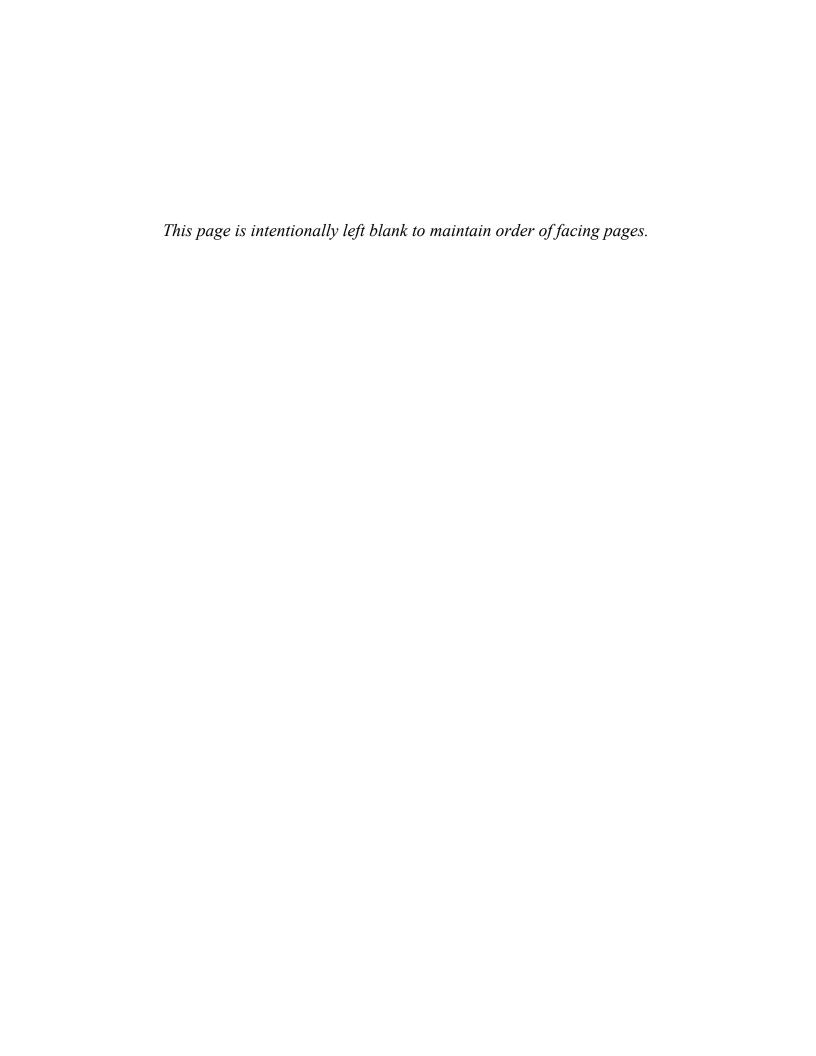
Rb-Sr data from the Harding Pegmatite, New Mexico

M.E. Balestri and D.G. Brookins


Isochron/West, Bulletin of Isotopic Geochronology, v. 42, pp. 8-9

Downloaded from: https://geoinfo.nmt.edu/publications/periodicals/isochronwest/home.cfml?lssue=42

Isochron/West was published at irregular intervals from 1971 to 1996. The journal was patterned after the journal *Radiocarbon* and covered isotopic age-dating (except carbon-14) on rocks and minerals from the Western Hemisphere. Initially, the geographic scope of papers was restricted to the western half of the United States, but was later expanded. The journal was sponsored and staffed by the New Mexico Bureau of Mines (now Geology) & Mineral Resources and the Nevada Bureau of Mines & Geology.

All back-issue papers are available for free: https://geoinfo.nmt.edu/publications/periodicals/isochronwest

Rb-Sr DATA FROM THE HARDING PEGMATITE, NEW MEXICO

MARCIA E. BALESTRI
DOUGLAS G. BROOKINS

Department of Geology, University of New Mexico, Albuquerque, NM 87131

We report previously unpublished Rb-Sr data from minerals and whole rocks from the Harding pegmatite, Taos County, New Mexico. These samples were collected and analyzed in the late 1970's. The results are shown in table 1. Model ages, but not isochrons, are presented here as well. The reader is referred to Register (1979), Brookins and others (1979) and Clark (1982) for additional information. The decay constant of $^{87}{\rm Rb}$ is taken as 1.42×10^{-11} yr $^{-1}$ for calculating the model ages.

ACKNOWLEDGMENTS

All samples were analyzed in the University of New Mexico geochronology laboratory using standard tech-

niques. We gratefully acknowledge the assistance of R. S. Della Valle, J. K. Register, and R. L. Miller.

REFERENCES

Brookins, D. G., Chakoumakis, B. C., Cook, C. W., Ewing, V. C., Landis, G. P., and Register, M. E. (1979) The Harding pegmatite: summary of recent research, in Ingersoll, R. V., ed., New Mexico Geological Society Guidebook—Santa Fe County, p. 127–134.

Clark, G. S. (1982) Rubidium-strontium isotope systematics of complex granitic pegmatites, *in* Cerny, P., ed., Mineralogical Society of Canada, short course on granitic pegmatites in science and industry, p. 347-371.

Register, M. E., (1979) Geochemistry and geochronology of the Harding pegmatite, Taos County, New Mexico: Masters thesis, University of New Mexico, 145 p.

TABLE 1. Rb-Sr data and model ages for the Harding pegmatite, Taos County, New Mexico.

All samples from 36°11′32″ N, 105°47′40″ W.

Sample	⁸⁷ Sr/ ⁸⁸ Sr	Rb(ppm)	Sr(ppm)	⁸⁷ Rb/ ⁸⁶ Sr	Model age (b.y.)			
Border zone¹								
1-4 MUSC	131.3384	9031.00	58.28	6124.05	1.502			
1-4 MUSC	132.6946	9264.50	57.82	6393.67	1.454			
1-5 MUSC	103.4028	8040.22	53.20	4788.91	1.510			
1-6 MUSC	24.1117	5722.63	43.48	1244.78	1.324			
1-8 MUSC	36.2331	5995.32	39.90	1931.46	1.295			
1-11 MUSC	264.6057	10653.80	65.84	12441.15	1.494			
Replacement micas ¹								
2-3 LEP	274.8883	10270.07	56.39	14529.15	1.329			
1-9 LEP	228.9076	10749.06	60.54	11874.95	1.353			
6-3 LEP	251.6420	11065.37	65.23	12426.02	1.422			
2-4 LEP	98.5266	8820.03	62.74	4262.89	1.616			
2-5 LEP	139.8459	6209.18	38.28	6798.15	1.441			
607 RM	108.6454	5603.83	33.30	5580.01	1.362			
3-4 RM	60.8747	6121.97	42.30	2860.41	1.481			
6-2 RM	64.1170	6140.28	39.28	3231.42	1.382			
Quartz-lath spodume	ne zone²							
3-1 SP	0.9553	0.00	07.75	0.00				
3-3 SP	0.9397	2.32	87.75	0.08				
3-6 SP	1.8110	61.34 20.90	4.49 1.46	40.41 45.95				
Spotted rock zone ¹		20.00	1.40	43.33				
4-1 WR								
4-4 WR	41.9229	4063.04	27.27	2153.28	1.348			
4-5 WR	48.7873	4617.44	29.13	2595.49	1.304			
4-7 WR	36.6564	3881.36	29.58	1968.82	1.286			
4-7 WR	27.5427	5589.65	41.05	1418.62	1.332			
	27.3702	5897.93	41.73	1465.63	1.281			
Cleavelandite-quartz	zone ³							
6-1 CL	1.5800							
6-2 CL	1.7752	187.42	16.79	35.05	1.366			
6-4 CL		220.57	16.07	43.83	1.406			
6-5 CL	1.4180	110.77	17.85	19.21	1.899			
6-6 CL	1.3917	120.04	15.05	24.62	1.406			
6-7 CL	1.0340	34.31	17.00	6.03	1.565			
- -	1.3194	63.79	9.91	19.73	1.497			

continued

TABLE 1. Rb-Sr data and model ages for the Harding pegmatite, Taos County, New Mexico. All samples from 36°11′32″ N, 105°47′40″ W (continued).

Sample	⁸⁷ Sr/ ⁸⁸ Sr	Rb(ppm)	Sr(ppm)	87Rb/86Sr	Model age (b.y.)
Cleavelandite-quartz	zone ⁴				
6-8 MCL	10.2147	8121.55	80.11	563.76	
6-9 MCL	10.9838	5017.37	61.88	468.37	
6-10 MCL	5.7591	7072.46	114.25	266.90	
6-11 MCL	9.6687	5585.08	83.53	361.55	
6-12 MCL	9.8183	7073.57	138.21	278.90	
Quartz-sugary albite-	perthite ⁵				
7-1 SA	0.8809	4.66	142.95	0.10	
7-2 SA	0.8304	3.99	6.21	1.88	
7-3 SA	1.6497	18.60	6.43	9.14	
7-7 SA	0.9053	1.87	5.54	1.00	
7-8 SA	0.9121	11.35	6.14	5.46	
7-9 SA	1.0512	3.59	5.73	1.87	
7-11 SA	0.8337	1.74	14.95	0.34	
Blocky perthite zone	1				
8-4 P	23.1870	7494.13	56.32	1223.82	
8-5 P	8.9729	5051.03	78.77	334.22	
8-6 P	16.1769	5514.81	50.47	790.24	

¹Initial 87 Sr/ 86 Sr = 0.71 assumed.

²No model ages calculated. ³Initial ⁸⁷Sr/⁸⁸Sr = 0.9 assumed (Register, 1979).

⁴No model ages calculated.

⁵No model ages calculated. ⁶No model ages calculated.