (B)				
500- 100	65 5	5- 6-59	16						600	60			00	101	
00	09.9	9- 0-99	10	_	Aur un	_			620	62			33	181	. .
WITCH!	"Blowie	ng'' well	Locatio	m. 996 01	147 9 910									Hid	alg
		of unkno		on: 228.21 with wa		46 ft hel	w the L	and curfa	ce diach	Tree Wat	ar from +	he Santa	Fe forma	tion /110.1	K.V.
mair								ouild	ce, anoun	maco wali	- riom r	me gama.	r o rorma		

AND WELLS INCLUDING CHEMICAL ANALYSES (cont) per million unless noted)

	*						an · *				Sp. Con	a		Total			
SO4	Cl	F	NO ₃	PO ₄	в	Total solids	Total solids (sum)	Total solids (evap)	Hard- ness as CaCO ₃	Noncarb. hardness as $CaCO_3$	$(\mu mhos)$	3	H_2S	$egin{array}{c} eta^-\gamma \ { m activity} \ (\mu\mu{ m c}/1) \end{array}$	Ra (µµc/1) ($_{\mu \mathrm{g/1})}^{\mathrm{U}}$	Ref.
County	(Conti	nued)															
103	18	21	0.1	_	_		431	435	8	0	665	9.0	_	_	_	—	50019
•	5.2	_	-						72	0	256	8.7	_			—	31368
20	38	0.8	2.4				404		355	38	621	· ·	_			_	26035
51	16	8.0	1.6		—	363	370		22	0	551	7.9					29790
38	8.5	6.0	0.1	—	·	311	312		58	0	472	7.9	·			_	29750
_	8.8		—		_				158	0	389	7.2	—		—		31374
1519	21	1.1	0.8	—		2288			1613		255	—		_	_		1559
110	4	1.2	1.2	· .	—		332		264	100	526	_			_	_	27635
283	21	0.9	20				773		522		118	_		_	—	—	1569
	9.0	5.2	—						66		347	—	-	- <u>-</u> -			19655
	9.0	 .	—	—	_				132	. 0	353	7.4				—	38212
137°F fr	om Mi	mbres	fault zo	one (S);	about 30	springs wi	th a cor	nbined	flow of 1	00+ gpm	from la	atite a	nd rh	yolite at	the surfa	ice (E	Bu)
	17	16			—				11	—	451	_	-	—			19647
	16	16	_						9	_	450		—		—	—	19645
65	17	16	0	—	—		308		40	0	457			_	_		19646
also JoE 50 52	Bu) 18 16	$7.0 \\ 6.8$	0.1 0.2	0.00				384	129 125	0	$606 \\ 605$	 7.4		 19	 29		19824 S&B
—	17	—	—	—					128	0	600		_		_	_	27917
193 County	23	2.8	3.5		_		549	553	164		820	8.0	,		_	—	29797
1590 County	48	0.5	0.1	_			2460		1800	1650	2620	7.3		_	_	, 	42376
temperat	ture is §	5° F , d	epth is	449 ft (F	R)												

TABLE 3. INFORMATION ABOUT THERMAL SPRINGS

(All constituents in parts

gpm	°F	Date	SiO_2	Al	Fe	Mn	Cu	Zn	Ca	Mg	Ba	Na	К	HCO3	CO,
														Hie	dalgo
Source: Remark		Location roup of thr	on: 25S.19 ree irrigat		in alluvi [,]	um, rang	ing from	83 to 106	6 ft deep	o with casi	ings perfe	orated 4	2-90, ?, & 5	0-82 ft, d	irilled
		2-1-49	_						24	1.5			324	146	0
	240	4-28-49	141		_	—	_	—	19	1.2	_		329	181	0
	_	7-30-51 3-28-52			_						_		_	$\frac{163}{163}$	7 7
_	210	3-28-52 4-27-54	138	0.1	0.07	0.00		_	21	0.7		324	21	163	6
—	—	4-10-55	135	—	—				22	1.5			319	157	Ũ
Source:	· Spring	gs at Ojo Ca	liente	Locatior	1: 24N.8E.									Rio A	rriba
Soda Sp 15	i û	10- 1-47	60						08	87		1	1040	2200	0
15 Soda Sp						_			23 95	8.7	_				
 Sodium	 Sulfate S		66		_		—		25	9.0		997	29	2180	C
0.25 Soda Sp	90	10- 1-47	56	—	_		-		25	8.7		1	1040	2210	0
Bath Ho	115	10- 6-49	60	0.3	1.2		_	—	23	9.5	Trace	996	31	2230	_
10	105	10- 6-49	63		0.02			—	24	7.6		933	34	2160	0
Arsenic —	Spring 113	10- 6-49	63	—	0.01	_	_		25	8.9	_	928	30	2160	0
	Spring		on: 25N.8		` Dalı	ad									
Remark Field 1	(S: Thre	ree almost co	ontingen	ι springs; 1	irom Dake	ota Sanus	stone (?)								
Field 2	97	9- 5-52	—			—	—	—	—	—	_			692	0
	97	9- 5-52	_	_	_	_	_		—		—	—	_	698	0
Field 3	97	9- 5-52	_	_	-	_	_	—	_	—	_	_	—	694	0
Field 4	97	9- 5-52	22						145	59			187	698	0
Field 5	65	9-15-52	15		0.Q1				44	11			11	73	0
				0	ŝ.									Sand	doval
	: Spring ks: Seep	g Locatio 5 in arroyo l	on: 13N.4 bottom at												
0.5	кз. зеер 68	8- 9-62			_			_	_	_	_	10	1.2	291	0
Source:	San Ys	sidro Warm			on: 15N.1										
Remark	Ŷ	roup of sev	*		of Rio Sa			calcareou			ing (Ri);				
—	68	9-15-24 8- 6-45	15		3.0			—	368 822	85 84	—		2219	1757 1780	
	_	3 - 6 - 45 3 - 6 - 45							322 306	84 73			1830 2080	$\frac{1780}{2000}$	0 0
		3- 0-45		_	0.48	_			300 324	75 85			1850	1820	0
5-10	72	9-29-48	16	_		—	—	—	300	74	—		2100	2020	Ő
Source:	San Ys	sidro Hot Sp	prings		: 15N.1E.8		- trifa s	d ani					• ** -		
Kemais	ks: Issue 86	es from fau: 9-15-24	ilted beds	0f 1 Flassi	ic age (S); 2.0	, calcareo	US TUIA A	rouna spr —	ring (Ri) 497	91		ş	3310	1969	
Source:				 16N.1W.1 (1		ed)		-	'IJ1	71		~)310	1000	
		lled well 12'					ft deep	[Aqua Za	rca, 600	ft; San Ar	ndres, 870) ft; Abc	o, 1535 ft;]	Magdaler	n a,
	115	9-29-26	18		2.3	_			400	73	_		3450	1498	
Include v 1500		ta below : Mo 3-14-64		Pb = 0.6; Li 2.6		s = 0.60; B = 0.01	Br = 0.3; I = 0.04	I = 4.6; Se 1.5		75 56	_	3550	87	1450	0
		g and oil tes			5.9 1: 16N.1W.		0.01	1.0	940	50	-	0000	ς,	* -0 .	
Remark	ks: The	flowing ab	pandoned				I ₂ S and c	other gase)00 ft dee	-			
_	180	4- 3-56 7-20-58	35 81	—			—	—	328 201	76 67	<u> </u>		3500	$1470 \\ 1410$	0
Well	-	7-29-58	31	-	0.00		—	—	301	67	_		3590	1410	0
	140 Swimr	9-29-48	27					—	368	73		З	3640	1470	0
Source.		ning pool sp 9-14-24	· ·	Location:		,0 (unsurv	/eyed)		960	70		ç	2400	1301	_
Cource.	70 Indian		30 Location	- 14NI 9E	0.60 20 142				260	70		4	2400	1001	-
2 Source:	95	8-30-62	Location 48	n: 16N.2E.2	29.142 0.03				100	8.6	_	,	1240	1280	(
		0-30 04	T U		0.03					0.0			1410		

=

AND WELLS INCLUDING CHEMICAL ANALYSES (cont)

per million unless noted)

	(1)			PO	n	Total	Total solids	Total solids		Noncarb. hardness	(μmho)	5	пе	Total $\beta - \gamma$ activity $(\mu \mu c/1)$	Ra $(\mu\mu c/1)$	U (ug/1)	Ref.
SO4	Cl	F	NO3	PO ₄	В	solids	(sum)	(evap)	CaCO ₃	as CaCO ₃	at 25°C) pH	н ₂ 8	(μμο/ 1/	(μμο/ 1)	μ6/1/	
Count	y (Conti	nued)															
into ''	hard rock	and	"solid r	ock, v	ery hot" (R)												
509	85		6	—				1020	66	0	1650		_	_	—	_	R
460	78 81	11	0.9	_	0.45			1130	_~ 52	0 0	$\begin{array}{c} 1540 \\ 1660 \end{array}$	_				_	12284 R
_	82	_	0.4		_			_	55		1600	8.2		_			R
474	83	9.9	0.3					1160	56 61	0	1580	$8.4 \\ 7.6$	—	12	0.3	0.2	S&B R
459 Count	80 v	13	0.2	_				1110	. 01	0	1510	7.0					к
Coun	.5																
168	238	16	1.6	_	1.7		2640		106	0	3890	—	_				8977
162	240	16	0.9	-	, 		2620		100	0	3910	7.2			—	_	13378
165	245	16	1.7		4.6		2650		106	0	3890	—	—	·	_		8978
151	231	0.84	0.9	0.2	1.2				_	_		7.2		_	—	- 1	VH&W
156	238	16	0.5		1.7		2540		91	0	3920	6.9					13192
156	238	16	0.8	_	1.6		2530		99	0	3930	7.1	_		_		13193
_	107		_		_					_	1730	_	_	_			20032
	111			· ,	_				_	_	1760	_	_	_			20033
	108										1740	_	_	_	_		20034
270	110	1.4	0.2		_		1140		604	32	1740	_		_	_		20035
110	2.5	0.2	0.2				230		115	95	347	7.0			_		20119
Count		0.4	0.4				450		115	55	517	7.0					20115
									•								
57	6.4		0.6	_	—				294	56	563	7.4	.—	—		—	50288
faulte	d crest of	anticli	ne (S)														
1712	1940		Trace		_	7320			_						—	_	Ri
1200	1710			—	$BO_3 = 60$		6020		$1150 \\ 1060$	0 0	903 980	—		-		<u> </u>	$\frac{3478}{3479}$
1200 1240	1920 1700	_	_	_	BO ₃ =60		$\begin{array}{c} 6560 \\ 6100 \end{array}$		1160	0	896	_	_	_			3548
1240	1880	3.8	5.1		10.3		6610		1050	0	9750	6.5	—	—	_		10983
3401	2500	-	Trace		50	10960			1608	—			—	—			Ri
1890 f	t] (B)																
3645	2660	<u> </u>	0	_	—			11120	1299		—	—				-	Ri
3260	2990	2.8	0.2	—	4.8		11000		1090	0	15300	7.3	—	-		—	54144
3320 3340	2900 2970	 4.5	 8.1	_	6.6		$\begin{array}{c} 10900 \\ 11000 \end{array}$		1130 1030	0 0	$15000 \\ 14900$	6.6 7.2		·		_	32740 39231
3540	3010	1.5 2.6		_	6.6		11400		1220		15400	6.8	_	_	_	_	10984
			_		-												
1728	2330		Trace	_				7510		937							Ri
286	1140	7.3	0.3	_	6.1		3470		285	0	5680	8.0		—		—	50248

TABLE 3. INFORMATION ABOUT THERMAL SPRINGS (All constituents in parts)

gpm	°F	Date	SiO ₂	Al	Fe	Mn	Cu	\mathbf{Zn}	Ca	Mg	Ba	Na	К	HCO3	CO ³
Source	Spring	g at Ojo del	Fenirit	u ranch k		C camp	on San V	Jeidro ar	undramato\	Locat	ion, 171	XT 1 747 1 2	(112)	Sand	loval
	60 Spring	9-22-24	30	u rancii r	100se (CC 0.30	с сашр —			90	12	1011: 171 12	N.1 W.15	(unsurveyed 12	1) 259	
	Soda I	Dam springs	(The S		Locatio	on: 18N.	2E.14 (uns	surveyed)	1						
Remark				hannel of		ver fron	n flow`of	about 10	gpm at 7	75°-105°F	(S); at e	contact c	f granite of	Precamb	orian
$\frac{-}{40}$	$\frac{104}{96}$	8-21-24 6-28-49	48 47		0.10				328	23	—		1000	1440	
Sulphur	Pool		77	_	—				327	27			830	1400	0
 Sulphur	100 Pool	8-2-49			—		_			_			. —	1500	0
10	102	6-24-49	47	—			—		330	29			1170	1540	0
Sulphur 1	—	1-20-50	42					-	221	29		1020	197	1200	0
Sulphur	Pool	12-20-49											_	1520	0
Geyser S	bpring	10-10-50	_			_									
Geyser S	pring							_	_					1550	0
Geyser S	bring	6-20-50				_						_	_	1550	0
—	110	8-2-49	—	*	—	_	—	-	—		—		—	1580	0
Geyser S 5		6-28-49	47	_	-	_	_		344	29	_		1140	1580	0
Geyser S	pring	12-20-49	_	_		_	_			_	_		_	1590	0
		8-31-46	—		—	_		_				—		883	0
Hole-in-l	Rock Sr	6-14-49	35	_		_			304	32	_		932	1560	0
Sulphur	Pool	8-31-49	48		0.04	_			332	33		1000	183	1530	0
_	104	8-21-24	48		0.10	_	_	—	328	23	_	1000	1000	1440	Ő
2	81	6-26-49	43		· <u> </u>			—	326	30	—		1200	1550	0
25	95	8- 2-49 8-31-46	44		_			_	$\begin{array}{c} 326 \\ 346 \end{array}$	27 33	_		986 1230	$\begin{array}{c}1440\\1530\end{array}$	0 0
		8-31-46		_			_	_	314	33 32			989	1550	0
0.5	102	6-14-49	47					—	340	31	—		1170	1590	0
Well 12.5		12-13-57			_		_		_		_			338	5
Dug Pit 40	96	6-28-49	47	_		_		_	327	27	_		830	1400	0
Source:	Jemez	Hot Spring	gs Lo	cation: 18	3N.2E.23 (u	insurvey	ed)								
		out 10 sprin	ngs flowi	ing 200 gj	pm with t	emperat	ures rang	ging fron	n 94° to 1	168°F fro	m faults	i n re db	eds of Perm	ian age	(S)
Bath Ho	use 125	8-21-24	91	_	1.2	_	_	_	166	9.0			645	791	
	160	4- 3-56	86	_	_	_		_	136	10		618	70	716	0
Main Sp —-	ring No	5. 1 4-15-47	47	_	0.04		_	_	18	6.2	_	12	3.6 ·	94	0
Main Sp	ring No		60		0.01				47						
No. 3								_		14		14	3.0	228	0
—	164	4-15-47	51		0.01	_	_	_	34	10		39	3.8	232	0
25	164	$8 \cdot 1 \cdot 47 \\ 6 \cdot 14 \cdot 49$	$\frac{64}{91}$	_	0.0	_	_		$\frac{137}{137}$	4.4 9.0	_		701 677	$\begin{array}{c} 750 \\ 740 \end{array}$	0 0
Behind H		use							1	9.0	_		077	740	0
10	150	6-14-49	92					—	140	9.4			680	758	0
10 Behind I	150 Sath Ho	8-31-49	93		0.03	_	—	_	138	6.6	—	572	70	735	0
20	152	10-24-51		—		—	—	—			—		—	727	0
		oring (McCa			Location: 1			ada of D							
110	s: 1ssu 98	es at base o 8- 1-47	51 recent 53	. voicanic	now on c	ontact W		eus or P	ermian ag	ge; no ob 4.2	vious m	meraliza	23	87	0
		ur Springs o		ur Creek	-	on: 19N	3E.4 (uns	surveved)		7.4			43	07	U
Remark	s: The	ermal water	s issue f	rom volca	nics of lat	e Tertia	ry age (R	i); about	8 springs	s discharg	ing 500	gpm at 8	36°-167°F fr	om ande	sites
		use; Acidity : 8-31-24			369	_	Trace		321	24		-	304	0	0
Alum Sp	ring; A	cidity as SO	1 = 2328				Tace	_							
Alum Sr	76 ring; A	8-31-24 Acidity as SO4	146 = 2570	421	72	—	_		316	51	_		127	0	0
—	61	8-13-47	170	501	2.8	—			256	35		—	—	0	0
Laxative	spring	; Acidity as 8-31-49	$so_4 \equiv -42$		0.64	_			168	23		14	_	0	0

AND WELLS INCLUDING CHEMICAL ANALYSES (cont)

per million unless noted)

SO4	Cl	F	NO ₃	PO4	в	Total solids	Total solids (sum)	Total solids (evap)	Hard- ness as CaCO ₃	Noncarb. hardness as CaCO ₃	$(\mu mhos)$		нs	Total $\beta \gamma$ activity $(\mu\mu c/1)$	Ra (µµc/1)	U (µg/1)	Ref.
	ty (Cont			4									2-		<i>P</i> - <i>P</i> -	<i>P</i> .	
99	4		0.25	—	_	396			274	_	_				—		R
	lagdalena	ı Group			1												
$\frac{40}{51}$	$1320 \\ 1080$	2.4	Trace 1.3		8.7	3458	3060		914 927		5160	 6.8				_	R 1220
39	1540		_	_	_						6610				<u> </u>	_	1252
42	1540	3.2	1.0		14		3920		942	0	6600	6.9		_	_		1221
39	1510	3.3	4.3	_	_		3660		670		6150				_	_	1384
_	1530	_	_	_							6530	_		_			1348
_	1550			_						_	6620				_	_	1509
_	1550										6590				·		1509
40	1510	_	-						_	_	6590						1253
42	1500	3.2	1.3	_	13		3880		978	0	6520	6.9	_	~	_	_	1221
	1520	_									6530	_		-	_	_	1348
912	1570	—									5970			—	—		712
60	1110	3.2	1.6	—	9.8		3250		890	0	5410	6.9	<u> </u>				1214
41 40	$1550 \\ 1320$	3.6	1.4 Trace	<u> </u>	12 BO ₃ ==2.5		3950 3471		964 914		$\frac{6570}{3458}$	6.9		-			1308
40 40	1520	3.6	1.2		12 12		3990		914		6720	7.0					322 1220
45	1300	2.8	1.7		9.1		3440		924		5860		—				1253
263 53	$1520 \\ 1220$	3.5 2.8	$1.5 \\ 1.4$	_			4150 3380		999 915	0 0	$651 \\ 563$	_			_		712 712
37	1540	4.0	2.0	_	12.5		3950		976		6620	6.7					1214
—	9.0	<u> </u>	<u> </u>	—	_				266	0	563	8.3		-			-
51	1080	2.4	1.3	—	8.7		3060		927	0	5160	6.8	:				1220
(see al	so RiJoP)															
42	820		5.0		2.5	2184			452		_			_	_	F	(i, 3 22
44	870	5.2	0.5	_			2190		380		3860	6.7			—	_	3274
15	4	0.8	0.4	—	0.0		153		70	0	1840	_	—	_			825
15	4	0.8	0.3		0.0		270		175	0	3510	—			—		825
17	4	0.8	0.3	—	BO₃=0.0		274		126		3640			-	_		825
44 51	855 835	7.1 4.9	0.4 1.7		6.33		2180 2170		360 379		$\begin{array}{c} 3700\\ 3640 \end{array}$	7.2 7.6		_			892 1213
51	835	4.9	1.5	_	_		2170		388		3670	7.7					1214
49	795	1.5 5.2	0.8	_	11	2150	2090		372		3560	7.2		_	_		1307
—	_		—						_	_	3680			—			1777
8.0	8.0	1.6	0.4		BO3=0		152		45	0	19.8	8.1				_	892
and rl	1yolites o	f Terti	ary age	(S) (se	ee also GPH)												
560	294		0	77	· _ /	6270	5420					_	8.2	2	_	_	322
159	1.0		Trace			4344	4344			_			2.1			_	322
030	1.0	0.7	0.4			1.711	1911		_	_	826	1.8	ر.ب <i>ک</i> 				893
						0.05							—				1325
614	8.0	0.0	0.4			967			514	514	1270	3.1			_	·	132

TABLE 3. INFORMATION ABOUT THERMAL SPRINGS (All constituents in parts

oot Bath 99 emonade Spring 115 emonade Spring 130 emonade Spring - en's Bath House - adies' Bath House - adies' Bath House - '.ud Bath - - 97 ootbath Spring - - 97 ootbath Spring - - 97 lectric Spring 105 lectric Spring 15 15 102 lectric Spring - 15 102 ulphur Creek bel - - - ource: Hot spri - - 100 ource: Steam v. - - - - - - - - - - - - - <t< th=""><th>$\begin{array}{c} \mathbf{g} \\$</th><th>216 219 = 0.07; Pt 190; Pt 259 162 </th><th>$56 \\ 205 \\ 0 = 0.12 \\ 36 \\ 90 \\ \\ \\ \\ \\ \\ \\$</th><th>$\begin{array}{c} (\text{cont}) \\ 33 \\ 217 \\ \text{Se} = 0.03 \\ 115 \\ 252 \\ 1.8 \\ \\ \\ 1250 \\ 93 \\ \\ 1250 \\ 93 \\ \\ 22 \\ 12 \\ \\ 92 \\ 3.4 \end{array}$</th><th></th><th></th><th></th><th>185 66 6.9 41 150 303 110 154 7.2 45</th><th>52 17 9.7 16 73 </th><th></th><th>24</th><th>24 42 31 52 57 12 12 </th><th>Sand 0 0 0 0 0 </th><th>lov</th></t<>	$\begin{array}{c} \mathbf{g} \\ $	216 219 = 0.07; Pt 190; Pt 259 162 	$56 \\ 205 \\ 0 = 0.12 \\ 36 \\ 90 \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c} (\text{cont}) \\ 33 \\ 217 \\ \text{Se} = 0.03 \\ 115 \\ 252 \\ 1.8 \\ \\ \\ 1250 \\ 93 \\ \\ 1250 \\ 93 \\ \\ 22 \\ 12 \\ \\ 92 \\ 3.4 \end{array}$				185 66 6.9 41 150 303 110 154 7.2 45	52 17 9.7 16 73 		24	24 42 31 52 57 12 12 	Sand 0 0 0 0 0 	lov
emonade Spring 	$\begin{array}{c} \mathbf{g} \\ $	216 219 = 0.07; Pt 259 162 $s SO_4 = 54i$ 237 122 174	56 205 90 $-$ $-$ $-$ 303 172 $-$ 694 469 $-$	33 217 Se = 0.03 115 252 1.8 1250 93 22 12 92	0.33			66 6.9 41 150 303 110 154 7.2 	17 9.7 16 73 		24 	42 31 52 57 57 57		· · · · · · · · · · · · · · · · · · ·
150 ten's Bath House 110+ ath House: As = 	$\begin{array}{c} 8.31.49\\ \begin{array}{c} 8.31.49\\ =& 0.05; \text{Li}:\\ =& 0.05; \text{Li}:\\ 11-& 4.63\\ \hline\\ 8-31.24\\ \begin{array}{c} \text{g}\\ 8-13.47\\ \begin{array}{c} \text{g}\\ 7.28.49\\ \text{g}\\ \text{g}\\ \text{g}\\ \text{g}\\ \text{s}\\ \text{s}\\ \text{s}\\ \text{s}\\ 120.50\\ \hline\\ 10.24.51\\ \text{se}\\ 8.31.24\\ \begin{array}{c} \text{warken }\\ 8.31.24\\ \hline\\ 8.31.49\\ \hline\\ 8.13.47\\ \hline\\ 8.13.47\\ \hline\\ 8.13.47\\ \hline\\ 8.31.49\\ \hline\\\\ 8.31.49\\ $	$219 \\ = 0.07; Pt \\ 190; Pt \\ 259 \\ 162 \\ \\ \\ \\ \\ \\ 324 \\ 237 \\ \\ 122 \\ \\ 122 \\ \\ 174$	$205 \\ 90 \\ \\ \\ \\ \\ \\ 303 \\ 172 \\ \\ 694 \\ 469 \\ $	$217 \\ Se = 0.03 \\ 115 \\ 252 \\ 1.8 \\ \\ \\ 1250 \\ 93 \\ \\ 22 \\ 12 \\ \\ 92 \\ 92$	0.33			66 6.9 41 150 303 110 154 7.2 	17 9.7 16 73 		24 	42 31 52 57 57 57		•
- 110+ ath House: As = - 188 oot Bath - 99 emonade Spring 1 15 emonade Spring - 115 emonade Spring 	8-31-49 = 0.05; Li : 11-4-63 = 0.05; Li : 11-4-63 = 0.05; Li : 11-4-63 = 0.05; Li : 12-51 = 0.06 = 0.05; Se = 0.05	= 0.07; Pt = 190; Pt = 1	p = 0.12 90 	$Se = 0.03 \\ 115 \\ 252 \\ 1.8 \\ \\ \\ 1250 \\ 93 \\ \\ 22 \\ 12 \\ \\ 92$				6.9 41 150 303 110 154 7.2 	9.7 16 73 33 11 42 19 		24	31 52 — 57 —		· · · · · · · · · · · · · · · · · · ·
 I88 oot Bath 99 emonade Spring 115 emonade Spring 130 emonade Spring emonade Spring emonade Spring emonade Spring emonade Spring en's Bath House adies' Bath House<td>11- 4-63 8-31-24 g 8-13-47 g 7-28-49 g; Se = 0.00 1-20-50 g 10-24-51 se; Acidity a 8-31-24 g 8-31-49 8-13-47 8-13-47 8-13-47 7-28-49 8-31-49 8-31-49 8-31-49</td><td>190 259 162 s SO₄==54 324 237 122 174</td><td>36 90 — — 303 172 — 694 469 —</td><td>115 252 1.8 1250 93 22 12 12 92</td><td></td><td></td><td></td><td>41 150 — 303 110 — 154 7.2 —</td><td>16 73 33 11 42 19 </td><td></td><td></td><td>52 — — 57 —</td><td></td><td>•</td>	11- 4-63 8-31-24 g 8-13-47 g 7-28-49 g; Se = 0.00 1-20-50 g 10-24-51 se; Acidity a 8-31-24 g 8-31-49 8-13-47 8-13-47 8-13-47 7-28-49 8-31-49 8-31-49 8-31-49	190 259 162 s SO ₄ ==54 324 237 122 174	36 90 — — 303 172 — 694 469 —	115 252 1.8 1250 93 22 12 12 92				41 150 — 303 110 — 154 7.2 —	16 73 33 11 42 19 			52 — — 57 —		•
— 99 emonade Spring — 115 emonade Spring 1 130 emonade Spring — — — — en's Bath House — — — — — en's Bath House — — — — — — 99 ot Sulphur Mud — 80-98 lud Foot Bath — 99 ot Sulphur Mud — 80-98 lud Foot Bath — 99 ot Sulphur Mud — 80-98 lud Foot Bath — 97 lud Bath — 105 bectric Spring 1 — 72 lectric Spring 1 — 72 lectric Spring 1 — 72 ulphur Creek bel — 72 ulphur Creek bel — — 100 ource: Steam v .emarks: Issue — 100 ource: Steam v	g 8-13-47 g 7-28-49 g; Se = 0.0(1-20-50 g 10-24-51 se; Acidity a 8-31-24 use 8-31-24 7-28-49 8-13-47 8-13-47 8-13-47 8-31-49 8-31-49 8-13-47 7-28-49	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.8 — 1250 93 — 22 12 12 — 92				150 303 110 154 7.2 	73 33 11 42 19 		 	57 	0	
emonade Spring — 115 emonade Spring 1 130 emonade Spring — — — — emonade Spring — — — — emonade Spring — — — — — en's Bath House — — — — — — adies' Bath House — — — — — — — adies' Bath House — — — — — — — — — — — — — — — adies' Bath House — — — — — — — — — — — — — — — — — — —	g 8-13-47 g 7-28-49 g; Se = 0.0(1-20-50 g 10-24-51 se; Acidity a 8-31-24 use 8-31-24 7-28-49 8-13-47 8-13-47 8-13-47 8-31-49 8-31-49 8-13-47 7-28-49	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.8 — 1250 93 — 22 12 12 — 92	 1.1			150 303 110 154 7.2 	73 33 11 42 19 		 	57 	0	
emonade Spring 1 130 emonade Spring emonade Spring en's Bath House adies' Bath House 99 oot Sulphur Mud 80-98 Iud Foot Bath 97 ootbath Spring 97 105 Sectric Spring 15 102 Sectric Spring 100 ource: Hot spri- emarks: Issue 100 ource: Steam V. emarks: Anal- 	$\begin{array}{c} g \\ 7.28-49 \\ g ; Se = 0.0 \\ 1-20-50 \\ g \\ 10.24-51 \\ se; Acidity a \\ 8-31-24 \\ use \\ 8-31-49 \\ 7.28-49 \\ d Bath \\ 8-13-47 \\ 8-13-47 \\ 8-13-47 \\ 8-31-49 \\ 8-31-49 \\ 8-31-49 \\ 8-31-49 \\ 8-13-47 \\ 7-28-49 \\ \end{array}$	s SO4==54 324 237 122 174	303 172 	1250 93 22 12 92	 1.1 			 303 110 154 7.2				· _ ·	 0 0	
emonade Spring — — — — emonade Spring — — — en's Bath House — — — — — ud Bath House — — — — — — — — — — — ud Bath — — — 97 ootbath Spring — — 97 ootbath Spring — — 72 Iud Bath — — 97 oldectric Spring 1 — 97 Electric Spring 1 — 97 Electric Spring 1 — 97 Electric Spring 1 — 97 Electric Spring 1 — 97 Lum and Boric S — 72 ulphur Creek bei — — — — — — — — — — — — — — — — — — —	g; Se = 0.00 1-20-50 g 10-24-51 se; Acidity a 8-31-24 ¹⁰ 7-28-49 ¹⁰ 8-13-47 8-13-47 8-13-47 7-28-49 8-31-49 8-31-49 8-31-49 8-31-49	$ \begin{array}{c}$	303 172 	93 22 12 92	 1.1 			110 154 	33 11 			· _ ·	0	-
emonade Spring — — — — — en's Bath House — — — — — — — — — — — — — — — — — — —	g 10-24-51 se; Acidity a 8-31-24 7-28-49 7-28-49 8-13-47 8-13-47 8-13-47 7-28-49 8-31-49 8-13-47 7-28-49	s SO ₄ ==54 324 237 122 174	303 172 	93 22 12 92	 1.1 			110 154 	33 11 			· _ ·	0	
en's Bath House adies' Bath Hou ud Bath 99 ot Sulphur Mud 80-98 ud Foot Bath 97 potbath Spring 72 ud Bath 105 lectric Spring 15 102 lectric Spring 15 102 lectric Spring 1 1 um and Boric S 72 alphur Creek bel 97 emarks: Issue 100 purce: Steam v emarks: Anal- 97 burce: Alamo	se; Acidity a 8-31-24 8-31-49 7-28-49 d Bath 8-13-47 8-13-47 7-28-49 8-31-49 8-13-47 7-28-49	324 237 — 122 — 174	303 172 	93 22 12 92	 1.1 			110 154 	33 11 			· _ ·	0	
adies' Bath Hou ud Bath 99 ot Sulphur Mud 80-98 ud Foot Bath 97 ootbath Spring 97 ootbath Spring 97 lectric Spring 15 102 lectric Spring 1 102 lectric Spring 1 1 102 lectric Spring 1 1 1 1 1 1 1 1 1 1 1 1 1	**************************************	237 — 122 — 174	172 694 469	93 22 12 92	 1.1 			110 154 	11 42 19 			· _ ·	0	
ud Bath 99 ot Sulphur Mud 80-98 Iud Foot Bath 97 ootbath Spring 72 Iud Bath 105 lectric Spring 15 102 lectric Spring 15 10 10 10 10 10 10 10 10 10 10	8-31-49 7-28-49 8-13-47 8-13-47 8-13-47 7-28-49 8-31-49 8-31-49 8-13-47 7-28-49	 122 174	 694 469	22 12 — 92	 1.1 				42 19	 	24 			•
- 99 ot Sulphur Mud - 80-98 ud Foot Bath - 97 ootbath Spring - 72 ud Bath - 105 lectric Spring 1 - 97 lectric Spring 15 102 lectric Spring 1 - 72 alphur Creek bel - 72 alphur Creek bel - 72 alphur Creek bel - 100 purce: Hot spr emarks: Issue - 100 purce: Steam v emarks: Anal-	d Bath 8-13-47 8-13-47 7-28-49 8-31-49 8-13-47 7-28-49	 174	469	12 — 92	1.1 			7.2	19 		 	 12	0	
80-98 Jud Foot Bath 97 ootbath Spring 72 Jud Bath 105 lectric Spring 97 lectric Spring 15 102 lectric Spring 1 lum and Boric S 72 llphur Creek bel 	8-13-47 8-13-47 7-28-49 8-31-49 8-13-47 7-28-49	 174	469	12 — 92	1.1 	 		7.2	19 		_ _ _	12 —	0	
97 ootbath Spring 72 lud Bath 105 lectric Spring 97 lectric Spring 15 102 lectric Spring 1 1 Dum and Boric S 72 alphur Creek bel 	7-28-49 8-31-49 8-13-47 7-28-49	 174		 92							_	—	0	
- 72 iud Bath 105 lectric Spring 97 lectric Spring 15 102 lectric Spring 1 - 102 lectric Spring 1 - 72 lum and Boric S 72 luphur Creek bel - 72 ource: Hot spri emarks: Issue 100 purce: Steam v emarks: Anal- purce: Alamo	7-28-49 8-31-49 8-13-47 7-28-49		104								_		_	
105 lectric Spring 97 lectric Spring 15 102 lectric Spring 1 72 lum and Boric S 72 lum Creek bel 72 ulphur Creek bel 100 purce: Hot spri emarks: Issue 100 purce: Steam y emarks: Anal- purce: Alamo	8-13-47 7-28-49		104				<u> </u>	45				—		
— 97 lectric Spring 15 102 lectric Spring 1 — lum and Boric S — 72 llphur Creek bel — — — pource: Hot spri emarks: Issue — 100 pource: Steam y emarks: Anal — — — — — — —	7-28-49	166	_	3.4	_				12		13	_	0	
15 102 lectric Spring lum and Boric S 72 llphur Creek bel purce: Hot spr emarks: Issue 	7-28-49							140	161				0	
lectric Spring lum and Boric S 72 alphur Creek bei 				<u> </u>	_	·	_	_	_	_				
- 72 llphur Creek bei - reek bei - reek - reek bei - reek bei	8-31-49	206	194	81	_			101	23		9.6	42	0	
alphur Creek bei pource: Hot spi emarks: Issue 	Spring	200	364					372			5.0		0	
emarks: Issue 100 Durce: Steam v emarks: Anal 				17	_		_		43			47	_	
emarks: Issue 100 purce: Steam v emarks: Anal 	10-22-49 pring (Nati	83 1ral Bath	76 .Tub)	40 Location	— 1: 19N.3E.1		—	164	24		16	_	0	
ource: Steam v emarks: Anal — — — — — — ource: Alamo							eds of Pe	rmian age	; no obse	ervable n	nineralizat	ion; elev	ation 735	0 f
emarks: Anal — — — — — — ource: Alamo	8-1-47	71	—	0		-		7.5	2.2			56	139	
— — — — urce: Alamo				5 (unsurve 1 condensat		would en	ter strear	n as runof	-					
	6-13-63			12.6	0.5			28	0.		83	27	623	
	6-18-63	-		1.05	0.03	—	—	2	1.2		83	31	854	
emarks: Over				n: 20N.3E.3		e nointe	evolving	mas some	sulfurous	r one but	largely C(O · eleva	tion 8700	ft
	8- 1-47	87	iy 50 X	0.41				32 32	22				0	τι
urce: Spring	g on Rio Ai	ntonio (w	arm spri	ing) Lo	cation: 20	N.4E.7 (1	insurveye	ed)					Ŭ	
emarks: Issue	es from rhy	olite of 7	Tertiary	age (He);	50 gpm a	t 120°F (S) (see als	ώP)						
25 101	8-1-47	103	—	0	—		—	6.5	1.1	—		40	77	
urce: Spring	r Locati	on: 16N.	16E.6										San Mi	igu
1 106	3-11-52	68		0.02	·		_	4.5	1.0	_	1	79	77	
5 123	3-11-52	59		0.03	—	_	—	4.5	1.1		1	79	66	
urce: Montez		Springs	Locat	ion: 16N.10	6E.6									
<u> </u>	K 1 C 9 O	_		—				14 9 E	8.3			41 78		
130 	5-16-39			_				8.5	0.7		I	73	92 82	
	5-16-39 7- 2-40 8-20-40			—	_	.—	_						80	

Remarks: Flow from 1328 to 1347 ft from San Andres Limestone (H&K)

900 94

_

636

AND WELLS INCLUDING CHEMICAL ANALYSES (cont)

per million unless noted)

SO ₄	CI	F	NO3	PO4	в	Total solids	Total solids (sum)	Total solids (evap)	ness as	Noncarb. hardness as CaCO ₃	$(\mu mnos)$		H_2S	Total β - γ activity $(\mu\mu c/1)$	Ra (μμ ^c /1)	$_{(\mu^{g/1})}^{U}$	Ref.
County	(Conti	nued)															
										· · ·							
1570	3.5	1.1	0			1950			676	1 - A	4570	1.9	· · · ·	·	_	ł	łe,13260
4250	45	0.9	0.5				3630	· • · ·	234		13900	1.4			. —		13253
35100	24	1.2	0.0	2.4	<u></u>				57	. 57	13800	2.0					5300
2337	20	_	0	154	—	2562	3221		168				1.6	5 —		1	Ri, 3225
1190	65	1.0	0.3	—	—					, 💼	<u> </u>	2.0		. 			8935
1590	· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>		<u> </u>				—		4570	2.2	<u> </u>	. —		—	12524
—	—		<u> </u>						—		3560	2.2		·	_		13558
					_					. —	2710	2,3		·	·		17774
6156	54		Trace	37	<u> </u>	7887	8617		_		<u> </u>				—	—	3223
2740	20	0.5	0.6			2690			320	320	8510	1.6	—				13254
1550			—		—				_		6100	1.9	—				12520
5430	241								· · · ·		1410	1.9	—				9171
5190	649	<u> </u>	0.3	·					_	-	1660	1.5					8934
5230	·		<u> </u>	—					- <u></u>	—	13900	1.7		_			12519
1440	_		0.7		. : .	1730			162	162	4370	1.9		—	_		13258
3520	410	1.5	0.3		<u> </u>					. —	1170	1.5		—		—	8936
3880	·	· ·	_	_	· _					· . —	12500	1.7		·	—	·	12522
3820	2.5	1.0	0.0	<u> </u>	<u></u> ^	3160			346	346	12700	1.4	_				13259
3560	74				· _ ·		364		—		794	2.9	ـــت			—	9172
1160	4.0	0.3	0.0			1600			508	508	2270	2.5				. ,	13262
17	11	0.8	0.2		0.8		234		28	0	28.3	7.3					8933
17	11	0.8	0.4		0.0		201			Ĵ	41.0						
335 177	121 114	24 24	$0.00 \\ 0.00$			2970 1700			70 10		2225 2070	8.0 8.3			· 		NMPHI NMPHI
acidity a 242	as H₂SC 3.0		6 0.6	_	BO3=0.2	×					72.1	2.9			<u>.</u>		8930
4 1 4	5.0	0.5	0.0		203-2014						·.	•					
15	17	1.6	0.4		0 ·		222	230	20	0	16.7	6.7	_	_	·		He
County		1.0	0.1		v												
		90	0.1			528	524		15	6 O	876	8.8					18610
42 42	$\frac{155}{155}$	20 20	$\begin{array}{c} 0.1 \\ 0.1 \end{array}$			528 530	515		16			9.0					18609
66	154		_	_		554			_		878					_	2083
49	158	_	0.2	_	_	537 531			 	· ····	870 878	_	_				4801 5233
_	160 159	_	_	_	— ,	523			_			—	_		—	—	5233
County	-																
1.000									1050	1	1850	7.2			_		H&K
1660	22			—	-				1850)	0001	1.4					

TABLE 3. INFORMATION ABOUT THERMAL SPRINGS

(All constituents in parts

gpm	°F	Date	SiO ₂	Al	Fe	Mn	Cu	Zn	Ca	Mg	Ba	Na	ĸ	HCO3	CO3
	: Warm s	pring l Ichillo Can		: 128.5W.2 miles NW		C and 15	miles W	of Cuchi	llo (Th)					Si	erra
Keman		2-9/10-39			0.00		miles w	or Cucin	109	10		990	96	010	0
Source		wells at T				ocation	13S.4W.3	2	105	10		386	26	212	0
Remarl	ks: (for d	etailed loc	ation, se	e Th) Ma	gdalena l	Limestor	133.4W.5	o (discharge	e." respec	tively, fro	m 97 ft.	105 ft_and	100 ft de	en	
	112.3	2-9/10-39			0.10	_		_ 0	150	16		692	45	218	
—	114	2-9/10-39		_	0.07				152	18	_	740		210	
-	111.2	2-9/10-39		—	0.42	—			155	17		772	—	214	
		at Truth o arge from				on: 13S.4 ription,									
		9-9/10-39		_	0.1	—		_	154	14	_	731	39	215	0
		2-9/10-39	37		0.08	<u></u>			148	16		678	36	212	0
<u> </u>	't Spring 106	7-23-38	_				_	_	168	36		687	53	217	0
		well in Tr y fill; well			es Lo	ocation:	13S.4W.34	.310							Ŭ
_	70	2-9/10-39		<u> </u>	3.30	_	_		460	76	_	661	21	152	_
	Paloma ks: Santa	•	Locatio	on: 138.5V								001	41	104	
_	_	6-12-58	_											171	0
Source:	Wells of	Truth or	Consequ	iences	Location	: 14 S.4 W	'.4							171	v
		letailed loo			ıgdalena	Limesto	ne (Th);	"dischar	ge," resp	ectively, f	rom 212	ft and 208	ft deep		
		2-9/10-39		—	0.08	_			154	16		730		121	
	<u> </u>	2-9/10-39	32		0.53		_		153	15		714	43	219	—
Source: Remark	Yucca B ks; (for d	aths at Tr etailed loc	uth or C ation, se	onsequen e Th) All	ces (Ponc uvium sa	e de Leo amples fi	n Spring) rom 14 ft	Loca deep dr	tion 148.4 ive point	W.4 into sprin	ng head	(Th)			
	110	2-9/10-39			0.08	—	-	—	154	19		751		218	_
2	110	3-31-52	39	'	0.01		_		174	25	<u> </u>		92	221	
1.1 Well 14 i	109 ft deep	5-28-54	41	0.1	0.02	0.19			154	21		735	61	216	0
	109.4	4-28-43					_	_	_	_					
0.5		7-12-54			—				156	20	_	7	49	220	0
0.75 0.75		8- 2-55 9-17-56				—	—	·	_					221	0
Flowing		5-17-50										·	_	216	0
8.5	108	8- 5-57		—		—	—		—	—			—	228	0
<u> </u>	ouse Sprin 104	^g 4-15-58	—	_		—				—	_	-		227	0
North S	107	8- 3-59			_		—		<u> </u>	_		_	_	221	0
	104	4- 4-60	_		—									220	0
	107.5	8-13-62	—	—		—	-			—		—	—	220	0
		l No. 2 at etailed loca					n: 14S.4W deep (Tl								
	77	2-9/10-39			2.20	—		—	58	5		131	9	125	—
Remark		deep, diar		15S.6W.31 alluvium		evel at 10)0 ft								
15		8-20-46			Wax-84-9			-	63	21	—	:	36	242	0
Source:	Drilled	well at Ho	t Springs	5 Locat	ion: 16S.	5W.22									
	HΗ	6-14-46	_		—				21	4.4		·	59	169	0
40	75				7S.4W.29.				1	.		approvim	ataly 50	mm fuor	. 0
40 Source:	Derry W	arm Sprin from lime	gs Lo stone bl			Rincon	Valley (C); small (dpeosits o	t travertu	ie; nows	approxim	atery 50 g	зрш поц	12
40 Source: Remark 50	Derry W ks: Issues 93	from lime 4-17-48	estone bl			Rincon	Valley (C); small (dpeosits o 52	19	ie; nows	30	03	370	0
40 Source: Remark 50 5-10	Derry W ks: Issues 93 93.2	from lime 4-17-48 5- 7-52	stone bl			Rincon — —	Valley (C); small (30	-	370 372	0 0
40 Source: Remark 50 5-10	Derry W ks: Issues 93	from lime 4-17-48	estone bl			Rincon — — —	Valley (C); small (52	19	— — —	30	03	370 372 368	0 0 0
40 Source: Remark 50 5-10 0-15 Source:	Derry W s: Issues 93 93.2 93 Springs	from lime 4-17-48 5- 7-52 4-30-57 Locatio	stone bl 32 on: 1N.11	uff on eas 	t side of 				52 48 —	19 20 —		31 	03 93	370 372 368 Soco	0 0 0 0
40 Source: Remark 50 5-10 0-15 Source: Remark	Derry W s: Issues 93 93.2 93 Springs	from lime 4-17-48 5- 7-52 4-30-57 Locatio and gravel	stone bl 32 on: 1N.11	uff on eas 	t side of 				52 48 —	19 20 —		31 	03 93	370 372 368 Soco	0 0 0 0
40 Source: Remark 50 5-10 0-15 Source:	Derry W s: Issues 93 93.2 93 Springs	from lime 4-17-48 5- 7-52 4-30-57 Locatio	stone bl 32 on: 1N.11	uff on eas 	t side of 				52 48 —	19 20 —		30 29 n railroad	03 93	370 372 368 Soco	0 0 0 0

AND WELLS INCLUDING CHEMICAL ANALYSES (cont)

per million unless noted)

SO4	Cl	F	NO3	PO4	в	Total solids	Total solids (sum)	Total solids (evap)	Hard- ness as CaCO ₃	Noncarb. hardness as CaCO ₃	$(\mu mnos$	5	H ₂ S	Total $\beta - \gamma$ activity $(\mu \mu c/1)$	Ra (µµ ^{e/1)}	U (µg/1)	Ref.
ount	y (Conti	inued)															
50	670	0.4	05.0		0.5	1428	1429		314				_	_		_	Tł
79	650	2.4	25.0		0.5	1428	1429		314			_	_				11
102	1230	3.4	2			2486			441		_		_		_		Tł
74 73	$1280 \\ 1330$	2.6 3.2			 				457					_	_		Tł Tł
79 81	$1300 \\ 1210$	3 3	10	—		$2560 \\ 2418$	2472 2318		442 236	_	$\frac{452}{429}$				_		Tł Tł
95	1210		5	_		2110	2510			_	459	_				-	684
193	1120	1.6	4			3720			1462		_					_	Tł
23	114	_		_	_				158	18	664	7.7	_		_	_	3878
																	T
75 105	1250 1240	$2.8 \\ 3.2$	6.2		_	2437			451 444		_		_	_			\mathbf{T}
86 98	$1290 \\ 1240$	$3.2 \\ 2.8$	2.7				2380	2640	463 537	_	4430	— 7.2	_	_		_	Т S&
93	1290	3.3	2.0	—	—			2670	470	-	4510	7.3	-	100	0.7	3.3	S&:
 95	$1285 \\ 1290$						2420		471	 290	438 4420	_	_			_	65 2703
91	1300				_				490 525	$\begin{array}{c} 309\\ 348 \end{array}$	$\begin{array}{c} 4450\\ 4450\end{array}$	7.4 7.4		_			3108 3392
91	1290 1280		_	_	_				470	283	4400	7.2					3882
_	1280	_	_		_				475	289	4460	7.2	—	_			3893
	1290	—		_	—						4450	7.2				<u> </u>	4303
96 	$\begin{array}{c} 1300\\ 1310 \end{array}$	_							470 510		4450 4480	7.5 7.2	_	_	_		4473 5030
52	212	0.6	1	_	_	556			166		-	-	_		-	-	т
80	26	1.2	1.2	-	_		348		244	45	60.9		_			_	687
36	13	1.2	0.8		0.0		219		70	0	36.0	_		<u> </u>	—		613
evels	(1) 5 ft	above	floor at	192°F,(2) 6 ft abo	ve at 66°	F from a	alluvial	materia	l above D	erry fau	lt bloo	ck				
309	160	5.8	2.0				1030		208 207		$1650 \\ 1660$	_		_			1872
306	141	6	1.3				1030		207		1660	7.4	_				3597
303 C oun	158 ty				_					, in the second s		·					
n ba	nk of rail	road ju	st nort	h of (a)													
016	1816	_			<u> </u>				1510	·	6970	7.4				_	FR
									1284		6080	7.6					FR

TABLE 3. INFORMATION ABOUT THERMAL SPRINGS (All constituents in parts)

	°F	Date	8:0	Al	Fe	Mn	Cu	Zn	Ca	Mg	Ba	Na	K	HCO3	CO ₃
gpm	г	Date	SiO ₂		re	MIII		2111		mg					
Source:	Spring	Locati	on: 1N.2W	7.7.100										Soce	orro
		era Limest													
500	70	11-30-49	—	—		—		·	138	59			887	420	0
		n spring 1th of box		n: 1N.2W lado) Mac		estone									
	.3. (mot 72	11-19-61	·							_			_	398	0
Source:	Well		n: 1N.2E.34	4.130											
Remark		deep												1 10	
Source:	65 Oiitor		21 Location	· 98 1347 10	 0.421 and			_	562	130	_		21	142	
		oup of spri						e							
106	_	1952	<u> </u>					_	50	12	<u> </u>		67	308	_
	68	7-9-63	—		—		_		29 49	11	_		38 76	195 332	0
Source:	Cook S	7-9-63	 Location: \$				n pond		40	14			70	334	U
10-15	66	3-20-58	28				0.00	0.00	· · ·	_		66	3.0	175	0
	with data	below: Li	= 0.33		0 50		0100	0.00	13	4		68	3.4	158	3
Source:	70 Well (I	9-24-64 Blue Canyo	26 m) Loo	cation: 3S	0.58			_	13	4		00	3.4	155	5
		ed well 30					face in rh	yolite bro	eccia						
20	90.4	7-24-56	26					_	—		_		53	145	8
	88	12-20-61				_		_	18 20	5 4.6		56	55 3	166 163	0 0
Source:	89 Socorr	4-10-65) warm spr	27 ings I	.ocation: §			—	_	20	4.0	—	50	5	105	U
Remark	s: (S) S	everal spri					ry age ly	ing agair	nst lava	hills flowi	ng 500 gp	m at 9	1°F (S&B);	flow from	1
	<u> </u>	2-17-36	_		—			_	19	4		55	5	168	
-		12- 4-36		<u> </u>	—		<u> </u>	—	18	5	—		53	156	_
<u></u>	91	1952		<u> </u>				÷	19 18	5 3.9	_	52	53 2.8	$\frac{163}{154}$	0
353	90 90	1-24-57 3-20-58	27 39	0.00	0.00	0.00	0.00	0.04	10	3.9 	1.6	52 55	3.0	160	5
220	90 91	3-20-58	59		_		0.00	0.04	18	5	1.0	55	50	163	ő
	91 91	2 - 5 - 63	·			_			13	5				156	ŏ
·	92	4-10-65		<u> </u>					18	4.4	_	-		155	ŏ
Source:	Sedillo	Spring	Location		2.131										
		s from rhy		cia											
240	90 88	3-20-58 12-12-61	27		· ·	\	0.00	0.04	18	5	0.00	54	2.9 50	159 154	0 5
Source		las Cañas,	east of Ri	io Grande	Loca		E 19.323	_	10	5			50		9
Remark	s: Cont	rolled by	prominent	t east-dip	ping sand			Formati	on, with	fault con	trol down	stream	(FRH)		
<u> </u>	79	6-13-62	<u> </u>			<u> </u>	<u> </u>		552	141			38	193	0
10	—	3-15-63	—		—				488	141		—	—	142	0
Source: Remark			n: 4N.2E.3!	5.220											
	73	2-24-50	32					_	24	6.3			34	115	
Source:			n: 4N.3E.2	3.430											
Remark	s: 370 f	t deep													
—	72	3-29-50	17	—				—	20	6.0	_		28	98	
Source:			n: 5 S.1E. 36	.440											
Remark	.s: Anu 80	10- 5-62	_	_	_		_				·			258	0
Source:		ll Spring	Location	n: 58.3W.	4.231									400	ů
		nill Canyo													
	66	8- 7-63		_	_		—	_	33	3.9			6	124	0
Source:			on: 68.1W		_	<i>(</i> -).									
	`	mond A R	anch) Volo	canics in f	ault zone	: (?)			00	0.4			00	110	0
25	70 Sania a	6-18-63			_	_			22	2.4	—		22	112	0
Source: Remark	spring: s: Issue		ion: 8S.7W la Congloi		; (a) fror	n develop	oed spring	g area, b	elow rui	ns, east of	Alamosa	River	at Ojo Cali	ente; (b)	from
(a) 4-5			Ŭ	. ,	. ,	1								117.1	0.
4-5 (b)	82	12-13-63		—	_	_		—	44.8	1.4					0.
_	—	-	—				—		37.6	1.9				122	0.

AND WELLS INCLUDING CHEMICAL ANALYSES (cont)

per million unless noted)

SO₄	Cl	F	NO ₃	PO4	в	Total solids	'Total solids (sum)	Total solids (evap)	Hard- ness as CaCO ₃	Noncarb. hardness as CaCO ₃	$(\mu mhos)$	3	H,S	Total β - γ activity $(\mu\mu c/1)$	Ra (_{μμ} c/1)	$_{(\mu^{g/1})}^{U}$	Ref.
	y (Cont														,		
611	1160	,	4.9	_	_		3110		714		5023	_	_	· 			13430
	1080	_	. —	_	Marcal WW					<u> </u>	4750	7.6	-		· <u></u>	·	48607
1770	10	0.6	10	—	"	2590			1940	_	2760	_		_	·		SP
38 20 20	20 14 22				 				174 118 158		499 703	 7.7 8.2		· · · · · ·		·	FRH FRH
44	14	1.0	1.1	—	0.08				62		393	8.1	-		·	·	38856
42	14	0.8	0.8		0.13		254	250	49	0	391	8.4		_	·		55434
37 32 36	14 17 14	0.6 	1.0 		0.76				78 68 69	_	380 390 375	8.0 7.6	 				33772 FRH 56677
rhyoli 30	te agglon 14	nerate ((Sp, Sd) 1.3	, Ho, FR	н, Jo) —				63		340	_			_		Sc
30 30 28 33 28 20	$13 \\ 13 \\ 15 \\ 16 \\ 8 \\ 12 \\$	1.0 0.6 0.7 	1.3 0.6 1.2 1.1 	 0.15 	 0.06 	234		224	63 64 70 61 74 64 52 63	 0	348 348 362 370 356 346	8.2 7.8 8.4 8.1 7.8 7.8		<11 <11 	 0.2 		Sd
33 24	14 10	0.8	1.3		0.05				63 64		318 370	8.2 8.4	_			-	38853 FRH
1776 1568	24 20	 			 				1960 1800		3030 2800	7.6 —	_				FRH FRH
49	9	0.8	1.6	_		214			86	_	310	—					SF
40	7	0.6	1.6	—	_	168			74	_	263	<u> </u>	_	_	_	· · · ·	Sp
2170	1060	_	_		-				1700	1490	6740	7.0				-	50501
4	4		_	—	_				98		246	7.0			_		FRH
12	4		2.2	_	_				66	_	244	7.9	_	_			FRH
up sid	e ravine,	east of	Alamo	osa River	at Ojo Cali	ente .											
80	154.0		—		—				112		910	7.9	_	—		-	FRH
76.0	108.0			_					94		772	8.1	_				FRH

TABLE 3. INFORMATION ABOUT THERMAL SPRINGS (All constituents in parts

gpm	°F	Date	SiO_2	Al	Fe	Mn	Cu	Zn	Ca	Mg	Ba	Na	ĸ	HCO ³	CO,
_	~ .													Vale	ncia
Source: Remarks	Coyote	Spring « from lim		n: 5N.3W.3 It wide gan		ack upst	ream from	o fault	precipitat	te covers (estimated	1 30 acres o	of arrovo f	fow (Ti)	
- <u>3</u>	64	1941	59		0.80				284	245	<u> </u>	1 50 acres 0		2700	_
Source:			on: 6N.2		0.00				401	410		***	00		
				Limestone	; a Lucere	o fault z	one spring	g (Wr)							
0.1	78	_	21	—	0.02	—			534	448	10000 Mar	3650	38	1385	—
Source:				W.35.340	-	A A		- (****	. ,					c	
Remarks				Limeston		ro tault	zone spr	ing (Wr)			tone at a	gap in hog			m
	71 58	1941 5- 1-57	15 16		0.57				$\begin{array}{c} 704 \\ 823 \end{array}$	$\frac{356}{460}$		4570 58	79 · 330	2049 2990	
10	-	11-30-63	18		0.01		—		809	419		5730	99	2420	č
		a Pueblo sp		Location	a: 7N.2W.6	6.210 & .	.444								
				me in gap	in hogba	ck upstr	eam from	í fault; p	recipitate	e covers ar	royo floc	or (Ti)			
(.210) 0.3		1941					_		227	185		114	00	2050	
(.444)	_										_				
<u> </u>	68	4-30-57	25		—	•••••	<u> </u>	<u> </u>	681	314		74	450	2440	_
Source:			ion: 7N.2	2W.6.400 travertine	donosita	in fre	candet		16 -000						
Kemark: 0.5	s: 1 wo 80	1941	tti targe	traverune	deposits i	Issue Iro	m sanusic	me m tat	ult zone 312	133		04	460	2100	_
0.5 3	80 58	2-20-56	_			_	_	_	92	135	_		+00 570	2100 2440	
Source:			.ion: 7N.5	2W.7.100 a	.nd .340		•								
				nd shale alo		zone (W	/r)								
(.100)	70		0 17		0.08				100	100		0760	009	1/719	_
0.5 (.340)	76		37		0.08				108	138		9760	283	1713	—
0.05			_	—	—	—	—		324	152	—		—	2214	
				2W.7.124 a indstone at		ie (Ti)									
(.320) 0.1	_	1941	_	_					324	152	_	95	250	2210	_
(.124)	76	8-25-41	37		0.08				108	138		100		1710	_
3 Source:		8-25-41 a Pueblo Se		Location: '		2 140 31	9 and 81	2	100	100		100	100	1/10	_
Remark: (.313)	s: Issue	e from sand		nd shale in			-, anu	J							
0.02	82	1941					—		560	188			—	2030	
(.312) 0.05	_	1941	_		_			_	560	188			_	2030	
(.140) 0.2		1941							418	187		107	ባባታ	1610	_
	Unnam			eps, Laguna	- Bueblo	L oca	 ation: 7N.2	0147 20	410	167	_	107	/00	1010	_
									cero faul [,]	t zone issu	ing fror	n limestone	e. sandstor	ne, and	
	86				`			0						1374	
0.35	75	1941	32	_	15	_			702	214		6470	165	2174	_
0.02			34		1.8		_		918	220	—	10950	283	2840	_
5	72	1941	20		0.09		<u> </u>	—	516	163		68	820	1340	
	s: Issue	es from san	ndstone ir	2W.31.140 n Abo Forr		ong faul	lt zone (W	/r; see als		~=1		~ 000	110	1018	
0.05		1941 Lassti	20		0.18		—		603	271		5230	118	1615	_
	s: Issue		ion: 7N.4 ale and sa	W.3.430 andstone(Wr)				200	120				40.0	
0.01					_	—	_		606	150		—	_	408	_
	ks: Issue			5W.20.340 and shale (Wr)				20.4	- 22				100	
3	68		. —	—				—	604	130			—	428	
		condido Sp			: 8N.2W.19										
				along fault	. ,				22	90	_	23	5.6	220	
20	73	9-8-41	12		0.02				33	20			9.0		

AND WELLS INCLUDING CHEMICAL ANALYSES (cont) per million unless noted)

											a a			Total			
SO4	Cl	F	NO3	PO4	в	Total solids	Total solids (sum)	Total solids (evap)	Hard- ness as CaCO ₃	Noncarb. hardness as CaCO ₃	(µmho	s	H.S	$egin{array}{l} eta^{-\gamma} \ { m activity} \ (\mu\mu^{ m e}/1) \end{array}$	Ra $(\mu\mu c/1)$	$U \ (\mu g/1)$	Ref.
Count	y													·····			
4510	12500	1.6				29500			1720	0		—		-		—	Ti
2640	5160	1.0				13540			3170		_						Wr
fault;	water cas	cades tl	hrough	dams	built by pr	ecipitates	(Ti)										
$2660 \\ 3250$	$6240 \\ 7900$	 1.8		—		$15630 \\ 19700$			3220 3940	$1540 \\ 1860$	26700	6.5	—	—		—	Wr-Ti Ti
3210	7500	1.0	1.3		3.2	19700	19300		3940 3740	1760	26800	6.4			_		53068
7800	11600				_	32400			1330	_							Ťi
3490	9610		_	_	_	22700			2990	990	31000	7			_	_	Ti
6380 6300	9600 9400					_	27100		$1330 \\ 748$	_	35200	 7.7					Ti Ti
6710	9940	5.8	~		-	29500			1716	_	_	—	_		-		Wr
6670	9070	-	—			26700									-		Wr
8870	9070				—	26700			1430	-	_		-	_	_	_	Ti
6710	9940	5.8				27900			837								Ti
7390	9210				_	27800			2180	521		_	_				Ti
7390	9210	_		_	_	27800			2180	521	_			_	_		Ti
8040	10200				—	30000			1810	492	_	-		—		—	Ti
gypsur	n (Ti)																
$6710 \\ 5640$	$8880 \\ 6560$	2.8				25700 20920			$1660 \\ 2630$	540 853	_		_	_	_		Wr-Ti Wr-Ti
8910	11120	2.0 3.4				33900			3200								Wr-Ti
6540	8170	4.3			-	20900			1960	860		_	—	_	_		Wr-Ti
5380	5120	1.2	_			17540			2620		_	_	_	_	_		Wr
1969	146	_				3440								_			Wr
1000	. 10					0110			_		·						
2010	113	—			—	3500				—	-			—			Wr
32	5.6	0.7	0.1		_	239			164								Ti, Wr

gpm	°F	Date	SiO_2	Al	Fe	Mn	Cu	Zn	Ca	Mg	Ba	Na	к	HCO_3	CO3
														Vale	encia
Source:				W.30.340										,	
		es from fau	It zone (wr)											
0.03	73					—			227	185	—	<u></u>		2047	
0.3	72	9-3-41	20	—	0.09		—		516	163	—	6630	194	1340	—
		ee Spring (es from allu				n: 8N.3V v valley									
30	62	4-2-58	29	_	_			-	258	99		Į	558	224	·
		ng Vat Sprin es from san			N.3W.12.3	42									
400	60	4-2-58	30		0.26				270	109	_	(609	222	
Source:	Spring	near Mesa	Redond	o Loca	tion: 8N.	3W.15.41	3								
25	• •	11-29-63	11	_	0.05			_	676	174		3500	116	2370	0
Source:	Spring	s Locat	ion: 8N.3	W.35.100										4070	-
		e from shal				np blocks	s (Ti)								
1	65		28	_	0.09	·	·	_	516	163		6630	194	1345	
1	65	9- 3-41	28	_	0.02	—			65	18		43	3.9	377	0
Source:	Ojo Ca	liente Spri	ng Lo	ocation: 8	N.20W.21.	140									
_	80	12-20-33	°	_			_		145	44			50	342	0
450	71	11-25-57	19	—				_	143	37			66	344	0
—		10-19-61	16	<u> </u>	0.01	_	_		224	21		3.3		419	0
Source:	Spring	Locatio	on: 10N.3	3W.26.330	(?)										
		n uncontan													
1/16	72	6-30-58	18					—	174	15			9.4	599	0

12345=U.S. Geol. Surv. laboratory number; analyses probably previously unpublished B=unpublished data in the files of the N. Mex. Inst. Min. and Tech., State Bur. Mines and Mineral Res. Bu=Bushman, 1955 C = Conover, 1954 E=Elston, 1957 FRH=unpublished data from the files of Francis R. Hall (*or* Hall, 1963) He=Hem, 1959 H&K-=Hood and Kister, 1962

AND WELLS INCLUDING CHEMICAL ANALYSES (cont) per million unless noted)

SO4	Cl	F	NO3	Р0,	в	Total solids	Total solids (sum)	Tota! solids (evap)	TLP55 88	Noncarb. hardness as CaCO _s	(umbos		H_2S	Total β - γ activity $(\mu\mu^{c/1})$	Ra $(\mu\mu^{c/1})$	U (µg/1)	Ref.
Coun	ty (Conti	inued)															
7800 6540	11560 6170		_	_	-	32400 20900			1960			_	_	_			Wı H&K
1530	344	_	3.6	_	_	3020			1090	807	3790	7.7	-		-	-	T
1640	384	0.7	4.7	_	0.85	3270			1120	940	4030	7.7	_	_	_	_	T
1220	2740	2.3	0.7	-	6.3		12600		2400	458	15800	7.3	_	_	_	_	53069
5540 13	6170 3.1	4.3 0.2		_	_	20900 355	361		1958 236		_	_	_	_			Wı Ti
15	5.1	0.4	0.00			000			100								
310	34	0.0	0.10	_	—		752		543		_	_			_		12575
303	37	0.7	0.0	_	_	809	775		509		1120	7.1		_	_	_	38875
463	54	0.5	11	_	0.23		1120		644	-	1560	7.2		_	_	_	48325
13	5.5	0.6	2.3	-	_		533		496	4	906	7.7		_	_		40498

Jo Jones, 1904 K&S=Kelley and Silver, 1952 M&H=Meinzer and Hall, 1915 NMPHL=N. Mex. Pub. Health Lab. P=Peale, 1886 R=Reeder, 1957 Ri=Renick, 1931

S=Stearns et al., 1937 Sc=Personal communication from the Work Unit Conservationists, U.S. Soil Conserv. Serv. Sd=Schofield, 1938 Sp=Spiegel, 1957 S&B=Scott and Barker, 1962 Ti=Titus, 1963 Wr=Wright, 1946 WH&W=White et al., 1963

Bibliography

SOURCES OF INFORMATION ABOUT NEW MEXICO'S GEOTHERMAL ENERGY AND SELECTED REFERENCES ON THE GEOLOGY OF NEW MEXICO

- Anonymous (1963) *N.M. wells tap gas, steam*, Oil and Gas Jour., v. 61, n. 42, p. 144.
- ------(1964) N. M. gets steam well, Rocky Mt. Oil Rptr., v. 21, n. 9, p. 12.
- Armstrong, A. K. (1955) Preliminary observations on the Mississippian System of northern New Mexico, N. Mex. Inst. Min. and Tech., State Bur. Mines and Mineral Res., Circ. 39.
- Bachman, G. O., and Dane, C. H. (1962) Preliminary geologic map of the northeastern part of New Mexico, U.S. Geol. Surv., Misc. Geol. Inv., Map I-358.
- Bailey, R. A. (1961) Hot springs and solfotaric areas in the Valles Caldera, Jemes Mountains, New Mexico (map), U.S. Geol. Surv., open-file rpt.
- Beaumont, E. C., and O'Sullivan, R. B. (1955) Preliminary geologic map of the Kirtland quadrangle, San Juan County, New Mexico, U.S. Geol. Surv., Coal Inv., Map C-32.
- Bjorklund, L. S. (1957) Reconnaissance of ground-water conditions in the Crow Flats area, Otero County, New Mexico, N. Mex. State Engr., Tech. Rpt. 8, 19 p.
- Bushman, F. X. (1955) Ground water data for Dwyer quadrangle, Grant and Luna counties, New Mexico, N. Mex. Inst. Min. and Tech., State Bur. Mines and Mineral Res., Circ. 37.
- ------(1963) Ground water in the Socorro Valley, N. Mex. Geol. Soc., Guidebook, Fourteenth field conference, The Socorro Region, p. 155-159.
- Clark, J. D. (1929) The saline springs of the Rio Salado, Sandoval County, New Mexico, Univ. N. Mex., Bull. 163, chem. ser., v. 1, n. 3.
- Clarke, F. W. (1893) *Report of work done in the division of chemistry*, U.S. Geol. Surv., Bull. 113, p. 114.
- Collins, W. D. (1925) Temperature of water available for industrial use in the United States, U.S. Geol. Surv., Water-Supply Paper 520-F, p. 97-104.
- Conover, C. S. (1954) Ground-water conditions in the Rincon and Mesilla valleys and adjacent areas in New Mexico, U.S. Geol. Surv., Water-Supply Paper 1230, 200 p.
- ------, Herrick, E. H., Wood, J. W., and Weir, J. E., Jr. (1955) *The* occurrence of ground water in south-central New Mexico, N. Mex. Geol. Soc., Guidebook, Sixth field conference, South-Central New Mexico, p. 108-120.
- ------, Theis, C. V., and Griggs, R. L. (1963) Geology and hydrology of Valle Grande and Valle Toledo, Sandoval County, New Mexico, U.S. Geol. Surv., Water-Supply Paper 1619-Y, 37 p.
- Dane, C. H., and Bachman, G. O. (1957) Preliminary geologic map of the northwestern part of New Mexico, U.S. Geol. Surv., Misc. Geol. Inv., Map I-224.

- Dane, C. H., and Bachman, G. O. (1958) Preliminary geologic map of the southeastern part of New Mexico, U.S. Geol. Surv., Misc. Geol. Inv., Map I-256.
- -----, and ------ (1961) Preliminary geologic map of the southwestern part of New Mexico, U.S. Geol. Surv., Misc. Geol. Inv., Map I-344.
- Darton, N. H. (1920) *Geothermal data of the United States*, U.S. Geol. Surv., Bull. 701, 97 p.
- Elston, W. E. (1957) Geology and mineral resources of Dwyer quadrangle, Grant, Luna, and Sierra counties, New Mexico, N. Mex. Inst. Min. and Tech., State Bur. Mines and Mineral Res., Bull. 38.
- Ferguson, H. G. (1921) The Mogollon district, New Mexico, U.S. Geol. Surv., Bull. 715-c, p. 171-204.
- Gilbert, G. K. (1875) Report upon the geology of portions of Nevada, Utah, California, and Arizona examined in the years 1871 and 1872, U.S. Geog. and Geol. Surv. west of the 100th meridian, v. 3, p. 17-155 (map of hot springs of the United States, pl. 3; table of hot springs, p. 150-153).
- Gregory, H. E. (1916) The Navajo country; a geographic and hydrographic reconnaissance of parts of Arizona, New Mexico, and Utah, U.S. Geol. Surv., Water-Supply Paper 380, 219 p.
- ------(1917) Geology of the Navajo country, U.S. Geol. Surv., Prof. Paper 93.
- Griggs, R. L. (1964) Geology and ground-water resources of the Los Alamos area, New Mexico, with a section on quality of water by John D. Hem, U.S. Geol. Surv., Water-Supply Paper 1753, 107 p.
- Hall, F. R. (1963) Springs in the vicinity of Socorro, New Mexico, N. Mex. Geol. Soc., Guidebook, Fourteenth field conference, The Socorro Region, p. 160-179.
- Halpenny, L. C. (1951) Preliminary report on the ground-water resources of the Navajo and Hopi Indian reservations, Arizona, New Mexico, and Utah, N. Mex. Geol. Soc., Guidebook, Second field conference, South and west sides of the San Juan Basin, New Mexico and Arizona, p. 147-154.
- Harrington, E. R. (1943) Springs of the Jemez, N. Mex. Mag., v. 21, n. 6, June, p. 7.
- -----(1948) Craters and crater springs of the Rio Salado, Jour. Geol., v. 56, n. 3, p. 182-185.
- Hayden, F. V. (1873) U.S. Geol. and Geog. Surv. Terr., 1st, 2nd, and 3rd Ann. Rpts., for the years 1867, 1868, and 1869, December (p. 162, 164 hot springs Las Vegas, New Mexico).
- ------(1883) A report of progress of the exploration in Wyoming and Idaho for the year 1878, U.S. Geol. and Geog. Surv. Terr., twelfth ann. rpt.
- Hem, J. D. (1959) Study and interpretation of the chemical characteristics of natural water, U.S. Geol. Surv., Water-Supply Paper 1473, 269 p.
- Herron, W. H. (1916) Profile surveys in 1915 along the Rio Grande, Pecos River, and Mora River, New Mexico, U.S. Geol. Surv., Water-Supply Paper 421.

- Holmes, C. R. (1963) Tritium studies, Socorro Spring, N. Mex. Geol. Soc., Guidebook, Fourteenth field conference, The Socorro Region, p. 152-154.
- Hood, J. W. (1959) Ground water in the Tularosa Basin, New Mexico, Permian Basin Sec., Soc. Econ. Paleont. and Min. and Roswell Geol. Soc., Guidebook, Joint field conference, The Sacramento Mountains, Otero County, New Mexico, p. 236-250.
- -----, and Kister, L. R. (1962) Saline-water resources of New Mexico, U.S. Geol. Surv., Water-Supply Paper 1601, 70 p.
- Joesting, H. E., Case, J. E., and Cordell, L. E., (1961) The Rio Grande trough near Albuquerque, New Mexico, N. Mex. Geol. Soc., Guidebook, Twelfth field conference, The Albuquerque Country, p. 148-150.
- Jones, F. A. (1904) New Mexico mines and minerals, Santa Fe: New Mexican Printing Company, 349 p.
- Kelley, V. C. (1954) Tectonic map of a part of the upper Rio Grande area, New Mexico, U.S. Geol. Surv., Oil and Gas Inv., Map OM 157.
- ------, and Silver, Caswell (1952) Geology of the Caballo Mountains with special reference to regional stratigraphy and structure and to mineral resources, including oil and gas, Univ. N. Mex., Publ. in geol., n. 4, 286 p.
- Kelly, C., and Anspach, E. V. (1913) A preliminary study of the waters of the Jemez Plateau, New Mexico, Univ. N. Mex. Bull., Whole No. 71, chem. ser., v. 1, n. 1.
- Kintzinger, P. F. (1956) Geothermal survey of hot ground near Lordsburg, New Mexico, Science, v. 124, p. 629.
- Lang, W. B. (1929) Subnormal temperature gradients in the Permian Basin of Texas and New Mexico (abs.), Wash. Acad. Sci., n. 11, p. 232-233.
- -----(1930) Note on temperature gradients in the Permian Basin, Wash. Acad. Sci., Trans. 20, p. 121-123.
- ------(1937) Geologic significance of a geothermal gradient curve, Am. Assoc. Petrol. Geol. Bull., v. 21, p. 1193-1205. Discussion of article by Lang, Geological significance of a geothermal gradient curve (from an oil test near Carlsbad, N. M.) Am. Assoc. Petrol. Geol. Bull., v. 21, n. 11, p. 1494-1496 (Nov. 1937).
- Lee, W. T. (1907a) Water resources of the Rio Grande Valley in New Mexico and their development, U.S. Geol. Surv., Water-Supply Paper 188, 59 p.
- ------(1907b) Afton craters of southern New Mexico, Geol. Soc. Am. Bull., v. 18, p. 211-220.
- Lindgren, Waldemar (1910) *The hot springs of Ojo Caliente and their d'eposits*, Econ. Geol., v. 5, n. 1, p. 22-27.
- ------, Graton, L. C., and Gordon, C. H. (1910) The ore deposits of New Mexico, U.S. Geol. Surv., Prof. Paper 68, p. 260.
- Loew, Oscar (1875) Report upon mineralogical, agricultural, and chemical conditions observed in portions of Colorado, New Mexico, and Arizona, U.S. Geog. and Geol. Surv. west of the 100th meridian (Wheeler, G. M.), v. 3, p. 613-627.
- Loughlin, G. F., and Koschmann, A. H. (1942) Geology and ore deposits of the Magdalena mining district, New Mexico, U.S. Geol. Surv., Prof. Paper 200.
- Mansfield, G. R. (1918) Sulphur in Jemez Canyon, Sandoval County, U.S. Geol. Surv., Min. Res. 1918, pt. 2, p. 367.

- Meinzer, O. E., and Hare, R. F. (1915) Geology and water resources of Tularosa Basin, New Mexico, U.S. Geol. Surv., Water-Supply Paper 343.
- Minton, E. G., Jr. (1941) Report of investigation Hot Springs artesian basin, New Mexico, N. Mex. State Engr., Fifteenth bienn. rpt., p. 34 J-36S.
- Northrop, S. A. (1950) *General geology of northern New Mexico*, Soc. Vert. Paleont., Guidebook, Fourth field conference, p. 26-47.
- Paige, Sidney (1916) Description of the Silver City quadrangle, New Mexico, U.S. Geol. Surv., Geol. Atlas, Silver City Folio, No. 199, 19 p.
- Peale, A. C. (1883) Thermal springs in the United States, U.S. Geol. and Geog. Surv. Terr., twelfth ann. rpt., p. 63-454.
- -----(1886) List and analyses of the mineral springs of the United States, U.S. Geol. Surv., Bull. 32.
- Powell, W. C. (1928) Report on investigation of the geology and water resources of the Tularosa Basin, N. Mex. State Engr., Eighth bienn. rpt., p. 194-206.
- -----(1930) Report of an investigation of the Hot Springs artesian basin, Hot Springs, New Mexico, N. Mex. State Engr., Ninth bienn, rpt., p. 121-129.
- Reeder, H. O. (1957) Ground water in Animas Valley, Hidalgo County, New Mexico, N. Mex. State Engr., Tech. Rpt. 11, 101 p.
- Reiche, Parry (1940) The origin of Kilbourne Hole, New Mexico, Am. Jour. Sci., v. 238, p. 212-225.
- Renick, B. C. (1931) Geology and ground-water resources of western Sandoval County, New Mexico, U.S. Geol. Surv., Water-Supply Paper 620.
- Ross, C. S., Smith, R. L., and Bailey, R. A. (1961) Outline of the geology of the Jemez Mountains, New Mexico, N. Mex. Geol. Soc., Guidebook, Twelfth field conference, The Albuquerque Country, p. 139-143.
- Schilling, J. H. (1960) Mineral resources of Taos County, New Mexico, N. Mex. Inst. Min. and Tech., State Bur. Mines and Mineral Res., Bull. 71.
- Schmidt, P. G., and Craddock, Campbell (1964) Geology of the Jarilla Mountains, Otero County, New Mexico, N. Mex. Inst. Min. and Tech., State Bur. Mines and Mineral Res., Bull. 82.
- Scofield, C. S. (1938) Quality of water of the Rio Grande basin above Fort Quintman, Texas, U.S. Geol. Surv., Water-Supply Paper 839, 296 p.
- Scott, R. C., and Barker, F. B. (1962) Data on uranium and radium in ground water in the United States 1954 to 1957, U.S. Geol. Surv., Prof. Paper 42c, 115 p.
- Spiegel, Zane (1957) Geology and ground water in Animas Valley, Hidalgo County, New Mexico, N. Mex. State Engr., Tech. Rpt. 11, p. 9-12.
- Stearns, H. T. (1952) Collapse versus explosive origin of Valles Caldera, Sandoval County, New Mexico, Geol. Soc. Am. Bull., v. 63, n. 12, p. 1371-1372.
- Stearns, N. D., Stearns, H. T., and Waring, G. A. (1937) *Thermal springs in the United States*, U.S. Geol. Surv., Water-Supply Paper 679-B.
- Stevenson, J. J. (1875) Geology of a portion of Colorado explored and surveyed in 1873, U.S. Geog. and Geol. Surv. west of the 100th meridian, v. 3, p. 307-488.

- Stevenson, J. J. (1881) Report upon geological examinations in southern Colorado and northern New Mexico during the years 1878 and 1879, U.S. Geog. and Geol. Surv. west of the 100th meridian, suppl. 3, p. 349-351, 405, 406.
- Theis, C. V., Taylor, G. C., Jr., and Murray, C. R. (1941) Thermal waters of the Hot Springs artesian basin, Sierra County, New Mexico, N. Mex. State Engr., Fourteenth-fifteenth bienn. rpt., p. 419-492.
- Titus, F. B., Jr. (1961) Ground-water geology of the Rio Grande trough in north-central New Mexico, with sections on the Jemez Caldera in the Lucero uplift, N. Mex. Geol. Soc., Guidebook, Twelfth field conference, The Albuquerque Country, p. 186-192.
- ------(1963) Geology and ground-water conditions in Eastern Valencia County, New Mexico, N.Mex. Inst. Min. and Tech., State Bur. Mines and Mineral Res., Ground-Water Rpt. 7.
- Waldron, J. F. (1956) Reconnaissance geology and ground-water study of a part of Socorro County, New Mexico, Ph.D. dissertation, Stanford Univ.
- Weber, R. H. (1963) Cenozoic volcanic rocks of Socorro County, N. Mex. Geol. Soc., Guidebook, Fourteenth field conference, The Socorro Region, p. 132-143.
- Wideman, F. L. (1957) A reconnaissance of sulfur resources in Wyoming, Colorado, Utah, New Mexico, and Arizona, U.S. Bur. Mines, Inf. Circ. 7770.
- Weir, J. E. (1958) Geology and hydrology of the Valles Caldera, northcentral New Mexico (abs), N. Mex. Geol. Soc., Proc., Twelfth ann. meeting, Roswell, N. Mex., April 18.
- Wheeler, G. M. (1889) Report upon United States geographical and geological surveys west of the one hundredth meridian, Vol. I. Geographical report, Washington: Engr. Dept., U.S. Army, 122 p.
- Winkler, H. A. (1951) Report on seismic exploration, Sunshine Valley, New Mexico, N. Mex. Inst. Min. and Tech., Geophys. Inv. 7.
- Winograd, I. J. (1959) Ground-water, conditions and geology of Sunshine Valley and western Taos County, New Mexico, N. Mex. State Engr., Tech. Rpt. 12, 70 p.
- Wood, G. H., and Northrop, S. A. (1946) Geology of Nacimiento Mountains, San Pedro Mountain, and adjacent plateaus in parts of Sandoval and Rio Arriba counties, New Mexico, U.S. Geol. Surv., Oil and Gas Inv., Prelim. Map 57.
- White, D. E., Hem, J. D., and Waring, G. A. (1963) *Chemical composition of subsurface waters (in Fleischer, Michael (tech. ed.), Data of geochemistry, 6th ed.), U.S. Geol. Surv., Prof. Paper 440-F.*
- Wright, H. E., Jr. (1946) Tertiary and Quaternary geology of the lower Rio Puerco area, New Mexico, Geol. Soc. Am. Bull., v. 57, p. 383-456.

SELECTED REFERENCES ON GEOTHERMAL ENERGY

- Adams, L. H. (1924) A physical source of heat in springs, Jour. Geol., v. 32, p. 191-194.
- Allen, E. T., and Day, A. L. (1927) Steam wells and other thermal activity at the Geyser, California, Carnegie Inst. Washington, pub. 378, 106 p.

- Allen, E. T., and Day, A. L. (1935) Hot springs of the Yellowstone National Park, Carnegie Inst. Washington, pub. 466, 525 p.
- Anderson, E. T. (1961) *How world's hottest hole was drilled*, Petrol. Engr., p. 81 (Oct.).
- Austin, C. F. (1965) Selection criteria for geothermal prospects, paper presented at Pacific Southwest Mining Industry Conference, Reno, Nevada, May 5-7.
- Banwell, C. J. (1961) Geothermal drill holes—physical investigations, U.N. Conf. New Sources of Energy, paper G/53.
- Barth, T. F. W. (1950) Volcanic geology, hot springs, and geysers of Iceland, Carnegie Inst. Washington, pub. 587, 174p.
- Bell, J. C., Crooks, R. C., Halser, W. T., Sachsel, G. F., Williams, J. Q., Filbert, R. B., Jr., and Stone, J. J., Jr. (1959) Availability of geothermal energy for the demineralization of saline water, Office of Saline Water, Res. and Develop. Prog. Rpt. No. 27, 56 p.
- Beneseman, R. F. (1959) Estimating the total heat output of natural thermal regions, Jour. Geophys. Res., v. 64, p. 1057-1069.
- Brown, J. S. (1924) The hot springs of the Republic of Haiti, Jour. Geol., v. 32, p. 384-399.
- Bruce, A. W. (1960) Development of geothermal energy for the generation of power in the United States, U.N. Conf. Geothermal Energy, June 27-July 2, Rome, Italy, mimeo paper, 8 p.
- ------(1961) Experience generating geothermal power at The Geysers power plant, Sonoma County, California, U.N. Conf. New Sources of Energy, paper G/8.
- ------, and Albritton, B. C. (1959) *Generation of power from geothermal* steam at The Geysers power plant, paper presented at spring convention of the Am. Soc. Civil Engr., mimeo copy, 17 p.
- Bryan, K. (1924) *The hot springs of Arkansas,* Jour. Geol., v. 32, p. 449-459.
- Bullard, F. M. (1962) Volcanoes in history, in theory, in eruption, Austin, Texas: Univ. Tex. Press, 441 p.
- Burk, C. A. (1952) The Big Horn hot springs of Thermopolis, Wyoming, Wyoming Geol. Assoc., Guidebook, Seventh annual field conference, p. 93-95.
- Conti, R. and Cigni, V. (1961) Air drilling in geothermal bores, U.N. Conf. New Sources of Energy, Paper E/conf. 35/G/70.
- Craig, S. B. (1961) *Geothermal drilling practices at Wairakei, New Zealand,* U.N. Conf. New Sources of Energy, paper G/14.
- Darton, N. H. (1906) *The hot springs at Thermopolis, Wyoming*, Jour. Geol., v. 14, p. 194-200.
- Day, A. L. (1924) Hot springs and fumaroles of The Geysers region, California, Jour. Geol., v. 32, p. 459-460.
- ------, and Allen, E. T. (1924) The source of the heat and the source of the water in the hot springs of the Lassen National Park, Jour. Geol., v. 32, p 178-190.
- ------, and -(1925) The volcanic activity and hot springs of Lassen Peak (Calif.), Carnegie Inst. Washing-ton, pub. 360, 190 p.
- Facca, G. (1963) Geothermal energy exploration, Consiglio Nazionale delle Ricerche, p. 155-167.
- -----, and Tonani, F. (1962) *Natural steam exploration in U.S.A.*, Bolletino di Geofisica Teorica ed Applicata, v. 4, p. 155-171.

- Facca, G., and Ten Dam, A. (1963) *Geothermal power economics*, Consiglio Nazionale delle Ricerche Commissione Geothermica Italiana, 37 p.
- Fenner, C. N. (1936) Bore-hole investigations in Yellowstone Park, Jour. Geol., v. 44, p. 225-315.
- Grange, L. I. (1955) *Geothermal steam for power in New Zealand*, New Zealand Dept. Sci. and Ind. Res., Bull. 117, p. 1-102.
- Hewett, D. F., and Crickmay, G. W. (1937) The warm springs of Georgia, their geologic relations and origin; a summary report, JUS. Geol. Surv. Water-Supply Paper 819, 40 p.
- Kaufman, A. (1964a) Geothermal power, an economic evalu
 - ation, U.S. Bur. Mines, Info. Circ. 8230, 24 p.
- -----(1964b) Economic appraisal of geothermal power,
- Min. Eng., v. 16, p. 62-66.
- Langton, A. (1961) U.S. geothermal wells are now a validity, Petrol. Engr., v. 33, p. 76-81.
- Middleton, W. M. (1963) Engineering phases of the development and operation of geothermal power sources, paper presented at symposium on geothermal steam, Am. Inst. Min. Eng. Salt Lake City, Utah.
- Meinzer, O. E. (1924) Origin of the thermal springs of Nevada, Utah, and southern Idaho, Jour. Geol., v. 32, p. 295-303.
- Morey, G. W. (1924) Relation of crystallization to the water content and vapor pressure of water in a cooling magma, Jour. Geol., v. 32.
- McNitt, J. R. (1960) *Geothermal power*, Division of Mines, State of California, min. inf. ser., v. 13, n. 3.
- -----(1961) Geology of The Geysers thermal area, California, U.N. Conf. New Sources of Energy, E/conf. 35/G/3.
- -----(1963) Exploration and development of geothermal power in California, San Francisco: California Division of Mines and Geology, Special Rpt. 75.
- Ostroot, G. W., and Shryock, S. (1964) Cementing geothermal steam wells, Jour. Petrol. Tech., Trans., v. 16, p. 1425-9.
- Sosman, R. B. (1924a) General summary of the symposium on Hot Springs, Jour. Geol., v. 32, p. 468-471.
- -----(1924b) Notes on the discussion of the papers presented in the symposium on hot springs, Jour. Geol., v. 32, p. 464-468.
- Subterranean Heat Research Group (1955) *Studies of subterranean heat*, Japan Geol. Surv. Bull., v. 6, p. 551-626 (in Japanese).
- Thompson, G. A., and White, D. E. (1964) Regional geology of the Steamboat Springs area, Washoe County, Nevada, U.S. Geol. Surv., Prof. Paper 458-A, 52 p.
- Van Orstrand, C. E. (1924) Temperatures in some springs and geysers in Yellowstone National Park, Jour. Geol., v. 32, p. 194-225.
- Waring, G. A. (1915) Springs of California, U.S. Geol. Surv., Water-Supply Paper 338, 410 p.
- Washington, H. S. (1924) Notes of the soliatara of Sousaki (Greece), a recent eruption of Methana (Greece), and recent Meccalube at Vulcano, Jour. Geol., v. 32, p. 460-462.
- Watson, T. L. (1924) Thermal springs of the southeast Atlantic States, Jour. Geol., v. 32, p. 373-384.

- White, D. E., Thompson, G. A., and Sandberg, C. H. (1964) Rocks, structure, and geologic history of Steamboat Springs thermal area, Washoe County, Nevada, U.S. Geol. Surv., Prof. Paper 458B, 61 p.
- Wright, F. E. (1934) The hot springs of Iceland, Jour. Geol., v. 32, p. 462-464.
- Zies, E. G. (1924) Hot springs of the Valley of Ten Thou-sand Smokes, Jour. Geol., v. 32, p. 303-310.

SELECTED REFERENCES ON GEOCHEMISTRY, THERMAL DYNAMICS, AND FLUID MECHANICS OF HOT WATER AND STEAM

- Adivarahan, P., Kunii, D., and Smith, J. M. (1962) Heat transfer in porous rocks through which single-phase fluids are flowing, Soc. Petrol. Engr. Jour., v. 2, p..290-296.
- Banwell, C. J. (1955) Geothermal steam for power in New Zealand, VI. Physical investigations, New Zealand Dept. Sci. and Ind. Res., Bull. 117, p. 45-74.
- -----, Cooper, E. R., Thompson, G. E. K., and McCree, K. J. (1957) *Physics of the New Zealand thermal area*, New Zealand Dept. Sci. and Ind. Res., Bull. 123, 109 p.
- Boldizar, T. (1958) The distribution of temperature in flowing wells, Am. Jour. Sci., v. 256, p. 294-298.
- Brannock, W. W., Fix, P. F., Gianella, V. P., and White, D. E. (1948) Preliminary geochemical results of Steam-boat Springs, Nevada, Am. Geophys. Union Trans., v. 29, p. 211-226. Cohen, P., and Loeltz, O. J. (1964) Evaluation of hydrogeology and hydrogeochemistry of Truckee Meadows
 - area, Washoe County, Nevada, U.S. Geol. Surv., Water-Supply Paper 1779-5, 63 p.
- Donaldson, I. G. (1962) Temperature gradients in the upper layers of the earth's crust due to convective water flows, Jour. Geophys. Res., v. 67, p. 3449-3459.
- Facca, G., and Tonani, F. (1961) Natural steam geology and geochemistry, U.N. Conf. New Sources of Energy, E/ conf. 35/G/67, 21 p.
- Gilluly, James (1937) The water content of magmas, Am.
- Jour. Sci., v. 33, p. 430-441.
- Jaeger, J. C. (1964) Thermal effects of intrusions, Rev. Geophys., v. 2, p. 443-466.
- Jen-hu-Chapg (1958) *Ground temperatures*, Milton, Mass. (Harvard Univ.): Blue Hill Meteorological Observatory, 300 p.
- Knudsen, W. C. (1962) Equations on fluid flow through porous media—incompressible fluid of variable density, Jour. Geophys. Res., v. 67, p. 733-737.
- Lovering, T. S., and Goode, H. D. (1963) Measuring geothermal gradients in drill holes less than 60 feet deep, east Tintic district, Utah, U.S. Geol. Surv., Bull. 1172, 48 p.
- Melikov, T. K. (1964) Changes of temperature in a radial direction with respect to the axis of a bore hole, Vyssh. Vcheb. Zavendeniy Izv., Neft: Gaz., p. 7-10.

- Nekhoroshev, A. S. (1960) To the problem of the methods for determining the presence of volcanic steam vapours at depth, Bull. Volcanology, v. 23, p. 271-276.
- Nelson, R. W. (1960) In-place measurement of permeability in heterogeneous media: 1. Theory of proposed method, Jour. Geophys. Res., v. 65, p. 1753-1758.
- -----(1963) Stream functions for three-dimensional flow in heterogeneous porous media, Internatl. Union Geod. Geophys., Thirteenth general congress.
- Schmitt, H. (1950) The fumarolic-hot spring and "epithermal" mineral deposit environment in applied geology, Colo. School Mines Quart., v. 45, n. 113, p. 209-229.
- Skibitzke, H. E. (1961) Temperature rise within radioactive waste injected into deep formations, U.S. Geol. Surv., Prof. Paper 386-A, p. Al-A8.
- Stallman, R. W. (1963) Computation of ground-water velocity from temperature data, U.S. Geol. Surv., Water-Supply Paper 1544-H, p. 36-46.
- White, D. E. (1955) Thermal springs and epithermal ore deposits (in Pt. 1, Economic Geology (50th anniv. vol.), 1905-55), Urbana, Ill.: Econ. Geol. Pub. Co., p. 99-154.
- -----(1957a) Thermal waters of volcanic origin, Geol. Soc. Am. Bull., v. 68, p. 1637-1658.
- ------(1957b) Magmatic, connate, and metamorphic waters, Geol. Soc. Am. Bull., v. 68, p. 1659-1682.
- -----(1960) Summary of chemical characteristics of some water of deep origin, U.S. Geol. Surv., Prof. Paper 400-B, p. 452-454.
- -----(1961) Preliminary evaluation of geothermal areas by geochemistry, geology, and shallow drilling, U.N. Conf. New Sources of Energy, Proc., v. 2, p. 402-408.
- -----(1963a) Fumaroles, hot springs, and hydrothermal alteration, Am. Geophys. Union Trans., v. 44, p. 508-511.

- White, D. E. (1963b) Summary of studies of thermal waters and volcanic emanations of the Pacific region, 1920-1961 (in MacDonald, G. A., American geology and solid earth of geophysics of the Pacific Basin). Tenth Ann. Pacific Sci. Gong., Honolulu 1961, rpt. ser., p. 161-169.
- -----(1964) Deep geothermal brine near Salton Sea, California (abs.), Bull. Volcanology, v. 27 (printed for Internatl. Union Geod. Geophys., Internatl. Assoc. Volcanology meeting in Berkeley, Calif., August 1963).
- -----(1965) Metal contents of some geothermal fluids, Symposium problems of postmagmatic ore deposition, Prague, v. 2, p. 432-443.

SELECTED REFERENCES ON INFRARED

- Cantrell, J. L. (1964) *Infrared geology*, Photogrammetric Eng., v. 30, n. 6, p. 91b.
- Clark, W. (1946) *Photography by infrared, its principles and applications,* New York: John Wiley & Sons, Inc. (2nd ed.).
- Hackforth, H. L. (1960) *Infrared radiation*, New York: McGraw-Hill Book Co.
- Fischer, W. A. (1963) Depiction of soil-covered structures by infrared aerial photography, U.S. Geol. Surv., Prof. Paper 475-B, v. 19, p. 1367-1370.
- -----, Moxham, R. A., Polcyn, F., and Landis, G. H. (1964) Infrared surveys of Hawaiian volcanoes, Science, v. 146, n. 3645, p. 733-742.
- McLerran, J. H., and Morgan, J. 0. (1965) *Thermal map-ping of Yellowstone National Park*, Infrared Physics Lab., Inst. Sci. and Tech., Proc., Third symposium on remote sensing of environment, October 14, 15, 16, 1964, p. 517-530.

References

- Bachman, G. 0., and Dane, C. H. (1962) Preliminary geologic map of the northeastern part of New Mexico, U.S. Geol. Surv., Misc. Geol. Inv., Map I-358.
- Bell, J. C., Crooks, R. C., Halser, W. T., Sachsel, G. F., Williams, J. Q., Filbert, R. B., Jr., and Stone, J. J., Jr. (1959) Availability of geothermal energy for the demineralization of saline water, Office of Saline Water, Res. and Develop. Prog. Rpt. No. 27, 56 p.
- Boldizar, T. (1958) The distribution of temperature in flowing wells, Am. Jour. Sci., v. 256, p. 294-298.
- Conover, C. S., Theis, C. V., and Griggs, R. L. (1963) Geology and hydrology of Valle Grande and Valle Toledo, Sandoval County, New Mexico, U.S. Geol. Surv., Water-Supply Paper 1619-Y, 37 p.
- Dane, C. H., and Bachman, G. O. (1957) Preliminary geologic map of the northwestern part of New Mexico, U.S. Geol. Surv., Misc. Geol. Inv., Map I-224.
- ----and ----- (1958) Preliminary geologic map of the southeastern part of New Mexico, U.S. Geol. Surv., Misc. Geol. Inv., Map I-256.
- ----and ----- (1961) Preliminary geologic map of the southwestern part of New Mexico, U.S. Geol. Surv., Misc. Geol. Inv., Map I-344.
- Darton, N. H. (1920) Geothermal data of the United States, U.S. Geol. Surv., Bull. 701, 97 p.
- Facca, G., and Tonani, F. (1964) Theory and technology of a geothermal field, Bull. Volcanology, v. 27, 47 p.
- Fischer, W. A., Moxham, R. A., Polcyn, F., and Landis, G. H. (1964) Infrared surveys of Hawaiian volcanoes, Science, v. 146, n. 3645, p. 733-742.
- Jaeger, J. C. (1964) Thermal effects of intrusions, Rev. Geophys., v. 2, p. 443-466.
- Joesting, H. E., Case, J. E., and Cordell, L. E. (1961) The Rio Grande trough near Albuquerque, New Mexico, N. Mex. Geol. Soc., Guidebook, Twelfth field conference, The Albuquerque Country, p. 148-150.

- Kintzinger, P. F. (1956) Geothermal survey of hot ground near Lordsburg, New Mexico, Science, v. 124, p. 629.
- Lang, W. B. (1929) Subnormal temperature gradients in the Permian Basin of Texas and New Mexico (abs.), Wash. Acad. Sci., n. 11, p. 232-233.
- ----(1930) Note on temperature gradients in the Permian Basin., Wash. Acad. Sci., Trans. 20, p. 121-123.
- ----(1937) Geologic significance of a geothermal gradient curve, Am. Assoc. Petrol. Geol. Bull., v. 21, p. 1193-1205.
- McNitt, J. R. (1963) Exploration and development of geothermal power in California, San Francisco: California Division of Mines and Geology, Special Rpt. 75.
- Melikov, T. K. (1964) Changes of temperature in a radial direction with respect to the axis of a bore hole, Vyssh. Vcheb. Zavendeniy Izv., Neft: Gaz., p. 7-10.
- New Mexico Geological Society (1961) New Mexico geologic high-way map, scale about 1:1,635,000.
- Ross, C. S., Smith, R. L., and Bailey, R. A. (1961) Outline of the geology of the Jemez Mountains, New Mexico, N. Mex. Geol. Soc. Guidebook, Twelfth field conference, The Albuquerque Country, p. 139-143.
- Schmidt, P. G., and Craddock, Campbell (1964) Geology of the Jarilla Mountains, Otero County, New Mexico, N. Mex. Inst. Min. and Tech., State Bur. Mines and Minerals Res., Bull. 82.
- Spiegel, Zane (1957) Geology and ground water in Animas Valley, Hidalgo County, New Mexico, N. Mex. State Engr., Tech. Rpt. 11, p. 9-12.
- Theis, C. V., Taylor, G. C., Jr., and Murray, C. R. (1941) Thermal waters of the Hot Springs artesian basin, Sierra County, New Mexico, N. Mex. State Engr., Fourteenth-fifteenth bienn. rpt., p. 419-492.

Appendix A

Below is a breakdown of the cost of drilling a 2000-foot-deep steam well in 1963, prepared by W. M. Middleton, chief engineer, Thermal Power Company, San Francisco, California. Site preparation, including water tank, pump, and piping rental \$2,000 Rig transportation, six truckloads 8,000 Loading and unloading rig at the Big Geysers 1,450 Permit fees, trip costs (\$182, included in costs above) Rig rental during transport 300 Casing transportation, three truckloads 1,000 Casing 10'-20" at \$5/ft; 100'-13-3/8" at \$606/100 ft; 1000'-10-3/4" at \$392/100 ft; 1000'-8-5/8" slotted at \$295 + \$121/100 ft8,536 Centralizers at \$37.20 each 223 Three RBOP stripper rubbers at \$210 each 630 Cement plug and shoe 13-3/8", estimated 110 One 8-5/8" guide shoe 52 Ten 8-5/8" baffle collars at \$85 each 856 Labor, supervision, running supplies, fuel, rig, drill string and blowout equipment, 12 days at \$1250 a day 15,000 Bits, five at \$300 each 1,500 3,500 Cementing Mud 1,500 Geothermograph rental 100 One 10"-300# WKM gate valve 1,500 One 2"-300# gate valve 50 Two 10"--300# R. J. flanges 300 Two 2"-300# R. J. flanges 50 Bolts 50 Welder 600 Casing tools 500 Under-reamers and reamers: 14" rotary oil tool under-reamer 500 Used 13-3/8" reamers 205 6-point 12-1/4" reamer 528 6-point 9-7/8" reamer 412 11" rotary oil tool under-reamer 500 2 per cent sales tax on purchased items 350 SUBTOTAL \$48,752 10 per cent contingency 4,872 TOTAL \$53,627

Appendix B

ECONOMICS OF GEOTHERMAL STEAM (taken from Kaufman, 1964 a, b, and Facca and Ten Dam, 1963)

A. Geothermal well drilling cos	sts			
	depth	(feet)	<u>cost (dolla</u>	rs per foot)
Area	low	<u>high</u>	low	<u>high</u>
The Geysers, Calif.	525	984	39	60 [.]
Iceland	984	7216	12	17
Larderello, Italy	984	5248	22	40
Wairakei, New Zealand	1476	2952	_	48*
*average				

B. Cost of drilling materials, Imperial Valley, California

	<u>0-2696 feet</u>	2690-4729 feet	0-4729 feet
Cost per day	\$173.00	\$925.00	\$565.00
Cost per foot drilled	0.70	5.46	2.74

C. Cost of producing geothermal power

	total	total	capital	
	capacity	capital cost	cost	total cost
area	(megawatts)	<u>(million dollars)</u>	<u>(dollars per kw)</u>	<u>(mills per kwh)</u>
The Geysers, Calif.	12.5	1.9	152	5.0
Iceland	15.0	5.5	364	7.9
Larderello, Italy	3.5 to 300	0.7 to 36.2	121 to 280	3.0 to 7.0
Pathe, Mexico	3.5	0.2	53	6.0
Wairakei, New Zealand	192.2	44.0	230	4.6

D. Distribution of capital costs

D. Distribution of cupital costs		
	per	cent
process	Larderello, Italy	Wairakei, New Zealand
Steam winning	34 to 70	23
Steam transmission	3 to 4	27
Powerhouse and plant		42
Cooling-water systems	25 to 61	
and cooling towers		7
Electric substation	21	21

E. Comparative costs with other sources of energy

total cost of electric power at 60.0 megawatt plants (dollars per net kwh)

	-
Coal	31.32
Oil	30.33
Gas	31.15
Geothermal	30.15, to 33.44

F. Generating cost per kilowatt hour net output for various types of power plants

	mill	<u>s</u>
	<u>minimum</u>	<u>maximum</u>
Geothermal	2.55	4.90
Conventional thermal	5.47	7.75
Nuclear power (average)	5.42	11.56
Hydroelectric	5.00	11.36

G. Pessimistic estimated cost of exploration to discover a commercial geothermal field

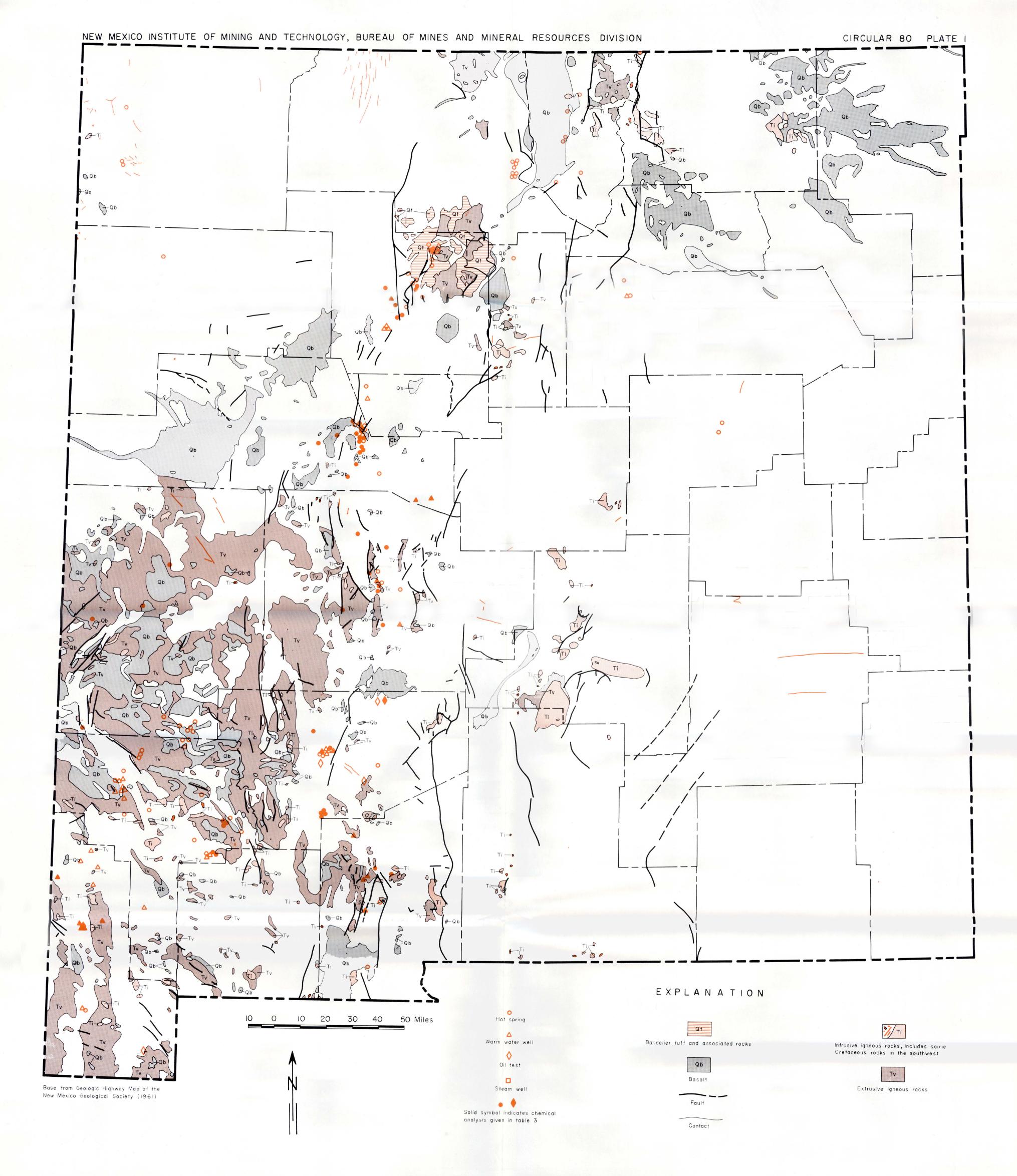
	one z	zone	three zones			
	<u>minimum</u>	<u>maximum</u>	<u>minimum</u>	<u>maximum</u>		
		general reco	nnaissance			
Preliminary survey	\$ 40,000	\$ 50,000	\$ 120,000	\$ 150,000		
Economic survey	10,000	10,000	30,000	30,000		
Study surface shows	30,000	30,000	90,000	90,000		
Vulcanological study	3,000	6,000	9,000	18,000		
Survey of zone of interest	30,000	30,000	<u>90,000</u>	<u>90,000</u>		
Subtotals	113,000	126,000	339,000	378,000		
		detailed exp	oloration			
Gravity survey	29,000	65,000	87,000	195,000		
Geothermal gradient survey	100,000	100,000	300,000	300,000		
Seismic survey	30,000	60,000	90,000	180,000		
Drilling	600,000	700,000	1,800,000	2,100,000		
Subtotals	\$759,000	\$ 925,000	\$2,277,000	\$2,775,000		
Totals	\$872,000	\$1,051,000	\$2,616,000	\$3,153,000		

Appendix C

Summary of information about steam wells drilled near Sulphur Springs (T. 20 N., R. 3 E., sec. 35, unsurveyed), Sandoval County, New Mexico

Author's note: No factual statement of the facts about these steam wells has been published. The following information was compiled from various sources and is believed to express the facts with reasonable accuracy.

Α.	Bond et al. No. 1 (a wildcat oil test drilled by Westates Petroleum Co.)									
	Spudded:	5/19/60, D & A 7/12/60								
	Total depth:	3675 feet drilled with mud to 3670								
		drilled with air to 3675								
	Casing:	13-3/8" to 404 feet								
		9-5/8" to 1217 feet								
	Yield:	Discharge est. 5 MMCF steam at 275°F at 3650 feet								
		Discharge est. 25 MMCF steam at 3675 feet								
	Elevation:	8697 feet								


B. Steam Well No. 1 (James P. Dunigan and Associates No. 1 Baca)

Owned by:	Dunigan Tool and Supply Co., Abilene, Texas, and Baca Land and Cattle Company
Drilled by:	Moran Bros., Inc., Farmington, New Mexico
Spudded:	
Total depth:	2560 feet
Casing:	
Yield:	Steam discharged from depths of less than 1000 feet
	Tested from 1300-1350 feet at 85,000 lbs of steam an hour
	Temperatures reported up to 500°F
	Bottom-hole temperature: 310° to 320°F, according to Baker Engineering Co.
Remarks:	Well abandoned because of "sloughing problems"

C. Steam Well No. 2

Drilled by:	
Spudded: July 1963	
Total depth: 5600 feet	
Casing: ? to 3460 feet	
Yield: Casing perforated 2400 to 3100 feet, well discharged 100 barrels hot water a hour at 400+°F	1
Casing perforated 1750-2300 feet, well discharged 120 barrels hot water an at $400+{}^{\circ}F$	iour
Remarks: Drilled with air below casing	

 D. Steam Well No. 3 (located 100 feet east of steam well No. 1) Owned by: Dunigan Tool and Supply Co., Abilene, Texas, and Baca Land and Cattle Co. Drilled by:
 Spudded: 6/16/64 Total depth: ±2600 feet Casing:
 Yield: With casing perforated 1880 to 1936 feet, well discharged both steam and water With casing perforated 1780-1840 feet, well discharged both steam and water

THERMAL SPRINGS AND WELLS IN QUATERNARY AND TERTIARY IGNEOUS ROCKS IN NEW MEXICO

