IDENTIFICATION OF ALLUVIAL VALLEY FLOORS IN STRIPPABLE COAL AREAS OF NEW MEXICO

Report to Emery Arnold, Director
Mining and Minerals Division
Energy and Minerals Department
Santa Fe, New Mexico

By

D.W. Love and J.W. Hawley
New Mexico Bureau of Mines and Mineral Resources
New Mexico Institute of Mining and Technology
Socorro, New Mexico 87801

And

T.C. Hobbs
Mining and Minerals Division
Energy and Minerals Department
Santa Fe, New Mexico

October 26, 1981
IDENTIFICATION OF ALLUVIAL VALLEY FLOORS IN STRIPPABLE COAL AREAS OF NEW MEXICO

Introduction

In 1977, the U.S. Congress protected agriculturally-important alluvial valley floors in the western states from disruption by surface mining (U.S. Congress, 1977; U.S. House of Representatives, 1977a, b). Guidelines released by the Region V Office of Surface Mining (OSM) on June 11, 1980, suggested identification and study of alluvial valley floors (AVF) in areas of surface-mineable coal proceed in three phases. Phase I consists of preliminary investigations which can be used quickly to distinguish between "possible alluvial valley floors" and "lands clearly not alluvial valley floors". The other two phases consider detailed analyses of geology, hydrology, biology and land use of areas containing possible alluvial valley floors. To expedite planning and review processes in the State of New Mexico, initial (Phase I) identification of "clearly not alluvial valley floors", "possibly not alluvial valley floors" and "potential alluvial valley floors" was carried out by the New Mexico Bureau of Mines and and Mineral Resources and the Energy and Minerals Department. Such preliminary classification allows the staff of the Energy and Minerals Department, mine operators and other involved parties time to concentrate on the bottomland areas in and adjacent to mine sites whose hydrologic and agricultural functions must be protected during and after mining operations.
Procedures

Phase I studies were designed to evaluate the surficial geologic characteristics, hydrologic characteristics, biologic characteristics and land use characteristics that qualify or disqualify valley floors as potential alluvial valley floors (Table 1). This evaluation included office review of available hydrologic and geomorphic information on parts of the San Juan and Raton Basins with strippable coal resources, as well as field reconnaissance of most major stream valleys in these areas. Hydrologic data were collected and analyzed by T.C. Hobbs. Field work involved traverses (vehicular and foot) across critical valley-floor and stream-channel areas, and visits to wells and gauging stations where hydrologic data have been collected. Figures shown below are prints from photographs of representative drainages which were selected from a large set of color slides taken to illustrate the geomorphic setting at each traverse site. Once field investigations indicated the presence of possible alluvial valley floors, aerial photographs of the areas were studied to map the possible extent of irrigation and subirrigation adjacent to the modern streams. References given at the end of the report are divided into published references available in major libraries, and unpublished reports and communications on file at the Mining and Minerals Division in Santa Fe, New Mexico.
Results

Drainages within the strippable coal areas of New Mexico include the San Juan River System, La Plata River System, Chaco River System, Rio Puerco System, Puerco River System, and the Vermejo River System (Map 1). Table 2 lists the stream segments and valley-floor areas visited, as well as the 1:24,000 and 1:62,500 scale quadrangle maps used in the study. Figure 1 shows monthly discharge for monitored streams in the region.

Phase I studies indicate that alluvial valley floors are not present in most areas with existing or planned coal mine operations. There are only two areas in the San Juan and Raton Basins where hydrologic conditions are favorable for presence of alluvial valley floors. These are the valleys of larger perennial streams that head in alpine areas of the Sangre de Cristo, San Juan and La Plata Mountains. River valley segments with potential alluvial valley floors identified in this study are shown by solid lines on Map 1. They are the valleys of the La Plata River above La Plata to the state line, the San Juan River above the Hogback to Farmington, and the Vermejo River above Dawson to Vermejo Park. Water is fed to these streams by precipitation, snow melt, springs and seeps and is sustained throughout the growing season. The quality of water is acceptable for plant growth, and the regional practice of flood irrigation and subirrigation is clearly visible. It
should be stressed that these river-valley segments contain reaches that probably are not alluvial valley floors, but detailed studies will be needed to establish the presence or absence of alluvial valley floors. As suggested in the Office of Surface Mining draft guidelines (7-11-80), applicants for mining permits in or adjacent to these potential AVF areas should consider starting Phase II AVF studies as soon as possible.

Two valley segments on Map 1 are marked with a dashed-line symbol. These include the lower reaches of Caliente and York Canyons (tributaries to the Vermejo River). The valley-floor areas contain channels of small perennial streams, but have not been flood-irrigated and do not appear to have potential for flood irrigation. York Canyon discharge partly reflects Vermejo River diversion for coal processing at the Kaiser Mine. Due to the high water table, there may be short valley-floor segments where limited subirrigation of crops is possible. Therefore, these areas were not placed in the "clearly not alluvial valley floors" category and they are informally designated "possibly not alluvial valley floors". Each area must be evaluated further.

"Lands clearly not alluvial valley floors" are shown by dotted symbols on Map 1. Streams in these valleys are primarily ephemeral with local intermittent reaches. Nearly all of the drainages in this classification can be characterized as incised steep-walled stream channels with
sparse vegetation, flowing in response to runoff from precipitation. Flows are short-lived, and total suspended concentrations reach as much as 400,000 mg/l (U.S. Geological Survey data from numerous years; see references). There is no evidence (hydrologic or historic land use) that the valley floors can be successfully utilized for agricultural production involving flood irrigation or subirrigation practices. This conclusion is supported by unpublished independent studies by the Bureau of Land Management and Soil Conservation Service that relate directly to agricultural land use in the San Juan Basin (i.e. identification of prime farmlands and soils suitable for irrigation, as well as alluvial valley floors).

Investigations in Specific Drainages

San Juan River

The San Juan River System includes the San Juan River itself and the Shumway and Westwater Arroyos in the Fruitland (Kf) Coal Field (Map 1). The San Juan River (Map 2) has been classified as a "potential alluvial valley floor", as discussed earlier. Farming activities and extensive irrigation systems (e.g. Farmer's Mutual Irrigation Ditch and Jewett Valley Ditch) are clearly visible (Figure 2; Map 2).
Shumway and Westwater Arroyos are ephemeral (except for waste water discharge from the San Juan Power Plant; Figure 3). The arroyo channels are deeply incised and generally free of vegetation. Due to the waste water discharge from the San Juan Power Plant, the water quality can not be evaluated effectively. Water quality records indicate total dissolved solids as high as 9,600 mg/l and pH as low as 2.7 (U.S. Geological Survey, 1979). Water supplied to farming activities at the lower end of the Shumway drainage comes from irrigation facilities along the San Juan River and not from the Shumway watershed. These field areas are included in the potential alluvial valley floor area of the San Juan River (Map 2).

La Plata River

Streams within the upper Fruitland (Kf) coal field along the La Plata River drainage include the La Plata River, Murphy and McDermott Arroyos and Cinder Gulch. The La Plata River is a potential alluvial valley floor (Map 3). Discharge records for the La Plata River at Farmington and the Colorado-New Mexico State line show perennial flow at both stations. Agricultural activities are present throughout the La Plata valley (Figure 4) and a well-established irrigation network exists (e.g. Pioneer Ditch, Highland Park Ditch, Greenhorn Ditch and Cunningham Ditch).
McDermott, Cinder Gulch (Figure 5) and Murphy Arroyos are ephemeral tributaries to the La Plata system. The streams are incised, steep-walled channels with sparse vegetation, flowing only in response to runoff from precipitation. No irrigation practices exist along any of the three drainages. Water within the alluvial aquifer is at a depth of about six feet. Water quality is poor, with total dissolved solids reaching as high as 12,000 mg/l (Western Coal Company, 1980).

Chaco River

The Chaco River System includes drainages within the Navajo (Kf), Bisti (Kf), Toadlena (Kmv), Hogback (Kmv), Newcomb (Kmv), Standing Rock (Kmv), Chaco Canyon (Kmfu), and Star Lake (Kf) coal fields (Map 1; Table 2). All streams are ephemeral, flowing in response to runoff from precipitation (Figures 6-13), except for the main stem of the Chaco River below the Four Corners Power Plant, which has a waste water base flow of about 30 cfs (U.S. Geological Survey data) and a short intermittent reach at the west edge of Chaco Canyon. Most streams are incised 10 feet or more. Total suspended sediment is normally above 30,000 mg/l, and has been reported at ten times this amount. Total dissolved solids average about 300 mg/l. Water-control structures in this area include spreader dikes and check dams. There is no evidence that flood irrigation is now being used or has been used on a regional scale in the recent historic past.
Small plots of "dry land" farming have been observed (commonly less than one acre), but these generally depend upon precipitation and hand-carried water from wells rather than irrigation as a water source. There are a few areas where farming is being conducted along Escavada Wash and Chaco River where shallow alluvial or deeper ground water wells are used to obtain water for irrigation.

For the most part, watersheds within the Chaco River system are not able to deliver enough water to sustain significant agricultural activity during the growing season. For example, De-Na-Zin Wash, located south of Bisti Trading Post, has a drainage area of 184 square miles. Water records for this drainage indicate that flows vary in frequency and intensity, with long periods when no flow of water is recorded. From October 1978, to September 1979, the De-Na-Zin gaging station recorded a total discharge for the watershed of 8992 acre-feet. Between April and September, 3165 acre-feet was discharged. Of 3165 acre-feet, 2650 acre-feet occurred during the middle of August and 474 acre-feet occurred in July. From April 15 through July 2 (79 days), 21 acre-feet of discharge was recorded, occurring entirely during the last week in May. No flows were recorded in June and September. From this data, it is evident that agricultural activities would require storage facilities for water to sustain crops through the high stress periods such as no flow periods which occurred during June and September. The expense of storage facilities would probably outweigh the viability of farming in these areas.
Puerco River

Streams in the Gallup (Kmv) coal field include the Puerco River, Defiance Draw, Burned Death Wash, Tse Bonita Wash, tributaries to Tse Bonita Wash, Coal Mine Wash, tributaries to Coal Mine Wash, Coal Mine Drainage, and the east and west forks of Catalpa Canyon (Figures 14-16). Except for Puerco River and part of Coal Mine Drainage, streams in the area are ephemeral, with deeply incised channels. Total suspended sediment in the northwestern ephemeral drainages is reported between 10,000 and 90,000 mg/l, and total dissolved solids are about 250 mg/l (Carbon Coal Company, 1979, 1980, 1981; Pittsburg and Midway Coal Company, 1981). No flood irrigation practices were found along the ephemeral drainages, and with stream channels so deeply incised, it is doubtful that any flood or subirrigation could exist.

Coal Mine Drainage flows intermittently from springs and seeps along the channel. The channel is incised discontinuously as an arroyo, but locally the channel is capable of overbank flooding and diversion to small (less than 10 acre) fields. No discharge records are available. Water analysis reports indicate the quality is poor, having total dissolved solids in the neighborhood of 4000 mg/l. Sulfate (SO4) and Sodium (Na) concentrations are extremely high (Amcoal, Inc., 1978, 1979, 1980).
The Puerco River was a major ephemeral drainage prior to opening the Church Rock uranium mines. The Puerco River became perennial with base flow dependent upon mine dewatering at the Church Rock mines and sewage treatment at Gallup. Presently, the Puerco River has a base flow of about 3.0 cfs and peak flows occur between December and March (U.S. Geological Survey data). Water quality records are scarce, but episodic monitoring by the New Mexico Environmental Improvement Division shows a large variation in water quality, particularly after the tailings spill from the Church Rock area (Gallaher and Goad, 1981). No evidence of irrigation or subirrigation was found along the Puerco River near Mentmore.

Rio Puerco

The La Ventana (Kmv) coal field is within the Rio Puerco system. The Rio Puerco is intermittent in this area, as are some tributaries from the east. Diversions have been used for irrigation in the past, but none is used now. The Rio Puerco is incised up to 35 feet, and most tributaries are incised as well. An alluvial water table exists just below the stream bottom, with total dissolved solids of 1800 mg/l (Mining and Minerals Division, 1980, 1981; Ideal Basic Industries, 1980, 1981), but the vertical distance from the valley surface to the stream bottom precludes any type of subirrigation.
The Arroyo Hondo, San Pablo and San Miguel drainages can be considered intermittent, deriving their flow from precipitation, snow melt and seepage. All three drainages have deeply incised channels (at least 20 feet). Natural flood irrigation does not occur in these drainages. One land owner pumps water from the San Miguel drainage to the valley surface for crop use, but this is not considered a natural or gravity-fed irrigation system. No discharge or water quality data are available for these drainages.

Arroyo Balcon is an ephemeral drainage. No discharge or water quality reports were found. However, total suspended sediment is thought to be high during flows in response to runoff from precipitation events. A few stock tanks exist in the watershed, but normally they are dry.

Vermejo River

Drainages in the Raton coal field are part of the Canadian River system and include the headwaters of the Canadian River, Vermejo River, York Canyon, Salyers Canyon, Chimney Canyon, Caliente Canyon, Sawmill Canyon, Gachupin Canyon, Saltpeter Canyon, Spring Canyon, Dawson Canyon, Dillon Canyon, Raton Creek, and Potato Canyon. Vermejo River is considered a potential alluvial valley floor (Maps 1, 4, 5, Figures 17-22).
According to flow records, Vermejo River is perennial. Water quality is good, having total dissolved solids of about 200 mg/l. Suspended sediment in the base flow is generally about 30 mg/l while storm events produce much higher concentrations. Approximately 85 percent of all discharge occurs between May and September from precipitation and snow melt (U.S. Geological Survey data). Irrigation practices were employed in the past, but none was operating in 1980 (Figures 17 and 18).

Discharge in York Canyon and Caliente Canyon apparently is intermittent with perennial reaches (Figures 19-21). Water quality is good; total dissolved solids average about 280 ml/l (Kaiser Steel Corporation and Mining and Minerals Division, 1980). Discharge records are poor for the York Canyon drainage and virtually nonexistent for Caliente Canyon. Actual stream discharge computations were not part of the present study, so no conclusive interpretations can be made concerning the streams’ potential to support significant agricultural activity. Stream channels are incised as much as 10 feet below the canyon floors (Figures 18-20). Appreciable amounts of vegetation line the channels. Because flow occurs at least intermittently and water quality is high, there is a potential for subirrigation at least. Further investigation needs to be conducted to verify irrigation potential.
All other drainages in the Raton Coal Field (KTvr) have been classified as "areas clearly not alluvial valley floors". These include Salyers Canyon, Chimney Canyon, Sawmill Canyon, Gachupin Canyon, Saltpeter Canyon, Spring Canyon, Dawson Canyon, Dillon Canyon (Figure 22), Raton Creek, Canadian River Canyon and Potato Canyon drainages. With the exception of Potato and Canadian Canyon drainages, all of these streams are ephemeral. Alluvium is extremely thin in places along the stream channels and stream channels are cut into bedrock in some areas. Flood plains locally are less than 50 feet wide. Water quality records for these streams are not available, but probably the quality is fair.

Discussion of Special Problems

Application of the suggested criteria for identifying alluvial valley floors encounters special problems in New Mexico. These include (1) the actual amount of water needed for crops compared with the two-acre-foot suggested criterion, (2) obtaining water rights for development of presently unirrigated land, (3) changes in stream regime due to other development in the area (i.e. uranium mine dewatering), and (4) minimizing disturbances to the hydrologic balance on and off mine sites, whether or not an alluvial valley floor is involved.
The two acre-feet of water per acre criterion discussed in the AVF guidelines may be adequate if the irrigation system employed is operating at near 100 percent efficiency. However, few systems operate at 100 percent efficiency. Sprinkler irrigation systems normally operate at about 65 percent efficiency, and flood irrigation ditches operate at about 30 percent efficiency (S.P. Neville, 1981, written communication). Unimproved flood irrigation ditches can be expected to operate at a lesser efficiency, depending upon the evaporation and infiltration characteristics of the structures. Thus, for alfalfa, 8.3 acre-feet of water would have to be diverted. Corn and other crops would require approximately 6 acre-feet of water.

Construction of structures to store water could enhance the amount available for irrigation in marginal areas. However, storage of water for irrigation requires a permit from the State Engineer for constructing structures and appropriating water (New Mexico Statutes, 1978). The persons involved would have to acquire existing water rights elsewhere in the hydrologic basins (San Juan and Raton). For the most part, these rights exist along the major perennial streams which would have more potential for productive agriculture than marginal lands along ephemeral channels.

As the present discharge along the Puerco River indicates, further mine dewatering and community development in the region could change many streams from being ephemeral
to intermittent or perennial. This change in flow regime could affect the classification of the streams and make irrigation or subirrigation possible. However, the quality of mine water is not particularly good (Gallaher and Goad, 1981) and use permits would still have to be obtained because the water has already been appropriated.

Protecting essential hydrologic functions and maintaining the hydrologic balance in drainages disturbed by surface mining pose several difficult problems. The hydrologic balance and function of specific ephemeral streams are poorly understood. Maintenance of an alluvial aquifer upstream and downstream from a mined area may be impossible during the period of mining, but the system may return to near base-line conditions after mining ceases. Transport of water and sediments through areas disturbed by mines must be maintained in order to balance base-line conditions downstream. This implies that runoff and sediment production from mined areas may not need to be minimized and that water quality may not need to be upgraded beyond that produced by the natural system.
PUBLISHED REFERENCES

New Mexico Statutes, 1978, Appropriation and use of surface water: New Mexico Statutes 1978 for Natural Resources Department Annotated Vol. 12, Chapt. 72, Article 5, p. 27.

UNPUBLISHED REFERENCES ON FILE AT MINING AND MINERALS DIVISION

Carbon Coal Company, 1979, 1980, Quarterly hydrologic monitoring reports, Carbon Coal Company

Mining and Minerals Division, 1980, Water quality analysis reports in conjunction with alluvial valley floor determination

Pittsburgh and Midway Coal Mining Company, 1980, Hydrologic monitoring quarterly reports: Pittsburgh and Midway Coal Mining Company

U.S. Soil Conservation Service, Santa Fe District Office, no date, Consumptive use requirements for pasture and hay lands: U.S. Soil Conservation Service

Western Coal Company, 1979, 1980, La Plata Mine surface water monitoring reports: Earth Environmental Consultants
Table 1. Guideline Criteria Indicative of Alluvial Valley Floors.

Surficial Geologic Criteria

1. Alluvial valley floors are underlain by nearly horizontal deposits of gravel, sand, silt and clay which are deposited by streams.
2. An alluvial valley floor is coursed by a bankfull channel at least 3.0 feet wide and 0.5 feet deep.
3. Valley width is greater than 50 feet.
4. Low terraces and distal portions of alluvial fans integrated with modern streams in lowland areas adjacent to modern streams may be included as parts of alluvial valley floors.

Hydrologic Criteria

1. The watershed must be capable of producing flood irrigation or have a potential for subirrigation which could sustain agricultural activities (generally more than 2 acre-ft of water per acre for irrigation; shallow water table for subirrigation).
2. The nature of waters used for irrigation are of a quality which poses no detrimental effect to soils or plants.
3. To the point to which it is economically feasible, the water to be used for irrigation can be taken readily from the watershed, in a manner which does not violate state or federal laws, and will not adversely affect any downstream users.
4. There is evidence that either flood irrigation or subirrigation is a regional practice.

Vegetative Criteria

1. Abundant vegetation in lowlands compared with adjacent areas.
3. Evidence of recent hay production.

Land-use Criteria (other than those mentioned above)

1. Regional pattern of flood irrigation or subirrigation.
2. Standards for water application must be consistent with regional practice.
3. Area of alluvial valley floor generally must be more than 10 acres.

Exclusions

1. Colluvial and other surficial deposits along the valley margins which are higher than the modern flood plain and "are not irrigated by diversion of natural flow or ephemeral flood flow and are not subirrigated by underflow" (U.S. House of Representatives, 1977a).
2. Upland areas which are underlain by thin colluvial deposits.
Table 1 (cont'd)

3. Valleys without stream channels.
4. Areas where water quality data or solids data indicate that long-term degradation of the soil resource would result in reduction of the agricultural utility of the area.
5. Undeveloped range lands not significant to farming.
6. Small acreages within otherwise "clearly not alluvial valley floors".
Table 2.

Drainages checked under phase I of alluvial valley floor determination.

<table>
<thead>
<tr>
<th>Name of Coal Field Area</th>
<th>7½ Minute Quadrangle Map Name and Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruitland Field (Kf)</td>
<td></td>
</tr>
<tr>
<td>La Plata River</td>
<td>La Plata (4-2)</td>
</tr>
<tr>
<td>McDermott Arroyo</td>
<td>La Plata (4-2)</td>
</tr>
<tr>
<td>Cinder Gulch</td>
<td>La Plata (4-2)</td>
</tr>
<tr>
<td>Murphy Arroyo</td>
<td>Waterflow (3-3)</td>
</tr>
<tr>
<td>Westwater Arroyo</td>
<td>Waterflow (3-3), Fruitland (27-2)</td>
</tr>
<tr>
<td>Shumway Arroyo</td>
<td></td>
</tr>
<tr>
<td>San Juan River</td>
<td></td>
</tr>
<tr>
<td>La Plata (4-2)</td>
<td></td>
</tr>
<tr>
<td>La Plata (4-2)</td>
<td></td>
</tr>
<tr>
<td>La Plata (4-2)</td>
<td></td>
</tr>
<tr>
<td>Waterflow (3-3)</td>
<td></td>
</tr>
<tr>
<td>Waterflow (3-3), Fruitland (27-2)</td>
<td>The Hogback North (26-1)</td>
</tr>
<tr>
<td>Navajo Field (Kf)</td>
<td></td>
</tr>
<tr>
<td>Chaco River</td>
<td>The Hogback North (26-1), The Hogback South (26-4), Newcomb NE (50-1), Newcomb SE (50-4)</td>
</tr>
<tr>
<td>Pinabete Wash</td>
<td>Newcomb NE (50-1), The Pillar NW (51-2)</td>
</tr>
<tr>
<td>Cottonwood Wash</td>
<td>The Hogback South (26-4), Kirtland SW (27-3)</td>
</tr>
<tr>
<td>Brimhall Wash</td>
<td>Newcomb SE (50-4), Burnham Trading Post(51-3)</td>
</tr>
<tr>
<td>Chinde Wash</td>
<td>The Hogback North (26-1), Fruitland (27-2)</td>
</tr>
<tr>
<td>northern No Name (Tpotla)</td>
<td></td>
</tr>
<tr>
<td>southern No Name</td>
<td>The Hogback South (26-4)</td>
</tr>
<tr>
<td>Bisti Field (Kf)</td>
<td></td>
</tr>
<tr>
<td>Chaco River</td>
<td>Newcomb SE (50-4), Great Bend (74-1), The Pillar 3 NW (75-2), The Pillar 3 NE (75-1)</td>
</tr>
<tr>
<td>Hunters Wash</td>
<td>Newcomb SE (50-4), Burnham Trading Post (51-3), Bisti Trading Post (51-4)</td>
</tr>
<tr>
<td>Alamo Wash (tributary to De-na-zin)</td>
<td>Alamo Mesa West (52-3), Tanner Lake (76-2)</td>
</tr>
<tr>
<td>De-na-zin Wash (Coal Creek)</td>
<td>The Pillar 3 NE (75-1), Tanner Lake (76-2)</td>
</tr>
<tr>
<td>Ah-shi-sle-pah Wash</td>
<td>Pueblo Bonito NW (77-2), Pretty Rock (76-1), Kin Klizhin Ruins (76-4)</td>
</tr>
<tr>
<td>Kimbeto Wash</td>
<td>Kimbeto (77-1), Pueblo Bonito (77-3)</td>
</tr>
<tr>
<td>Escavada Wash</td>
<td>Pueblo Bonito (77-3), Sargent Ranch (77-4), Fire Rock Well (77-3)</td>
</tr>
<tr>
<td>Toadlena Field (Kmv)</td>
<td></td>
</tr>
<tr>
<td>Chaco River</td>
<td>Newcomb SE (50-4)</td>
</tr>
<tr>
<td>NC Captain Tom Wash (others not checked)</td>
<td>Newcomb SE (50-4), Newcomb (50-3)</td>
</tr>
</tbody>
</table>
Table 2 (cont'd)

<table>
<thead>
<tr>
<th>Hogback Field (Kmv)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chaco River (Lower)</td>
<td>The Hogback North (26-1), Chimney Rock (2)</td>
</tr>
<tr>
<td>(others not checked)</td>
<td></td>
</tr>
<tr>
<td>Chaco Canyon Field (Kmfu)</td>
<td></td>
</tr>
<tr>
<td>Chaco River</td>
<td>Tanner Lake (76-2), La Vida Mission (76-3), Kin Klizhin Ruins (76-4), Pueblo Bonito (77-3)</td>
</tr>
<tr>
<td>Tsaya drainage</td>
<td>Tanner Lake (76-2), Pretty Rock (76-1)</td>
</tr>
<tr>
<td>NC Kim-ne-ni-oli Wash</td>
<td>La Vida Mission (76-3)</td>
</tr>
<tr>
<td>No Name tributaries</td>
<td>La Vida Mission (76-3)</td>
</tr>
</tbody>
</table>

Eastern Standing Rock Field (Kmf1)

| Orphan Annie Tank tributaries | Orphan Annie Rock (125-1) |
| Orphan Annie Rock (125-1) | |

Star Lake Field (Kf)

Chaco Wash	Pueblo Pintado (102-2), Pueblo Alto Trading Post (102-1), Star Lake (103-2)
Gallo Wash	Pueblo Bonito (77-3), Sargent Ranch (77-4), Fire Rock Well (78-3)
Escavada Wash	Pueblo Bonito (77-3), Sargent Ranch (77-4), Fire Rock Well (78-3)
Canada Alemita	Fire Rock Well (78-3), Lybrook SE (78-4)
Arroyo Pueblo Alto	Pueblo Alto Trading Post (102-1), Star Lake (103-2)
Papers Wash	Star Lake (103-2)

La Ventana Field (Kmv)

Rio Puerco	San Pablo (105-2), La Ventana (105-3)
Arroyo Hondo	San Pablo (105-2)
San Pablo	San Pablo (105-2)

Gallup Field (Kmv)

Puerco River	Gallup West (121-4), Gallup East (122-3), Manuelito (145-2)
Defiance Draw	Tse Bonita School (121-2), Samson Lake (121-3), Gallup West (121-4)
Burned Death Wash	Twin Lakes (121-1), Gallup West (121-4)
Tse Bonita Wash	Tse Bonita School (121-2), Zith-Tusayan Butte 4 NE (A129-1)
Tributary to Tse Bonita Wash	Zith-Tusayan Butte 4 NE (A129-1)
Coal Mine Wash (P&M)	Tse Bonita School (121-2), Zith-Tusayan Butte 4 NE (A129-1)
Table 2 (cont'd)

<table>
<thead>
<tr>
<th>Tributary to Coal Mine</th>
<th>Butte 4 NE (A129-1)</th>
<th>Tse Bonita School (121-2), Zith-Tusayan Wash (P&M)</th>
<th>Bread Springs (146-2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal Mine drainage (Sundance)</td>
<td>Bread Springs (146-2)</td>
<td>Bread Springs (146-2)</td>
<td>Bread Springs (146-2)</td>
</tr>
<tr>
<td>Catalpa Canyon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catalpa Canyon east tributary</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Raton Field (KTvr)

** Vermejo River

* York Canyon
 - Salyers Canyon
 - Chimney Canyon

* Caliente Canyon
 - Sawmill Canyon
 - Gachupin Canyon
 - Salt peter Canyon
 - Spring Canyon

Dawson Canyon

Dillon Canyon

Raton Creek

Canadian River Canyon

Potato Canyon

Casa Grande (17), Cimarron (41), Colfax (42-3)

Casa Grande (17)

Saltpeter Mountain (42-2), Colfax (42-3)

Cimarron (41)

Cimarron (41), Saltpeter Mountain (42-2)

Tin Pan Canyon (18-1), Raton (19-2)

Raton (19-2)

Casa Grande (17), McWilliams Canyon (18-2)

McWilliams Canyon (18-2)

** Potential AVF, needs intermediate level investigations (Part II OSM Guidelines).**

* Possibly not AVF, may need intermediate level investigations.

NC Not completely checked in this study

Drainages not marked with asterisks or NC are "clearly not alluvial valley floors".
List of Figures

1. Monthly discharge of monitored streams in areas of surface-mineable coal in New Mexico for the 1979 water year.

2. San Juan River viewed downstream from outcrops of Fruitland Formation surface mineable coal. Irrigation agriculture is extensive and long-established on the alluvial valley floor and on low terraces adjacent to this perennial stream. View to west.

4. La Plata River valley with irrigated fields adjacent to the perennial stream 1.5 miles south of the Colorado border. View southeast (10/14/80).

5. Junction of McDermott Arroyo (right) and Cinder Gulch, ephemeral tributaries to the La Plata River. These drainages are incised 10 to 12 feet into alluvial fill. Modern alluvium consists of poorly sorted cobbles and sand. View north (10/14/80).

6. Channel of Chaco Wash (one of two ephemeral channels) in the headwaters of the Chaco Drainage near Star Lake Pumping Station. View northeast (10/17/80).

9. Close up of shallow groundwater level in shallow well in deposits adjacent to the flood plain of Escavada Wash. View northwest (10/16/80).

10. Poorly-defined ephemeral drainage from Orphan Annie Tank, west northwest toward Laguna Castillo (10/17/80).

12. Brimhall Wash 2 miles upstream from Burnham, New Mexico, viewed to west (10/15/80).

13. Cottonwood Wash viewed east from an outcrop of Fruitland Formation adjacent to the channel. Note alkali evaporites along the active channel and levels of inactive flood plains (10/15/80).

15. Coal Mine Wash, tributary to Tse Bonita Wash near Tse Bonita Trading Post. View northeast. Arroyo walls are about 12 feet high (12/10/80).

18. Valley of Vermejo River viewed southeast (11/19/80).
List of Figures (cont'd)

19. Mouth of York Canyon drainage viewed to northwest. Water in stream is primarily return flow from use of water pumped from Vermejo River to coal treatment facilities (11/19/80).

20. Area of springs in Sawmill-Cottonwood Canyon contributing flow to the Caliente drainage. View northeast. The entrenched channel is ephemeral upstream from the springs (11/19/80).

21. Caliente drainage viewed to northwest upstream at confluence with Chimney Canyon (11/19/80).

22. Ephemeral drainage downstream through Dillon Canyon in the Brilliant District (11/20/80).
DISCHARGE: ACRE-FEET

MONTH

La Plata River

Chaco River

Shamway

Allegho

Galleg Wash

Pecos River

San Juan River

Vermeja

Source: USGS, WRD 1979

(1) Evaporation 1/10 to scale
(2) Evaporation 1/1000 to scale
EXPLANATION FOR MAP 1 (IN POCKET)

Potential alluvial valley floors

Possibly not alluvial valley floors

Drainages clearly not alluvial valley floors

EXPLANATION FOR MAPS 2, 3, 4, AND 5 (IN POCKET)

Potential alluvial valley floors

Possibly not alluvial valley floors

Peripheral low-lying areas capable of irrigation