A Preliminary Mineral-Resource Potential of Northwestern New Mexico; Introduction

McLemore and others

New Mexico Bureau of Mines and Mineral Resources Open-file Report 228

December 1986

Prepared in cooperation with United States Department of Interior Bureau of Land Management

PREFACE

During the spring of 1985, the U.S. Bureau of Land Management (BLM) and the New Mexico Bureau of Mines and Mineral Resources (NMBMMR) entered a cooperative agreement to pepare a preliminary mineral-resource inventory and assessment of northwestern New Mexico, including Valencia, Cibola, McKinley, San Juan, and western Rio Arriba Counties. This is the first of six reports describing the geology and mineral-resource potential of northwestern New Mexico. This first report is divided into two parts. Part I describes the methodology and classification involved in evaluating the mineral-resource potential. Part II is an executive summary of the mineral resource potential of each county. The preceding five reports, Open-file Reports 229-233 are detailed reports of the mineral-resource potential of each county.

These reports are based upon time-consuming analyses of all available data, published and unpublished, by a group of geologists and technical support staff. Without this team effort this project would be impossible. In addition to the coauthors of the final report, many other people at the NMBMMR and BLM provided assistance, especially in reviewing the rough drafts as detailed in the acknowledgments of each report.

i

PART I - Methodology (by Virginia T. McLemore)	
Introduction	l
Purpose and scope	1
Organization of present study	3
Definitions	13
Numbering system	14
Evaluation process	16
Introduction	16
Assessment procedures	16
Classification of mineral-resource potential	20
	-
Part II - Summary of the mineral-resource potential (by Virginia T. McLemore and others)	26
Valencia County	27
Cibola County	33
McKinley County	39
San Juan County	45
Western Rio Arriba County	52
References	58

TABLES

1	-	1:1000,000-scale maps included in mineral-resource potential of northwestern New Mexico	5-12
2	-	Bibliographies and geologic maplindices	18
3	-	Summary of mineral-resource potential in Valencia County	31
4		Summary of mineral-resource potential in Cibola County	37
5	-	Summary of mineral-resource potential in McKinley County	43
6	-	Summary of mineral-resource potential in San Juan County	49
7	-	Summary of mineral-resource potential in western Rio Arriba County	56

FIGURES

.

1	-	Areas assessed by New Mexico Bureau of Mines and Mineral Resources	2
2	-	Index to 1:100,000 scale topographic maps covering northwestern New Mexico	4
3	-	Numbering system used in this report	15
4	÷	Classification of mineral resources	21
5	-	Classification of mineral-resource potential	22

Part I

Methodology of Assessing Mineral-Resource Potential

(by Virginia T. McLemore)

INTRODUCTION

Purpose and Scope

The Federal Land Policy and Management Act (FLPMA) of 1976 charges the U.S. Bureau of Land Management (BLM) with responsibility for preparing a mineral-resource inventory and assessment of mineral-resource potential for all of the public lands they manage. These studies are essential to land-use planning and management and they are required prior to BLM actions such as disposal, withdrawal, exchange, conveyance of land, or wilderness designations. In order to meet this statutory requirement, the BLM and the New Mexico Bureau of Mines and Mineral Resources (NMBMMR) entered a cooperative agreement to prepare a preliminary mineral-resource inventory and assessment for northwestern New Mexico, including Valencia, Cibola, McKinley, San Juan, and western Rio Arriba Counties (Fig. 1). NMBMMR staff were already actively involved with compilations and geologic studies of various commodities on all lands within New Mexico, so the requirements of both agencies were satisfied. McLemore (1984) and McLemore et al. (1984) previously evaluated the mineral-resource potential of Torrance County and Sandoval and Bernalillo Counties and adjacent parts of McKinley, Cibola, and Santa Fe Counties (Fig. 1).

This preliminary mineral-resource inventory and assessment is based on analysis of available published and unpublished geological, geochemical, geophysical, and economic data and brief field reconnaissance. A more rigorous and complete analysis of all available information and additional field work could expand

Figure I - Areas assessed by New Mexico Bureau of Mines and Mineral Resources

+

the preliminary conclusions of this paper.

Organization of Present Study

The present study involves a mineral-resource assessment of Valencia, Cibola, McKinley, San Juan, and western Rio Arriba Counties and is divided into six reports; an introduction (this report) and five detailed assessments for each county (Fig. 1; McLemore et al., 1986a, b, c, d, e). However, only one set of maps at a scale of 1:100,000 is included even though 1:100,000scale maps may cover more than one county (Fig. 2). Table 1 lists the oversized maps.

This introductory report is divided into two parts. Part I describes the methodology and classification of mineral-resource potential. Part II is an executive summary of the mineralresource potential of each county.

Each detailed county assessment (McLemore et al., 1986a, b, c, d, e) includes a text, appendices, and supporting figures and tables. The text includes a discussion of geology, production, known mineral occurrences and deposit types, and the mineralresource and development potential for each commodity. Mineral occurrences and the mineral-resource potential are plotted on 1:100,000-scale maps (Table 1) and summarized on page-size figures. Mineral occurrences, prospects, mines, and deposits are individually described in an appendix. Petroleum tests are plotted and tabulated.

᠇

+

FIGURE 2 - Index to 1:100,000 scale topographic

maps covering northwestern New

Mexico.

+

Table 1 - 1:100,000-scale maps included in mineral resource potential of northwestern New Mexico.

Map No.	Map Title	Corresponding Open-file Reports
1	Mineral occurrence and resource potential for metals and uranium in the Socorro 30- by 60-minute topographic quad- rangle, Valencia County, New Mexico.	229
2	Mineral occurrence and resource potential for metals and uranium in the Belen 30- by 60-minute topographic quad- rangle, Valencia County, New Mexico.	229
3	Mineral occurrences, prospects, mines, and resource poten tial for metals and uranium in the Acoma Pueblo 30- by 60 minute topographic quadrangle, Valencia and Cibola Counti New Mexico.	- 229, 230 - es,
4	Industrial materials, occurrences, mines, and resource potential in the Socorro 30- by 60-minute topographic quadrangle, Valencia County, New Mexico.	229
5	Industrial materials, occurrences, mines, and resource potential in the Belen 30- by 60-minute topographic quadrangle, Valencia County, New Mexico.	229
6	Industrial materials, occurrences, mines, and resource potential in the Acoma Pueblo 30- by 60-minute topographic quadrangle, Valencia and Cibola Counties, New Mexico.	229, 230 c
7	Petroleum tests and resource potential in the Socorro 30- by 60-minute topographic quadrangle, Valencia County, New Mexico.	229
8	Petroleum tests and resource potential in the Belen 30- by 60-minute topographic quadrangle, Valencia County, New Mexico.	y 229
9	Petroleum tests and resource potential in the Acoma Pueble 30- by 60-minute topographic quadrangle, Valencia and Cibola Counties, New Mexico.	o 229, 230
10	Geothermal springs and wells, and geothermal-resource potential in the Belen 30- by 60-minute topographic quadrangle, Valencia County, New Mexico.	229
11	Geothermal springs and wells, KGRF's,and geothermal- resource potential in the Acoma Pueblo 30- by 60- minute topographic quadrangle, Valencia and Cibola Counties, New Mexico.	229, 230

potential in the Belen 30- by 60-minute topographic quadrangle, Valencia County, New Mexico. 13 Geothermal springs and wells, KGRF's, and geothermal-229, 230 resource potential in the Acoma Pueblo 30- by 60-minute topographic quadrangle, Valencia and Cibola Counties, New Mexico. 14 Mineral occurrences, prospects, mines, and resource 230, 231 potential for metals, uranium, barite, and fluorite in the Fence Lake 30- by 60-minute topographic quadrangle, Cibola and McKinley Counties, New Mexico. 15 Mineral occurrences, prospects, and mines for metals, 230, 231 uranium, barite, and fluorite in the Grants 30- by 60minute topographic quadrangle, Cibola and McKinley Counties, New Mexico. 16 Mineral occurrences, prospects, and mines for metals, 230, 231 uranium, barite, and fluorite in the Zuni 30- by 60minute topographic quadrangle, Cibola and McKinley Counties, New Mexico. 17 Uranium resource potential in the Grants 30- by 60-230, 231 minute topographic quadrangle, Cibola and McKinley Counties, New Mexico. 18 Uranium resource potential in the Zuni 30- by 60-230, 231 minute topographic quadrangle, Cibola and McKinley Counties, New Mexico. 19 Coal occurrences, prospects, mines, and resource 229, 230 potential for Acoma Pueblo 30- by 60-minute topographic quadrangle, VAlencia and Cibola Counties, New Mexico. 20 Coal occurrences, prospects, mines, and resource 230, 231 potential for Fence Lake 30- by 60-minute topographic quadrangle, Cibola and McKinley Counties, New Mexico. Coal occurrences, prospects, mines, and resource 21 230, 231 potential for Grants 30- by 60-minute topographic quadrangle, Cibola and McKinley Counties, New Mexico. 22 Coal occurrences, prospects, mines, and resource 230, 231 potential for Zuni 30- by 60-minute topographic quadrangle, Cibola and McKinley Counties, New Mexico. 23 Petroleum tests and resource potential in the Fence 230, 231 Lake 30- by 60-minute topographic quadrangle, Cibola and McKinley Counties, New Mexico. 24 Petroleum tests and resource potential in the Grants 230, 231 30- by 60-minute topographic quadrangle, Cibola and McKinley Counties, New Mexico.

Geothermal springs and wells, and geothermal-resource

229

- 25 Petroleum tests and resource potential in the Zuni 230, 231 30- by 60-minute topographic quadrangle, Cibola and McKinley Counties, New Mexico.
- 26 Geothermal springs and wells, KGRF's, and geothermal 230, 231 resource potential in the Fence Lake 30- by 60-minute topographic quadrangle, Cibola and McKinley Counties, New Mexico.
- 27 Geothermal springs and wells, KGRF's, and geothermal- 230, 231 resource potential in the Grants 30- by 60-minute topographic quadrangle, Cibola and McKinley Counties, New Mexico.
- 28 Geothermal springs and wells, KGRF's, and geothermalresource potential in the Zuni 30- by 60-minute quadrangle, Cibola and McKinley Counties, New Mexico.
- 29 Industrial materials, prospects and mines for sand and 230, 231 gravel for Fence Lake 30- by 60-minute topographic quadrangle, Cibola and McKinley Counties, New Mexico.
- 30 Industrial materials, occurrences, and mines for the 230, 231 Grants 30- by 60-minute topographic quadrangle, Cibola and McKinley Counties, New Mexico.
- 31 Industrial minerals, prospects, and mines for Zuni 230, 231 30- by 60-minute topographic quadrangle, Cibola and McKinley Counties, New Mexico.
- 32 Resource potential for sand and gravel deposits in the 230, 231 Fence Lake 30- by 60-minute topographic quadrangle, Cibola and McKinley Counties.
- 33 Resource potential for gypsum and sand and gravel 230, 231 deposits in the Grants 30- by 60-minute topographic quadrangle, Cibola and McKinley Counties, New Mexico.
- 34Resource potential for gypsum and sand and gravel230, 231deposits in the Zuni 30- by 60-minute topographicquadrangle, Cibola and McKinley Counties, New Mexico.
- 35 Industrial materials occurrences, mines, and resource 229, 230 potential for crushed and dimension stone, gypsum, mica, and silica sand in the Acoma Pueblo 30- by 60- minute topographic quadrangle, Valencia and Cibola Counties, New Mexico.
- 36 Resource potential for crushed and dimension stone, 230, 231 mica, and silica sand in the Fence Lake 30- by 60minute topographical quadrangle, Cibola and McKinley Counties, New Mexico.

- 37 Resource potential for crushed and dimension stone, 230, 231 mica, and silica sand in the Grants 30- by 60-minute topographic quadrangle, Cibola and McKinley Counties, New Mexico.
- 38 Resource potential for crushed and dimension stone, 230, 231 mica, and silica sand in the Zuni 30- by 60-minute topographic quadrangle, Cibola and McKinley Counties, New Mexico.
- 39 Resource potential for scoria, cinders, limestone, 230, 231 expansible shale, and perlite in the Fence Lake 30by 60-minute topographic quadrangle, Cibola and McKinley Counties, New Mexico.
- 40 Resource potential for scoria, cinders, limestone, 230, 231 expansible shale, and perlite in the Grants 30- by 60-minute topographic quadrangle, Cibola and McKinley Counties, New Mexico.
- 41 Resource potential for scoria, cinders, limestone, 230, 231 expansible shale, and perlite in the Zuni 30- by 60-minute topographic quadrangle, Cibola and McKinley Counties, New Mexico.
- 42 Coal occurrences, prospects, and mines in the Gallup 231 30- by 60-minute topographic quadrangle, McKinley County, New Mexico.
- 43 Drill holes and measured sections for evaluation of coal 231 resources in the Gallup 30- by 60-minute topographic quadrangle, McKinley County, New Mexico.
- 44 Coal resource potential in the Gallup 30- by 60-minute 231 topographic quadrangle, McKinley County, New Mexico.
- 45 Drill holes and measured sections for evaluation of coal 231 resources in the Chaco Mesa 30- by 60-minute topographic quadrangle, McKinley County, New Mexico.
- 46 Coal resource potential in the Chaco Mesa 30- by 60-minute 231 topographic quadrangle, McKinley County, New Mexico.
- 47 Petroleum tests in the Gallup 30- by 60-minute topographic 231 quadrangle, McKinley County, New Mexico.
- 48 Petroleum resource potential in the Gallup 30- by 60- 231 minute topographic quadrangle, McKinley County, New Mexico.
- 49 Petroleum tests and oil and gas pools in the Chaco Mesa 231 30- by 60-minute topographic quadrangle, McKinley County, New Mexico.

- 50 Petroleum resource potential in the Chaco Mesa 30- by 231 60-minute topographic quadrangle, McKinley County, New Mexico.
- 51 Uranium occurrences, prospects, and mines in the Gallup 231 30- by 60-minute topographic quadrangle, McKinley County, New Mexico.
- 52 Uranium resource potential in the Gallup 30- by 60-minute 231 topographic quadrangle, McKinley County, New Mexico.
- 53 Uranium occurrences, prospects, and mines in the Chaco 231 Mesa 30- by 60-minute topographic quadrangle, McKinley County, New Mexico.
- 54 Uranium resource potential in the Chaco Mesa 30- by 60- 231 minute quadrangle, McKinley County, New Mexico.
- 55 Geothermal springs and wells and geothermal-resource 231 potential in the Gallup 30- by 60-minute topographic quadrangle, McKinley County, New Mexico.
- 56 Geothermal wells and resource potential in the Chaco 231 Mesa 30- by 60-minute topographic quadrangle, McKinley County, New Mexico.
- 57 Industrial mineral occurrences, prospects, mines, and 231 mineral-resource potential for sand and gravel in the Gallup 30- by 60-minute topographic quadrangle, McKinley County, New Mexico.
- 58 Industrial materials prospects and mines and resource 231 potential for Chaco Mesa 30- by 60-minute topographic quadrangle, McKinley County.
- 59 Resource potential for crushed and dimension stone, 231 silica, zeolite, and mica in the Gallup 30- by 60minute topographic quadrangle, McKinley County, New Mexico.
- 60 Resource potential for crushed and dimension stone and 231 silica in the Chaco Mesa 30- by 60-minute topographic quadrangle, McKinley County, New Mexico.
- 61 Resource potential for scoria, cinders, limestone, 231 expansible shale, and perlite in the Gallup 30- by 60minute topographic quadrangle, McKinley County, New Mexico.
- 62 Resource potential for scoria, cinders, limestone, 231 expansible shale, and perlite in the Chaco Mesa 30by 60-minute topographic quadrangle, McKinley County, New Mexico.

- 63 Petroleum tests in the Toadlena 30- by 60-minute 232 topographic quadrangle, San Juan County, New Mexico.
- 64 Petroleum tests in the Farmington 30- by 60-minute 232 topographic quadrangle, San Juan County, New Mexico.
- 65 Petroleum tests in the Navajo Reservoir 30- by 60- 232, 233 minute topographic quadrangle, San Juan and Rio Arriba Counties, New Mexico.
- 66 Petroleum tests in the Chaco Canyon 30- by 60-minute 232, 233 topographic quadrangle, San Juan and Rio Arriba Counties, New Mexico.
- 67 Dil and gas fields in the Toadlena 30- by 60-minute 232 topographic quadrangle, San Juan County, New Mexico.
- 68 Oil and gas fields in the Farmington 30- by 60-minute 232 topographic quadrangle, San Juan County, New Mexico.
- 69 Oil and gas fields in the Navajo Reservoir 30- by 60- 232, 233 minute topographic quadrangle, San Juan and Rio Arriba Counties, New Mexico.
- 70 Oil and gas fields in the Chaco Canyon 30- by 60-minute 232, 233 topographic quadrangle, San Juan and Rio Arriba Counties, New Mexico.
- 71 Petroleum resource potential in the Toadlena 30- by 60- 232 minute topographic quadrangle, San Juan County, New Mexico.
- 72 Petroleum resource potential in the Farmingon 30- by 60- 232 minute topographic quadrangle, San Juan County, New Mexico.
- 73 Coal occurrences, prospects, mines, and resource potential 232 for Toadlena 30- by 60-minute topographic quadrangle, San Juan County, New Mexico.
- 74 Coal occurrences, prospects, mines, and resource potential 232 for Farmington 30- by 60-minute topographic quadrangle, San Juan County, New Mexico.
- 75 Coal occurrences, prospects, mines, and resource potential 232, 233 for Navajo Reservoir 30- by 60-minute topographic quadrangle, San Juan and Rio Arriba Counties, New Mexico.
- 76 Coal occurrences, prospects, mines, and resource potential 232, 233 for Chaco Canyon 30- by 60-minute topographic quadrangle, San Juan and Rio Arriba Counties, New Mexico.
- 77 Mineral occurrences, prospects, mines, and resource 232 potential for Rock Point 30- by 60-minute topographic quadrangle, San Juan County, New Mexico.

78 Mineral occurrences, prospects, mines, and resource 232 potential for Canyon de Chelly 30- by 60-minute topographic quadrangle, San Juan County, New Mexico. 79 Mineral occurrences, prospects, mines, and resource 232 potential for Toadlena 30- by 60-minute topographic quadrangle, San Juan County, New Mexico. 80 Mineral occurrences, prospects, mines, and resource 232 potential for Farmington 30- by 60-minute topographic quadrangle, San Juan County, New Mexico. 81 Mineral occurrences, prospects, mines, and resource 232, 233 potential for Chaco Canyon 30- by 60-minute topographic quadrangle, San Juan and Rio Arriba Counties, New Mexico. 82 Geothermal wells and resource potential in the Toadlena 232 30- by 60-minute topographic quadrangle, San Juan County, New Mexico. 83 Geothermal wells and resource potential in the Farmington 232 30- by 60-minute topographic quadrangle, San Juan County, New Mexico. 84 Geothermal wells and resource potential in the Navajo 232, 233 Reservoir 30- by 60-minute topographic quadrangle, San Juan and Rio Arriba Counties, New Mexico. 85 Geothermal wells and resource potential in the Chaco 232, 233 Canyon 30- by 60-minute topographic quadrangle, San Juan and Rio Arriba Counties, New Mexico. 232 86 Aggregate pits and resource potential in the Toadlena 30- by 60-minute topographic quadrangle, San Juan County, New Mexico. 87 Aggregate pits and resource potential in the Farmington 232 30- by 60-minute topographic quadrangle, San Juan County, New Mexico. 88 Aggregate pits and resource potential in the Navajo 232, 233 Reservoir 30- by 60-minute topographic quadrangle, San Juan and Rio Arriba Counties, New Mexico. 89 Aggregate pits and resource potential in the Chaco 232, 233 Canyon 30- by 60-minute topographic quadrangle, San Juan and Rio Arriba Counties, New Mexico. 90 Resource potential for crushed and dimension stone, 232 mica, and silica sand in the Toadlena 30- by 60minute topographic quadrangle, San Juan County, New Mexico.

91 Resource potential for crushed and dimension stone, 232 mica, and silica sand in the Farmington 30- by 60minute topographic quadrangle, San Juan County, New Mexico.

•

- 92 Resource potential for crushed and dimension stone, 232, 233 mica, and silica sand in the Navajo Reservoir 30- by 60-minute topographic quadrangle, San Juan and Rio Arriba Counties, New Mexico.
- 93 Resource potential for crushed and dimension stone, 232, 233 mica, and silica sand in the Chaco Canyon 30- by 60minute topographic quadrangle, San Juan and Rio Arriba Counties, New Mexico.
- 94 Resource potential for lightweight aggregate and 232 limestone in the Toadlena 30- by 60-minute topographic quadrangle, San Juan County, New Mexico.
- 95 Resource potential for lightweight aggregate and 232 limestone in the Farmington 30- by 60-minute topographic quadrangle, San Juan County, New Mexico.
- 96 Resource potential for lightweight aggregate and 232, 233 limestone in the Navajo Reservoir 30- by 60-minute topographic quadrangle, San Juan and Rio Arriba Counties, New Mexico.
- 97 Resource potential for lightweight aggregate and 232, 233 limestone in the Chaco Canyon 30- by 60-minute topographic quadrangle, San Juan and Rio Arriba Counties, New Mexico.

Definitions

Mineral resources are the naturally occurring concentrations of materials (solid, gas, or liquid) in or on the earth's crust that can be extracted economically under current or future economic conditions. Reports describing mineral resources vary from simple inventories of known mineral deposits to detailed geologic investigations.

A mineral occurrence is any locality where a useful mineral or material occurs. A mineral prospect is any occurrence that has been explored by underground or above ground techniques or by subsurface drilling. These two terms do not have any resource or economic implications. A mineral deposit is a sufficiently large concentration of a valuable or useful mineral or material that may be extracted under current or future economic conditions. A mine is any prospect which produced, or is currently producing, a useful mineral or material.

The mineral-resource potential of an area is the likelihood or probability that a mineral will occur in sufficient quantities so that it can be extracted economically under current or future conditions (Taylor and Steven, 1983). Mineral-resource potential is preferred in describing an area whereas mineral-resource favorability is used in describing a specific rock type or geologic environment (Goudarzi, 1984). The mineral-resource potential is not a measure of the quantities of the mineral resources, but is a measure of the <u>potential</u> of occurrence. Factors that could preclude development of the resources, such as the feasibility of extracting the minerals, land ownership,

accessibility of the minerals, or cost of exploration, development, production, processing, or marketing, are not considered in assessing the resource potential; although these factors certainly affect the economics of extraction. Total evaluation of mineral-resource potential involves a complete understanding of the known and undiscovered mineral resources in a given area.

Numbering System

The numbering system used in this report is based upon the township, range, and section land-grid system (Fig. 3) and is used by the New Mexico State Engineer for numbering water wells and springs. In this system, each occurrence or sample location has a unique location number consisting of four parts separated by periods (i.e. 3N.5E.24.441). The first part refers to the township, the second part to the range, and the third part to the section. The fourth part locates the occurrence to the nearest quarter-quarter-quarter section block, if posible, as indicated in Figure 3. An occurrence or sample number designated 3N.5E.24.441 is located in the NW1/4 SE1/4 SE1/4 of section 24, T3N, R5E. Some occurrences are located only to the nearest section, quarter-section, or quarter-quarter section because the occurrence can not be more accurately located or the occurrence extends over the entire given area. In unsurveyed areas, the locations are approximated by projecting section lines.

Figure 3-Numbering system used in this report.

- A-Subdivision of a township into sections.
- B-Subdivision of a section into quarter-quarter-quarter section blocks. Mine symbol indicates location of an occurrence numbered 3N.5E.24.441.

-

RANGE 5 EAST

SECTION 24

:.

															•
H	6	5	4	3	2	I		ili 	112 10	2 	122	211 2	212 10	221 22	222 20
NORT	7	8	9	10	11	12		113	4 (123)0	124	213 231	214 2(232	223)0	224
SHIP 3	18	17	16	15	14	13	, , , ,	[3 133	102 10	4 43	40 144	23 233	30 234	24 243	40 244
TOWNS	19	20	21	22	23	24 24		311 3	312 0	321 3	322 20	411 41	412 0	421 42	422 20
	30	29	28	27	26	25		313	314 	323 00	324	413	414 		424
	31	32	33	34	35	36		33 333	30 30 334	3 343	40 1 1 344	43 433	434	44 443	444 10
	← 6 MILES →					¢			— I M	ILE-			>		
	А							[3						

EVALUATION PROCESS AND SOURCES OF INFORMATION

Introduction

The evaluation of mineral-resource potential involves a complex process of geologic analogy of prominsing or favorable geologic environments with geologic settings (i.e. models) that contain known economic deposits. Such subjective assessments or evaluations depend on the available information concerning the area to be evaluated and on the current knowledge and understanding of known economic deposits. Assessments of resource potential depend upon the knowledge and experience of the researchers, therefore these evauations are assessed by a team of NMBMMR geologists who specialize in specific commodities and are subsequently reviewed by additional commodity specialists. Evaluations of resource potential are timedependent because the data base, technology, and economic conditions change with time. The date of resource potential studies must be given and these studies must be periodically updated.

Assessment Procedures

The process of evaluating the mineral-resource potential used currently by the NMBMMR is similar to that used by the U.S. Geological Survey (Shawe, 1981; Goudarzi, 1984) and Oak Ridge National Laboratory (Voelker et al., 1979). However, only minimal field investigation is incorporated into these studies because of time constraints imposed upon the NMBMMR by the BLM.

1. The most important stage in any geologic investigation and especially in these evaluations is the compilation of all

available published and unpublished data. A complete bibliographic search of published geologic references is essential. Bibliographies used are listed in Table 2. A geologic index to mapping is helpful and included in each report. Evaluation of the resource potential involves complex integration and interpretation of several data sets maintained by various state and federal agencies, including a) MRDS (Mineral Resources Data Systems, formerly CRIB, Computerized Resource Information Bank, and MILS (Mineral Industry Location System); b) DMEA (Defense Minerals Exploration Administration); c) NURE (National Uranium Resource Evaluation), HSSR (Hydrogeochemical and Streamsediment Reconnaissance) and ARMS (Aerial Radiometric and Magnetic Survey); d) NCRDS (National Coal Resource Data System); e) AML (Abandoned Mine Lands); and f) various unpublished file data from state and federal agencies (NMBMMR, State Inspector of Mines, State Highway Department, BLM, U.S. Bureau of Mines, U.S. Department of Energy). From published and unpublished data sets known mineral occurrences, prospects, mines, and deposits and oil and gas tests are identified and plotted on maps. Geochemical and geophysical anomalies are described and identified.

2. Known deposit types are identified and favorable geologic environments that may contain potential economic resources are defined. Geologic models are developed. All types of metallic, nonmetallic, and energy fuel deposits are examined. Field examinations, when time permits, are valuable.

3. A preliminary evaluation of the mineral-resource potential from available data is determined. A number of factors must be evaluated, including a) host rock favorability, b)

Table 2 - Bibliographies and geologic map indices.

Bibliography	Comments
Burks and Schilling (1955)	general bibliography covering through 1950
Schilling and Schilling (1956)	general bibliography covering 1951–1955
Schilling and Schilling (1961)	general bibliography covering 1956–1960
Ray (1966)	general bibliography covering 1961–1965
Koehn and Koehn (1973)	general bibliography covering 1966–1970
Wright and Russell (1977)	general bibliography covering 1971–1975
Heljeson and Holts (1981)	general bibliography covering through 1975
Adkins-Heljeson and Holts (1984)	general bibliography covering 1976–1980
Robertson (1976)	bibliography of Precambrian geology
Schilling (1975)	bibliography of Grants uranium region
McLemore (1982, 1983)	bibliography of uranium in New Mexico
Kirk et al. (1983)	bibliography of M.S. thesis and Ph.D. dissertations
Boardman and Brown (1958)	geologic map index
McIntosh and Morgan (1970)	geologic map index
McIntosh and Eister (1979)	geologic map index
New Mexico Bureau of Mines and Mineral Resources Price Lists	publications and open-file reports
Various listings of M.S. thesis and Ph.D. dissertations from Universities	

structural controls, c) evidence of mineralization, d) previous mining and production, e) geochemical and/or geophysical anomalies, f) regional geologic setting, g) time of mineralization, h) alteration, i) mineralogy, j) processes affecting mineralization since formation, and k) geologic

history. Reports are written describing known deposit types, assessing the resouce potential, and explaining how conclusions were reached.

4. Recommendations for additional studies and types of data required for better assessments are made.

The evaluation of the preliminary mineral-resource potential should be followed by field investigations and more detailed mapping, geochemical sampling, and geophysical studies. A final assessment should be made based on detailed field investigations. However, these detailed studies are not included under the cooperative agreement between the BLM and NMBMMR.

Repeated evaluation of the mineral-resource potential is required. New data on the study area should be incorporated into the data base. New geologic concepts and models and more sophisticated exploration techniques could drastically alter the assessments. New technologies that require different commodities and changes in mining, milling, and processing could allow exploration and development of lower-grade or new types of deposits. Political and economic conditions change rapidly and can transform today's mineral curiosity into tomorrow's mineral deposit. Therefore, mineral-resource potential assessments must be revised periodically and updated on a timely basis.

CLASSIFICATION OF MINERAL-RESOURCE POTENTIAL

Classification of mineral-resource potential differ from classification of the mineral resources. Quantities of mineral resources are classified according to availability of geologic data (geologic assurance), economic feasibility (identified or undiscovered), and as economic or subeconomic (Fig. 4). Mineralresource potential is a qualitative judgment of the probability of the existence of a commodity.

Classification of mineral-resource potential varies from simple subjective schemes, like that used currently by NMEMMR, to complex quantitative and statistical methods (Harris and Euresty, 1969; Harris, 1969; Harris and Agterberg, 1981). However, it is rare that an adequate data base for all commodities is available for complex statistical treatment, especially for preliminary assessments. Furthermore, a simple classification scheme is more versatile for uses such as land-use planning and exploration for new deposits. The potential is classified for the purposes of this report according to availability of geologic data and relative probability of occurrence as high, moderate, low, very low, or unknow (Fig. 5).

High mineral-resource potential is assigned to areas where there are known mines or deposits or where the geological, geochemical, or geophysical data indicate an excellent probability that mineral deposits occur. All acitve and producing properties fall into this class as well as identified deposits in known mining districts or in known areas of mineralization. Speculative deposits, such as reasonable

		Identified		Undiscovered			
	Demor	strated	Inferred	Hupothotioci	Secondativa		
· ·	Measured	Indicated		- пуротленса	Speculative		
Economic	Res	erves	Inferred reserves				
Marginally economic	Mar rese	ginal erves	Inferred marginal reserves	Resources			
Subeconomic	Su	ibeconomic resou	Irces		+ - I		
Other occurrences		Nonconv	entional and low	-grade materials			
Increasing degree of geologic assurance							

Figure 4. Classification of mineral resources

Figure 5. Classification of mineral-resource potential

extensions of known mining districts and identified deposits or partially known deposits within geologic trends or areas of mineralization, are classified as high mineral-resource potential where sufficient data indicates a high probability of occurrence. Information, such as quantity, quality, grade, past and present production, depth to deposit, and reserves, is important although not always essential, in determining that an area has a high potential. Exploration may be in progress or expected to occur within 10 years.

<u>Moderate mineral-resource potential</u> exists in areas where geologic, geochemical, or geophysical data suggest a reasonable possibility that undiscovered deposits occur in formations or geologic settings elsewhere. Speculative deposits in known mining districts or mineralized areas are assigned a moderate potential if evidence for a high potential of economic deposits is inconclusive. This assessment, like other classifications, can be revised when new information, new genetic models, or changes in economic conditions develop.

Low mineral-resource potential exists in areas where available data imply the occurrence of mineralization, but indicate a low probability for the occurrence of a deposit. This includes speculative deposits in areas of geologic environments or settings not known to contain economic deposits, but which are similar to environments or settings of known economic deposits. Additional geologic data may be needed to classify better such areas.

A classification of <u>very low mineral-resource potential</u> is reserved for areas where sufficient information indicates that an

area is unfavorable for economic deposits. This evaluation may include areas with dispersed but uneconomic mineral occurrences as well as areas that have been depleted of their mineral resources. Use of the very low potential classification requires a high level of geologic assurance to support such an evaluation. Very low mineral-resource potential is assumed for potential deposits that are too deep to be extracted economically, even though there may not be a high level of geologic assurance. These "economic" depths vary according to the commodity and current and future economic conditions.

A classification of <u>unknown mineral-resource potential</u> is reserved for areas where necessary geological, geochemical, and geophysical data are inadequate to otherwise classify an area. This assessment is low and any other classification (high, moderate, low, or very low) would be misleading. These areas should receive high proximity for additional study.

The mineral-resource potential of some areas can not be assessed because of lack of useful data. Detailed geologic mapping at a scale of 1:24,000 may be required before the mineral-resource potential can be assessed. The <u>lack of data</u> <u>does not imply a very low mineral-resource potential</u>. The difference between an <u>unknown</u> resource potential and <u>unevaluated</u> area is that some data exists in an area of unknown resource potential which implies the possibility of the occurrence of resources.

This classification scheme is similar to that used by Brobst and Goudarzi (1984) where a high mineral-resource potential

corresponds to substantiated resource potential and a moderate potential corresponds to a probable resource potential. Goudarzi (1984) of the U.S. Geological Survey proposes a similar classification scheme to the one used in this report.

In addition to evaluation of the mineral-resource potential, the potential for development is assessed. The potential for development is classified simply as high, moderate, or low and takes into account such factors as grade, tonnage, current market conditions, and status, and similar economic factors. Hiqh potential for development indicates that the area is currently producing a commodity or economic conditions suggest that production of the deposit is economically feasible currently or in the near future. Moderate potential for development exists in areas where production of the deposit would occur if certain geologic or economic conditions became favorable. Low potential for development indicates only a slight possibility, if any, for production of the deposit. The potential for development classification is also a highly subjective judgment, but it does offer an evaluation of the economic feasibility of an area.

Part II

.

Summary of the mineral-resource potential

by Virginia T. McLemore

An Executive Summary of A Preliminary Mineral-Resource Potential of Valencia County, Northwestern New Mexico

ž

by

Virginia T. McLemore, Ronald F. Broadhead, James M. Barker, George S. Austin, Kris Klein, Karen B. Brown, Diane Murray, Mark R. Bowie, and John S. Hingtgen

New Mexico Bureau of Mines and Mineral Resources Open-file Report 229

September 1, 1986

Prepared in cooperation with United States Department of Interior Bureau of Land Management

ABSTRACT

A preliminary mineral-resource potential assessment of Valencia County involves analyses of available published and unpublished geologic, geochemical, geophysical, and economic data and a brief field reconnaissance. Mineral-resource potential is an assessment of the favorability that a commodity will occur in substantial concentrations in a given area that can be exploited under current or future economic conditions. A classification of high, moderate, low, very low, and unknown is used. A high mineral-resource potential exists in areas where geologic and economic data indicate an excellent probability that economic mineral deposits occur there. Moderate or low mineral-resource potential exists in areas where the data indicate a lesser probability that economic mineral deposits occur. A classification of very low potential is reserved for areas where sufficient information indicates that an area is unfavorable for economic deposits. A classification of unknown mineral-resource potential is assigned to areas where either necessary geologic, geochemical, geophysical, and economic data are inadequate to otherwise classify an area or where any other classification (high, moderate, low, or very low) would be misleading. Some areas have not been evaluated for specific commodities because of lack of useable data.

Travertine deposits along the Lucero uplift in western Valencia County are currently being mined for dimension stone and have a high resource potential. Products include 2-inch sheets and 8-inch slabs. Additional travertine deposits may occur along

28<u>.</u>

the Hubbell bench where the resource potential is low. The potential for travertine as crushed stone is also high.

¥

High potential also exists for sand and gravel deposits in Quaternary-Tertiary deposits. Resources in the Rio Puerco drainage system, central Rio Grande valley, and terraces in eastern Valencia County are extensive. Material for adobe also has a high-resource potential in these areas.

Crushed and dimension stone resources occur in Precambrian rocks and Paleozoic sandstones and limestones in the Manzano Mountains, where the resource potential is high. Limestone for cement occurs in the Pennsylvanian Madera Formation in the southern Manzano Mountains where the resource potential is high. Travertine from the Lucero uplift also could be used in cement.

Moderate potential exists for (1) Cu-Au-Ag (<u>+</u> U, Pb) in Precambrian rocks in the Manzano Mountains, (2) gypsum in the Permian Yeso and San Andres Formations in the Lucero uplift, (3) scoria and cinders in the Cat Hills area in northern Valencia County, (4) silica sand in Precambrian quartzites in the Manzano Mountains, and (5) petroleum accumulations in Paleozoic and Mesozoic reservoirs in the Albuquerque Basin.

Additional geologic mapping and geochemical studies are suggested in areas with active claims, in the Lucero uplift and Manzano Mountains, and in areas with unknown resource potential. Aggregate resources should be mapped and sampled in greater detail prior to extraction. Isopach facies and structure contour maps of several formations in the Rio Grande valley in central Valencia County should be completed to delineate favorable areas for oil and gas accumulations.

. 29: 🕄

SUMMARY

As is true with all preliminary investigations, additional studies are necessary to adequately assess the mineral-resource potential in Valencia County. These assessments must be reevaluated as economic conditions, geologic interpretations, and models change.

The mineral-resource potentials for various commodities in Valencia County are summarized in Table 15 and Figures 11, 15, 16, 17, 18, 19, 21, and 24. The most important commodity in Valencia County is travertine used for dimension stone in the Lucero uplift. High potential also exists for sand and gravel, limestone, adobe material, and crushed and dimension stone. Moderate potential exists for Cu-Au-Ag (+U, Pb) in Precambrian rocks, gypsum, scoria and cinders, silica sand, zeolites, and petroleum. Additional work is necessary to calculate reserves and resources in these areas.

. TABLE 3 - Summary of mineral-resource potential in Valencia County(after McLemore et al., 1986a).

Commodity or type of deposit	Formation	Geographic location	Nineral-resource potential
$C_{U-A_U-A_g} (+ U, P_b)$	Precambrian greenstones or metasedimentary rocks	Hell Canyon district Manzano Mountains	malerate Unknown
Placer Au	Quaternary or Tertiary gravels	Manzano Nountains, Albuquerque Basin	แก่หาวพาว
Stratabound sedimentary	Permian and Fennsylvanian	Scholle district	moderate to low
(<u>+</u> Ag)	sedimentary rocks Permian and Triassic sedimentary rocks	Rio Puerco district	low
Barite and fluorite		Valencia County	low
Adobe	Quaternary deposits	Valencia County	high
Crushed and dimension stone	Precambrian rocks Fermian Abo Formation, Fennsylvanian Wild Cow and Bursum Formations	Various localities in in Runzauo Hountains anl Lucero unlift	high to moderate
Gypsum	Permian Yeso and San Andres Formations	Lucero uplift	mderate
Kyanite	Precambrian White Ridge quartzite and Sevilleta Formation	Manzano Mountains	leza
Lightweight aggregate	Tertiary scoria and cinders	Cat Nills	malerate
	Paleozoic and Cretaceous shales (expansible)	Nanzano Politica Ins Nanzano Hountains	unknown
Lisestone and travertine	Paleozoic limestones and Quaternary travertines	Incero uplift and southern Manzano Hountains	high
Mica	Precambrian rocks	Nanzano Hountains	1cw
Sand and gravel	Quaternary and Tertiary deposits	Valencia County	high
Silica sand	Perminn Glorieta Sandstone	Lucero uplift	unknown
	Precambrian Sais Quartzite	- Monzano Nountains	mderate
Zeolites	Tertiary-Quaternary Santa Fe Group	Albuquerque Basin	1 <i>c</i> w
Patroleim	Paleozoic and Mesozoic sedimentary rocks	Albuquerque Pasin, Rio Dierco Fault zone	molerate
Geothermal	2440	Lucero uplift	moderate to low
Coal	Cretaceous rocks	Rio Puerco field	low

 Detailed geologic mapping and geochemical studies in Precambrian terranes in the Manzano Mountains are needed to determine the mineral-resource potential for base- and precious-metals and uranium.

ŗ

- 2) Isopach facies and structure-contour maps of several formations in the Rio Grande valley in central Valencia County should be completed in order to delineate favorable areas for oil and gas accumulations.
- Aggregate resources should be mapped and sampled in greater detail prior to extraction of such materials.
- 4) Any areas with active claims should be examined (Fig. 10).
- 5) Geologic mapping and geochemical studies are required on the Luerco uplift to evaluate the resource potential.
- 6) Area near the Manzano Mountains should be examined for geothermal resource potential.
- 7) Drilling is required in the Rio Puerco coal field in northwestern Valencia County to aid in evaluating the coal resource potential.
- 8) The rating of unknown for vermiculite and expansible shale does not imply that the potential is low. Rather, the appropriate rock types are present but need to be examined in more detail specifically for these resources.

___32

An Executive Summary of A Preliminary Mineral-Resource Potential of Cibola County, Northwestern New Mexico

by

Virginia T. McLemore, Ronald F. Broadhead, Gretchen Roybal, William L. Chenoweth, James M. Barker, Robert M. North, Mark R. Bowie, John S. Hingtgen, Diane Murray, Kris Klein, Karen B. Brown, and George S. Austin

New Mexico Bureau of Mines and Mineral Resources Open-file Report 230

December, 1986

Prepared in cooperation with United States Department of Interior Bureau of Land Management

ABSTRACT

A preliminary mineral-resource potential assessment of Cibola County involves analyses of available published and unpublished geologic, geochemical, geophysical, and economic data and a brief field reconnaissance. Mineral-resource potential is an assessment of the favorability that a commodity will occur in substantial concentrations in a given area that can be exploited under current or future economic conditions. A classification of high, moderate, low, very low, or unknown is assigned. A high mineral-resource potential exists in areas where geologic and economic data indicate an excellent probability that economic mineral deposits occur there. Moderate or low mineral-resource potential exists in areas where the data indicate a lesser probability that economic mineral deposits occur. A classification of very low potential is reserved for areas where sufficient information indicates that an area is unfavorable for economic deposits. A classification of unknown mineral-resource potential is assigned to areas where either necessary geologic, geochemical, geophysical, and economic data are inadequate to otherwise classify an area or where any other classification (high, moderate, low, or very low) would be misleading. Some areas have not been evaluated for specific commodities because of lack of useable data.

Uranium is currently being mined from the Morrison Formation at Mt. Taylor mine, although economic conditions are unsettled for U.S. uranium producers. The uranium resource-potential is high in the Morrison and Todilto Formations in the Grants

34. -

district and could be mined if economic conditions improve. Coal resource potential is high in the Salt Lake field. The Salt River Project of Arizona plans to mine coal just south of Cibola County in the near future. Petroleum resource potential is moderate in the Puerco fault zone and Acoma and Zuni Basins.

The resource potential for base- and precious-metals, fluorite, and barite is moderate in Precambrian rocks in the Zuni Mountains. Various units throughout the county have a high resource potential locally for clays, crushed and dimension stone, gemstones (small quantities), limestone, and travertine. Pumice, scoria, and perlite have a high resource potential in the Mt. Taylor area.

Additional geologic mapping and geochemical studies are suggested in areas with active claims, in the Lucero uplift and Zuni Mountains. Exploration drilling and sampling of fluorspar veins in the Zuni Mountains is required to properly assess their potential. Aggregate resources should be mapped and sampled prior to extraction. The rhyolites near Mt. Taylor should be examined for tin potential.

SUMMARY

.

As is true with all preliminary investigations, additional studies are necessary to adequately assess the mineral-resource potential in Cibola County. These assessments must be reevaluated as economic conditions, geologic interpretations, and models change.

The mineral-resource potential for various commodities in Cibola County are summarized in Table 30 and Figures 18, 20, 22, 26, 28, 29, 30, 31, and 32. The most important commodities in the county are coal and uranium. Additional work is necessary to calculate reserves and resources of these commodities in areas of high potential.

36

جين ۽ ج

÷

Connodity	Geologic Formation	Geographic Area	Mineral-resource potentia
Uranium (+ vanadium, molybdenum)	Morrison Formation Tadilto Linestone	Grants district	high to moverate
Cont	Cretaceous units	East Mt. Taylor field South Mt. Taylor field Datil Mts. field Salt Lake field Zumi field	moverate to icw movierate to icw icw high to moverate icw
Petroleum	Pennsylvanian rocks Pennsylvanian-Cretaceous rocks Pennsylvanian-Cretaceous rocks Permian rocks Permian-Cretaceous rocks	lacero uplift Puerco fault zone Accasa Basin Zuni uplift Baca Basin	וכא mxturate mxturate nxturate וכא to very וכא moderate to וכא
Geothermal	various bost rocks	Jacero uplift western Cibola Co., Zuni Mts. Mt. Taylor	moderate to low low unknown
Rase- and precious-metals, fluorite, barite Cu, Au, Ag, U, V Cu, Au, Ag, U, V Tin Clays	Precambrian rocks Permian savistones Permian and Triassic savistones Tertiary volcanics fluvial units sandy loam deposits (adobe)	Zuni MLs. Zuni MLs. Rio Puerco district Mt. Taylor 	moderate low low wikiown high locally high locally
Crushed and dimension stone	Precambrian to Quaternary units	throughout the county	molerate
Genstones	various units	throughout the county	locally high for small quantities
Gypຣາຫ	Talilto Formation Yeso Formation	Laguna-Suwance Jacero uplift Zuni Mts.	moderate moderate low
Pumice, scoria, and perlite	Tertiary volcanics and flows	Mt. Taylor area	high to moderate
Scoria	Tertiary volcanic flows	Zuni Hts. area	high to moderate
Limestone	Nadera Group Todilto Formation San Andres Formation	Sierra Lucero Arroyo Colorado, Grants/Wingate Zuni hits.,	high moderate high
Sand and oravol	various	Ojo Caliente	ley to melanate
manual las			ICM LO MORBIACE
Travertine	Quaternary deposits	Ojo Caliente, Salado Spring, Nesa del Oro, Nalpais Steptoe, Chicken Mt.	high mxlerate

TABLE 4 - Summary of mineral-resource potential in Cibola County (after McLemore et al., 1986b).

*

RECOMMENDATIONS

- 1) Any areas with active claims should be examined (Fig. 15).
- 2) Isopach facies and structure-contour maps of several formations in Cibola County should be completed to delineate favorable areas for oil and gas accumulations.
- Aggregate resources should be mapped and sampled in greater detail prior to extraction of such materials.
- 4) Geologic mapping and geochemical studies are required in the Lucero uplift and in the northern and central Zuni Mountains to evaluate the mineral resource potential.
- 5) Sample fluorspar veins for silver and gold content.
- 6) Examine rhyolites near Mt. Taylor for tin potential.
- 7) Chemical sampling of the Glorieta Sandstone Member and other high-silica sandstones is required to determine the potential for high-silica sand resources.
- B) Detailed studies of the mineralogy and chemistry of clay deposits are required to assess their potential.
- 9) Geochemical and geophysical studies of the Mt. Taylor area are required to assess the geothermal-resource potential.
- 10) Exploration drilling and sampling of fluorspar veins in Zuni Mountains are required to determine depth and extent of the deposits.
- Examine outcrops of the Yeso Formation for manganese resources.
- 12) Exploration and testing of expansible shale and vermiculite regions rated unknown are needed to delineate any ores.

An Executive Summary of A Preliminary Mineral-Resource Potential of McKinley County, Northwestern New Mexico

by

Virginia T. McLemore, Gretchen Roybal, Kim Birdsall, Ronald F. Broadhead, William L. Chenoweth, Robert M. North, James M. Barker, Peter Copeland, Mark R. Bowie, John S. Hingtgen, Karen B. Brown, and Kris Klein

New Mexico Bureau of Mines and Mineral Resources Open-file Report 231

December 1986

Prepared in cooperation with United States Department of Interior Bureau of Land Management

. . .

ABSTRACT

A preliminary mineral-resource potential assessment of McKinley County involves analyses of available published and unpublished geologic, geochemical, geophysical, and economic data and a brief reconnaissance. Mineral-resource potential is an assessment of the favorability that a commodity will occur in substantial concentrations in a given area that can be exploited under current or future economic conditions. A classification of high, moderate, low, very low, or unknown is assigned. A high mineral-resource potential exists in areas where geologic and economic data indicate an excellent probability that economic mineral deposits occur there. Moderate or low mineral-resource potential exists in areas where the data indicate a lesser probability that economic mineral deposits occur. A classification of very low potential is reserved for areas where sufficient information indicates that an area is unfavorable for economic deposits. A classification of unknown mineral-resource potential is assigned to areas where either necessary geologic, geochemical, geophysical, and economic data are inadequate to otherwise classify an area or where any other classification (high, moderate, low, or very low) would be misleading. Some areas have not been evaluated for specific commodities because of lack of useable data.

Energy resources are the most important commodities in McKinley County, although other commodities have been produced. Coal is currently being produced and has a high potential in the Star Lake, San Mateo, Crownpoint, and Gallup fields. Oil and gas

production is substantial from the San Juan Basin in McKinley County and the resource potential is high in several formations in the San Juan and Acoma Basins. Uranium is currently being mined from the Morrison Formation at the Section 23 mine (Homestake), although economic conditions are unsettled for U.S. uranium producers. The uranium resource-potential is high in the Morrison and Todilto Formations in the Grants district and could be mined if economic conditions improve.

Various units throughout the county have a high resource potential locally for clays, crushed and dimension stone, silica sand, gemstones (small quantities), limestone, and humate. Many of these commodities are needed to support production of the energy resources. The resource-potential for CO₂ and helium in the Acoma and San Juan Basins, Gallup sag, and Defiance uplift is moderate. The resource potential for base- and precious-metals, fluorite, and barite is unknown in Precambrian rocks in the northern Zuni Mountains.

Additional geologic mapping and geochemical studies are required in areas with active claims and in the northern Zuni Mountains. Isopach facies and structure-contour maps of several formations in Cibola County should be completed to delineate favorable areas for oil and gas accumulations. Aggregate resources should be mapped and sampled prior to extraction. The rhyolites near Mt. Taylor should be examined for tin potential. Detailed studies of the mineralogy and chemistry of clays and silica sand resources are needed to fully evaluate these resources.

SUMMARY

As is true with all preliminary investigations, additional studies are necessary to assess adequately the mineral-resource potential in McKinley County. These assessments must be reevaluated as economic conditions, geologic interpretations, and models change.

The mineral-resource potential for various commodities in McKinley County are summarized in Table 30 and Figures 17, 20, 22, 24, 26, 30, 31, 32, 33, 35, and 36. The most important commodities are petroleum, coal, and uranium. Aggregate resources, limestone, clays, crushed and dimension stone resources also have a high potential and are needed to support production of the energy resources. Additional work is necessary to calculate reserves and resources of these commodities in areas of high potential.

- ----

,

TABLE 5 - Summary of mineral-resource potential in McKinley County (after McLemore et al., 1986c).

COMMODITY GEOLOGIC FORMATION GEOLOGIC AREA ----- MINERAL-RESOURCE POTENTIAL Coa1 Fruitland Formation Star Láke field high Chaco Canyon field Chacra Mesa field Menefee Formation low to moderate low San Mateo field high

		Standing Rock field	moderate
	Crevasse Canyon Formation	Crownpoint field	high to moderate
	-	Gallup field	high
		Zuni field	low to high
Petroleum	Upper Cretaceous sandstones,	San Juan and	moderate to high
	Entrada Sandstone	Acoma Basins	moderate to low
	Cretaceous, Jurassic.	Gallup sag	moderate to low
	Permian, Pennsylvanian	erment and	
	none	Zuni uplift	low to very low
	Permian and Pennsylvanian	Defiance uplift	low
Uranium	Morrison, Dakota,	Grants district	high to moderate
(+vanadium,	and Todilto		
molybdenum)			
Base and precious	Precambrian veins	Zuni Mountains	unknown
metals, have to flue rike			
Iron	Paleozoic limestone	Zuni Mountains	low
Tin, beryl	Tertiary volcanics	Mt. Taylor	unknown
CO ₂ , He	Paleozoic and Mesozoic	San Juan and	moderate
2	units	Acoma Basins	
	Paleozoic and Mesozoic units	Gallup sag	moderate
	Paleozoic and Mesozoic units	Defiance uplift	moderate
Clays	Mesozoic units	entire county	moderate to high
-	Cretaceous units	northern and western	hiqh
		McKinley County	2
	recent stream beds		moderate
Crushed and	various units		moderate to high
Dimension stone			2
Gemstones	Kimberlite tuffs	Navajo Reservation	moderate to high
Gypsum	Permian rocks	Zuni Mountains	low
Humate	Cretaceous coal-bearing units	coal fields	moderate to high
Pumice	Tertiary tuffs	Zilditloi Mountain	moderate
	*	T20N, R21W	
Scoria and cinders	Tertiary volcanics	Malpais	moderate
	-	Zilditloi Mountains	moderate
Expansible shale	various units	******	unknown
Limestone	San Andres Formation	Zuni Mountains	high
	Todilto Limestone	Todilto Park.	moderate
		Wingate-Grants	
Sand and gravel	various Quaternary units	scattered throughout county	high
Silica sand	various units	2	low to high
Zeolites	Bidahochi Formation	bootheel area	unknown
	Brushy Basin Member	Chuska Mountains	unknown

RECOMMENDATIONS

- 1) Geologic mapping is required in the Zuni Mountains area to determine the mineral resource potential.
- 2) Any areas with active claims should be examined (Fig. 12).
- 3) Isopach facies and structure-contour maps of several formations in McKinley County should be completed to delineate favorable areas for oil and gas accumulations.
- Aggregate resources should be mapped and sampled in greater detail prior to extraction of such materials.
- 5) Examine rhyolites near Mt. Taylor for tin potential.
- 6) Chemical sampling of high silica sandstones is required to determine the potential for high-silica sand resources.
- 7) Detailed studies of the mineralogy and chemistry of clay deposits are required to assess their potential.

- 44

An executive Summary of A Preliminary Mineral-Resource Potential of San Juan County, Northwestern New Mexico

by

Virginia T. McLemore, Ronald F. Broadhead, Kevin Cook, William L. Chenoweth, James M. Barker, Gretchen Roybal, Robert M. North, Peter Copeland, Mark R. Bowie, John S. Hingtgen, Kris Klein, and Karen B. Brown

New Mexico Bureau of Mines and Mineral Resources Open-file Report 232

November 1986

Prepared in cooperation with United States Department of Interior Bureau of Land Management

ABSTRACT

A preliminary mineral-resource potential assessment of San Juan County involves analyses of available published and unpublished geologic, geochemical, geophysical, and economic data and a brief field reconnaissance. Mineral-resource potential is an assessment of the favorability that a commodity will occur in substantial concentrations in a given area that can be exploited under current or future economic conditions. A classification of high, moderate, low, very low, or unknown is assigned. A high mineral-resource potential exists in areas where geologic and economic data indicate an excellent probability that economic mineral deposits occur there. Moderate or low mineral-resource potential exists in areas where the data indicate a lesser probability that economic mineral deposits occur. Α classification of very low potential is reserved for areas where sufficient information indicates that an area is unfavorable for economic deposits. A classification of unknown mineral-resource potential is assigned to areas where either necessary geologic, geochemical, geophysical, and economic data are inadequate to otherwise classify an area or where any other classification (high, moderate, low, or very low) would be misleading. Some areas have not been evaluated for specific commodities because of lack of usable data.

Energy resources are the most important commodities in San Juan County, although other commodities have been produced. Coal, oil, and gas are currently being produced and have high potentials in various parts of San Juan County. A high resource

potential exists locally for carbon dioxide, clay, helium, sand and gravel, and limestone. Much of the county has a high resource potential for crushed and dimension stone.

A moderate resource potential exists for uranium in the Shiprock district and at the Boyd prospect. A moderate potential exists locally for humate.

Additional geologic mapping and geochemical studies are suggested in areas with active claims, at the Boyd prospect, in areas of aggregate resources, and in areas with potential for silica sand, clay, and zeolites. More drilling and quality analyses are needed to better evaluate the coal resource potential. The significance of barium anomalies along the Kirtland-Fruitland contact and in the Nacimiento Formation needs to be examined.

SUMMARY

As is true with all preliminary investigations, additional studies are necessary to assess adequately the mineral-resource potential in San Juan County. These assessments must be reevaluated as economic conditions, geologic interpretations, and models change.

The mineral-resource potential for various commodities in San Juan County is summarized in Table 37 and Figures 24, 25, 27, 30, 31, 32, 36, 37, 39, and 40. The most important commodities are petroleum and coal. Aggregate resources, CO_2 , helium, limestone, clays, crushed and dimension stone resources also have a high potential and are needed to support production of the energy resources. Additional work is necessary to calcualate reserves and resources of these commodities in areas of high potential.

County (after McLemore et al., 1986d).

Commodity_	Geologic Formation	Geologic Area	Hineral Resource Potential
Petroleum	Tertinry, Cretaceous, Jurnssic, Pennsylvanian, Mississippian units	San Juan Basin	high
	Devonian, Mississippian, Pennsylvanian, Permian, Triassic, and Jurassic units	Defiance uplift	low (southwest)
2081	Fruitland Formation	Fruitland Field Navajo Field Bisti Field Star Lake Field	high high high high to moderate
	Menefee Pormation	Barker Field Hogback Field Toadlena Field Newcomb Field Chaco Canyon Field	low moderate unknown נסש very low to low
Uranium	Jurassic rocks	Shiprock District	moderate
(vanadium)	Cretaceous rocks	Boyd Prospect	moderate
	westwater Canyon Nember	Tocito Dome	unknown
	Upper Cretaceous rocks	Beach-placer deposits	moderate
Seothermal		(mostly) western San Juan County	very low
Metals (other than vanadium)	various formations	Entire County	low
Barite and Fluorite	Cretaceous rocks	Northern San Juan Basin	unknown
^{co} 2	various units various units	San Juan Basin Defiance uplift	moderate to high moderate to high
Clay	various units	entire county	low to high
Crushed and dimension stone	various units	entire county	high
Helium	various units various units	San Juan Basin Defiance uplift	moderate to high moderate to high
Humate	same as coal	same as coal	low to moderate
Pumice	Tertiary and Quaternary units	entire county	very low to low
Scoria and cinders		entire county	very low to low
Expansible shale			unknown or low
Limestone	Todilto limestone	Sanostee- Beautiful Mountain southward	moderate to high
Mica	many sedimentary units	entire county	low
Saline minerals	Pennsylvanian	Hermosa Formation	low
Sand and gravel	Quaternary, Tertiary, and Cretaceous units	entire county	high
Sílica sand	various units	entire county	unknown
Sulfur	various units	Barker dome	low
Zeolite C	Brushy Basin Chuska Sandstone	Chuska Mountains Chuska Mountains	low unknown

RECOMMENDATIONS

- 1) Any areas with active claims should be examined (Fig. 14).
- Isopach facies and structure-contour maps of several formations in San Juan County should be completed to delineate favorable areas for oil, gas, CO₂, and helium accumulations.
- Aggregate resources should be mapped and sampled in greater detail prior to extraction of such materials.
- 4) Chemical sampling of high-silica sandstones is required to determine the potential for high-silica sand resources.
- 5) Detailed studies of the mineralogy and chemistry of clay deposits are required to assess their potential.
- 6) More drilling and quality analyses are needed to better evaluate the coal resource potential for several fields, especially the Barker field.
- 7) Gather drill hole and outcrop data to estimate total coal resources and reserves in various coal fields.
- 8) Stratigraphic studies are needed at the Boyd prospect to determine correlation with lower Fruitland Formation to aid in uranium resource potential.
- 9) More drill hole data is needed to better delineate the uranium deposits in the Westwater Canyon Member on Tocito dome.
- 10) Investigate the significance of barium anomalies along the Kirtland-Fruitland contact and in the Nacimiento Formation in northern San Juan and southern Rio Arriba Counties.

- 11) More testing of crushed stone resources is required to determine their commercial capabilities.
- 12) More analytical and field work is needed to determine the resource potential for zeolites.

An Executive Summary of A Preliminary Mineral-Resource Potential of Western Rio Arriba County, Northwestern New Mexico

by

Virginia T. McLemore, Ronald F. Broadhead, Gretchen Roybal, William L. Chenoweth, James M. Barker, Peter Copeland, Mark R. Bowie, Kevin Cook, John S. Hingtgen, Kris Klein and Karen B. Brown

New Mexico Bureau of Mines and Mineral Resources Open-file Report 233

÷ ...

4

December 1986

•

Prepared in cooperation with United States Department of Interior Bureau of Land Management

- 52

ABSTRACT

A preliminary mineral-resource potential assessment of western Rio Arriba County involves analyses of available published and unpublished geologic, geochemical, geophysical, and economic data and a brief reconnaissance. Mineral-resource potential is an assessment of the favorability that a commodity will occur in substantial concentrations in a given area that can be exploited under current or future economic conditions. Α classification of high, moderate, low, very low, or unknown is assigned. A high mineral-resource potential exists in areas where geologic and economic data indicate an excellent probability that economic mineral deposits occur there. Moderate or low mineral-resource potential exists in areas where the data indicate a lesser probability that economic mineral deposits occur. A classification of very low potential is reserved for areas where sufficient information indicates that an area is unfavorable for economic deposits. A classification of unknown mineral-resource potential is assigned to areas where either necessary geologic, geochemical, geophysical, and economic data are inadequate to otherwise classify an area or where any other classification (high, moderate, low, or very low) would be misleading. Some areas have not been evaluated for specific commodities because of lack of useable data.

Oil and gas are currently being produced in western Rio Arriba County and the resource potential is high in Cretaceous, Jurassic, and upper Paleozoic rocks. Clay in the Mesa Alta area has a high resource potential. There is a high resource

picential for crushed and dimension stone throughout the entire area. Limestone resource potential is high in the Todilto Limestone in southeastern Rio Arriba County.

A moderate resource potential exists for copper and silver in the Chinle Formation in the Nacimiento Mountains, deep coal in the Menefee and Fruitland Formations in the San Juan Basin, CO₂ and helium in the San Juan Basin, and limestone in the Madera Formation. An unknown resource potential exists for silica sand, zeolites, and barite.

Additional geologic mapping and geochemcial studies are required in areas with active claims, areas of aggregate resources, and along the Kirtland-Fruitland contact for barium resource potential. Isopach facies and structure-contour maps and additional petroleum tests are suggested to enhance evaluation of the petroleum resources. Detailed studies of the mineralogy and chemistry of clay deposits are required to fully assess their potential.

SUMMARY

As is true with all preliminary investigations, additional studies are necessary to assess adequately the mineral-resource potential in western Rio Arriba County. These assessments must be re-evaluated as economic conditions, geologic interpretations, and models change.

The mineral-resource potential for various commodities in western Rio Arriba County are summarized in Table 20 and Figures 19, 20, 22, 25, 27, 28, 29, 30, and 31. The most important commodity is petroleum. Limestone, clays, and crushed and dimension stone resources also have a high potential and are needed to support production of the energy resources. Additional work is necessary to calculate reserves and resources of these commodities in areas of high potential.

TABLE 7 - Summary of mineral-resource potential in western Rio Arriba County (after McLemore et al., 1986e).

3. .

· • • • • • • • • • •

Commodity	Geologic formation	Geographic area	Mineral-resource potential
Petroleum	Cretaceous, Jurassic, upper Paleozoic	western Rio Arriba County	high
Con1	Cretaceous coal-bearing sequence	Monero field	1.cw
	Cretaceous Fruitland and Menefee Formations (deep coal)	San Juan Rasin 🛛 v	ery low to moderate
Uranium	Ojo Alamo San Jose	southern Rio Arriba	low
Geothermal		*****	very low
Miscellaneous Metals	Chinle Formation (copper, silver)	Nacinto Mountains	moderate
Barite	stream sediments in Kirtland-Fruitland contact and Nacimiento Formation	northern San Juan and southern Rio Arriba Counties	unknown
co ₂	several units	central San Juan Basin	low to moderate
Clays	Tertiary sediments	eastern fringe of San Juan Rasin	low to high
Crushed Stone	sedimentary units of Faleozoic through Cenozoic age, and Cenozoic igneous intrusives	entire study area	high
Dimension Stone	Triassic Chinle and Jurassic Entrada Sandstone		high
	Other rock units		moderate
Helium	Upper Cretaceous sandstones, Entrada Sandstone, Triassic Sandstones, Fermian sandstones, Pennsylvanian limestones and sandstones and Mississippian carbonates	central San Juan Basin	moderate
Humate	Cretaceous Menafee Formation	Momero coal field	very low to low
Lightweight Aggregate	shale strata in sedimentary volcanic and igneous intrusive rocks	near Dulce	high in this area unknown eisewhere
Limestone	Todilto	southeastern study area	high
	Madera	north flank of San Pedr Mountain	o moderate
	Mancos Shale	near Tierra Amarilla	low
	Lewis Shale		low
Mica	Precambrian rocks	northeastern part of San Juan Basin	low
Saline	Permian	entire study area	very low
Sand and Gravel	Tertiary and Quaternary		low
Silica Sand	Permian to Tertiary	various areas in study	area unknown
Zeolites	Jurassic	southeast corner of stu	dy unknown

area

RECOMMENDATIONS

- 1) Any areas with active claims should be examined (Fig. 11).
- Isopach facies and structure-contour maps of several formations in Rio Arriba County should be completed to delineate favorable areas for oil and gas accumulations.
- Analyze the thermal maturity and kerogen content of marine Mancos Shales in the subsurface of western Rio Arriba County.
- 4) Drill more wells in the Paleozoic section of the San Juan Basin (western Rio Arriba County) to better document reservoir quality of Paleozoic units.
- 5) Test the Pennsylvanian section in western Rio Arriba County to determine the reservoir quality of Pennsylvanian units.
- Drill in the Paleozoic section to establish depositionally dependent porosity zonations.
- Aggregate resources should be mapped and sampled in greater detail prior to extraction of such materials.
- 8) Examine the belt of anomalous barium values found in the NURE stream-sediment samples along the Kirtland-Fruitland contact in northern San Juan and southern Rio Arriba Counties.
 - 9) Detailed studies of the mineralogy and chemistry of clay deposits are required to fully assess their potential.
- Exploration and testing of expansible shale regions rated unknown are needed to delineate any ores.

- Adkins-Heljeson, D. M., and Holts, C. L., 1984, Bibliography of New Mexico geology and mineral technology, 1976-1980: New Mexico Bureau of Mines and Mineral Resources, Bulletin 109, 173 pp.
- Boardman, L., and Brown, A. (revised by A. N. Bove), 1958, Geologic map index of New Mexico: U.S. Geological Survey, map scale 1:750,000.
- Brobst, D. A., and Goudarzi, G. H., 1984, Introduction; <u>in</u> Wilderness mineral potential, assessment of mineral-resource potential in U.S. Forest Service lands studied 1964-1984: U.S. Geological Survey, Professional Paper 1300, pp. 1-10.
- Burks, M. R., and Schilling, J. H., 1955, Bibliography of New Mexico geology and mineral technology through 1950: New Mexico Bureau of Mines and Mineral Resources, Bulletin 43, 198 pp.
- Goudarzi, G. H., 1984, Guide to preparation of mineral survey reports on public lands: U.S. Geological Survey, Open-file Report 84-787, 50 pp.
- Harris, D. P., 1969, Alaska's base and precious metals resources--a probabilistic regional appraisal: Colorado School of Mines Quarterly, v. 64, pp. 295-328.
- Harris, D. P., and Agterberg, F. P., 1981, The appraisal of mineral resources: Economic Geology, 75th Anniversary Volume, pp. 897-938.

- Harris, D. P., and Euresty, D., 1969, A preliminary model for the economic appraisal of regional resources and exploration based upon geostatistical analysis and computer simulation: Colorado School of Mines Quarterly, v. 64, pp. 71-98.
- Heljeson, D. M., and Holts, C. L., 1981, Supplemental bibliography of New Mexico geology and mineral technology through 1975: New Mexico Bureau of Mines and Mineral Resources, Bulletin 108, 136 pp.
- Kirk, C. L., Montgomery, E. B., Knapp, R., Dow, R., Lukas, V. R., and Barrie, K. A., 1983, Bibliography of thesis and dissertations on New Mexico, 1965-1982: The Mountain Geologist, v. 20, no. 2, pp. 64-81.
- Koehn, M. A., and Koehn, H. H., 1973, Bibliography of New Mexico geology and mineral technology, 1966 through 1970: New Mexico Bureau of Mines and Mineral Resources, Bulletin 99, 288 pp.
- McIntosh, W. L., and Eister, M. F., 1979, Geologic map index of New Mexico: U.S. Geological Survey, 21 pp.
- McIntosh, W. L., and Morgan, I. M., 1970, Geologic map index of New Mexico, Part B 1956-68: U.S. Geological Survey, map scale 1:1,000,000.
- McLemore, V. T., 1982, Radioactive occurrences in veins and igneous and metamorphic rocks of New Mexico with annotated bibliography: New Mexico Bureau of Mines and Mineral Resources, Open-file Report 155, 277 pp.

, ...

- McLemore, V. T., 1983, Uranium and thorium occurrences in New Mexico--distribution, geology, production, and resources, with selected bibliography, 3 vols.: New Mexico Bureau of Mines and Mineral Resources, Open-file Report 183, 950 pp.
- McLemore, V. T., 1984, Preliminary report on the geology and mineral-resource potential of Torrance County, New Mexico: New Mexico Bureau of Mines and Mineral Resources, Open-file Report 192, 102 pp.
- McLemore, V. T., Broadhead, R. F., Barker, J. M., Austin, G. S., Klein, K., Brown, K. B., Murray, D., Bowie, M. R., and Hingtgen, J. S., 1986a, A preliminary mineral-resource potential of Valencia County, northwestern New Mexico: New Mexico Bureau of Mines and Mineral Resources, Open-file Report 229.
- McLemore, V. T., and Broadhead, R. F., Roybal, G., Chenoweth, W. L., Barker, J. M., North, R. M., Bowie, M. R., Hingtgen, J. S., Murray, D., Klein, K., Brown, K. B., and Austin, G. S., 1986b, A preliminary mineral-resource potential of Cibola County, northwestern New Mexico: New Mexico Bureau of Mines and Mineral Resources, Open-file Report 230.
- McLemore, V. T., Roybal, G., Birdsall, K., Broadhead, R. F., Chenoweth, W. L., North, R. M., Barker, J. M., Copeland, P., Bowie, M. R., Hingtgen, J. S., Brown, K. B., and Klein, K., 1986c, A preliminary mineral-resource potential of Cibola County, northwestern New Mexico: New Mexico Bureau of Mines and Mineral Resources, Open-file Report 230.

- McLemore, V. T., Broadhead, R. F., Cook, K., Chenoweth, W. L., Barker, J. M., Roybal, G., North, R. M., Copeland, P., Bowie, M. R., Hingtgen, J. S., Klein, K., and Brown, K. B., 1986d, A preliminary mineral-resource potential of San Juan County, northwestern New Mexico: New Mexico Bureau of Mines and Mineral Resources, Open-file Report 232.
- McLemore, V. T., Broadhead, R. F., Roybal, G., Chenoweth, W. L., Barker, J. M., Copeland, P., Bowie, M. R., Cook, K., Hingtgen, J. S., Klein, K., and Brown, K. B., 1986e, A preliminary mineral-resource potential of western Rio Arriba County, northwestern New Mexico: New Mexico Bureau of Mines and Mineral Resources, Open-file Report 233.
- McLemore, V. T., Roybal, G. H., Broadhead, R. F., Chamberlin, R. M., North, R. M., Osburn, J. C., Arkell, B. W., Colpitts, R. M., Bowie, M. R., Anderson, K., Barker, J. M., and Campbell, F., 1984, Preliminary report on the geology and mineral resource potential of the northern Rio Puerco Resource Area in Sandoval and Bernalillo Counties and adjacent parts of McKinley, Cibola, and Santa Fe Counties, New Mexico: New Mexico Bureau of Mines and Mineral Resources, Open-file Report 211.
- Ray, T., 1966, Bibliography of New Mexico geology and mineral technology, 1961-1965: New Mexico Bureau of Mines and Mineral Resources, Bulletin 90, 124 pp.
- Robertson, J. M., 1976, Annotated bibliography and mapping index of Precambrian of New Mexico: New Mexico Bureau of Mines and Mineral Resources, Bulletin 103, 90 pp.

- Schilling, C. F., and Schilling, J. H., 1956, Bibliography of New Mexico geology and mineral technology, 1951-1955: New Mexico Bureau of Mines and Mineral Resources, Bulletin 52, 136 pp.
- Schilling, C. F., and Schilling, J. H., 1961, Bibliography of New Mexico geology and mineral technology, 1956-1960: New Mexico Bureau of Mines and Mineral Resources, Bulletin 74, 124 pp.
- Schilling, F. A., Jr., 1975, Annotated bibliography of Grants uranium region, New Mexico, 1950 to 1972: New Mexico Bureau of Mines and Mineral Resources, Bulletin 105, 69 pp.
- Shawe, D. R., 1981, U.S. Geological Survey workshop on nonfuel mineral-resource appraisal of Wilderness and CUSMAP areas: U.S. Geological Survey, Circular 845, 18 pp.
- Taylor, R. B., and Steven, T. A., 1983, Definition of mineralresource potential: Economic Geology, v. 78, pp. 1,268-1,270.
- U.S. Bureau of Mines and U.S. Geological Survey, 1980, Principles of a resource/reserve classification for minerals: U.S. Geological Survey, Circular 831, 5 p.
- Voelker, A. H., Wedow, H., Oakes, E., and Scheffler, P. K., 1979, A systematic method for resource rating with two applications to potential wilderness areas: Oak Ridge National Laboratory, Report ORNL/TM-6739, 65 pp.
- Wright, J. R., and Russell, J. A., 1977, Bibliography of New Mexico geology and mineral technology, 1971-1975: New Mexico Bureau of Mines and Mineral Resources, Bulletin 106, 137 pp.