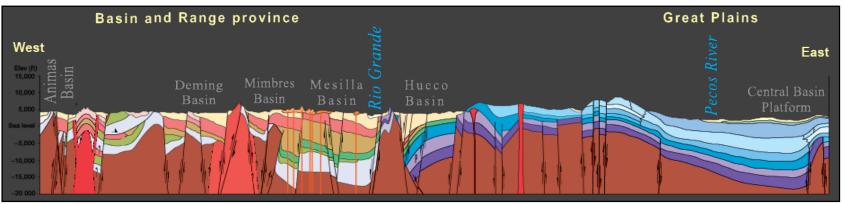
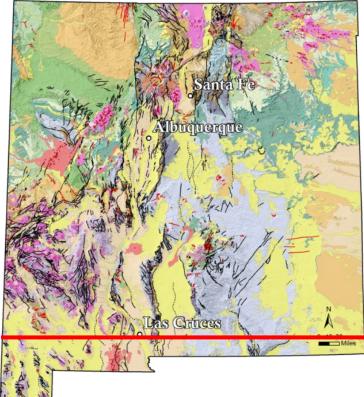
### New Mexico Aquifer Characterization and Mapping updates


**Stacy Timmons** 

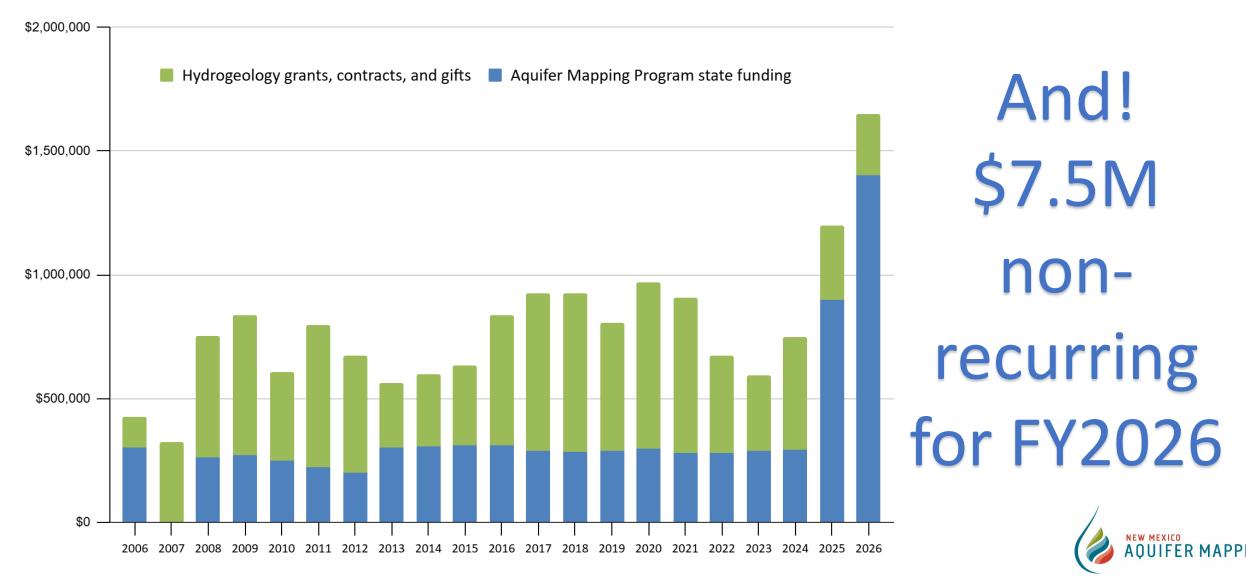
Associate Director of Hydrogeology Programs

NM Bureau of Geology and Mineral Resources




# New Mexico's aquifers are complex and most have insufficient data coverage




But with complete aquifer maps, we can do more.

- Estimate groundwater storage
- Examine groundwater flow directions
- Evaluate recharge processes and interaction with surface water
- Summarize known current water quality and future impacts
- Alternative water options and waste disposal





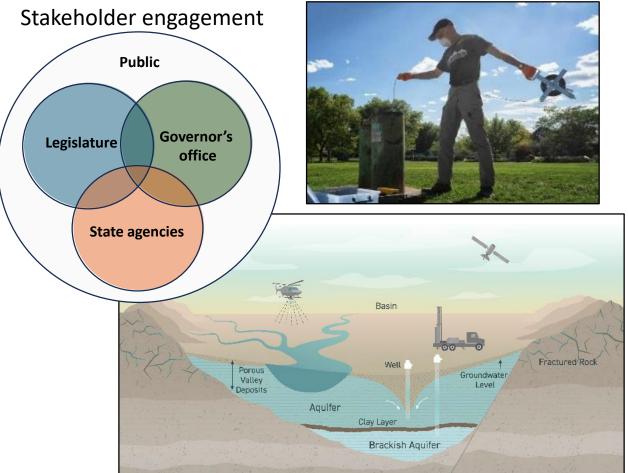
### Thank you for your support this year!



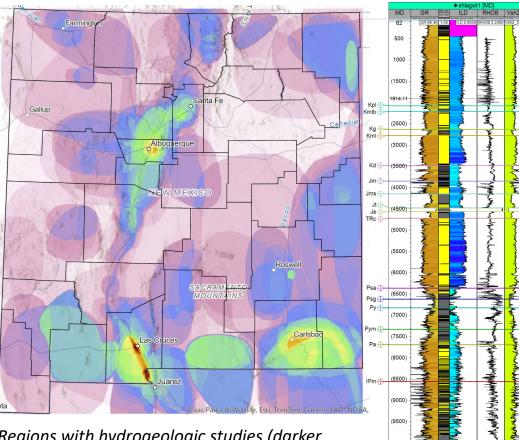
# Full characterization of aquifers requires substantial new subsurface information

#### **GENERAL WORKFLOW (Approximately 2-3 years per region)**

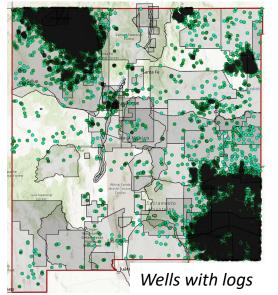
#### 1. Compile existing data

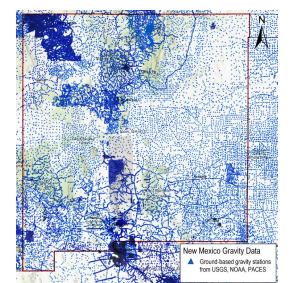

- a. Information from existing wells
- b. Geologic mapping, hydrologic mapping/testing results
- c. Geophysical and other survey data
- d. Geochemical sampling results

#### 2. Build initial draft maps/model


a. Evaluate data gaps

#### 3. Fill data gaps


- a. Drill wells
- b. Collect geophysics
- c. Geologic mapping
- d. Measure groundwater depths / changes
- e. Geochemical sampling
- 4. Update maps/model
- 5. Long term monitoring for change




## Getting a jump start – Data compilation underway now!



Regions with hydrogeologic studies (darker red – more studies to faint pink – few studies)

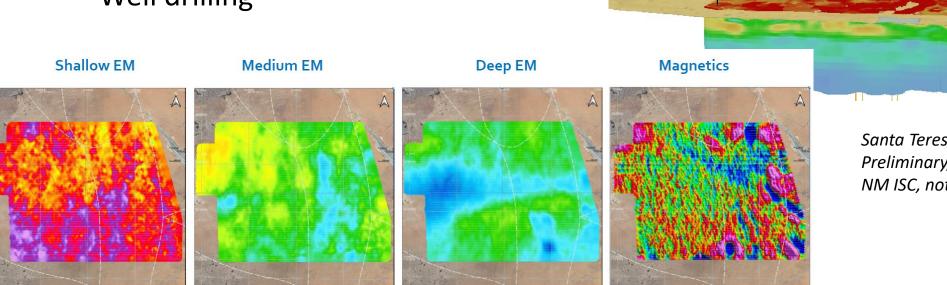






#### Water Data Act (2019)

- Coordinating effort of NMBGMR, OSE, ISC, NMED and EMNRD
- Multiple agencies data now available and integrated together for efficient use on aquifer studies.

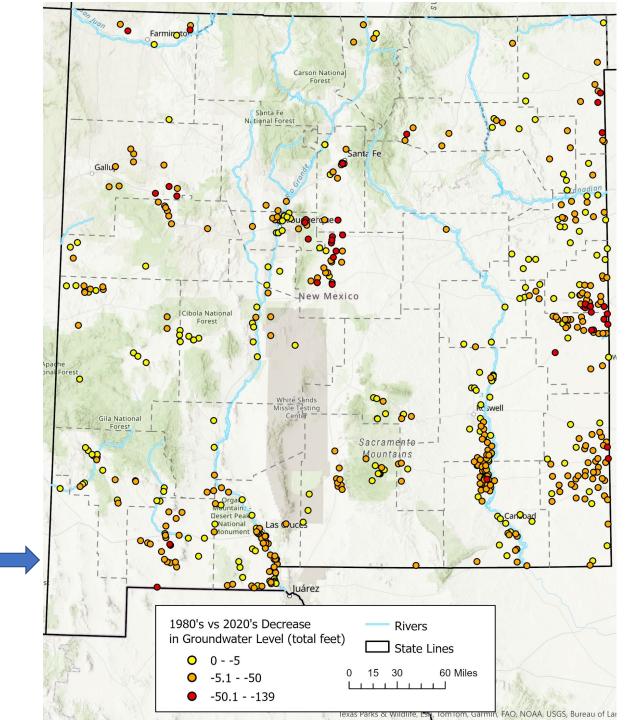



Example well log with geology

### New data collection and work ahead

Working on RFPs to procure vendors / consultants to help with:

- Geophysical data collection
- Hydrogeologic characterization
- Data development
- Model development
- Well drilling




Santa Teresa NM Project – Preliminary, example data acquired by the NM ISC, not for redistribution

# Regional approach to statewide challenge

Steering Committee helping to prioritize regions. Considerations include:

- 1. Highly studied areas with many reports / data vs. less studied areas with few previous reports / data
- 2. Regions most dependent on groundwater
- 3. Cooperation, interest, and capacity to participate
- 4. Declining groundwater levels
- 5. Areas of current research or recent projects with Aquifer Mapping Program



### We'll be back for additional funding requests

Goal: Map all aquifers by 2037 with 100+ new monitoring wells for tracking change

|      |      |               |              | Contracts/    |                 |                 |                                                                                     |
|------|------|---------------|--------------|---------------|-----------------|-----------------|-------------------------------------------------------------------------------------|
| Year | FY   | Wells         | Surveys      | Collaborators | Sample analyses | Annual estimate | Major costs                                                                         |
| 1    | 2026 | \$4,020,000   | \$2,500,000  | \$600,000     | \$150,000       | \$7,270,000     | 2-4 wells; 2 surveys                                                                |
| 2    | 2027 | \$10,050,000  | \$5,300,000  | \$800,000     | \$210,000       | \$16,360,000    | 10-12 wells; 6-8 surveys                                                            |
| 3    | 2028 | \$10,050,000  | \$5,300,000  | \$800,000     | \$210,000       | \$16,360,000    | 10-12 wells; 6-8 surveys                                                            |
| 4    | 2029 | \$10,050,000  | \$5,300,000  | \$800,000     | \$210,000       | \$16,360,000    | 10-12 wells; 6-8 surveys                                                            |
| 5    | 2030 | \$10,050,000  | \$5,300,000  | \$800,000     | \$210,000       | \$16,360,000    | 10-12 wells; 6-8 surveys                                                            |
| 6    | 2031 | \$10,050,000  | \$5,300,000  | \$800,000     | \$210,000       | \$16,360,000    | 10-12 wells; 6-8 surveys                                                            |
| 7    | 2032 | \$10,050,000  | \$5,300,000  | \$800,000     | \$210,000       | \$16,360,000    | 10-12 wells; 6-8 surveys                                                            |
| 8    | 2033 | \$10,050,000  | \$5,300,000  | \$800,000     | \$210,000       | \$16,360,000    | 10-12 wells; 6-8 surveys                                                            |
| 9    | 2034 | \$10,050,000  | \$5,300,000  | \$800,000     | \$210,000       | \$16,360,000    | 10-12 wells; 6-8 surveys                                                            |
| 10   | 2035 | \$10,050,000  | \$5,300,000  | \$800,000     | \$210,000       | \$16,360,000    | 10-12 wells; 6-8 surveys                                                            |
| 11   | 2036 | \$10,050,000  | \$5,300,000  | \$800,000     | \$210,000       | \$16,360,000    | 10-12 wells; 6-8 surveys                                                            |
| 12   | 2037 | \$2,000,000   | \$2,100,000  |               |                 | \$4,100,000     | 1-2 wells; 2 surveys                                                                |
|      |      | \$106,520,000 | \$57,600,000 | \$8,600,000   | \$2,250,000     | \$174,970,000   | 100+ wells tracking fresh and<br>brackish water; major and<br>minor aquifers mapped |

(Example budget below)