$^{40}\text{Ar}/^{39}\text{Ar}$ Geochronology Results from a Cinder Cone from the Cutter Quadrangle and from Two Dikes from the Alivio Quadrangle, New Mexico

Prepared By:

Richard P. Esser and William C. McIntosh
New Mexico Bureau of Geology, Socorro, NM 87801

Prepared For:

Dr. William R. Seager
New Mexico State University, Las Cruces, NM 88003-8001

Data Repository for:
NM Bureau of Geology and Mineral Resources
Memoir 49

Initially prepared as:
NM Geochronology Research Laboratory Internal Report
NMGRL-IR 158A
April 4, 2003
NEW MEXICO BUREAU OF GEOLOGY AND MINERAL RESOURCES
Peter A. Scholle, Director and State Geologist

a division of

NEW MEXICO INSTITUTE OF MINING AND TECHNOLOGY
Daniel H. López, President

BOARD OF REGENTS
Ex Officio
Bill Richardson, Governor of New Mexico
Michael J. Davis, Superintendent of Public Instruction
Appointed
Ann Murphy Daily, President, 1999–2004, Santa Fe
Randall E. Horn, Secretary/Treasurer, 1997–2003, Albuquerque
Sidney M. Gutierrez, 2001–2007, Albuquerque
Anthony L. Montoya, Jr., 2001–2003, Socorro
Robert E. Taylor, 1997–2003, Silver City

NEW MEXICO GEOCHRONOLOGY RESEARCH LABORATORY STAFF

WILLIAM McINTOSH, Geochronologist
MATT HEGLER, Geochronologist

LISA PETERS, Aragon Laboratory Technician
RICHARD ESERR, Aragon Laboratory Technician

BUREAU STAFF

BRUCE D. ALLEN, Field Geologist
RUBEN ARCHELETA, Metallurgical Lab. Technician II
SANDRA H. AZEVEDO, Cartographer II
ALBERT BACA, Lead Maintenance Carpenter
JAMES M. BARKER, Associate Director for Operations, Senior Industrial Minerals Geologist
PAUL W. BAUER, Associate Director for Government Liaison, Senior Geologist, Manager of Geologic Mapping Program
LINDA M. BRANDVOLD, Senior Chemist
BRIAN S. BRISTER, Petroleum Geologist
RON BROADBAND, Associate Director for Industry Liaison, Principal Senior Petroleum Geologist
RITA CASE, Administrative Secretary II (Alb. Office)
STEVEN M. CATHER, Senior Field Geologist
RICHARD CHAMBERLIN, Senior Field Geologist
SEAN D. CONNELL, Albuquerque Office Manager, Field Geologist
RUBEN A. CRESPIN, Manager, Fleet/General Services
JEANNE DEARDORFF, Assistant Editor
NELLIE D. DENBART, Analytical Geochemist
RICHARD ESERR, Senior Lab. Associate
ROBERT W. EVELETH, Senior Mining Engineer
KARL FRISCH, GIS Technician
PATRICK L. FRISCH, Assistant Curator of Mineral Museum
LISA G. GABALDON, Cartographer II
NANCY S. GILSON, Editor
KATHRYN E. GLEISNER, Senior Cartographer/Manager, Cartography Section
DEBBIE GOERING, Business Office Coordinator
TERRY GONZALES, Information Specialist
IBRAHIM GUNDLER, Senior Extractive Metallurgist
LYNN HEGLER, Senior Lab. Associate
MATT HEGLER, Assistant Director for Laboratories, Geochronologist
LYNNE HEMENWAY, Geologic Information Center Coordinator
GRETCHEN K. HOFFMAN, Senior Coal Geologist

GLEN JONES, Assistant Director for Computer/Internet Services
THOMAS J. KAUS, Cartographer I
PHILIP KYLE, Professor, Geochemistry
SUSAN KYLE, Administrative Secretary I
LEWIS A. LAND, Hydrogeologist
ANNABELLE LOPEZ, Petroleum Information Coordinator
THERESA LOPEZ, Administrative Secretary I
DAVID W. LOVE, Principal Senior Environmental Geologist
JANE A. CALVERT LOVE, Managing Editor
VIRGIL W. LUETH, Assistant Director for Public Outreach, Mineralogist/Economic Geologist, Curator of Mineral Museum
MARK MANSSELL, GIS Specialist
DANIEL L. MCCRAW, Senior Geologic Lab. Associate
WILLIAM McINTOSH, Senior Volcanologist
CHRISTOPHER G. MCKEE, X-ray Facility Manager
VIRGINIA T. MCLEMORE, Minerals Outreach Liaison, Senior Economic Geologist
PATRICK JACKSON PAUL, Geologic Lab. Associate
LISA PETERS, Senior Lab. Associate
L. CREER PRICE, Senior Geologist/Chief Editor
ADAM S. READ, Senior Geological Lab. Associate
BEN REBACH, Cartographer II
WILLIAM D. RAYTZ, Petroleum Geologist
MARSHALL A. REITTER, Principal Senior Geophysicist
JOHN SIGDA, Geohydrologist
GREGORY SANchez, Mechanic-Carpenter Helper
TERRY THOMAS, ICP-MS Manager
FRANK TITUS, Senior Outreach Hydrologist
LORETTA TOBIN, Executive Secretary
AMY TRIVITT-KRACKE, Petroleum Computer Specialist
IVY M. VASQUEZ, Assistant Director for Finance
MANUEL J. VASQUEZ, Mechanic II
SUSAN J. WELCH, Manager, Geologic Extension Service
MAUREEN WELKS, Geologic Librarian, Manager of Publication Sales

EMERITUS

GEORGE S. AUSTIN, Emeritus Senior Industrial Minerals Geologist
CHARLES E. CHAPIN, Emeritus Director/State Geologist
JOHN W. HAWLEY, Emeritus Senior Environmental Geologist

JACQUES R. RENAUT, Emeritus Senior Geologist
SAMUEL THOMPSON, Emeritus Senior Petroleum Geologist
ROBERT H. WEBER, Emeritus Senior Geologist

Plus research associates, graduate students, and undergraduate assistants.
Introduction

Three volcanic rocks from southern New Mexico were submitted for $^{40}\text{Ar}/^{39}\text{Ar}$ dating by Dr. William Seager. Groundmass concentrate was prepared from the WS-2 and WS-3 samples. No dateable material was found in sample WS-1.

$^{40}\text{Ar}/^{39}\text{Ar}$ Analytical Methods and Results

The groundmass concentrate samples were analyzed by the furnace incremental heating age spectrum $^{40}\text{Ar}/^{39}\text{Ar}$ method. Abbreviated analytical methods for the furnace sample is given in Table 1. Details of the overall operation of the New Mexico Geochronology Research Laboratory are provided in the Appendix. Figures 1 and 2 show the age spectra and inverse isochrons yielded by the groundmass concentrates.

Groundmass concentrate WS-2 (Figure 1) yields a moderately discordant age spectrum. The initial six heating steps for WS-2 are concordant at approximately 2 Ma (step C has been excluded because the furnace failed to reach the desired temperature). Step H (1250°C) follows with almost 70% of the total $^{39}\text{Ar}_K$ released and an apparently anomalously old age of 7.15 Ma. Step I (the fusion step) has only a minor amount of the total potassium and is older still at 15.70 Ma. Radiogenic yields for WS-2 are very low for the majority of the age spectrum (<6%), but increase to 9% and 16% for the final two heating steps. The K/Ca ratios are variable, ranging from less than 0.05 to 1.5. A plateau assigned to steps D through G yields a weighted mean age of 2.04±0.36 Ma (29.3% of the $^{39}\text{Ar}_K$ released). The inverse isochron results for WS-2 are analytically indistinguishable from the spectrum weighted mean age and atmosphere.

The age spectrum for the WS-3 groundmass concentrate (Figure 2) is highly discordant with ages ranging from 18.2 Ma to 27.1 Ma. The lower temperature heating steps for WS-3 yield the youngest ages while the highest temperature steps yield the oldest ages. The intermediate temperature steps (steps C through F) present a gradient from the youngest ages to the oldest ages. The radiogenic yields are consistent throughout much of the age spectrum at about 50-55%. The K/Ca ratios are high (4.1) for the earliest gas released, but then steadily decrease through the rest of the heating steps to less than 0.1. A weighted mean for the five highest temperature heating steps yields an age of 26.80±0.68 Ma (52.6% of the $^{39}\text{Ar}_K$ released). The inverse isochron results for WS-3 are analytically indistinguishable from the spectrum weighted mean age and atmosphere.
Discussion

For the WS-2 groundmass concentrate sample, the spectrum weighted mean age (2.04±0.36 Ma) is inferred to be the best estimate of the age of the lava emplacement. However, the final two, anomalously old, heating steps of the WS-2 age spectrum indicate that excess argon or contamination may be a problem with this sample. The excess argon may be contained within a relatively high temperature (>1100°C), low potassium (K/Ca<0.5) mineral phase, such as pyroxene or olivine. An additional problem with this sample is the very low radiogenic yields (<6%) that combine with the young age and low potassium content of the sample to yield a relatively imprecise age. Also, because of the low potassium content and the low radiogenic yields, the weighted mean age may be more susceptible to the influence of excess argon. Therefore, the weighted mean age of 2.04±0.36 Ma should be considered a maximum age.

The age spectrum for the WS-3 groundmass concentrate sample is more difficult to interpret. While the overall shape of the spectrum is indicative of a ~26 Ma sample that has undergone 40Ar* loss because of alteration/hydration, the radiogenic yields are higher and more consistent than would be expected. The alternative to the 40Ar* loss scenario is an ~18 Ma sample that has been contaminated by excess argon or xenocrysts. However, the inverse isochron contains no evidence of an excess argon component. Because the shape of the age spectrum is more similar to other samples known to have alteration and/or hydration products, it is our estimate that the weighted mean from steps E to 1 (26.80±0.68 Ma) yields the best estimate of the eruption age of WS-3. However, argon loss may have influenced some or all of the heating steps included in the weighted mean age so that it should be considered a minimum age. This hypothesis is strengthened by the apparent field relationship between the WS-3 dike and the Vicks Peak Tuff. According to the field description provided by Dr. Seager, the WS-3 dike crosscuts several units below the Vicks Peak Tuff, but does not intersect the Vicks Peak Tuff itself. The WS-3 dike may also merge into a basaltic andesite flow immediately below the Vicks Peak Tuff. If this last statement is true, then the stratigraphically lower WS-3 sample must be older than the Vicks Peak Tuff (28.56±0.08 Ma; McIntosh et al., 1990). This indicates that the WS-3 groundmass concentrate has lost enough 40Ar* through alteration/hydration to decrease its 40Ar/39Ar apparent age by at least 2 million years.
References Cited

McIntosh, W.C., Sutter, J.F., and Chapin, C.E., 1990, High-Precision $^{40}\text{Ar}/^{39}\text{Ar}$ sanidine geochronology of ignimbrites in the Mogollon-Datil volcanic field, southwestern New Mexico: Bulletin of Volcanology, v. 52, p. 584-601.

Table 1. 40Ar/39Ar analytical methods used for the groundmass concentrate samples.

Sample preparation and irradiation:
Geological samples provided by Dr. William Seager.
Groundmass concentrates were prepared using standard separation techniques (crushing, sieving, franzing and hand-picking).
Samples were packaged and irradiated in machined Al discs for 7 hours in D-3 position, Nuclear Science Center, College Station, TX.
Neutron flux monitor Fish Canyon Tuff sanidine (FC-1). Assigned age = 27.84 Ma (Deino and Potts, 1990) relative to Mnhb-1 at 520.4 Ma (Samson and Alexander, 1987).

Instrumentation:
Mass Analyzer Products 215-50 mass spectrometer on line with automated all-metal extraction system.
Samples step-heated in Mo double-vacuum resistance furnace. Heating duration 7 minutes.
Reactive gases removed by reaction with 3 SAES GP-50 getters, 2 operated at ~450°C and 1 at 20°C, together with a W filament operated at ~2000°C.

Analytical parameters:
Electron multiplier sensitivity averaged \(2.82 \times 10^{-16}\) moles/pA.
Total system blank and background for the furnace averaged 4400, 57.0, 1.7, 6.8, 14.1 \(\times 10^{-16}\) moles at masses 40, 39, 38, 37, and 36, respectively for temperatures <1300°C.
J-factors determined to a precision of ±0.1% by CO\(_2\) laser-fusion of 4 single crystals from each of 6 radial positions around the irradiation tray.
Correction factors for interfering nuclear reactions were determined using K-glass and CaF\(_2\) and are as follows:
\((^{40}\text{Ar}/^{39}\text{Ar})_k = 0.0002\pm0.0003;\) \((^{40}\text{Ar}/^{39}\text{Ar})_l = 0.00028\pm0.000005;\) and \((^{39}\text{Ar}/^{37}\text{Ar})_l = 0.0007\pm0.0002.\)

Age calculations:
Weighted mean age calculated by weighting each age analysis by the inverse of the variance.
Weighted mean error calculated using the method of (Taylor, 1982).
Total gas ages and errors calculated by weighting individual steps by the fraction of \(^{39}\text{Ar}\) released.
Isochron ages, \(^{40}\text{Ar}/^{36}\text{Ar}\) and MSWD values calculated from regression results obtained by the methods of York (1969).
Decay constants and isotopic abundances after Steiger and Jäger (1977).
All final errors reported at ±2\(^{\sigma}\), unless otherwise noted.
Table 2. 40Ar/39Ar analytical data.

<table>
<thead>
<tr>
<th>ID</th>
<th>Power (Watts)</th>
<th>40Ar/39Ar</th>
<th>37Ar/39Ar</th>
<th>36Ar/39Ar</th>
<th>35Ar/39Ar</th>
<th>K/Ca</th>
<th>40Ar$^+$/39Ar</th>
<th>Age (Ma)</th>
<th>±1s (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS-2</td>
<td>102.76 mg groundmass concentrate, J=0.0000702x0.11%, NM-133, Lab#51961-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>575</td>
<td>39874</td>
<td>6.529</td>
<td>134012.6</td>
<td>0.030</td>
<td>0.078</td>
<td>0.7</td>
<td>319</td>
<td>210</td>
</tr>
<tr>
<td>B</td>
<td>650</td>
<td>236.8</td>
<td>0.3365</td>
<td>788.6</td>
<td>3.17</td>
<td>1.5</td>
<td>1.6</td>
<td>3.8</td>
<td>4.8</td>
</tr>
<tr>
<td>C</td>
<td>700</td>
<td>88.61</td>
<td>12.62</td>
<td>299.5</td>
<td>0.026</td>
<td>0.040</td>
<td>1.3</td>
<td>3.9</td>
<td>4.8</td>
</tr>
<tr>
<td>D</td>
<td>750</td>
<td>42.63</td>
<td>0.4542</td>
<td>138.8</td>
<td>5.67</td>
<td>1.1</td>
<td>3.9</td>
<td>10.9</td>
<td>2.1</td>
</tr>
<tr>
<td>E</td>
<td>825</td>
<td>55.07</td>
<td>0.6295</td>
<td>182.8</td>
<td>3.14</td>
<td>0.81</td>
<td>2.0</td>
<td>14.7</td>
<td>1.41</td>
</tr>
<tr>
<td>F</td>
<td>925</td>
<td>30.74</td>
<td>0.7553</td>
<td>98.19</td>
<td>6.04</td>
<td>0.68</td>
<td>5.8</td>
<td>21.9</td>
<td>2.27</td>
</tr>
<tr>
<td>G</td>
<td>1025</td>
<td>67.92</td>
<td>0.8848</td>
<td>225.6</td>
<td>9.37</td>
<td>0.58</td>
<td>1.9</td>
<td>33.1</td>
<td>1.68</td>
</tr>
<tr>
<td>H</td>
<td>1200</td>
<td>62.15</td>
<td>2.388</td>
<td>191.9</td>
<td>54.7</td>
<td>0.21</td>
<td>9.1</td>
<td>98.7</td>
<td>7.15</td>
</tr>
<tr>
<td>I</td>
<td>1600</td>
<td>76.09</td>
<td>28.37</td>
<td>224.4</td>
<td>1.05</td>
<td>0.018</td>
<td>16.0</td>
<td>100.0</td>
<td>15.70</td>
</tr>
</tbody>
</table>

- **Integrated age ± 2s**
 - n=9 83.4 K2O=0.44 % 5.76 0.82
- **Plateau ± 2s** steps D-G
 - n=4 MSWD=1.68 24.4 0.76 29.3 2.04 0.36
- **Isochron±2s**
 - n=6 MSWD=2.3 40Ar/39Ar=297±2 1.82 0.43

| WS-3, 14.09 mg groundmass concentrate, J=0.00007019x0.11%, NM-133, Lab#51962-01 |
# A	575	1739.3	0.1244	5813.4	0.116	4.1	1.2	1.4	27
# B	650	26.36	0.2445	40.31	2.07	2.1	54.9	26.2	18.23
# C	700	31.93	0.4006	45.22	0.649	1.3	58.3	34.0	23.42
# D	750	37.10	0.7190	57.57	1.11	0.71	54.3	47.4	25.34
E	825	40.00	0.9025	63.17	1.26	0.57	53.5	62.6	26.92
F	925	41.87	1.022	68.18	1.24	0.50	52.1	77.5	27.43
G	1025	44.38	1.435	82.20	0.717	0.36	45.5	86.2	25.44
H	1200	50.97	7.282	105.2	0.610	0.070	40.2	93.5	25.92
I	1600	67.11	7.792	156.8	0.540	0.065	31.9	100.0	27.12

- **Integrated age ± 2s**
 - n=9 8.31 K2O=0.32 % 24.17 0.53
- **Plateau ± 2s** steps E-I
 - n=5 MSWD=6.32 4.37 0.38 52.6 26.80 0.68
- **Isochron±2s**
 - n=7 MSWD=11 40Ar/39Ar=296±3 26.32 1.01

Notes:
- Isotopic ratios corrected for blank, radioactive decay, and mass discrimination, not corrected for interfering reactions.
- Ages calculated relative to FC-1 Fish Canyon Tuff sanidine interlaboratory standard at 27.84 Ma.
- Errors quoted for individual analyses include analytical error only, without interfering reaction or J uncertainties.
- Integrated age calculated by recombining isotopic measurements of all steps.
- Integrated age error calculated by recombining errors of isotopic measurements of all steps.
- Plateau age is inverse-variance-weighted mean of selected steps.
- Plateau age error is inverse-variance-weighted mean error (Taylor, 1982) times root MSWD where MSWD>1.
- Plateau and integrated ages incorporate uncertainties in interfering reaction corrections and J factors.
- Decay constants and isotopic abundances after Steiger and Jaeger (1977).
- # symbol preceding sample ID denotes analyses excluded from plateau age calculations.
- Discrimination = 1.0069 ± 0.001

Correction factors:
- 40Ar/39Ar$_{int}$ = 0.00089 ± 3e-05
- 40Ar/39Ar$_{wa}$ = 0.00028 ± 1.1e-05
- 36Ar/39Ar$_{wa}$ = 0.01077
- 40Ar/39Ar$_{K/Ca}$ = 0.0002 ± 0.0003
L# 51961: WS-2, 102.76 mg groundmass concentrate

Integrated Age = 5.76 ± 0.82 Ma

Apparent Age (Ma)

2.04 ± 0.36 Ma

(MSWD = 1.68)

Isochron age = 1.82 ± 0.43 Ma

40Ar/36Ar Intercept = 297 ± 2

MSWD = 2.3, n = 6

Figure 1. 40Ar/39Ar age spectrum and inverse isochron for the WS-2 groundmass concentrate. The weighted mean of steps D through G (2.04 ± 0.36 Ma) is the preferred age of this sample. All errors are two-sigma.
Figure 2. 40Ar/39Ar age spectrum and inverse isochron for the WS-3 groundmass concentrate. The weighted mean of steps E through I (26.80 ± 0.68 Ma) is the preferred age of this sample. All errors are two-sigma.