Helium in New Mexico—geologic distribution, resource demand, and exploration possibilities

Ronald F. Broadhead, New Mexico Bureau of Geology and Mineral Resources, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801

Abstract

Helium gas has been produced in New Mexico since 1943. Production has been from eight oil and gas fields located on the Four Corners platform of northwestern New Mexico. Almost 950 MMCF (million cubic feet) helium has been produced from reservoirs of Permian, Pennsylvanian, Mississippian, and Devonian age on the Four Corners platform in San Juan County.

In northwest New Mexico, elevated levels of helium in natural gases occur not only in Paleozoic reservoirs on the Four Corners platform but also in Paleozoic reservoirs in the deeper parts of the San Juan Basin located east of the Four Corners platform. The orthogonal sets of high-angle faults that offset Precambrian basement throughout the deeper parts of the San Juan Basin acted as migration pathways that transmitted helium from its basement source into overlying Paleozoic reservoirs.

Helium has not been extracted from produced gases in the New Mexico part of the Permian Basin where the concentration of helium in most reservoir gases is significantly less than 0.1%. However, gases with helium contents ranging from 0.3 to almost 1.0% occur in Pennsylvanian and Permian reservoirs along the northwest flank of the basin. The helium appears to have originated by radiogenic decay of uranium and thorium in Precambrian granitic rocks and migrated vertically into Pennsylvanian and Permian reservoirs through regional, high-angle, strike-slip faults. Known accumulations of helium-rich gases are located near these faults. Lower Permian evaporites provide a vertical fault seal. In this area, lower and middle Paleozoic strata are only a few hundred feet thick, resulting in short vertical migration distances between the Precambrian source and helium-bearing reservoirs.

Other basins and areas in New Mexico are characterized by helium-rich gases and are of significant exploratory interest. These include the Chupadera Mesa region of eastern Socorro and western Lincoln Counties in the central part of the state, the Tucumcari Basin in the east-central part of the state, and a wide region across Catron and southern Cibola Counties in the west-central part of the state. Elevated levels of helium are found in Pennsylvanian and Permian gases in these areas.

Introduction

Helium is a common constituent of natural gases. It is believed to be present in trace amounts in all natural gases (Tongish 1980). More than one-half of all natural gases contain less than 0.1 mole% helium (Tongish 1980). Only 17.6% of all natural gases in the United States contain more than 0.3 mole% helium. A very few reservoirs have gases with more than 7% helium. In general, gases with helium contents of more than 0.3% are considered to be of commercial interest as helium sources. Most of the helium produced in the United States is obtained from reservoirs with less than 1.5% helium in their gases. Six natural gas reservoirs contain an estimated 97% of all identified helium reserves in the United States (Table 1; Pacheco 2002). Several of the reservoirs listed in Table 1 also have been produced for their hydrocarbons, which constitute the largest component of the reservoir gas and drive the economics of production. Total gas production, and therefore helium production, from these reservoirs is in decline.

In New Mexico, known (that is, discovered) reservoirs with more than 7% helium are confined to the Four Corners platform in the extreme northwestern part of the state (Figs. 1, 2; Table 2). The content of hydrocarbon gases in most of these reservoirs is less than 20%; most of the non-helium fraction of the reservoir gas is nitrogen. Production from these reservoirs is driven by helium economics and not by hydrocarbon economics.

Helium uses, demand, and economics

Helium has a number of uses (Pacheco 2002). Major uses in the United States include cryogenics, pressurizing and purging, welding, and controlled atmospheres. Leak detection, synthetic breathing mixtures, chromatography, lifting (blimps), and heat transfer are other uses. The major cryogenic use is in magnetic resonance imaging (MRI) instruments. There is no substitute for helium in cryogenic applications where temperatures lower than −429° F are required (Pacheco 2005).

Sales of Grade A refined helium have increased in recent years (Pacheco 2002, 2005). Total helium sales in the United States increased from 112 million m³ during 1998 to 121 million m³ during 2004, an increase of 8%. As sales have increased, domestic production has fallen by 24% from 112 million m³ during 1998 to 85 million m³ during 2004 (Peterson 2001; Pacheco 2005). The shortfall in production in recent years has been filled by withdrawing helium from storage. The United States does not import helium but instead exports it as a major worldwide supplier; in 2004 the United States provided 85% of the world’s helium production (see Pacheco 2005). The trends of increasing demand and decreasing production indicate a need to identify and develop new sources of helium.

Helium prices have increased as production has fallen below demand. The private industry price for Grade A helium was estimated to be from $60 to $65 per thousand ft³ in 2003 (Pacheco 2005), up from $42 to $50 per thousand ft³ in 2000 (Peterson 2001). Some producers added a surcharge to these prices.

History of helium production in New Mexico

Helium has been extracted from produced gases in New Mexico since 1943 (Casey 1983). All production has been from Paleozoic reservoirs located on the Four Corners platform in San Juan County (Figs. 1, 2; Table 2). The gases in most reservoirs contain a low percentage of hydrocarbons and have, in most cases, been produced solely for their helium content. Helium content of the gases ranges from 3.2% to 7.5% (Table 2). Production began during World War II as a result of increased need for lifting gases for lighter-than-air ships (blimps).

The first production of helium in New Mexico was from the Rattlesnake field.
FIGURE 1—Principal basins and uplifts in New Mexico and area of historical helium production (shaded).
Geology of helium in crustal reservoirs—an overview

Origin and migration of helium

Helium has two isotopes, 3He and 4He. 3He is derived mostly from the mantle and is relatively rare in reservoir gases (Mamyrin and Tolstikhin 1984; Hunt 1996; Oxburgh et al. 1986). Some 3He may be derived from neutron capture reactions by hydrogen in lithium-bearing sediments (Hiyagon and Kennedy 1992; Mamyrin and Tolstikhin 1984). 4He, on the other hand, is derived mainly from radiogenic decay of uranium and thorium in crustal rocks (Hunt 1996; Jenden et al. 1988; Oxburgh et al. 1986; Ballentine and Lollar 2002). Granitic basement rocks are major sources of radiogenic 4He. 4He may also be derived from radiogenic decay of uranium and thorium in orebodies (Selley 1998).

Most helium in reservoir gases is 4He derived from radiogenic decay of uranium and thorium in crustal rocks. Enhanced concentrations of 4He in crustal fluids have been ascribed to three processes (Pierce et al. 1964; Torgersen et al. 1998; Ballentine and Lollar 2002): 1) mass-related diffusive transport out of the basement (granitic) rocks in which the helium is produced; 2) thermal release of 4He from the crustal rocks in which it is produced; and 3) production in sedimentary ore deposits with high concentrations of uranium and thorium. Transport of radiogenic helium out of basement rocks appears to be related to the presence of fracture and fault systems that serve as migration pathways for the movement of the gas out of the otherwise impermeable granites in which it is generated. Enhanced levels of helium in ground water may also reflect enhanced radiogenic helium, which is often associated with thorium.

In 2001 production resumed from the Beautiful Mountain Mississippian and Big Gap Organ Rock (Permian) reservoirs. New wells were drilled in the latter reservoir. The gas is produced from wells operated by Mountain States Petroleum Corp. The produced gas is processed at the Red Valley plant, which is owned by Newpoint Gas Services and is located just south of Shiprock.

The helium produced from Rattlesnake was transported in a pipeline to a separation plant near Shiprock, which was operated by the U.S. Bureau of Mines. As the demand for helium increased with time and as production from existing, discovered reservoirs declined, exploration increased, and several additional helium-bearing gas reservoirs were discovered, developed, and produced (Table 2). Production of helium in San Juan County ceased around 1990.

TABLE 2—Oil and gas reservoirs that have produced commercial helium in New Mexico, percent helium in gas, 2003 annual and cumulative gas production, and estimated cumulative volume of produced helium (MCF thousand 4He). See Figure 2 for locations of reservoirs. Geologic and helium-content data from Baars (1983), Brown (1978), Hinson (1947), Hopkins (1983), and Maynard (1978), Riggs (1978), and Spencer (1978).

<table>
<thead>
<tr>
<th>Field (discovery year)</th>
<th>Reservoir age</th>
<th>Reservoir units</th>
<th>Location (township, range)</th>
<th>Percent helium in gas</th>
<th>2003 gas production (MCF)</th>
<th>Cumulative gas production (MCF)</th>
<th>Helium produced estimated (MCF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beautiful Mountain</td>
<td>Mississippian, Devonian</td>
<td>Leadville Limestone, Ouiray Formation</td>
<td>T27N R19W</td>
<td>7.14</td>
<td>169,568</td>
<td>2,455,230</td>
<td>175,303</td>
</tr>
<tr>
<td>Big Gap</td>
<td>Permian</td>
<td>Organ Rock member of Cutler Formation</td>
<td>T27N R19W</td>
<td>5.5</td>
<td>212,663</td>
<td>3,260,416</td>
<td>179,323</td>
</tr>
<tr>
<td>Hogback</td>
<td>Pennsylvania</td>
<td>Paradox Formation</td>
<td>T29N R16W</td>
<td>7.17</td>
<td>0</td>
<td>666,714</td>
<td>47,803</td>
</tr>
<tr>
<td>Tocito Dome North</td>
<td>Mississippian</td>
<td>Leadville Limestone</td>
<td>T27N R18W</td>
<td>7.19</td>
<td>0</td>
<td>1,104,668</td>
<td>79,426</td>
</tr>
<tr>
<td>Tocito Dome North</td>
<td>Pennsylvania</td>
<td>Paradox Formation</td>
<td>T27N R18W</td>
<td>3.26</td>
<td>0</td>
<td>532,856</td>
<td>17,371</td>
</tr>
<tr>
<td>Table Mesa</td>
<td>Mississippian</td>
<td>Leadville Limestone</td>
<td>T27N R17W</td>
<td>5.7</td>
<td>0</td>
<td>1,193,006</td>
<td>68,001</td>
</tr>
<tr>
<td>Table Mesa</td>
<td>Pennsylvania</td>
<td>Paradox Formation</td>
<td>T27N R17W</td>
<td>5.37</td>
<td>0</td>
<td>7,100,076</td>
<td>381,274</td>
</tr>
<tr>
<td>Rattlesnake</td>
<td>Mississippian, Devonian</td>
<td>Leadville Limestone, Ouiray Formation</td>
<td>T29N R19W</td>
<td>7.5</td>
<td>0</td>
<td>2,000</td>
<td>150</td>
</tr>
<tr>
<td>TOTALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>382,231</td>
<td>16,314,966</td>
<td>948,652</td>
</tr>
</tbody>
</table>

FIGURE 2—Outline of San Juan County, eastern edge of the Four Corners platform, and oil and gas reservoirs that have been produced for their helium gas.
water, as well as in gases, are associated with proximity to faults and fractures (Ciotoli et al. 2004; Dyck 1980; Gupta and Deshpande 2003; Hunt 1996; Maione 2004; Kennedy et al. 2002; Lollar et al. 1994a; Selley 1998). Regional thermal activity, or heating of basement rocks, is also thought to increase expulsion of helium (Selley 1998). Once the helium is expelled from the granitic rocks it may move through fractures into the overlying sedimentary column. Enhanced concentrations of radiogenic helium in reservoirs are also associated with proximity to uranium orebodies (DeVoto et al. 1980; Hunt 1996; Pogorski and Qurt 1980; Selley 1998). Alternatively, helium generated in basement rocks that underlie and are in physical contact with basal Paleozoic sandstones may migrate directly into the sandstones and then updip within the basal sandstones until it is either trapped or dissipated (see Ballentine and Lollar 2002).

3He is mostly primordial and is derived mostly from the mantle (Hunt 1996; Mamyrin and Tolstikhin 1984; Oxburgh et al. 1986). One mechanism for the transport of mantle 3He into crustal rocks is the devolatilization of rising magmas (Giggenbach et al. 1991; Oxburgh et al. 1986; Foresta et al. 1986). Another mechanism is vertical migration through deep-seated frac-

FIGURE 3—Contours of mole percent helium in gases recovered from Devonian reservoirs in northwestern New Mexico. Black dots are wells outside of reservoir (oil or gas pool) boundaries with helium gas analyses.

FIGURE 4—Contours of mole percent helium in gases recovered from Mississippian reservoirs in northwestern New Mexico. Black dots are wells outside of reservoir (oil or gas pool) boundaries with helium gas analyses.

<table>
<thead>
<tr>
<th>Geologic system</th>
<th>San Juan Basin</th>
<th>Permian Basin</th>
<th>Other areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quaternary</td>
<td>no data</td>
<td>no data</td>
<td>no data</td>
</tr>
<tr>
<td>Tertiary</td>
<td>Tr–0.01%</td>
<td>no data</td>
<td>no data</td>
</tr>
<tr>
<td>Cretaceous</td>
<td>Tr–0.2%</td>
<td>only erosional remnants of Cretaceous preserved</td>
<td>0–0.01%</td>
</tr>
<tr>
<td>Jurassic</td>
<td>no data</td>
<td>Jurassic strata not present</td>
<td>0–0.02%</td>
</tr>
<tr>
<td>Triassic</td>
<td>8.92–9.1%</td>
<td>no data</td>
<td>0.02–1.8%</td>
</tr>
<tr>
<td>Permian</td>
<td>0.52–5.5%</td>
<td>Tr–0.974%</td>
<td>Tr–3.5%</td>
</tr>
<tr>
<td>Pennsylvanian</td>
<td>0–8.2%</td>
<td>Tr–0.348%</td>
<td>0.03–0.351%</td>
</tr>
<tr>
<td>Mississippian</td>
<td>0.1–7.5%</td>
<td>0.03% (1 sample)</td>
<td>no data</td>
</tr>
<tr>
<td>Devonian</td>
<td>2.45–7.99%</td>
<td>no data</td>
<td>no data</td>
</tr>
<tr>
<td>Silurian</td>
<td>Silurian strata not present</td>
<td>Tr–0.29%</td>
<td>no data</td>
</tr>
<tr>
<td>Ordovician</td>
<td>Ordovician strata not present</td>
<td>0.07–0.233%</td>
<td>no data</td>
</tr>
<tr>
<td>Cambrian</td>
<td>no data</td>
<td>no data</td>
<td>no data</td>
</tr>
<tr>
<td>Precambrian</td>
<td>0.11% (1 sample)</td>
<td>no data</td>
<td>no data</td>
</tr>
</tbody>
</table>

TABLE 3—Helium content of natural gases in New Mexico subdivided by geologic system and basin or geographic area. Tr = trace.

Seals for helium traps

A seal that has the capability to retain helium gas molecules is essential to entrainment. Helium gas molecules have a diameter of 0.2 nanometers (nm; 10^{-9} meters; Hunt 1996). Molecular diameters for other common gases are 0.33 nm for CO$_2$, 0.34 nm for N$_2$, and 0.38 nm for CH$_4$ (Hunt 1996). Because of the smaller size of helium molecules, some seals that contain CO$_2$, N$_2$, and CH$_4$ may leak helium. The smaller diameter of helium molecules may also increase loss from a trap by diffusion through a seal. Seals with smaller pore diameters will have lower rates of diffusive losses. Therefore, it may be expected that salt, anhydrite, and possibly kerogen-rich shales may be more effective seals for...
A summary of helium distribution in New Mexico

San Juan Basin

The San Juan Basin of northwestern New Mexico contains natural gases with the highest known concentrations of helium in New Mexico (Tables 2, 3). In the San Juan Basin, gases with concentrations of helium in excess of 5% are known from Devonian, Mississippian, Pennsylvanian, Permian, and Triassic reservoirs (Tables 2, 3; Figs. 3–5). Commercial production has been obtained from strata of Devonian through Permian age. Known concentrations of helium in excess of 1% are confined to the Four Corners platform. Gases with more than 0.4% helium are known from Pennsylvanian reservoirs in the sparsely drilled deep basin east of the Four Corners platform. Concentrations of helium in excess of 0.2% are known from Mississippian reservoirs in the deep basin east of the Four Corners platform (Fig. 4). The orthogonal sets of high-angle faults that offset Precambrian basement throughout the deeper parts of the San Juan Basin (see Taylor and Huffman 1998), as well as on the Four Corners platform (Stevenson and Baars 1977), acted as migration pathways that transported the helium from its basement source into overlying Paleozoic reservoirs (Broadhead and Gillard 2004). These faults moved episodically during the Paleozoic; this episodic movement during deposition of Paleozoic sediments acted to localize deposition of reservoirs in Devonian, Mississippian, and Pennsylvanian strata, most notably in Pennsylvanian phylloid algal mounds (see Stevenson and Baars 1977; Broadhead and Gillard 2004). The presence of regional fault sets and known, enhanced helium concentrations in gases in the deeper parts of the basin suggest significant potential for helium resources. Cretaceous strata, although prolifically productive of hydrocarbon gases within the San Juan Basin, mostly contain gases with helium concentrations less than 0.05% and are of little exploratory interest.

Permian Basin

Elevated concentrations of helium in gases recovered from reservoirs of Ordovician, Silurian, Pennsylvanian, and Permian age are known from the New Mexico part of the Permian Basin (Table 3; Figs. 6, 7). The highest known concentrations of helium are from reservoirs in the northern part of Chaves County. In this area, high helium concentrations are associated with regional, northeast-southwest trending strike-slip faults (termed “buckles” by Kelley 1971) that appear to have served as vertical migration pathways for helium that was generated within granitic rocks of the Precambrian basement. Widespread bedded anhydrites in the lower part of the Yosco Formation (Lower Permian) have acted as vertical fault seals. The stratigraphically highest known concentrations of helium are in fine-grained, fluvial-deltaic, red bed sandstones of the Abo Formation (Lower Permian) in the Pecos Slope and Pecos Slope West reservoirs of Chaves County (Fig. 7). In these reservoirs, helium content of gases ranges from 0.09% to 0.97% of the gas and averages 0.48%. Helium content
increases with proximity to the faults. Lower and middle Paleozoic strata have a maximum thickness of only a few hundred feet in the area characterized by elevated helium concentrations; the relative thinness of lower and middle Paleozoic strata in this area results in short vertical migration distances from the basement source to the reservoirs and fewer porous zones into which the helium may be dissipated as it migrates upward from the Precambrian.

Frontier basins

Several frontier areas outside of the San Juan and Permian Basins, although very sparsely drilled, contain substantially elevated levels of helium in gases recovered by exploratory wells (Table 3). Notable among these areas is the Chupadera Mesa area of eastern Socorro County (Broadhead and Jones 2004) where helium concentrations of greater than 3% are present in gases recovered from Abo (Lower Permian) sandstones (Fig. 8). Elevated levels of helium have also been found in gases associated with ground water in San Andres (middle Permian) carbonates in eastern Cibola County and in gases recovered from Lower Permian sandstones in western Catron County where reservoirs in adjacent parts of Arizona are characterized by helium-rich gases (Fig. 8; Rauzi 2003; Rauzi and Fellows 2003). In the Tucumcari Basin of Guadalupe and Quay Counties in east-central New Mexico, helium concentrations as high as 1.3% have been measured in hydrocarbon-rich gases recovered from Pennsylvania sandstones in exploratory wells (Fig. 6). All of these occurrences are associated with the presence of major deep-seated high-angle faults. Many of the faults in all three areas
were active during the Pennsylvanian and Early Permian and die out upward in Lower Permian strata. Regional distribution of Yeso (Lower Pennsylvanian) salts probably influences retention of helium in pre-Yeso reservoirs by providing effective vertical fault seals.

Conclusions

1. Natural gases have been produced for their helium content in New Mexico since 1943. All commercial helium production to date has been from eight oil and gas pools on the Four Corners platform in San Juan County. Productive reservoirs range in age from Devonian to Permian. An estimated 948 MMCF helium gas has been produced from the eight oil and gas pools. Helium concentrations in these reservoirs range from 3.2 to 7.5%.

2. In the San Juan Basin, productive helium accumulations are located over or near orthogonal systems of high-angle faults that offset Precambrian basement. These faults probably acted as migration pathways for helium generated in Precambrian basement and also have influenced deposition and location of Paleozoic reservoirs.

3. Although no helium production has been established in the deep part of the San Juan Basin east of the Four Corners platform, significant potential within Mississippian and Pennsylvanian reservoirs is suggested by elevated concentrations of helium in reservoir gases and by orthogonal sets of high-angle faults that offset Precambrian basement and may act as migration pathways.

4. Helium has not been extracted from produced gases in the New Mexico part of the Permian Basin. However, gases with helium contents ranging from 0.3 to almost 1.0% have been produced from Pennsylvanian and Permian reservoirs along the northwest flank of the basin. The helium probably originated by radiogenic decay in granitic Precambrian rocks and migrated vertically into the Pennsylvanian and Permian reservoirs through regional high-angle, strike-slip faults. These faults trend northeast-southwest and define exploratory fairways.

5. Other basins and areas in New Mexico
are characterized by helium-rich gases and are of significant exploratory interest. These areas include the Chupadera Mesa region of eastern Socorro and western Lincoln Counties in the central part of the state, the Tucumcari Basin in the east-central part of the state, and a wide region across Catron and southern Cibola Counties in the west-central part of the state. Elevated levels of helium are found in Pennsylvanian andPermian gases in these areas.

Acknowledgments

This report summarizes work funded by the New Mexico State Land Office and the Honorable Patrick Lyons, Commissioner of Public Lands. A more comprehensive summary of this work, including GIS projects that map statewide helium distribution by reservoir age, and a digital database of helium analyses from 937 gas samples is presented in Broadhead and Gillard (2004). Lewis Gillard, formerly a student at New Mexico Tech, provided GIS support for the project. My understanding of the geology and economics of helium-rich gas has benefited greatly from discussions with Wheeler Sears and especially Ben Donegan.

References

Chapman, Wood, and Griswold, Inc., 1977, Geolog-