OPEN FILE REPORT NO. 357

RECONNAISSANCE GOLD GEOCHEMICAL SURVEY

OF FIVE SELECTED AREAS

IN SOUTHWESTERN NEW MEXICO:

VICTORIO MOUNTAINS,

TRES HERMANOS MOUNTAINS,

PYRAMID MOUNTAINS,

APACHE-SIERRA RICA HILLS,

AND SNAKE HILLS,

LUNA AND HIDALGO COUNTIES

BY

GEORGE B. GRISWOLD,
RAPHAEL BOY,
R. REID OLSON
AND
PETER ZRINSCAK

TABLE OF CONTENTS

	P.AGE
Summary	1
Gold Analysis and Results	1
Victoria Mountains	3
Tres Hermanos Mountains	6
Apache-Sierra Rica Hills	10
Pyramid Mountains	14
Snake Hills	18
PLATES (SAMPLE LOCATIONS)	
Plate 1 - Gage Quadrangle	
Plate 2 - North Peak Quadrangle	
Plate 3 - West Lime Hills Quadrangle	
Plate 4 - Doyle Peak Quadrangle	
Plate 5 - Victoria Range Quadrangle	
Plate 6 - Double Wells Quadrangle	
Plate 7 - Lordsburg Quadrangle	
Plate 8 - Gary Quadrangle	
Plate 9 - Red Mountain Quadrangle	
Plate 10 - Bowlin Ranch Quadrangle	

SUMMARY

A gold geochemical reconnaissance was conducted in five selected areas of southwestern New Mexico: Victorio Hills, the northern portion of the Tres Hermanos Mountains, Apache-Sierra Rica Hills, Pyramid Mountains, and Snake Hills. Pyramid Mountains have a history of significant copper-silver-gold, but the others have had only marginal production of any precious metals. However, all five areas have evidence of much silicification of carbonate sediments and Pyramid and Tres Hermanos Mountains show evidence of pyritized-quartz-rich Tertiary intrusion. Geochemical sampling was conducted for the most part at the alluvial-rock outcrop boundaries in small arroyos feeding in from the highlands. Two types of samples were collected: traditional "stream sediment" and "rock", defined as selected chips from boulders and cobbles taken from the drainage with attention given to silicification and/or pyritization. Some prospect pits also were sampled, but emphasis was on pits away from known production mines. Samples were analyzed only for gold, with a detection limit of two parts per billion

GOLD ANALYSIS

A total of 328 field locations were sampled resulting in 210 dry stream sediment samples, 270 rock samples, and 28 samples from prospect pits. Gold analysis was done by Skyline Labs, Inc., in Tucson, Arizona. In addition, 76 samples were blindly resubmitted to Skyline for check assay. The results compared favorably, with a correlation of 98.2%. As a final quality control over assay results, 10 blind duplicate samples were sent to Bondar Clegg Inc., in Sparks, Nevada for check assay. Again, results were in good agreement with a correlation of 96.0% While the detection limit for gold was 2 parts per billion (ppb), it must be remembered that no two duplicate samples will always agree due to a "nugget" effect. We believe that results less than 10 ppb may range over a factor of 2 to 3 for duplicate samples. However, duplicate samples above 10 ppb are normally very repeatable. On the high range of the scale, say over 500 ppb, duplicate samples may again vary by a factor of up to 2 because of "nugget" effects. From the aspect of geochemical prospecting these are quite acceptable errors. Samples t elow 10 ppb are not significant, while any sample over 30 ppb for dry stream sediments o 60 ppb for rocks are considered to be above typical background levels.

PRESENTATION OF RESULTS

Sample locations are presented as on 7 1/2 minute U.S. Geological Survey topographic maps. These may be used as overlays on existing geologic maps when available. The five selected areas covered by sampling can be summarized as follows:

SAMPLE AREA	QUADRANGLE NAME	GEOLOGIC MAP DAT	Œ
Victorio Mountains	Gage	Yes @ 1:24000 19	80
Tres Hermanos Mountains	North Peak West Lime Hills		62 62
Pyramid Mountains	Gary Lordsburg	- ,	78 78
Apache-Sierra Rica Hills	Doyle Peak Victorio Ranch Double Wells	Ph.D Thesis @ 1:24000 Ph.D Thesis @ 1:24000 Ph.D Thesis @ 1:24000	
Snake Hills	Red Mountain Bowlin Ranch		86 86

Each of the five areas will be described, giving key references, sample results, and a very brief narration concerning recommendations for additional exploration.

VICTORIO MOUNTAINS

KEY REFERENCES

Topographic Map: Gage

Geologic Map and Stratigraphy:

Thorman, C. H. and Drewes, H., 1980, Geologic map of the Victorio Mountains, Luna County, southwestern New Mexico: U.S. Geologic Survey, Miscellaneous Filed Studies, Map MF-1175.

Decription of Mineral Deposits:

Griswold, G. B., 1961, Mineral deposits of Luna County: New Mexico Bureau of Mines and Mineral Resources, Bulletin 72, 157 pp.

Holser, W. T., 1953, Beryllium minerals in the Victorio Mountairs, Luna County, New Mexico: American Mineralogist, 39:599-611.

RESULTS OF SAMPLING

Prospect pits: 15 samples, range 8 to 5500 ppb Stream sediments: 36 samples, range 2 to 2800 ppb Rock samples: 47 samples, range 2 to 770 ppb

The anomalous amounts of gold are significant in samples on the eastern and western ends of Mine Hill. The rock samples on the east end are of interest because most previous mining of high gold in lead ores was on the west end. Sampling the main range north and west of Mine Hill did not reveal anomalous amounts of gold. The high content of gold in oxidized lead-ore samples from prospect pits around Mine Hill and the presence of considerable jasperoid and intense silicification of carbonates are also encouraging for potential discovery of gold under alluvial cover along the eastern, southern, and southwestern margins of Mine Hill.

Gage:

Sample number	A	A nalysis, pp	Rock type	
	Rock	Sediment	Prospect	
G-4			0440	Omc
G-5			1400	Oe
P-43	0017	0004		sftb,sft
P-44			0008	sflb
P-45	0110	0002		sfg,Omc

Sample number	Analysis, ppb Rock Sediment Prospect			Rock type
P-46		. 	0720	sfg .
P-47		0002	0080	sfg
P-48			0230	Ome
P-49	0024	0004		Om,Omu
P-50	0013			Oma,Omc
P-51	0230	0002		sflb,sft
P-52	0440			sft
P-53	0770			sft,sfub
P-54	0017			sft
P-55	0026 -			kb
P-56		0004		kb
P-57	0013	0004		Tr,kb,sf
P-58	0017	0003		Tr,kb,sf
P-59	0003	0002		Tr,kb,sf,Trb,Om
P-60	0006	0002	~	Oe
P-61	0004	0002		Oe
R-21	0003	0002		Sflb
R-22	0006	0012		Sfg,Omc
R-23			0055	Omc
R-24	0002	0007		Oma,Omc,Omu
R-25	8000	0006		Omc,Oma,Omu
R-26	0002	0009		Sfg,Omc,Oma,Omu
R-27	0002	0015		Sflb,Sfg
R-28	0019	0018		Sft,Sflb
R-29	0015	0095		Sfub,Sft
R-30			0150	Sft
R-31	0006			Sft
R-32	0044	0003		Tks,kb
R-33	0085	0002		kb
R-34	0038	0006		Tr,Oe
R-35	0007	0002		Tr,Trb,kb,Sf,Om,Oe
R-36	0020	0002		Tks,Tr,Kb,Om
R-37	0007	0002		Oe
R-38	0003	0002		Sf,Om
R-39	0004	0002		Oe .
X-26	0200			Sfg
X-27	0020	0003		Sfg
X-28		2800	1100	Sfg
X-29	0009	0003		Sfg,Omc
X-30			1200	Omc,Oma,Omu

Sample number	A	malysis, pp	b	Rock type
	Rock	Sediment	Prospect	
X-31			0570	Oe,Om
X-32			0480	Oma,Omu,Oe,Om
X-33	0055			Oma,Omu,Oe
X-34	0160			Omc,Oma,Omu
X-35			5500	Sft,Sflb
X-36			0750	Sfub,Sft
X-37			0300	Sft,Sflb
X-38	0036	0200		Sft,Sflb
X-39	0003	0003		Kb
X-40	0006	0002		ls,Kb
X-41	0090	0007		Tr,Kb,Sf,Om
X-42	0009	0002		Sf,Om,Oe
X-43	0020	0002		Kb

Tr- Rhyolite porphyry-may include quartz-latite porphyry and dacitic rocks

Trb - Rhyolite porphyry intrusive breccia

TKs - Conglomerate, sandstone, siltstone, shale, and some tuft breccia

Kb - Sandstone, arkose, siltstone, and some conglomerate and limestone

Kb-ls - Limestone lentils--some contain fragments of oyster fossils

Sf - Dark gray or dark brown dolomite, about 270 m thick

Sfub - Dark gray dolomite, 30 m thick

Sft - Pale yellowish brown dolomite, about 110 m thick

Sflb - Dark gray to dark brown dolomite about {xxxx} m thick

Sfg - Light to medium gray, fine-grained dolomite and sandy dolomite, 60 m thick

Om - Light to medium gray, medium-grained dolomite about 100 m thick

Omc - Light gray, thin-bedded dolomite and calcareous dolomite, about 35 m thick

Oma - Medium gray, abundantly cherty dolomite, about 45 m thick

Omu - Medium gray dolomite and a basal zone of brownish gray quartz sandstone, 20 m

Oe – Light gray limestone and dolomitic limestone, and some calcarenite and edgewise pebble conglomerate

TRES HERMANOS MOUNTAINS

KEY REFERENCES

Topographic Maps: North Peak and West Lime Hills

Geologic Map and Stratigraphy:

Balk, R., 1962, Geologic map and sections of Tres Hermanos Mountains: New Mexico Bureau of Mines and Mineral Resources, Geologic Map 16.

Description of Mineral Deposits:

Griswold, G. B., 1961, Mineral deposits of Luna County: New Mexico Bureau of Mines and Mineral Resources, Bulletin 72, 157 pp.

Homme, F. C. and Rosenzweig, A., 1970, Contact metamorphism in the tres Hermanos Mountains: in Twenty-first Field Conference, New Mexico Geological Society, p. 141–145.

RESULTS OF SAMPLING

Prospect pits: 10 samples, range 5 to 1500 ppb Stream sediments: 58 samples, range 2 to 7 ppb Rock samples: 72 samples, range 2 to 70 ppb

Three types of geologic terrain were sampled: highly silicified Cretaceous sediments, pyritized quartz monzonite and contact metamorphosed Paleozoic carbonates. Only the results found in the pyritized quartz monzonite were in any way significant. The West Lime Hills contain significant amounts of highly silicified Cretaceous limestones and limestone pebble conglomerates which probably were originally quite permeable, but our sampling revealed no significant gold values. Some favorable indications of gold were observed in pyritized quartz monzonite. Oxidation appears to be quite shallow in most of the areas sampled; however, an area of possible interest would be blind drilling through alluvium north of pyritized outcroppings in secs. 26 and 27, T27S, R9W. The few samples taken from a skarn zone on the east flank of the Tres Hermanos have little indication of gold.

Sample number	Analysis, ppb			Rock type
	Rock	Sediment	Prospect	
P-11		0002		Tm
P-12		0002	1500	Tm
P-13	0004	0002		Tm
P-14		0002		Tm
P-15			0130	Tm —
P-16	0390			Tm
P-17	0005	0002		Tm Tm
P-18 P-19		0002		Tm
P-20	0013			Tm
P-21	0004			P,Me
P-22	0006	0002		P,Me
P-23	0003	0002		Ph
P-24	0002	0002		Ph
P-25	0002	0002		Ph
P-26	0003	0002		Sf,Me,Ph,P
P-27	0003	0002		Ph
P-28	0005	0004		Ph
P-29	0002	0005		Ph
P-32	0003	0002		Tm,Tx,Tai,Ph,Me,P
P-33	0002	0002		Tai,Ph
P-34	$0002 \\ 0002$	0002 0002		Tai,Ph Tai,Ph
P-35 P-36	0002	0002		Tai,Fh Tai,Ph
P-37	0005	0002		Tai,Ph
P-38	0003	0002		Tm,Tx,Tai,Ph
P-39	0002	0002		Tm,Tx
P-40	0003	0007		Tm,Tx
P-41	0002	0005		Tm,Tx
P-42	0002	0002		Tm,Tx
R-7	0026	0006		Tm
R-8	0019	0002		Tm
R-9		0002		Tm
R-10	0003			Tm
R-11	0002	0002		P,Me
R-12	0002	0002		P,Me
R-13	0002	0002		P,Me
R-14	0004	0002		P,Me
R-15 R-16	0002 0004	0002 0002		Tm,P,Me Sf,Ph
R-15 R-17	0004	0002		Sf,Ph
X-7	0000	0002	0020	Tm
X-8			0026	Tm
X-9	0070			Tm
~ * *	J J I V			

Sample number	A	malysis, pp	Rock type	
	Rock	Sediment	Prospect	
X-10	0055			Tm
X-11				Tm
X-12	0006			Tm
X-13				Tm
X-14			0018	Tm
X-15	0002			Tm
X-16	0002			P
X-17	0002			Sf,Ph
X-18	0002			Sf,Ph
X-19	0002			Sf,Ph,P
X-20	0002			Sf,Ph
X-21	0014			Ph

- Tx Xenoliths; highly silicified and silicated xenoliths of Paleozoic and Cretaceous sedimentary rocks within quartz monzonite
- Tm Quartz monzonite; buff-colored, medium to fine-grained, equigranular tp slightly porphyritic
- Tai Andesite; intrusive andesite of essentially the same composition as extrusive andesite
- Ph Hueco Formation; thin bedded to massive limestones, in part oolitic
- P Pennsylvanian rock; almost completely fossiliferous recrystallized limestone except for partings and thin lenses of shale
- Me Escabrosa Limestone; light gray, massive, crinoidal, and cherty limestone
- Sf Fusselman Dolomite; marbleized dolomites and limestones

West Lime

Sample number	A	Rock type		
	Rock	Sediment	Prospect	•
G-1			0004	Tm
G-2	0006		0006	Tm
G-3	0024		0024	Tm
P-1	0010	0002		Kul
P-2	0007	0002		Kc
P-3	0010	0005		Kul,Kc
P-4	0024	0002		Kul,Kc
P-5	0002	0002		Kul,Kc
P-6	0022	0002		Kul,Kc
P-7	0004	0002		Tl
P-8	0002	0002		Kul,Kc
P-9	0028	0002		Кс,Та
P-10	0005	0002		Trl,Ta

Sample number		Rock type		
	Rock	Sediment	Prospect	
P-30	0070	0007		P
P-31	0004	0002		P
R-1	0005	0002		Kul,Kc,Kml
R-2	0016	0002		Kc,Kml,Tl
R-3	0004	0002		Kul,Kc
R-4	0003	0002		Kul,Kc
R-5	0020	0002		Kul,Kc,Ta
R-6	0012	0015		Кс,Та
R-18	0019	0002		P
R-19	0003	0002		P
R-20	0002	0002		P
X-1	0011			Kul,Kc,Kml
X-2	0011			Kul,Kc,Kml
X-3	0007			Kc
X-4				Kul,Ke
X-5	0003	***		Kul,Kc,Ta
X-6	0006			Kc,Ta
X-22	0020			Tm,Me,P
X-23	0003	0002		P
X-24	0002	0002		Tm
X-25	0007	0002		Tx,Tm

- Trl Rhyolite and latite; flows, breccias, and tuffs of light gray to reddish brown rhyolite and latite
- Tx Xenoliths; highly silicified and silicated xenoliths of Palezoic and Cretaceous sedimentary rock within quartz monzonite
- Tm Quartz monzonite; buff-colored, medium to fine-grained, equigranular to slightly porphyritic
- T1 Older latite; breccias, welded tuffs, and subordinate porphyritic flow of gray to yellowish tan latite
- Kul Upper limestone; sparsely fossiliferous, light to dark gray, thin- to thick-bedded
- Kc Limestone conglomerate; limestone and limestone-chert conglomerate
- Kml Massive limestone; gray, coarsely crystalline limestone within cherty and siliceous beds
- P Pennsylvanian rock; almost completely fossiliferous recrystallized limestone with thin lenses of shale: the sandstone

AMERICAN TOTAL SERVICE CONTROL OF DESCRIPTION OF DE

is gray, fine-grained to silty, crosslaminated, in part porous

Me - Escabrosa Limestone; light gray, massive, crinoidal, and cherty

SIERRA RICA AND APACHE HILLS

KEY REFERENCES

Topographic Maps: Doyle Peak, Victorio Ranch, and Double Wells.

Geologic Map and Stratigraphy:

Strongin, O., 1957, Geology and ore deposits of Apache Hills and Northern Sierra Rica: unpublished Ph.D. dissertation, 221 pp. (Columbia University)

Description of Mineral Deposits: same as above.

RESULTS OF SAMPLING

Prospect pits: 3 samples, range 15 to 910 ppb Stream sediments: 59 samples, range 2 to 18 ppb Rock samples: 60 samples, range 2 to 350 ppb.

Our best results were obtained in southwest trending drainages from the Apache Hills. However, there are numerous prospect pits which could have contaminated samples. The area does warrant additional sampling. In the Sierra Rica, assay results were low, but additional sampling is worthwhile because four samples (X-131, 133, 134 and 175) are abnormal in gold and taken from arroyos free of prospects.

Doyle Peak

Sample number	A	Analysis, pp	Rock type	
	Rock	Sediment	Prospect	
X-138	0070	0002		Kcb
X-139	0011	0007		Tqd,Khrl
X-140	0015	0018		Tqd,Khrl
X-141	0022	0002		Tqd,Khrl
X-142	0005	0002		Tqd,Khrl
X-143	0007	0003		Tqd,Khrl
X-144	0046	0005		Tqm,Tpr,Tqd,Khrl
X-145	0036	0003		Tmp,Tqm,Tpr,Khrl
X-146	0011	0006		Tmp,Khrl
X-147	0005	0002		Tqm,Tpr,Tmp,Khrl
X-148	0350	0002		Tqm,Tpr,Khrl
X-149	0004	0002		Tqm,Tpr,Khrd

Sample number	A	Analysis, pp	b	Rock type
	Rock	Sediment	Prospect	
X-150	0006	0002		Tmp,Tqm,Tpr,Khrl
X-151	0002	0002		Tpr,Khrl,Tlc
X-152	0007	0002		Tqm,Tpr,Khrl,Tlc
X-153	0010	0016		Tpr,Khrl
X-154	0003	0002		Tpr,Khrl
X-155	0014	0002		Tqm,Tpr,Khrl
X-156	0026	0002		Khrl,Khrd
X-157	0010	0002		Khrl,Khrd
X-158	0017	0002		Tqm,Tpr,Trp,Khrd,Khrl
X-159	0007	0002		Khrd,Khrb
X-160		0002		Khrd,Khrb,Tlc
X-161		0002		Khrd,Khrb,Tlc
X-162	0002	0002		Khrd,Khrb,Tlc
X-163	0210	0002		Khrd,Khrb,Tlc
X-164		0004		Khrd,Khrb,Tlc
X-165		0002		Khrd,Khrb
X-166		0002		Khrd,Khrb
X-167	0065	0002		Khrd,Khrb
X-168	0240	0002		Khrd,Khrb

Tpr - Porphyritic rhyolite; light greenish tan with finely granular texture surface

Victorio Ranch

Sample number	A	Analysis, pp	Rock type	
	Rock	Sediment	Prospect	
R-50	0010	0002		Khrb
R-51	0003	0002		Khrd, Khrb
R-58	0002	0002		Khrd
R-59	0002	0002		Khrd

Tqm - Quartz monzonite porphyry; grayish pink to greenish gray in color, crystalline texture

Tmp - Monzonite porphyry

Tqd - Quartz diorite porphyry; sills, plugs, and dikes, plug, breccia

Tlc - Last Chance volcanics; andesite and basalt flows; sill, dikes, plugs, breccia

Kcb - Corbett Formation; same as Sartan sandstone

Khrl - Limestone-sandstone member; limestone conglomerate, red to gray sandstone, green shale

Khrd - Rudistid limestone member; blue massive limestone, fine-grained or dense, fossiliferous

Khrb - Orbitolina limestone member; blue gray limestone, dense and fine-grained, rich in Orbitolina

Sample number	Ā	analysis, j	Rock type	
	Rock	Sedimer	nt Prospect	
X-119	0002			Khro
X-120	0006			Khro
X-121	8000			Khro,Khrb
X-122	0028			Khro
X-123	0024			Khro
X-124	0015			Khro
X-125			0910	Khro
X-126			0050	Khro
X-127			0015	Khro
X-128	0017			Khrb
X-129	0004			Khrb
X-135		0002		Khrd,Khrb
X-136		0003	Khrd,Khro	
X-137	0002	0002		Khrd
X-169		0002		Khrd, Khrb
X-170	0006	0002		Khro
X-171	0032	0002		Khro,Khrb
X-172	0026	0002		Khrb
X-173	8000	0002		Khrb
X-174	0011	0004		Khro
X-175	0030	0060		Khro
X-176		0002		Khrd,Khrb
X-177		0002		Khrd,Khrb
X-178		0002		Khrd,Khrb,Khro
X-179		0002		Khrd,Khrb,Khro
X-180	0006	0002		Khrd,Khrb
X-181	0006	0007		Khrd,Khrb
X-182	0009	0002		Khrd,Khrb
X-183	0005	0002		Khrd,Khrb
X-184	0002	0002		Khrd,Khrb

Khrd - Rudistid limestone member, blue massive limestone, fine-grained or dense, fossiliferous

Khrb - Orbitolina limestone member, blue gray limestone, dense and fine-grained, rich in orbitoline

Khro - Oyster limestone member

Double Wells

Sample number	A	analysis, pp	Rock type	
	Rock	Sediment	Prospect	
R-52	0002	0002		Khrd
R-53			- 	Khrd
R-54	0002	0002		Khrd
R-55	0002	0002		Khrd
R-56	0003	0002		Khro, Khrb
R-57	0003	0002		Khrd
X-130	0010			Khro,Khrb
X-131	0100			Khro, Khrb
X-132	0005			Khro,Khrb
X-133	0055			Khro,Khrb
X-134	0038			Khrb

Khrd – Rudistid limestone member; blue massive limestone, fine-grained and dense, fossiliferous

Khrb – Orbitolina limestone member; blue gray limestone, dense and fine-grained, rich in orbitolina

Khro - Oyster limestone member

PYRAMID MOUNTAINS

KEY REFERENCES

Topographic Maps: Gary and Lordsburg.

Geologic Map and Stratigraphy:

Thorman, C. H. and Drewes, H., 1978, Geologic map of the Gary and Lordsburg quadrangles, Hidalgo county, New Mexico: U.S. Geological Survey, Miscellaneous Investigations Series, Map I – II 1151.

Flege, R. F., 1959, Geology of the Lordsburg quadrangle, Hidalgo County, New Mexico: New Mexico Bureau of Mines and Mineral Resources, Bulletin 62, 36 pp.

Description of Mineral Deposits:

Lasky, S. G., 1938, Geology and ore deposits of the Lordsburg mining district: U.S. Geological Survey, Bulletin 885.

Huntington, M. G., 1947, Atwood copper group, Lordsburg district, Hidalgo County, New Mexico: U.S. Bureau of Mines, Report of Investigation 4029, 9 pg.

RESULTS OF SAMPLING

Prospect pits: 3 samples, range 9 to 650 ppb Stream sediments: 48 samples, range 2 to 440 ppb Rock samples: 67 samples, range 3 to 3100 ppb

The results on the east flank of the Pyramid Mountains confirm a metal-rich areɛ. This is to be expected from the abundance of producing mines. On the west flank, there has been little past production. Of interest are samples X-50, 51, and 52, all on the west flank. Sample X-50 is the arroyo beneath Banner Mining company's tailings from the Bonney and Miser's Chest Mines. Samples X-51 and X-52 are from a dividing ridge and thus from the next arroyos north of Sample X-50. These latter samples give incentive for additional prospecting in sec. 15, T23S, R19W.

Gary

Sample number	Analysis, ppb Rock Sediment Prospect			Rock type
X-38B		0024		Kas,Tgd
X-39B		0010		Kas,Tgd
X-40B		0003	<u></u> →	Kas,Tgd
X-41B		0004		Kas,Tgd
X-42B		0004		Kas, Tgd, Tap
X-43	·	0002		Tgd
X-44	0070	0002		Tap,kas,Tgd
X-45	0010			Tgd
X-46	0012	0002 0002		Tap,Tgd
X-47 X-48	0009 0011	0010		Tap,Tgd Tap,Tgd
X-49	0060	0002		Tap, Tgd
X-50	0430	0060		Kas, Tib, Tir, Tap, Tgd
X-51	0530			Tgd
X-52	0610	0004		Tgd
X-53	0016	0010		Tap,Tgd
X-54	0340	0004		Tib,Tir,Kas,Tq,Tgd
X-55	0010	0002		Tib,Tir,Kas,Tgd
X-56	0006	0002		Tib,Tir,Kas,Tgd
X-57	0024	0003		Tib,Tq, Tgd,Kas
X-58	0014	0002		Tq,Kas,Tat
X-59	0006	0003		Kas, Tat
X-60	0036			Tq,Kas,Tat
X-61	0015			Tq,Kas
X-62	0070			Tq,Kas,Tal
X-63	1200			Kas, Tal
X-64	0560			Tgd,Tap,Tq,Kas,Taa Taa,Kas,Tal
X-65	0080 0012			Tq,Taa,Kas,Tap
X-66 X-71	0810			Tga,Tq,Kas,Tap
X-71 X-72	0790			Tq,Tgd,Kas
X-72 X-73	3100			Tap,Tgd,Tq,Kas
X-74	0830	****		Tq,Tgd,Kas,Tap
X-75	0010			Tq, Tap, Tgd, Kas, Tib
X-76	0320	0015		Tq,Tap,Tgd,Kas,Tib
X-77	0390	0095		Tgd,Tir,Tib,Tgd
X-78	0016			Kas
X-79	0240	0440		Kas, Tap, Tgd
X-82	1800	0040		Tq,Tap,Kas
X-83	0180	0009		Tq,Kas,Tib,Tap
X-84	0180	0030		Tib,Tgd
X-85	0060	0004		Tq,Kas
X-86		0050		Tq,Tgd,Kas
X-87	0060	0013		Tq,Tgd

Sample number	A	nalysis, pp	Rock type	
	Rock	Sediment	Prospect	
X-88	0080	0017		Tq,Kas,Tgd
X-89	0180	0014		Tq,Tgd
X-90	0190	0009		Kas,Tgd,Tq
X-91	0024	0005		Tgd,Tir
X-98	0014	0002		Kas
X-99	0012	0006		Tap, Kas
X-100	0011	0003		Kas
X-101		0002	0009	Tap,Ks,Tgd
X-102	0280			Kas
X-103			0650	Kas,Tq,Tgd
X-104	0022	0011		Kas
X-112	0005			Tib,Tir
X-113	0016			Tib,Tir
X-114	0032			Tib,Tir
X-115	0009			Tgd
X-116		0020	Tib,Tir	
X-117	0032			Tib,Tir
X-118	0006			Tir

Tal - Andesite of Lordsburg Draw; medium to dark gray, or brownish-gray nonporphyritic and prophyritic. Now rock and tuff breccia

Taa - Andesite flows of Animas Road; medium to dark gray, sparsely porphyritic olivine and site

- Tir Intrusive Rhyolite; plugs and dikes of very light gray to greenish gray dense porphyritic rock
- Tq Quartz veins; includes large silicified masses

- Tgd Granodiorite; light gray to light brownish gray fine to medium-grained
- Kas Andesite of Shakespeare; includes andesite flows, tuff breccias, flows breccia, epiclastic beds
- Ks Sandstone; light brown, light olive gray, and gray green, fine-grained to gritty, quartzose sandstone, siltstone, shale, and some quartzite lenses.

Tib - Intrusive rhyolite breccia; light gray to yellowish gray silicified breccia containing clasts of rhyolite, andesite, and granodiorite

Tap - Aplite; small intrusive bodies in and near Lordsburg stock. Typically pinkish orange gray and fine-grained.

Lordsburg

Sample number	Analysis, ppb			Rock type
-	Rock	Sediment	Prospect	
X-67	0310			Tq,Taa,Kas
X-68		-		Taa,Kas
X-69	0022			Taa,Kas
X-70				Taa,Kas
X-80		0060		Tq,Kas
X-81	0160	0005		Tq,Tap,Tgd,Kas
X-92		0002		Kas, Trd, Tir
X-93		0002		Tq,Tap,Tl,Trd
X-94		0002		Trd,Tgd,Kas
X-95	1200	0014		Tq,Trd,Tap,Kas
X-96	0085	0013		Tq,Tap,Tgd,Kas
X-97	0250	0002		Tl,Tq,Tgd,Tap,Kas
X-105	0140	0011		Tq,Tgd,Tap,Kas
X-106	0017	0006		Tir, Kas
X-107	0720			Tq,Tap,Tgd,Kas
X-108				Tap,Kas
X-109	0042	0016		Tq,Tgd,Tap,Tib,Kas,Taa
X-110		0055		Tq,Tib,Kas,Taa
X-111				Kas, Taa

Trd – Rhyolitic tuff of Dogs Head; includes tuffaceous sandstone, tuff breccia, and some agglomerate. Mostly very pale yellow to very light gray and poorly indurated

TI - Latitic-porphyry dikes; very light gray rock with sparse phenocrysts of feldspar and locally biotite in a very fine-grained groundmass of feldspar, matic, and opaque minerals

Taa - Andesite flows of Animas Road; medium to dark gray sparsely porphyritic olivine andesite

Tib - Intrusive ryolite breccia; light gray to yellowish gray silicified breccia containing clasts of rhyolite, andesite, and granodiorite

Tir - Intrusive rhyolite; plugs and dikes of very light gray to greenish gray dense porphyritic rock

Tq - Quartz vein; includes large silicified masses

Tap - Aplite; small intrusive bodies in and near Lordsburg stock. Typically pinkish organge gray and fine grained

Tgd - Granodiorite; light gray to light brownish gray, fine to medium-grained

Kas - Andesite of Shakespeare; includes andesite flows, tuff breccias, flow breccias, epiclastic beds, and scattered small intrusive masses.

SNAKEHILLS

KEY REFERENCES

Topographic Maps: Red Mountain and Bowlin Ranch.

Geologic Maps and Stratigraphy:

No published map available. Reconnaissance mapping has been done by R. E. Clemons, New Mexico State University.

RESULTS OF SAMPLING

Prospect pits:

0 samples

Stream sediments

3 samples, all 2 ppb

Rock samples:

9 samples, range 2 to 42 ppb

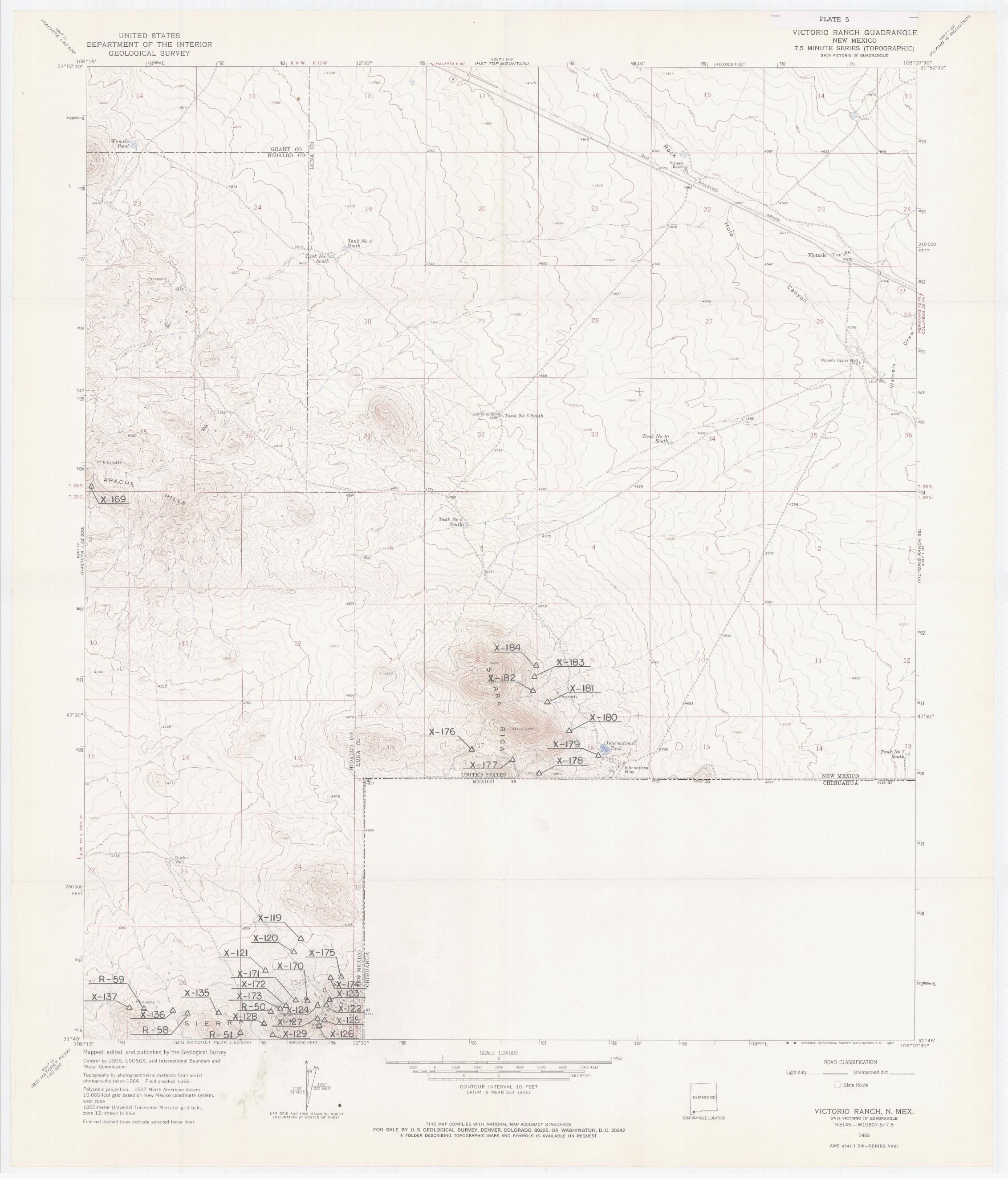
There is no evidence of previous prospecting in the Snake Hills. Samples P-62 and 68 are on the threshold of being anomalisms.

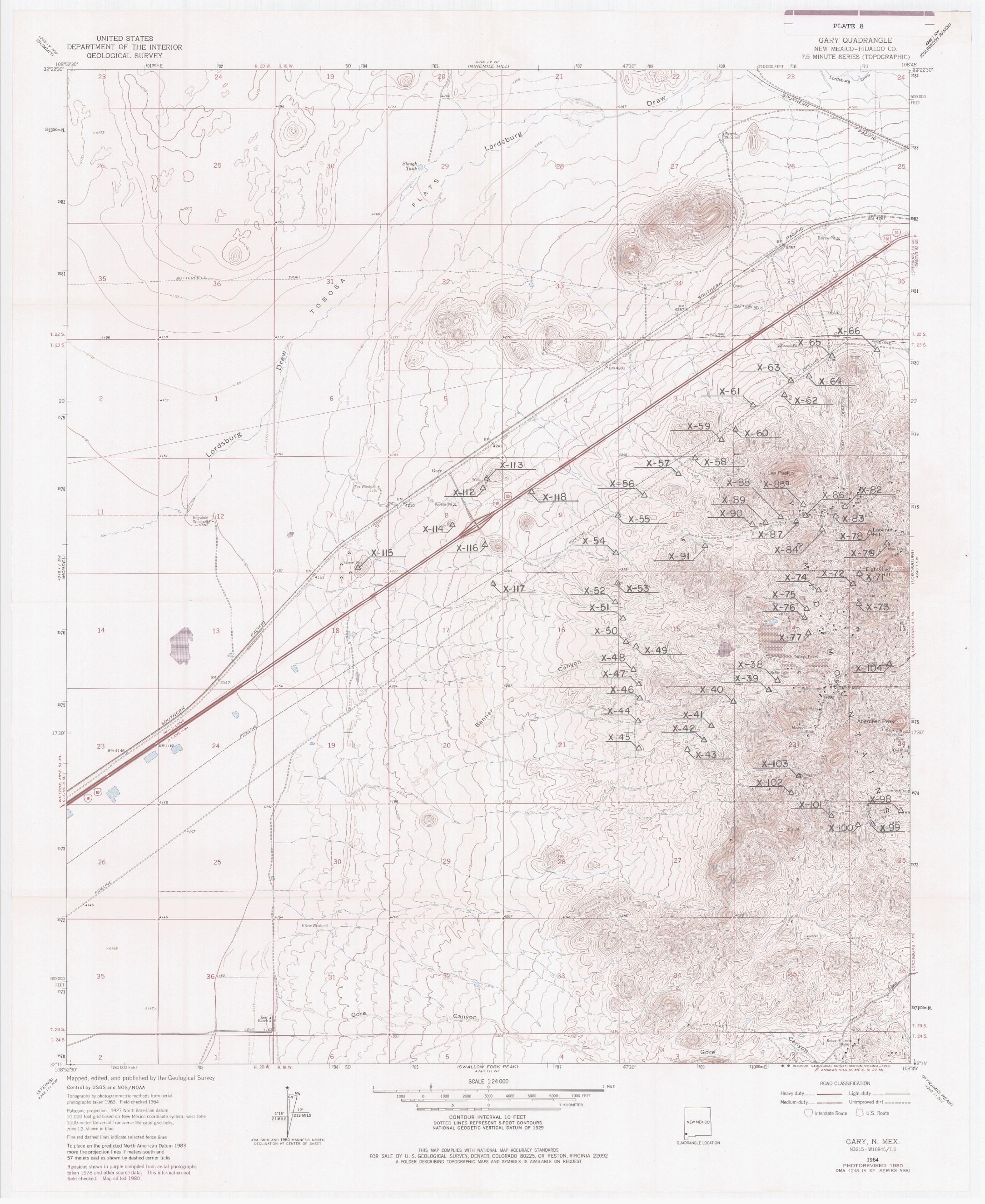
Red Mountain

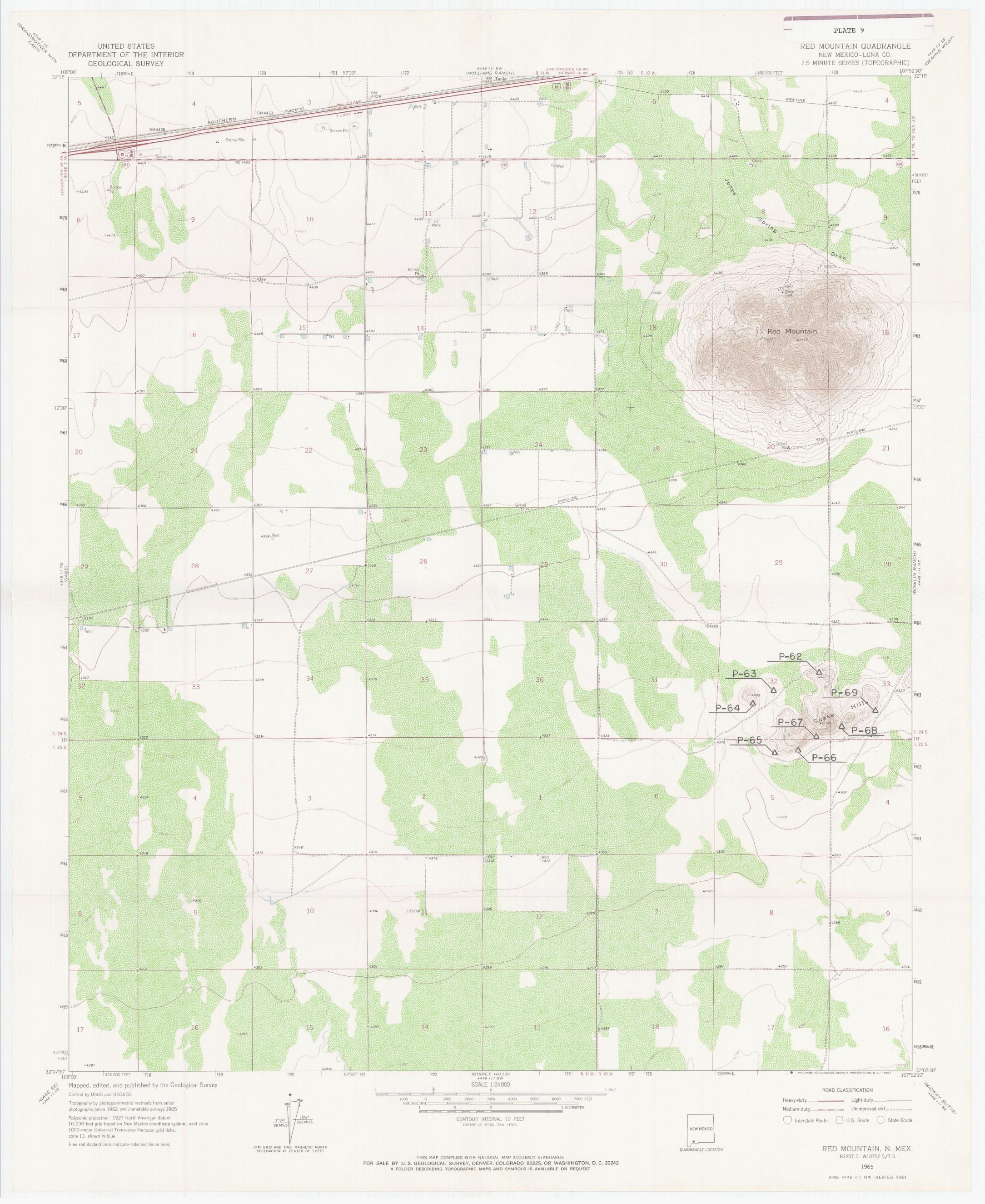
Sample number	A	malysis, pp	b	Rock type
	Rock	Sediment	Prospect	
P-62	0040			Om
P-63	0004			Om
P-64	0003			Om
p-65	0002			Om
P-66	0002			Om
P-67	0004			Om
P-68	0042	0002		Om/Oe
P-69	0003	0002		Om

Om - Montoya Formation, light to medium gray, medium-grained dolomite

Oe - El Paso limestone; light gray limestone and dolomitic limestone, and some calcarenlte and edgewise pebble conglamerate


Bowlin Ranch


Sample number	A	Analysis, pp	Rock type	
	Rock	Sediment	Prospect	
P-70	0002			Oe
P-71	0002			Oe


Oe - El Paso Limestone; light gray limestone and dolomitic limestone, and some calcarenite and edgewise pebble conglomerate

