Depositional environments of the Yeso Formation (Lower Permian), southern Caballo Mountains, New Mexico

by Greg H. Mack, New Mexico State University, Las Cruces, NM 88003
and Kenitiro Sugulo, Univ. de Sao Paulo, C.P. 20.899, Sao Paulo, Brazil

Introduction

The Yeso Formation in south-central New Mexico occupies a stratigraphic position above nonmarine redbeds of the Abo Formation and below shallow-marine limestones of the San Andres Formation (Kottlowski et al., 1956; Kottlowski, 1963, 1965; Nelson, 1986). Despite a general consensus that the Yeso represents a transitional period of shallow-marine and shoreline sedimentation, there have been few detailed sedimentological studies. We present here an interpretation of Yeso depositional environments based on outcrops in the southern Caballo Mountains (Fig. 1). Although small in area, the southern Caballo Mountains provide excellent exposures of the Yeso Formation, particularly of the basal Meseta Blanca Member. The model presented here hopefully can be used as a standard of comparison for other Yeso outcrops in southern New Mexico.

Stratigraphy

The Yeso Formation in the southern Caballo Mountains has been divided by Seager and Mack (in press) into four members, which in ascending order are the Meseta Blanca, red siltstone-dolomite, limestone, and sandstone-limestone (Fig. 2). The Meseta Blanca Member in the southern Caballo Mountains is similar in appearance to the one at the type section in the Oscura Mountains (Wilpolt and Wanek, 1951). The other three members are sufficiently different from those of the type section to warrant a new stratigraphic terminology.

The Meseta Blanca Member in the southern Caballo Mountains is approximately 75 m thick and has conformable upper and lower contacts. The lower contact is marked by a change over a meter or less from interbedded red mudstone and ledge-forming siltstone of the Abo Formation to orangish-red, friable sandstones. The Meseta Blanca Member consists primarily of medium- and thin-bedded, very fine sandstone, although a few thin (<4 m) beds of gray shale and tan dolomite may be present in the upper 15 m.

In the western part of the study area, the red siltstone-dolomite member is 72 m thick and is composed of interbedded tan dolomite, gray limestone, red siltstone to fine sandstone, and white fine-grained sandstone. The member increases significantly in thickness toward the eastern part of the study area where it attains a maximum thickness of 196 m (Fig. 2). The increase in thickness is due almost entirely to the presence of gypsum.

The limestone member conformably overlies the red siltstone-dolomite member and forms a prominent ridge wherever exposed throughout the southern Caballo Mountains. Approximately 25 m thick, the limestone member consists of thin-bedded, dark-gray, fossiliferous limestone. Dark chert nodules are present and some of the fossils are silicified. Kelley and Silver (1952) mapped...
this member and the overlying member as the San Andres Formation, a convention that is not considered accurate by Seager and Mack (in press).

Conformably overlying the limestone member is the sandstone-limestone member, which ranges from 43 m thick in the western part of the study area to 100 m thick in the eastern part. The variation in thickness is largely due to relief on the unconformity that separates the Yeso and Cretaceous Dakota Formations (Seager and Mack, in press). The sandstone-limestone member has the same suite of rock types as the red siltstone-dolomite member, but contains fewer beds of red siltstone and sandstone and more beds of fossiliferous limestone.

Description of lithofacies

The Yeso Formation in the southern Caballo Mountains is composed of seven lithofacies that are interbedded on a scale of less than one meter to tens of meters. In order to more accurately define vertical lithofacies relationships, a Markov statistical analysis was performed with data from two measured sections (Fig. 3).
Red siltstone–sandstone lithofacies

Medium to thin beds of red, very well sorted siltstone or very fine to fine-grained sandstone constitute the majority of the Meseta Blanca Member (90%) and lesser amounts of the red siltstone–dolomite (9%) and sandstone–limestone (6%) members. The dominant sedimentary structures are horizontal and low-angle laminae, which are composed of small-scale climbing ripples (Fig. 4a, b). The ripples are asymmetrical and are characterized by low amplitude (<5 mm) and high ripple index (~100). Foreset laminae are rare, but generally a few are visible within the length of the ripple (Fig. 4b). In some cases the ripple laminae exhibit inverse grading (Fig. 4c). In plan view, the ripples are straight to sinuous and commonly bifurcate. Bioturbation is also common and consists of small (<0.5 mm diameter, <5 cm length), straight to sinuous forms. The degree of bioturbation varies from bed to bed and is least well developed in the Meseta Blanca Member. Desiccation cracks, small-scale (<20 cm) crossbeds, salt casts, and soft sediment folds and faults are much less common in this lithofacies.

Fine grain size, excellent sorting, and abundance of low-amplitude climbing ripples suggest an eolian origin for the red siltstone–sandstone lithofacies. Climbing ripples in the Yeso are similar to subcritically climbing wind ripples described in modern eolian deposits (Hunter, 1977; Fryberger et al., 1979) and those produced in wind tunnel experiments (Fryberger and Schenk, 1981). Particularly diagnostic are subcritical angle of climb (<10°), low amplitude, high ripple index, inverse grading, and the paucity of foresets. Bioturbation is also common in modern eolian deposits dominated by climbing wind ripples (Ahlbrandt et al., 1978; Fryberger et al., 1979).

White sandstone lithofacies

Thin- to medium-bedded white sandstone makes up two percent of the red siltstone–dolomite member and six percent of the sandstone–limestone member. The white sandstone lithofacies is distinguished from the red siltstone–sandstone lithofacies by color and by a slightly coarser grain size, although the two lithofacies contain some of the same sedimentary structures, including low-amplitude climbing ripples and bioturbation. The white sandstone lithofacies also contains straight to sinuous, relatively large amplitude (>1 cm), symmetrical ripples and larger scale (1 cm diameter, 1 cm length) sinuous to bifurcating horizontal burrows.

The presence of climbing wind ripples indicates that at least some beds of white sandstone are eolian in origin. However, symmetrical oscillation ripples and intercalation with beds that are interpreted as lagoonal gypsum suggest a shallow-marine or shoreline origin (Fig. 3).

Green sandstone lithofacies

Green sandstone constitutes only a small percentage of the Meseta Blanca Member (3%) and is exclusively interbedded with the red siltstone/sandstone lithofacies. Each bed is relatively thin (<0.5 m) and consists of flaggy, very fine to fine-grained quartz sandstone. Particularly common are salt casts, desiccation cracks, and straight to sinuous, large-amplitude (0.5 to 1 cm), symmetrical ripple marks. The suite of sedimentary structures and association with the red siltstone–sandstone lithofacies suggest that green sandstone was deposited in small playa lakes dispersed across the eolian field.

Dolomite lithofacies

Thin to medium beds of tan dolomite from 0.5 to 4.0 m thick are a common component of the red siltstone–dolomite member (17%) and the sandstone–limestone member (16%). A few beds of dolomite are also present near the top of the Meseta Blanca Member. The dolomites are very fine grained and commonly display thin horizontal laminae that resemble cryptagal laminae. LLH stromatolites and fenestral fabric also are common, as are small-scale brecciation and bioturbation. Less common are larger scale breccias, referred to as monogenic breccias by Bosellini and Hardie (1973), that consist of angular blocks up to one meter in diameter in a matrix of red siltstone or sparry calcite. The large-scale breccias probably resulted from dissolution of underlying evaporites. Also present in the dolomites are ripple cross-laminae and desiccation cracks (Fig. 4d). The suite of sedimentary structures present in the dolomite lithofacies is diagnostic of modern carbonate tidal flats (e.g. Shinn, 1983; James, 1984).

Limestone lithofacies

Thin- to medium-bedded, gray limestone makes up five percent of the red siltstone–dolomite member, 24 percent of the sandstone–limestone member, and all of the limestone member. The most common variety consists of fossiliferous packstone and wackestone containing brachiopods, corals, pelecypods, echi- noderm columnals, bryozoa, gastropods, foraminifera, and phylloid algae (Fig. 4e). Bioturbation is common in this variety and some burrows are dolomitized. Abundant micrite matrix and highly diverse fauna, including many filter feeders, suggest a low-energy, normal-marine depositional environment.

Less common are wackestones composed of peloids and a low-diversity fauna of foraminifera, ostracods, and gastropods (Fig. 4f). This variety of limestone was probably deposited in a nearshore lagoon characterized by abnormal salinity and/or poor circulation.

Also included in the limestone lithofacies are several beds of ripple cross-laminated and crossbedded oolite grainstone. The absence of channels and subaerial exposure features suggests that oolite grainstone was deposited as subtidal shoals (e.g. Ball, 1967). In a few beds of limestone, recrystallization has destroyed all of the original textures, inhibiting interpretation of depositional environment.

Gypsum lithofacies

Gypsum composes approximately 70 percent of the red siltstone–dolomite member in the eastern part of the study area (Fig. 2). Gypsum is also present locally near the top of the Meseta Blanca Member and near the base of the sandstone–limestone member. Gypsum is white to light gray and is either massive or displays two different types of laminae. One type consists of thin (0.5 cm), discontinuous bands of vertically oriented coarse-grained gypsum crystals alternating with massive, fine-grained gypsum. The other type exhibits alternating thick (1 to 2 cm) light and thin (0.5 cm) dark laminae of fine-grained gypsum.

Gypsum exposed along the eastern flank of the southern Caballo Mountains marks the southwestern edge of a region of gypsum-rich strata that has a maximum thickness in excess of 600 m (Kottlowski, 1965). The combination of thick intervals of gypsum, which in the southern Caballo Mountains are up to 90 m, small-scale laminae, and the absence of nodular textures supports a lagoonal, rather than supratidal, origin for the gypsum (Kendall, 1984). However, this evidence is not conclusive, and geochemical data, particularly sulfur isotopes, would more accurately define the depositional environment (e.g. Thode et al., 1961; Sarg, 1981).

Shale lithofacies

Gray shale is the least common lithofacies in the Yeso Formation and is restricted to a few thin (0.5 to 4 m) beds near the top of the Meseta Blanca Member. Although too poorly exposed to confidently interpret the depositional environment, the fact that the shale is interbedded with red siltstone–sandstone and dolomite lithofacies suggests a nearshore environment (Fig. 3).
FIGURE 4—Lithofacies of the Yeso Formation in the southern Caballo Mountains. A, very fine to fine-grained sandstone of the Meseta Blanca Member displaying horizontal and low-angle laminae, which represent subcritically climbing wind ripples. Hammer is 25 cm long. B, climbing wind ripples in very fine sandstone of the Meseta Blanca Member. Pen is 15 cm long. C, climbing wind-ripple laminae exhibiting inverse grading. Recessed areas are finer grained than the microledges; Meseta Blanca Member. Pen is 15 cm long. D, bedding plane of dolomite showing desiccation cracks filled with gypsum; sandstone-limestone member. Hammer is 25 cm long. E, photomicrograph of packstone with highly diverse fauna, limestone member. Field of view is approximately 3 by 2 mm. F, photomicrograph of wackestone containing ostracods and gastropods. Field of view is approximately 3 by 2 mm.
Depositional model

The Yeso depositional system is most analogous to the modern west coast of the Persian Gulf (Evans et al., 1969; Kendall and Skipworth, 1969; Schneider, 1975). The most landward lithofacies belt was composed of eolian sand (red siltstone–sandstone lithofacies). The prominence of climbing wind ripples suggests that the Yeso eolian sand lithofacies belt was similar to modern eolian sand sheets described by Fryberger et al. (1979). The paucity of large-scale crossbedding, indicative of dunes, many have been the result of low-velocity regional winds or slow sedimentation rates because of an inadequate supply of sand. Another possibility, which applies to the eolian sand sheet at Colorado National Monument (Fryberger et al., 1979), is that the eolian sand sheet in the southern Caballo Mountains was marginal to an eolian dune field that has yet to be recognized or that was removed by post-yielding erosion. Locally within the eolian sand sheet were small playa lakes, which periodically precipitated halite (green sandstone lithofacies).

As the eolian sand sheet approached the shoreline, the sediment was increasingly affected by marginal-marine processes, including a greater degree of bioturbation and the formation of gyypsum cements and halite cubes. The latter features probably resulted from capillary draw of hypersaline groundwater. Occasionally the eolian sand sheet may have been drowned, giving rise to intraformational folds attributable to water-escape mechanisms. This type of eolian sand is common in the red siltstone–dolomite and sandstone–limestone members.

Yeso tidal-flat sediment consisted of bioturbated and desiccated carbonate mud and peloids. Locally, peloids were transported by low-velocity currents, producing asymmetrical ripple cross-laminations. Algal (cyanobacteria) mats and mounds were an important component of the tidal flat and are responsible for cryptalgal laminae, LLH stromatolites, and fenestral fabric (Kendall and Skipworth, 1968; Shinn, 1968; Evans et al., 1969; Schneider, 1975). Because dolomite is restricted to the tidal-flat environment and is interbedded with gypsum and gyspiferous sandstone, dolomitization probably occurred in contact with hypersaline groundwater within a few thousand years or less after deposition, as it has along the coast of the Persian Gulf (Illing et al., 1965). In addition, some beds of white sandstone, particularly those displaying oscillation ripples, also may have been deposited on the tidal flat.

A variety of sediment was deposited in the subtidal belt of the Yeso depositional system. Closest to the shoreline was a lagoon, which was protected from the open ocean by oolite shoals. Abnormal salinity and/or poor circulation inhibited colonization by normal-marine fauna, resulting in deposition of carbonate mud with variable amounts of peloids, ostracods, foraminifera, and gastropods. A few scattered oolites floating in a micrite matrix also suggest that periodically they were washed into the lagoon from the oolite shoals by storms or strong tides. Occasionally the lagoon became hypersaline and precipitated gypsum, particularly during deposition of the red siltstone–dolomite member in the eastern part of the study area.

Seaward of the lagoon and oolite shoals, normal-marine conditions favored a highly diverse fauna. Especially diagnostic of this environment are filter feeders, such as brachiopods, stacked echinoderms, bryozoans, and corals (Fig. 4e). The presence of micrite matrix in these open-marine limestones, however, indicates an environment of low current energy, probably below normal wave base.

Depositional cycles

The Yeso Formation in the southern Caballo Mountains displays cyclic sedimentation on two scales. The larger scale cycle consists of a transgression followed by a regression. The transgression is recorded by the change from predominantly eolian deposits of the Meseta Blanca Member to mixed eolian–tidal flat–subtidal sediment of the red siltstone–dolomite member (Fig. 2). Transgression culminated with subtidal, open-marine sedimentation of the limestone member. A subsequent regression is indicated by a return to mixed eolian–tidal flat–subtidal sedimentation of the sandstone–limestone member (Fig. 2).

Superimposed on the large-scale cycle are smaller scale transgressive-regressive cycles that are 0.5 to 10 m thick. These cycles can be identified only in those members that consist of interbedded eolian, tidal-flat, and subtidal sediments, such as the red siltstone–dolomite and sandstone–limestone members. The most common cycles are simple alternations of lithofacies with sharp contacts, such as dolomite–limestone, dolomite–gypsum, and white sandstone–dolomite. Also common is the symmetrical cycle: red or white sandstone–dolomite–limestone–dolomite–red or white sandstone (Fig. 3).

There are several possibilities for the origin of depositional cycles in the Yeso Formation, including eustatic sea-level changes, changes in detrital sediment yield due to paleoclimatic fluctuations, interplay between the rate of basin subsidence and rate of carbonate production, and lateral shifting of complex lithofacies belts. These models are summarized by Langbein and Schumm (1958), Wilkinson (1982), James (1984) and Koerschner and Read (1989). It is beyond the scope of this study to distinguish the relative roles of these variables. In order to do this, it is necessary to correlate cycles throughout the basin, as well as between basins of different geographic areas. This study provides the first step in this process.

ACKNOWLEDGMENTS—This study was funded by a grant from the New Mexico Bureau of Mines and Mineral Resources. Travel expenses for Dr. Sugio were provided by the University of Sao Paulo and the Interamerican Development Bank. F. E. Kottlowski, M. Elrick, and R. E. Clemons read an earlier version of this paper and made helpful suggestions for its improvement.

References

(Continued on p. 59)

Laughlin, A. W., and Eddy, A. C., 1977, Petrography and geochemistry of Precambrian core samples from GT-2 and EE-1: Los Alamos Scientific Laboratory, Rept. LA-6930-MS, 50 pp.

Yosco Formation

(Continued from p. 49)

Grassy Lookout quadrangle

(Continued from p. 54)

References

