Geochemical and Biogeochemical Studies in the Eagle Nest Quadrangle, New Mexico

by F. LEO MISAQI (Fazlollah Missaghi)

THE NEW MEXICO BUREAU OF MINES AND MINERAL RESOURCES

FRANK E. KOTTLOWSKI, Acting Director

Full-Time Staff

JOYCE M. AGUILAR, Stenographer
WILLIAM E. ARNOLD, Scientific Illustrator
WILLIAM E. BERTHOLF, Resource Economist
ROSHAN B. BHAPPU, Senior Metallurgist
ROBERT A. BIEBERMAN, Petroleum Geologist
LYNN A. BRANDVOLD, Assistant Chemist
ELISE BROWER, Assistant Chemist
RICHARD R. CHAVEZ, Lab Assistant
Lois M. DEVLIN, Office Manager
JO DRAKE, Director's Secretary
LUCIEN A. FILE, Staff Researcher
ROUSSEAU H. FLOWER, Senior Paleontologist
ROY W. FOSTER, Assoc. Petroleum Geologist
PAUL H. JOHNSON, Metallurgist

LINDA L. LAKE, Secretary
CHERYL A. LEPLATT, Secretary
F. LEO MISAQI, Mining Engineer
ROBERT L. PRICE, Draftsman
RAY, Editor
JACQUES R. RENAULT, Assoc. Geologist
DEXTER H. REYNOLDS, Res. Chemist
JACKIE H. SMITH, Lab Assistant
W. KELLY SUMMERS, Hydrologist
HEIDE WARLIES, Draftswoman
ROBERT H. WEBER, Senior Geologist
MAX E. WILLARD, Econ. Geologist
JUARINE W. WOOLDRIDGE, Clerk-Typist

Part-Time Staff

DAVID G. JACKSON, *Dir.*, *Info. Service* CHING H. MA, *Assoc. Prof. Metallurgy* -ROBERT MONTOYA, *Warehouseman* RUFIE MONTOYA, Dup. Mach. Opr. DAVID A. ROWLAND, *Assoc. Prof. Petrol. Eng.*

Graduate Students

RICHARD D. CLARK, *Geologist*SAUL ESCALERA, *Metallurgist*WALTER W. FISHER, *Metallurgist*LORNA M. GOEBEL, *Chemist*MICHAELE L. HUYGEN, *Res. Assistant*

RUDOLPH H. JACOBSON, *Metallurgist* FAJESH K. MISHRA, *Metallurgist* RONALD W. RIESE, *Geologist* EUGENE F. TOBY, *Geologist*

Plus more than 30 undergraduate student assistants

Geochemical and Biogeochemical Studies in the Eagle Nest Quadrangle, New Mexico

by F. LEO MISAQI (Fazlollah Missaghi)

1968

STATE BUREAU OF MINES AND MINERAL RESOURCES
NEW MEXICO INSTITUTE OF MINING AND TECHNOLOGY
CAMPUS STATION SOCORRO, NEW MEXICO

NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY

Stirling A. Colgate, President

STATE BUREAU OF MINES AND MINERAL RESOURCES

Frank E. Kottlowski, Acting Director

THE REGENTS

Members Ex Officio:
THE HONORABLE DAVID F. CARGO Governor of New Mexico
LEONARD DELAYO Superintendent of Public Instruction
Appointed Members:
WILLIAM G. ABBOTT Hobbs
EUGENE L. COULSON, M.D Socorro
THOMAS M. CRAMER
Steve S. Torres, Jr Socotto
RICHARD M. ZIMMERLY Socotto

Abstract

A geochemical study of bedrock, soil, and plant samples of the area was conducted. The northwestern and north-central parts of the area, known for its mineralization, showed a conspicuous anomaly in metal content. The southwestern part of the area indicated an anomalous metal content. A further, detailed, large-scale study of the southwestern area of the Eagle Nest quadrangle is recommended.

Investigation

The investigated area covers the central part of the Sangre de Cristo Mountains, known as Taos Range (fig. 1). This part of northeastern New Mexico is notable for having the highest point of the state—Wheeler Peak, elevation 13,160 feet. The molybdenite deposit of Questa, on the northwestern margin of the area, is said to be unique among the major molybdenum mines of the world because of its high-grade molybdenite ore produced from fissure veins (Schilling, 1965). At the present time, however, molybdenite of this mine comes from its stockwork deposit.

Elizabethtown, a ghost town located west of Moreno Creek on the eastern margin of the area, used to be the center of a rich placer-gold mining district before 1881 (Anderson, 1957). No other major mining operations are known in the area.

Kenneth F. Clark (1966) describes the geology of the Eagle Nest quadrant, as do various articles in the New Mexico Geological Society guidebook edited by Stuart A. Northrop and Charles B. Read (1966).

The writer conducted this study during the summer of 1966 to determine the pattern of geochemical anomalies in areas to the east of, but immediately adjacent to, the Questa molybdenite deposit and to find potentially favorable anomalies in the Eagle Nest quadrangle.

METHODS OF INVESTIGATION

The basic method of geochemical study comprised bedrock and soil sampling. Plant samples were taken to find a possible relationship between the methods of sampling.

Bedrock outcrops were easy to spot at sampling sites. Plate 1 shows the collection points for rock chip samples, which were later crushed, ground, and screened to —80 mesh size in the laboratory.

The soil was screened on the spot, and the —40 mesh fraction was collected for a further screening in the laboratory, where the —80 mesh fraction was separated for chemical analysis. Where a soil horizon was not well developed, the soil from the holes of burrowing animals was used for sampling. Plate 2 shows the results of soil sampling.

Plant samples consisted of one-year-old twigs of American aspen. This tree was chosen because it grows fast and is easily recognizable. Plate 3 shows the tree sampling locations. Because many sampling points of the central and southwestern parts of the area lie above timberline, no plant samples represent them. Plant samples were reduced in the laboratory and analyzed for traces of metals.

Plates 1, 2, and 3 show that the sampling pattern is not a geometrical one. An effort was made to have all geologic formations represented. Points shown on the maps are common for the rock, soil, and plant samples.

Rock and soil samples were analyzed by the Rocky Mountain Geochemical Laboratories. Copper and zinc contents were determined by atomic absorption; analyses for lead, molybdenum, and arsenic were obtained by colorimetric methods.

Plant samples were analyzed for copper, zinc, lead, and molybdenum at the New Mexico Bureau of Mines' chemical laboratory by atomic absorption methods. No traces of molybdenum were found in plant samples.

Clark's (1966) geological map of Eagle Nest quadrangle was used as a base for this study.

RESULTS OF INVESTIGATION

Table 1 shows the results of chemical analyses. "Total metal" columns in the table represent the rounded-off sum of metal content in each sample. Boldface numbers indicate the anomalously high values of metal content, as determined from Figures 2 through 17.

The following were taken as threshold values, in parts per million, for the area:

- (a) in bedrock survey: copper, 80 ppm; zinc, 120 ppm; lead, 30 ppm; molybdenum, 7 ppm; arsenic, 10 ppm; total metal, 250 ppm.
- (b) in soil survey: copper, 40 ppm; zinc, 140 ppm; lead, 40 ppm; molybdenum, 5 ppm; arsenic, 10 ppm; total metal, 250 ppm.
- (c) in plant survey: copper, 15 ppm; zinc, 70 ppm; lead, 10 ppm; total metal, 70 ppm.

It can be seen that the northwestern and north-central parts of the quadrangle have the largest number of anomalous rock, soil, and plant samples (pls. 1, 2, and

3). This area corresponds to that part of the molybdenum belt that occurs in the investigated area (Schilling) and is mapped as the zone of propylitic alteration by Clark (1966).

Another interesting area lies in the southwestern part of the map. Plate 2 (soil survey) shows the abundance of anomalous samples, less obvious on Plate 1 (bedrock survey) and absent on Plate 3 because the sampling points were above timberline and no plant samples were available.

There is a close correspondence between anomalous soil and rock samples. Samples taken from American aspen generally followed the pattern of rock and soil samples, but they did not indicate the presence of molybdenum. The study of conifers may give a better indication of metal traces.

A more detailed study of the southwestern part of the Eagle Nest quadrangle may clarify the reasons for geochemical anomalies in this area.

Acknowledgments

The writer is indebted to Robert S. LeSage, Adolph and George Mutz, and W. J. Gourley for permission to work on their properties.

Grateful acknowledgment is made to Kenneth F. Clark, Cornell University, who provided me with copies of his geological map of the area and permitted use of the map for this report. My colleagues, George B. Griswold and Frank E. Kottlowski, reviewed the manuscript. Dexter H. Reynolds, research chemist, super-

vised the analyses of wood samples in the chemical laboratory of the New Mexico Bureau of Mines and Mineral Resources. Samples of rock and soil were analyzed by the Rocky Mountain Geochemical Laboratories, Salt Lake City, Utah.

Special thanks are extended to Miss Teri Ray, who did the editorial work, to William E. Arnold, who drafted the illustrations, and to Mrs. Cheryl LePlatt, who typed the manuscript. All are of the Bureau staff.

References

Anderson, Eugene C. (1957) The metal resources of New Mexico and their economic features through 1954, N. Mex. Inst. Min. and Tech., State Bur. Mines and Mineral Res., Bull. 39, 183 p. Clark, Kenneth F. (1966) Geology and ore deposits of the Eagle Nest quadrangle, New Mexico, Ph.D. dissertation, Univ. N. Mex., 363 p.

Northrop, Stuart A., and Read, Charles B. (eds.) (1966) *Taos-Raton-Spanish Peaks Country, New Mexico and Colorado,* N. Mex. Geol. Soc., Guidebook, Seventeenth field conference, 128 p.

Schilling, John H. (1965) Molybdenum resources of New Mexico, N. Mex. Inst. Min. and Tech., State Bur. Mines and Mineral Res., Bull. 76, 76 p.

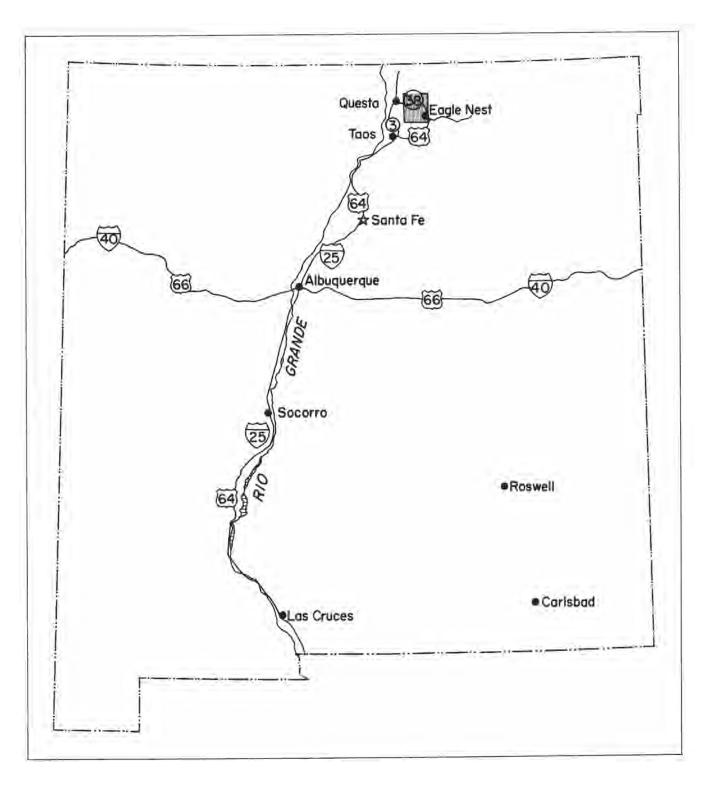


Figure 1
INDEX MAP OF EAGLE NEST QUADRANGLE

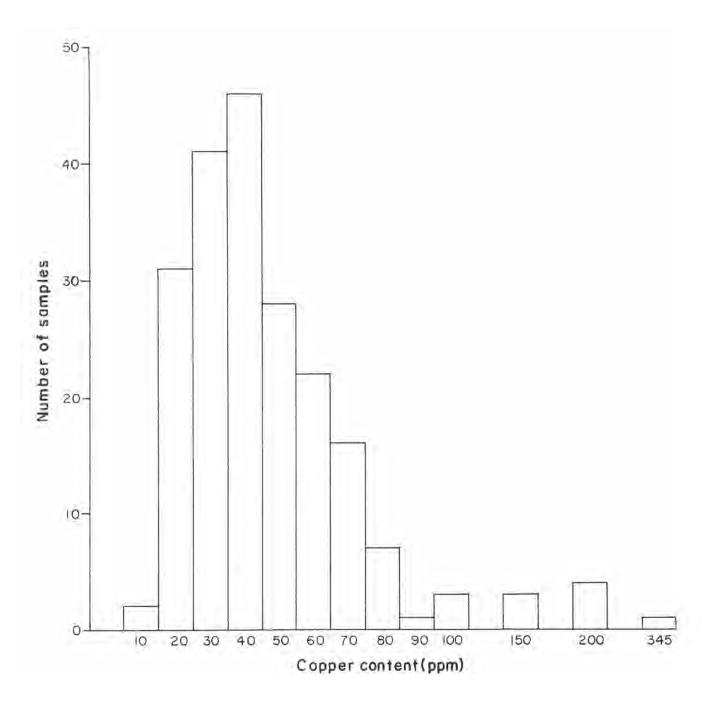
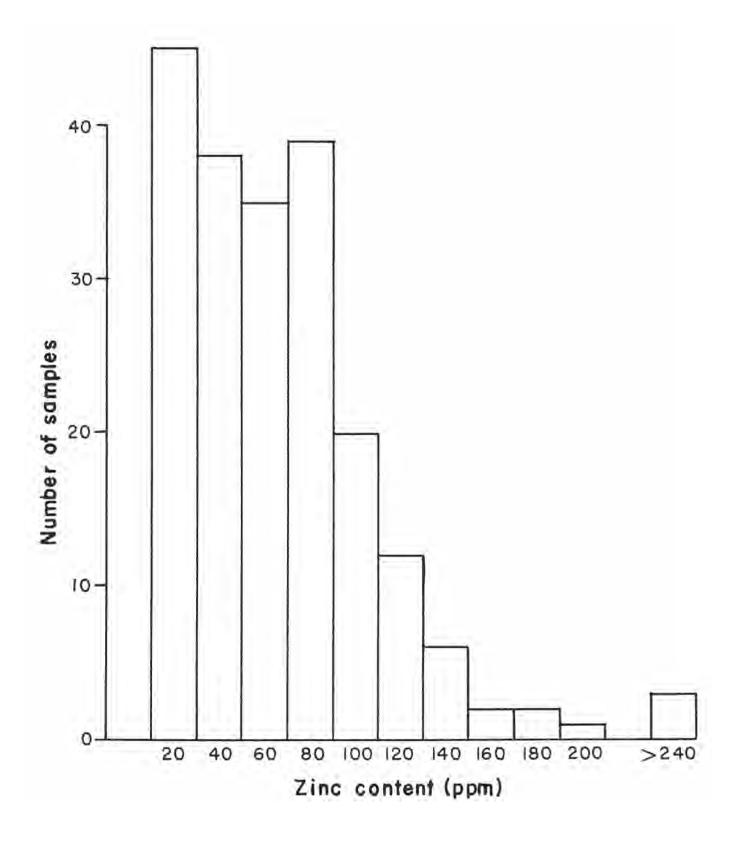



Figure 2 FREQUENCY DISTRIBUTION OF COPPER IN ROCK SAMPLES

 $\label{eq:Figure 3} Frequency \ \ distribution \ \ \ of \ \ zinc \ in \ \ rock \ \ samples$

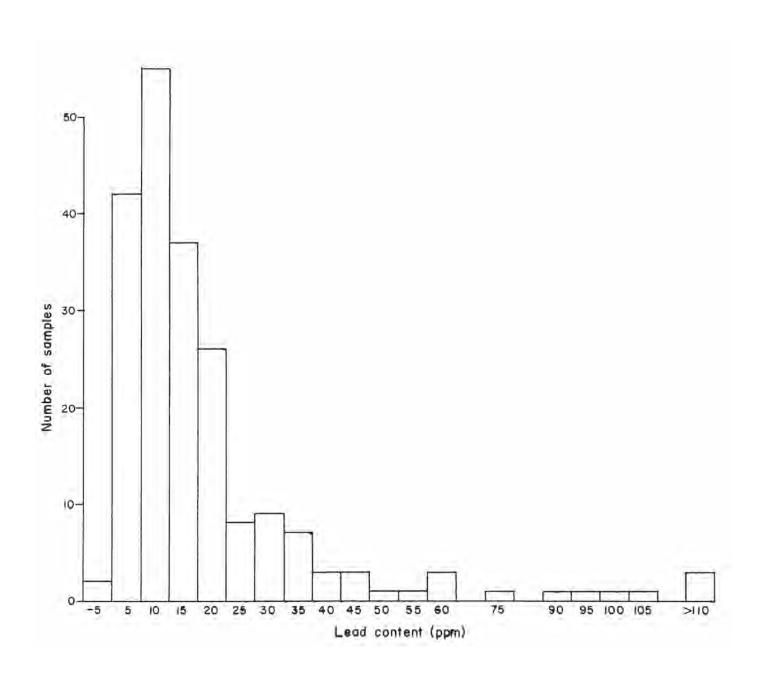


Figure 4 FREQUENCY DISTRIBUTION OF LEAD IN ROCK SAMPLES

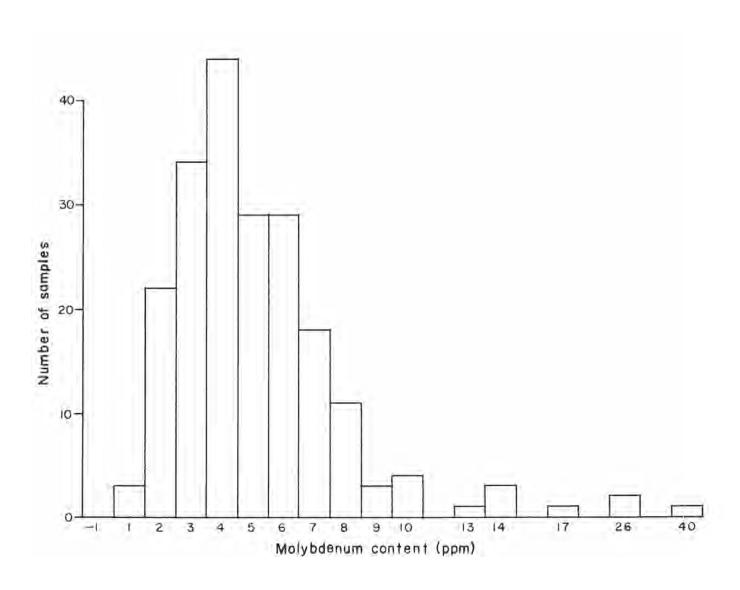
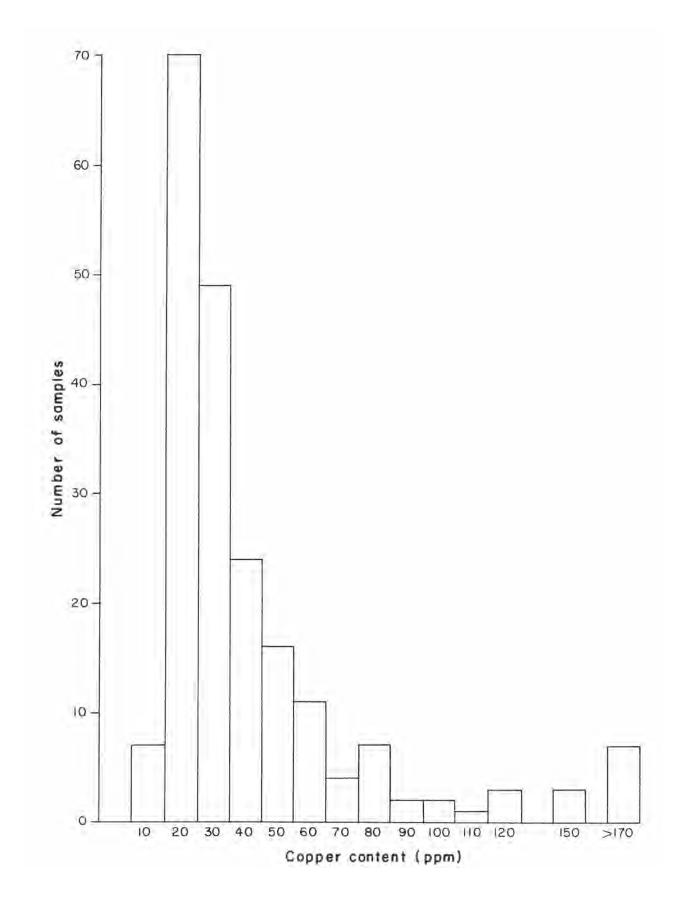
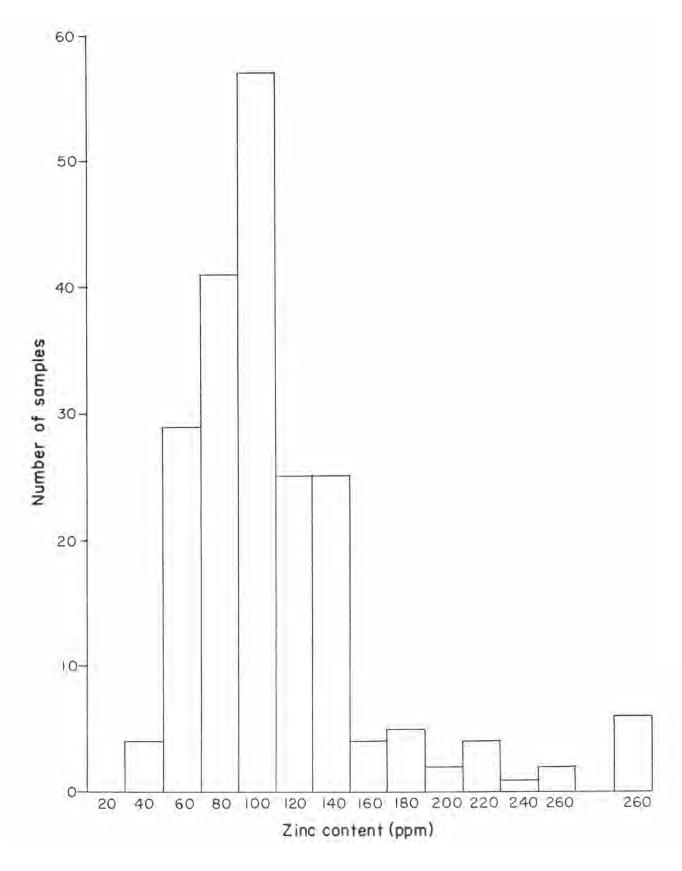




Figure 5 FREQUENCY DISTRIBUTION OF MOLYBDENUM IN ROCK SAMPLES

 $\label{eq:Figure 8} Figure \ 8$ Frequency distribution of copper in soil samples

 $\label{eq:Figure 9} Figure \ 9$ Frequency distribution of zinc in soil samples

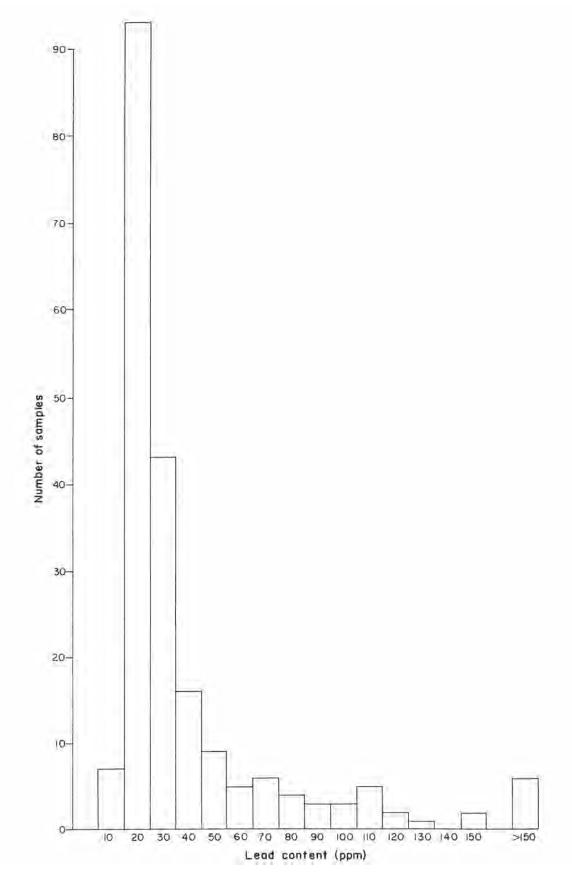


Figure 10 FREQUENCY DISTRIBUTION OF LEAD IN SOIL SAMPLES

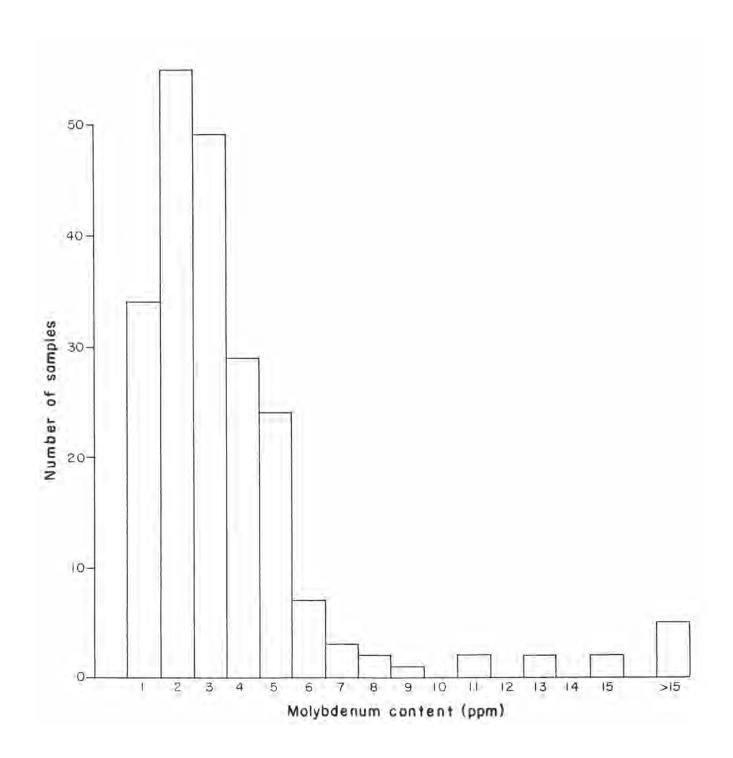


Figure 11 FREQUENCY DISTRIBUTION OF MOLYBDENUM IN SOIL SAMPLES

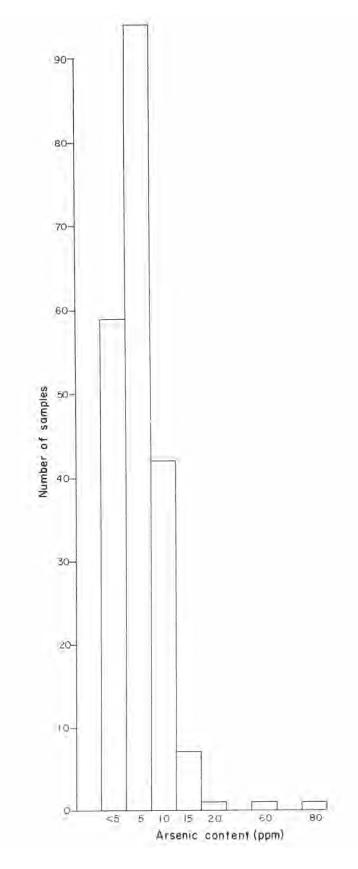


Figure 12 FREQUENCY DISTRIBUTION OF ARSENIC IN SOIL SAMPLES

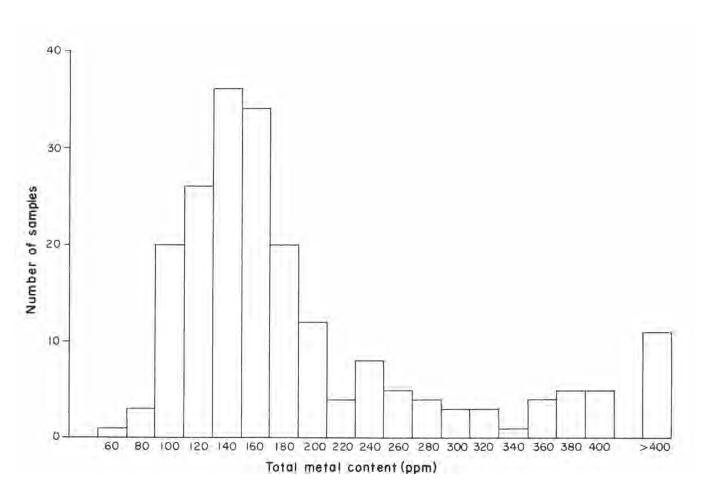


Figure 13
FREQENCY DISTRIBUTION OF TOTAL METAL IN SOIL SAMPLES

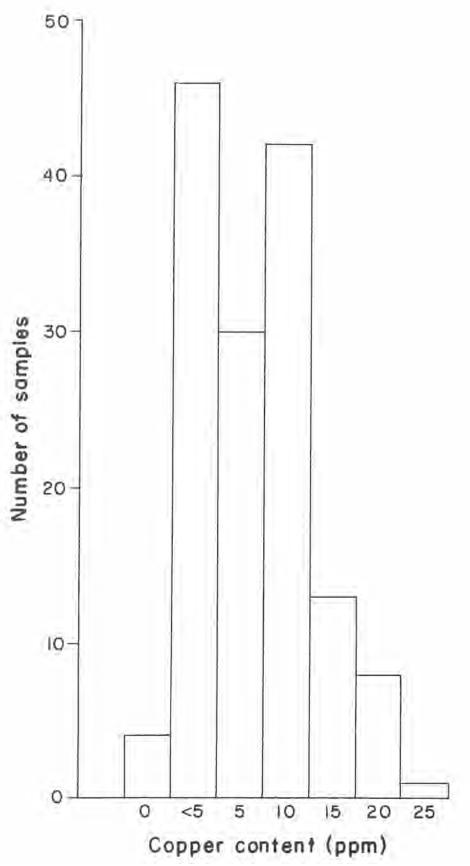


Figure 14
FREQUENCY DISTRIBUTION OF COPPER IN PLANT SAMPLES

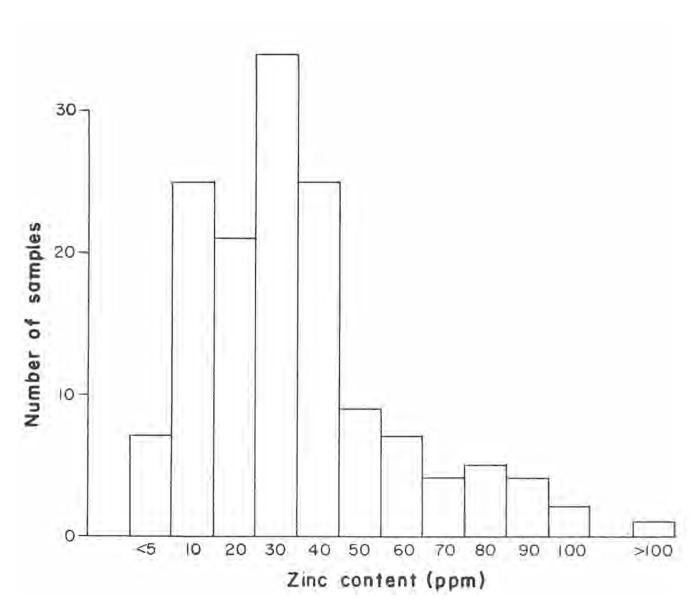


Figure 15 FREQUENCY DISTRIBUTION OF ZINC IN PLANT SAMPLES

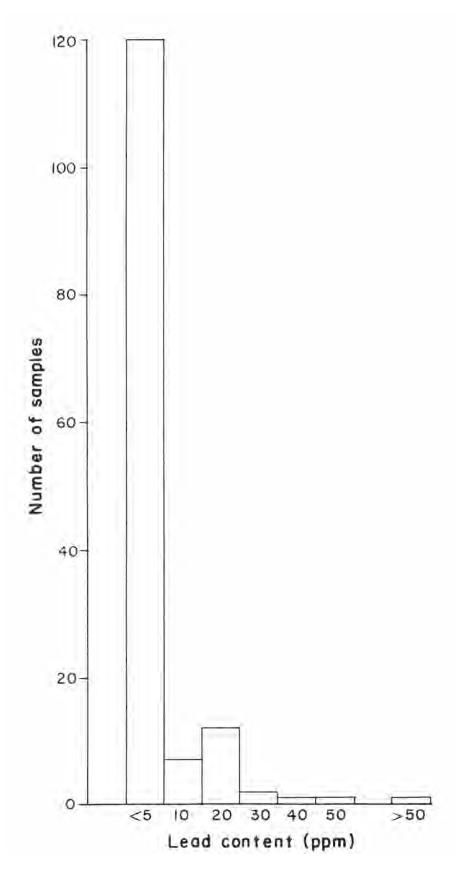
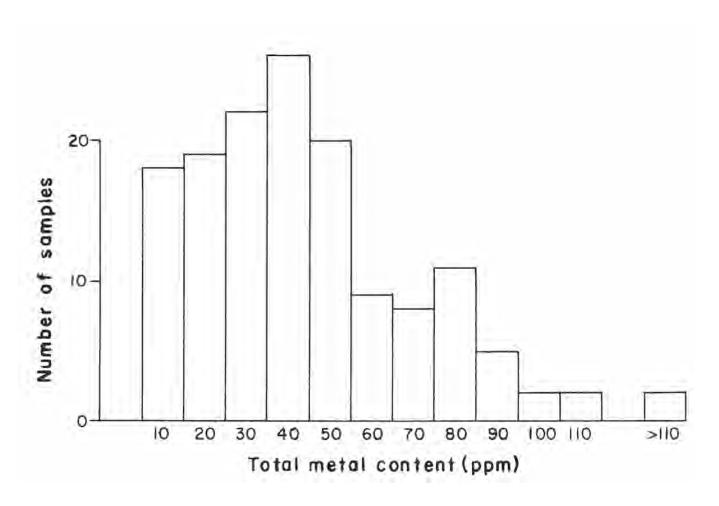



Figure 16 FREQUENCY DISTRIBUTION OF LEAD IN PLANT SAMPLES

 $\label{eq:Figure 17} Frequency \ {\it distribution} \ {\it of total} \ {\it metal in plant samples}$

TABLE 1. ASSAY RESULTS FROM ROCK, SOIL, AND PLANT SAMPLING

SAMPL	AMPLÉ			ROC	K SAMPI	LES				SOIL	PLANT SAMPLES						
NO.	ROCK FORMATION	cu	ZN	PB	мо	AS	TOTAL	CU	ZN	PB	MO	.45-	TOTAL	DU	ZN	ĽВ	TOTAL
1	Latite (propyl. alter.)-Tl	30	110	40	5	10	190	35	90	30	4	5	160	5	40.	0	45
2	Latite (propylalter.)—Tl	165	95	105	40	5	410	45	130	60	8	-5	240	-5	25	-5	25
3	Granite-Tagr	20	20	45	5	5	90	20	70	40	5	-5	130	10	125	-5	135
4	Rhyolite-Tr	45	155	30	4	-5	230	30	100	45	3	-5	180	-5	35	0	35
5	Latite (propyl. alter.)-Tl	40	65	60	5	-5	170	80	160	100	7	-5	350	-5	25	0	25
6	Granite—Tagr	25	95	35	4	-5	160	20	150	70	5	5	250	10	95	0	105
7	Granite (hydroth, alter.)—Tagr	30	25	30	6	-5	90	55	220	35	15	-5	320	20	75	0	95
8	Rhyolite—Fr	20	140	15	4	-5	180	10	130	15	3	-5	160	20	40	0	60
9	Granite-Tagr	40	60	25	3	5	130	70	250	65	5	-5	390	10	55	0	65
10	Granite-Tagr	175	15	40	8	10	250	80	50	45	8	-5	180	20	25	20	65
11	Andesite—Ta	60	80	30	9	5	180	40	115	35	4	-5	190	10	35	0	45
12	Rhyolite—Tr	25	10	20	4	-5	60	20	120	35	4	-5	180	10	60	10	80
13	Metaquartzite—p €q	30	30	20	7	-5	90	20	85	90	11	-5	210	-5	85	0	85
14	Rhyolite—Tr	25	40	30	5	5	100	25	270	60	3	-5	360	-5	25	0	25
15	Latite—T1	30	20	30	8	-5	90	20	70	45	3	-5	140	15	60	0	75
16	Metaquartzite—p € q	35	40	15	3	10	100	25	185	35	4	5	250	5	35	0	40
17	Latite (propyl, alter.)—TI	15	10	145	1	-5	170	20	55	35	3	.5	120	25	25	0	50
18	Rhyolite—Tr	30	15	15	7	5	70	15	50	35	5	-5	100	10	35	0	45
19	Granite—Tagr	45	115	35	4	5	200	175	290	110	4	-5	580	10	35	0	45
20	Rhyolite—Tr	30	135	30	7	5	210	30	130	40	3	-5	200	-5	80	0	80
21	Rhyolite—Tr	40	80	25	2	15	160	30	120	30	3	_5 _5	180	5	20	0	25
22		- 77	80		2	10		25	85	40	4	-5	150	10	25	0	35
28	Andesite—Ta	45	10.0	15		-5	150	55	70	65	5	-5	190	20	45	0	65
	Rhyolite—Tr	65	20	20	9	20	110	45	215	55	5	20	340	5	60	0	65
24	Mafic gneiss—p € mg	30	55	20	4		130	55	215	70	4	60	400	10	50	0	60
25	Mafic gneiss—p € mg	80	90	30	6	5	210	145		110	5	-5	370	5	40	0	45
26	Latite (propyl. alter.)—Tl	65	65	55	5	5	190		115	95	26	10	420	5	85	0	90
27	Latite (hydroth. alter.)—Tl	125	65	35	8	5	240	150	140		6		370		35	10	45
28	Granite—Tagr	35	25	60	5	5	130	90	125	145	15	-5 10	400	—5 5	75	0	80
29	Latite (propyl. alter.)—TI	70	75	100	5	10	260	100			6		590	15	40	0	55
30	Latite (hydroth. alter.)—Tl	100	120	90	10	5	320	195	230	155	20	-5	540	10	35	0	45
31	Latite (propyl. alter.)—TI	60	60	25	4	5	150	315	125	80		5	170	10	75	0	85
32	Metaquartzite—p € q	20	10	10	5	5	50	30	100	30	2	5		15	35	0	
33	Andesite—Ta	35	105	25	4	5	170	35	85	20	1	-5	140	13		AMPLE	50
34	Metaquartzite—p € q	25	5	5	5	-5	40	25	60	35	3	5	500	1.2		0	
35	Metaquartzite—p € q	20	5	5	1	-5	30	20	90	30	8	5	150	10	30	0	35 40
36	Metaquartzite—p € q	25	5	5	5	5	40	25	80	25	2	-5	130		30	-	75
37	Metaquartzite—p € q	60	20	35	14	5	130	30	150	50	3	-5	230	10	65	0	30
38	Rhyolite—Tr	20	30	25	4	5	80	30	105	35	1	.5	180	10	20		25
39	Latite (prophyl, alter.)—TI	70	100	30	4	-5	200	35	130	30	1	-5	200	15	10	0	35
40	Latite—TI	60	175	45	6	5	290	35	125	45	2	-5	210	10	25	0	45.5
41	Granite—p € gr	60	110	20	.5	-5	190	25	100	15	1	-5	140	10	30	40	80
42	Mafic gneiss—p € mg	80	110	30	6	10	240	15	85	15	2	.5	120	10	30	0	40
43	Latite (hydroth, alter.)—Tl	35	15	165	6	5	230	30	45	30	9	.5	110	15	25	0	40
44	Latite (hydroth alter.)-Tl	55	25	75	13	-5	170	20	35	125	13	10	200	20	35	20	75
45	Latite (hydroth. alter.)—Tl	70	100	25	3	-5	200	60	130	110	4	10	310	10	35	0	45
46	Rhyolite (prophyl. alter.)—Tr	55	35	120	6	5	220	80	135	475	9	10	710	5	70	0	75
47	Quartz porphyry—Tqp	30	25	35	8	5	100	15	40	80	11	5	150	20	40	0	60
48	Latite (hydroth. alter.)—Tl	30	30	45	3	-5	110	30	140	15	6	-5	190	-5	50	0	50
49	Rhyolite—Tr	30	30	40	7	10	120	20	80	25	2	-5	130	20	25	0	45
50	Metaquartzite—p € q	20	40	20	4	- 5	90	25	100	50	4	-5	180	-5	25	0	25

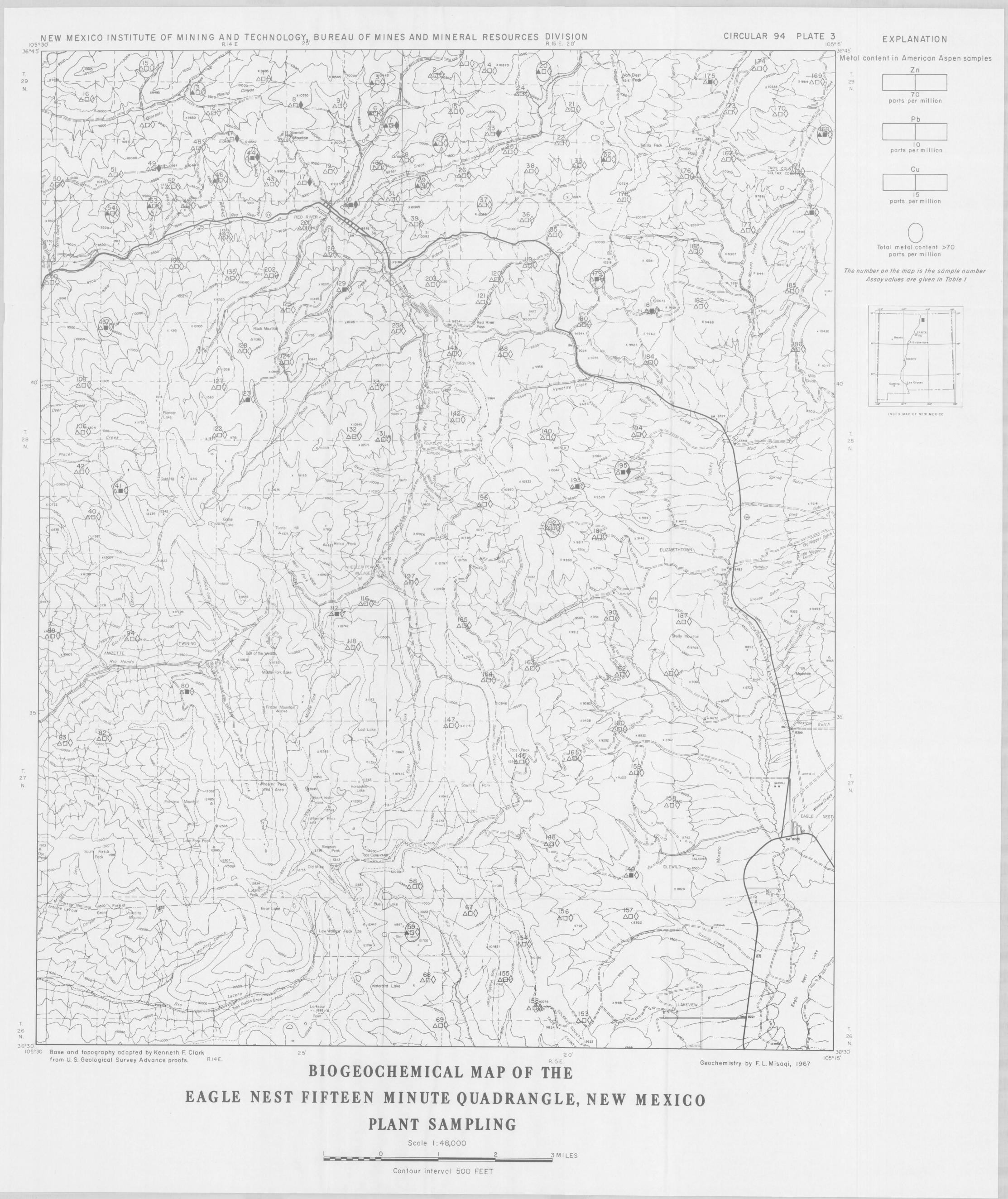
A minus sign (-) is to be read "less than" and a plus sign (+) "greater than," Anomalous values are given in boldface numbers.

TABLE I. ASSAY RESULTS FROM ROCK, SOIL, AND PLANT SAMPLING (cont)

AMPLE				ROC	K SAMP	LES				SOIL	PLANT SAMPLES						
NO.	ROCK FORMATION	CU	ZN	PR	MQ	A5	TOTAL	CU	ZN	FB	MO	AS	TOTAL	CU	ZN	PR	TOTAL
51	Andesite (propyl. alter.)—Ta	35	85	20	2	-5	140	25	130	30	5	<u>—5</u>	190	10	50	Ū	60
52	Andesite (hydroth, alter)-Ta	70	75	20	7	5	180	45	65	35	3	5	150	10	60	D	70
58	Andesite (hydroth, alter.)-Ta	35	55	20	. 5	-5	110	50	55	70	7	10	190	15	85	0	90
54	Andesite (propyl. alter.)—Ta	55	180	35	8	5	280	35	320	120	3	.5	480	5	95	0	95
55	Matic gueiss—p € mg	70	110	15	3	5	200	60	120	25	2	10	220		NO S	AMPLE	
56	Granite—p € gr	20	.50	10	4	-5	80	20	80	20	2	5	130		NO S	AMPLE	4
57	Sandstone-IP	40	50	15	4	-5	110	15	70	20	1	10	120		NO S	AMPLE	4
58	Metaquartzite—p € q	35	10	10	3	-5	60	30	95	30	3	10	170	10	45	0	55
59	Metaquartzite-p € q	20	5	5	2	5	40	20	80	30	4	5	140	10	80	Ω	90
60	Mafic gneiss—p € mg	55	130	15	4	5	210	60	130	25	1	5	220		NO S.	AMPLE	4
61	Granite—p € gr	15	30	10	2	-5	60	20	95	20	2	-5	140		NO.5	AMPLE	5.
62	Mafic gneiss—p € mg	65	105	10	4	5	190	45	115	20	T	5	190			AMPLE	
63	Sandstone—IP	30	55	10	4	5	100	30	100	25	1	10	170		NO S	AMPLE	C
64.	Metaquartzite-p & q	50	60	15	26	5	160	30	120	20	2	10	180			AMPLE	
55	Metaquartzite—p € q	30	30	10	7	5	80	15	95	20	1	10	140		NOS	AMPLE	2
66	Sandstone-IP	30	40	10	6	-5	.90	20	55	15	1	.5	100		NO S	AMPLE	£
67	Sandstone-IP	50	80	15	3	5	150	30	90	15	1	5	140	-5	10	0	10
88	Sandstone—IP	40	40	15	4	-5	100	20	85	15	2	-5	120	10	40	0	50
69	Sandstone—IP	15	70	10	3	5	100	15	95	15	2	5	130	5	30	0	35
70	Mafic gneiss—p € mg	70	100	15	4	5	190	145	180	100	4	10	440			AMPLE	
71	Granite—p Cgr	40	40	20	5	5	110	50	140	90	2	5	290			AMPLE	
2	Mafic gneiss—p € mg	95	250	20	3	-5	370	90	135	35	1	10	270			AMPLI	
73	Mafic gneiss—p € mg	945	:80	50	6	155	640	100	145	60	4	80	390			AMPLE	
74	Granite—p € gr	35	45	35	7	15	140	55	140	185	3	15	400			AMPLI	
75	Granite—p Cgr	30	50	20	2	5	110	55	135	50	2	-5	240			AMPLE	
76	Mafic gneiss—p € mg	70	105	15	5	.5	200	65	170	120	6	5	370			AMPLI	
77	Mafic gneiss—p € mg	40	290	20	2	-5	350	220	+1000	700	6	10	-1-2000			AMPLE	
78	Mafic gneiss—p € mg	50	145	15	4	-5	210	230	330	245	2	15	820			AMPLI	
79	Granite—p € gr	65	50	15	5	-5	130	70	130	25	2	10	240			AMPLI	
80	Malic gneiss—p € mg	160	100	15	3	10	290	120	115	15	î	.5	260	15	10	30	55
81	Mafic gueiss—p € mg	100	55	10	3	-5	170	60	90	20	2	10	180	4,44		AMPLI	
82	Granite—p € gr	45	60	5	2	10	90	15	105	20	3	5	150	-5	10	0	10
83	Mafic gneiss—p € mg	20	70	10	3	5	110	55	220	30	2	5	310	15	25	0	40
84	Granite—p € gr	20	40	5	3	-5	70	50	250	60	2	-5	360			AMPLI	
85	Granite—p € gr	30	45	10	5	10	100	50	120	45	3	10	230			AMPLI	
86.	Mafic gneiss—p € mg	65	60	10	5	5	140	80	105	35	1	5	230			AMPLI	
87	Granite—p €gr	60	30	10	8	5	110	45	75	20	3	-5	140		7 2 4 4 1	AMPLI	
88	Mafic gneiss—p € mg	70	30	10	5	10	120	245	100	25	4	5	380			AMPLI	
89	Granite—Ther	45	35	20	6	-5	110	10	70	20	3	10	110	10	25	0	35
90	Malic gneiss—p € mg	45	130	20	4	5	200	15	60	20	1	5	100	1.00		AMPLI	
91	Granite—p € gr	20	40	10	2	.5	80	10	85	15	2	5	120			AMPLI	
			120	20	4	5	210	20	105	20	3	10	160			AMPLI	
92 93	Mafic gneiss—p € mg	10	30	5	2	-5	50	10	70	20	1	5	110			AMPLI	
93	Granite—p € gr	40	80	5	3	5	130	15	100	15	2	5	140	15	25	0	40
	Mafic gneiss—p € mg		90	10	5	— <u>5</u>	140	50	95	20	1	5	170	13		AMPLI	
95	Mafic gneiss—p € mg	40		10	5	-5	190	35	105	15	1	5	160		7. 7	AMPLI	
96	Mafic gneiss—p € mg	80	95	10	3	-5	120	40	85	20	1	10	160			AMPLI	
97	Malic gneiss—p € mg	50	55				200	20	90	15	1	5	130			AMPLI	
98 99	Mafic gneiss—p € mg Sandstone—IP	30 20	45 20	.5 10	5	—5 5	80 60	35	110	25	2	15	190			AMPLI	

Possible contamination of rock sample.
 A minus sign (—) is to be read "less than" and a plus sign (—) "greater than."
 Anomalous values are given in boldface numbers.

^{*} Possible contamination of rock sample,


A minus sign (-) is to be read "less than" and a plus sign (+) "greater than."

Anomalous values are given in boldface numbers.

TABLE I. ASSAY RESULTS FROM ROCK, SOIL, AND PLANT SAMPLING (cont)

SAMPL	SAMPLE		ROCK SAMPLES							SOIL	PLANT SAMPLES						
NO.	ROCK FORMATION	cu	ZN	PB	МО	As	TOTAL	GU	ZN	PB	MO	AS	TOTAL	CU	ZN	PB	TOTAL
196	Granite-p € gr	60	65	10	6	5	150	25	90	25	3	5	150	5	25	0	30
197	Malic gneiss—p € mg	110	80	5	3	-5	200	45	125	25	3	5	200	10	10	0	20
198	Latite (propyl. alter.)—TI	85	75	10	8	10	190	110	140	80	13	10	350	5	15	0	20
199	Andesite (hydroth, alter.)—Ta	200	115	10	9	10	340	230	115	270	58	10	680	10	50	5	65
200	Granite-Tagr	35	15	5	6	-5	60	80	270	.90	34	-5	470	5	25	0	30
201	Latite (propyl. alter.)-T1	40	75	20	4	- 5	140	50	80	150	7	.5	290	10	.5	5	15
202	Latite—T1	30	65	10	3	-5	110	35	160	70	5	10	280	10	25	0	35
203	Latite-T1	60	60	15	8	-5	140	35	80	35	5	15	170	-5	20	0	20
204	Andesite—Ta	40	75	5	4	-5	120	40	85	20	2	5	150	-5	-5	0	5

A minus sign (—) is to be read "less than" and a plus sign (+) "greater than." Anomalous values are given in boldface numbers,

