Adobe brick production in New Mexico

by Edward W. Smith, Geologist/Planner, Eight Northern Indian Pueblos Council, San Juan Pueblo, NM

Introduction

In 1980, the New Mexico Bureau of Mines and Mineral Resources undertook a study of the adobe brick industry in New Mexico. The study included the distribution and location of the commercial adobe brick producers, soil types, geology and mineralogy, methods of production, market trends, and economic factors. Adobe samples, collected from 56 locations and the 48 active adobe producers (fig. 1), were tested in the Rock Mechanics Laboratory at the New Mexico Institute of Mining and Technology.

The 1980 estimated combined dollar value of production for the three major types of adobe bricks (traditional, semi-stabilized, and stabilized) totaled $1,174,598. This figure accounts for the commercial production of 4,133,000 adobe bricks (table 1) and places New Mexico as the leading producer of adobe bricks in the southwestern United States. Not included in the production totals are the values for the thousands of adobe bricks produced by individual homeowners for their own construction projects, which may represent an additional 3-4 million adobes per year.

TABLE 1—Estimated 1980 Adobe Brick Production Totals.

<table>
<thead>
<tr>
<th>Type of Adobe</th>
<th>Average Increase</th>
<th>Estimated Production Total</th>
<th>Estimated Dollar Value</th>
<th>Percentage of Total Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilized</td>
<td>35%</td>
<td>2,200,000</td>
<td>$669,400</td>
<td>56%</td>
</tr>
<tr>
<td>Semi-stabilized</td>
<td>27%</td>
<td>1,153,000</td>
<td>$359,800</td>
<td>57%</td>
</tr>
<tr>
<td>Traditional</td>
<td>26%</td>
<td>4,133,000</td>
<td>$1,174,598</td>
<td>100%</td>
</tr>
</tbody>
</table>

*Figures above show average annual increase for each type of adobe brick.

History

The word "adobe" has its roots in an Egyptian hieroglyph (fig. 2) denoting brick and evolved through Arabic and Spanish to its present form. Today, adobe is used to describe various earth-building materials and techniques, usually referring to the sun-dried adobe brick now most widely used in the United States. The word also applies to puddled structures, adobe-plastered logs or branches, and even to rammed-earth construction (pisé).

Among the oldest of technologies mastered by prehistoric man, the use of mud as a building material parallels the birth and spread of the great ancient civilizations of the world. To this day, soil remains the primary building material of at least 50 percent of the world's population. The Neolithic Period (10,000–3,000 B.C.) marks the beginning of stable, nonmigratory civilization, and with it efforts at building the world's first permanent structures. Remains of adobe structures have been found in Neolithic farming villages throughout the Near and Mid-East, dating as far back as 7,000 B.C. (Steen, 1972). Hand- and form-molded bricks from this era are seen in the ruins of structures throughout Mesopotamia, Crete, Egypt, and India. The use of mud construction rapidly spread eastward through Asia and westward through North Africa and the Mediterranean Basin; as the Ice Age receded in northern Europe, these peoples also began to use adobe in construction.
the shrinkage and prevent cracking (California Research Corporation, 1963).

2) **Stabilizers**—Moisture reentering an adobe brick causes the clay to swell and release its bonding so that the entire mass disintegrates. To prevent disintegration, various soil stabilizers are added to the basic soil mix to waterproof or increase the weathering resistance of the adobe brick. The most commonly used stabilizers are sand, straw, portland cement, lime, and bituminous and asphalt emulsion (Clifton, 1977), although as many as 20 different materials have been found in usage (Wolfskill, 1970).

For commercial purposes in New Mexico, asphalt emulsion is used exclusively because of its superior mixing and waterproofing properties.

3) **Traditional adobe brick**—Often referred to as an untreated, unstabilized, or standard sun-dried adobe brick, the traditional adobe is made with soil composed of a uniform mixture of clay, sand, and silt. Usually straw is added to the adobe brick to prevent the brick from cracking while being cured.

4) **Semistabilized-adobe brick**—Essentially the same as a traditional brick, the semistabilized adobe is classified as a water-resistant brick because of the addition of a small amount of asphalt emulsion (4 percent or less by weight). The adobe contains a sufficient amount of stabilizer to protect stockpiled adobes from local rains and the production cost is significantly lower than that of a fully stabilized brick.

5) **Stabilized-adobe brick**—The fully stabilized adobe, referred to by the New Mexico Building Code as a treated adobe, is defined as containing a sufficient amount of stabilizer to limit the brick's water absorption to less than 2.5 percent. The fully stabilized adobe, usually manufactured with 5–12 percent asphalt emulsion, is a completely waterproof building material which will resist water even without a protective coating.

6) **Pressed-adobe bricks**—This type of adobe brick is manufactured from traditional or stabilized adobe materials pressed into dense bricks of various sizes using either a gasoline-powered hydraulically operated machine or a hand-operated press referred to as a "cinva-ram." Because of the high mechanical pressure applied by the press, the resultant bricks test very high on the compressive and modulus of rupture tests (these tests are explained in the section on physical properties).

7) **Terrone**—This Spanish word meaning "a flat clod of earth" refers to the type of adobe brick made of cut sod or turf material found in boggy river-bottom locations, particularly in the Rio Grande flood plain areas. The terrone usually measures 8 × 6 × 14", is cut from the sod areas using a flat spat, and then is stacked in a dry area to properly cure. Probably because of the sod-root structure and the high clay content of the soil, the terrones have a high compressive strength and modulus of rupture.

8) **Quemado (burnt adobe)**—Having the same soil composition as a traditional adobe, the quemado is simply a sun-dried adobe brick that has undergone a modified low-firing process. Combustible materials are burned in a stacked-brick-pile oven configuration, and the resultant burnt-adobe brick is much stronger in both compressive strength and modulus of rupture than a standard unfired brick. The majority of quemados used in New Mexico are produced in the northern border areas of Mexico and are shipped into the United States duty free.
Mineralogy of adobe clays

Clay-size material is the chief binding agent in adobe bricks and the majority of the clay-size material consists of clay minerals. Four clay-mineral groups are commonly represented in New Mexico's adobe clays. The high-alumina kaolinite group and the high-potassium illite group generally make up about one half of the clay present in the 39 samples tested. Both groups are regarded as nonexpandable or only slightly expandable in the presence of water. The calcium- or sodium-rich smectite group and the mixed-layer illite-smectite group contain varying expandable clay minerals and also make up about 50 percent of the clay minerals present. A member of the chlorite group was found in only one New Mexico adobe clay material and the vermiculite group was not represented.

The presence or absence of a particular mineral and total amount of clay minerals present affect the physical properties of the adobe bricks. A clay material with a high percentage of nonexpandable clay minerals, particularly the kaolinite group, tends to be more brittle than one with more expandable clay minerals. Similarly, a clay material with a large percentage of expandable minerals will produce a brick of greater compressive strength than one containing the same amount of clay, but with a larger percentage of nonexpandable clay minerals. Thus, an adobe material with more expandable clay minerals, but less total clay, will have a strength equal to one with more clay but fewer expandable clay minerals. However, a clay material with an abundance of expandable clay minerals, particularly the smectite group which is the most expandable, may make a poor adobe clay. In such clays, expansion and contraction of the clay minerals may cause excessive cracks in the adobe brick. More silt- or sand-size material, or even straw, can be added to the mix to minimize this effect.

Calcite (CaCO₃) is also found in the majority of the adobe-clay soils tested in New Mexico and is typical of adobe soils throughout the arid Southwest. Calcite in the clay-size fraction also may act as a binder in adobe bricks. If heat at moderate temperatures is applied, a brick of this type of clay may have increased strength. However, if the temperature is elevated to structural-brick temperatures (approximately 1,800°F or 1,000°C), the calcium ion of the calcite acts as a flux, lowering the firing temperature and narrowing the firing range to the point where a brick with relatively low bonding-strength becomes a melted blob of glass in a very short range of temperatures. Therefore, such clays make very poor structural brick clays.

Physical properties

Certain minimum requirements or specifications have been developed regarding the durability, strength, thermal characteristics, and fire safety of various building materials used in construction (Long, 1946). In New Mexico the building of adobe structures is regulated by specifications adopted from the Uniform Building Code outlined in Section 2405 of the 1977 revision of the New Mexico State Code (Commerce and Industries Division, 1979). The sections of the code on unbaked clay masonry state basic requirements concerning adobe brick, including regulations on soil composition, standards of water absorption, compressive strength, and modulus of rupture, as well as construction specifications. The New Mexico Code requires that an adobe brick have a compressive strength averaging 300 p.s.i. This standard assures that all units from the tested-brick batch will resist a compressive force equal to 300 lbs for each square inch of surface area. The importance of this test for a relatively heavy material such as adobe brick is apparent when considering the great amount of weight a typical wall unit must resist. In addition to the weight of the roof structure supported by a load-bearing wall, each layer of bricks must support all others above it and must depend on the compressive strength of the lower layers to support it.

The other test required on all types of adobe bricks is the rupture test. This test helps indicate the relative cohesion of the materials that make up the adobe and the ability of the material to resist the tension or shear forces that might result from settling of foundations or wind action. In testing for modulus of rupture, the adobe unit is placed on two supports and a force is applied to the center of the unit. Strength of the brick can be calculated from the amount of applied force that is taken to break it. Other tests are used on semistabilized and stabilized adobes to determine the water-resistance quality of the bricks. The water absorption test is important only if the bricks are left unplastered or if necessitated by a building requirement of the architect or federal housing agency. In general, a considerable range of values exists for the physical properties of the adobe bricks tested from 56 locations throughout the state. This variability in data is the result of differences in the composition of adobe soils, methods of producing adobe bricks, and the quality of workmanship. The range of compressive-strength values for the sun-dried adobe brick varied from a low of 196 to a high of 1,071 p.s.i. The modulus of rupture ranged from a low of 20 to a high of 89 p.s.i. Results of the seven-day water-absorption tests on the stabilized adobes ranged from 1.3 to 5.0 percent, and the moisture content of the adobes ranged from 0.4 to 1.5 percent. The New Mexico State Code requires that for a treated (stabilized) adobe brick the moisture content will not exceed 4 percent and the water absorption will not exceed 2.5 percent by weight. The physical test results on several different types and sizes of adobe bricks are shown in table 2.

Techniques of adobe brick production

The adobe brick operation is a labor-intensive, fuel-efficient industry employing easily extracted, indigenous materials. Production of adobe bricks is a seasonal operation and usually is limited by the number of frost-free days for that particular adobe yard. In general the production season varies from 5 to 9 mos, depending on the climate and weather conditions. Bricks are made in various sizes ac-

| Table 2—Physical Test Results on Various Types and Sizes of Adobe Bricks (average of samples/test). |
|----------------------------------|-----------------|-----------------|-----------------|-----------------|
| Type adobe brick | Size in inches | Compressive strength (p.s.i.) | Modulus of rupture (p.s.i.) | Remarks |
| Traditional | 10 × 4 × 14 | 383 | 44.6 | Average test results from 34 adobe makers |
| Traditional | 8 × 3 3/4 × 16 | 446 | 51 | Adobe from Las Palomas, Mexico |
| Traditional | 8 × 4 × 12 | 615 | 68 | Adobe from Rancho de Taos area |
| Traditional | 8 3/4 × 4 3/4 × 17 | 451 | 22 | Old adobe (45+ yrs) from Chamisal |
| Terrone | 8 × 6 × 14 | 303 | 53 | Terrone from Isleta Pueblo |
| Terrone | 7 3/4 × 4 × 15 1/2 | 261 | 20 | Old terrone (145+ yrs) from Algodones, NM |
| Que Madrid | 8 × 3 3/4 × 16 | 644 | 180 | Burnt adobe from Las Palomas, Mexico |
| Pressed | 10 × 3 × 13 7/8 | 1,071 | 46 | Machine-operated press located in Mora area |
| Pressed | 5 3/4 × 3 3/4 × 11 1/2 | 769 | 69 | Made using a cinva-ram press |
| Pressed | 5 3/4 × 3 3/4 × 11 1/2 | 580 | 54 | Asphalt emulsion added to adobe made using a cinva ram |
| Semistabilized | 10 × 4 × 14 | 388 | 76 | Average test results from 6 adobe makers |
| Semistabilized | 10 × 4 × 14 | 426 | 91 | Average test results from 6 adobe makers |
| Semistabilized | 7 3/4 × 3 3/4 × 15 | 645 | 200 | Test results from Hans Sumpf Company, CA |
| Traditional | 10 × 4 × 14 | 314 | 51 | Old adobe (100+ yrs) from San Juan Pueblo |
cording to intended use; the principal standard-size adobe brick used in this state measures 4" x 10" x 14" and weighs approximately 30 lbs. An average of one (1) cu yd of adobe soil is used to produce approximately 80 bricks. Other sizes and types of adobes usually are made upon special order. The three major techniques of adobe production have been classified as follows (University of New Mexico, 1970):

1) Traditional handcrafted method—This relatively simple process involves the mixing of soil, water, and sometimes straw in a shallow mud pit using a hoe or by foot treading. Wooden forms that will produce a single brick or multiple bricks are laid out on smooth and level ground and the mud is placed in them and tamped into the corners. The top is smoothed off and the form removed. The forms are then washed clean and the process is repeated. As the bricks dry (2-3 days in summer) they are turned on edge, trimmed of excess material or rough edges and, sometime later, are stacked for delivery. This system, utilizing two to three adobe makers, can produce 300-500 adobe bricks per day.

2) Semimechanized method—This method of production is similar to the traditional handcrafted method except for the addition of mechanical equipment, most frequently a front-end loader. The loader is used to move or excavate the soil, to mix the soil in the mud pit, and to carry the adobe mud to the wooden forms. Depending on the weather, the bricks are allowed to dry in the forms for several hours or until they have shrunk from the form sides. The forms are then removed and the adobes allowed to dry for 2 to 3 days at which time they are turned on edge, trimmed, and later stacked for delivery or storage. The adobe makers may use as many as several hundred of the wooden forms at a time to achieve a production capacity of 1,500-3,000 adobes per day.

3) Mechanized method—Two large-scale mechanized techniques for adobe production include the use of the pugmill mixer with the mechanical adobe layer and the use of a ready-mix truck. Examples of the first type of operation are the Western Adobe Plant located in Albuquerque and the Eight Northern Indian Pueblos Native Products Division Plant at San Juan Pueblo. In both of these operations, the sandy loam soil of the area is removed either by grading and leveling of the production site or by delivery from nearby deposits. The soil is screened and conveyed to one end of the trough of the pugmill. Two shafts, studded with paddles, rotate in the trough of the pugmill, and an operator controls the feed of soil, water, and asphalt emulsion. The materials are thoroughly mixed in the trough and dumped into a mud pit where they are removed by a front-end loader which carries the mud mix to a nearby molding machine. This self-propelled mechanized adobe layer or molding machine, mounted on wheels, molds twenty-five 4" x 10" x 14" adobe bricks at one time (fig. 3). Different molds of various sizes and brick shapes can be mounted on the machine. With good weather and no mechanical breakdowns, an average of 5,000 to 7,000 adobes per day can be produced.

The second mechanized method of large-scale adobe production uses a 7.5-cu-yd ready-mix truck. The adobe soil is loaded into the truck cement mixer and the proper amount of asphalt emulsion and water are added. The truck then delivers the mixed mud to a series of wooden forms laid out in the adobe yard. The owners of the Adobe Patch in Alamogordo have constructed a mechanical adobe layer (fig. 4) that attaches to the ready-mix truck and operates off its power equipment. The system molds adobes similarly to the self-propelled adobe layer.

![FIGURE 3—SELF-PROPELLED MECHANICAL ADOBE LAYER LOCATED AT THE ADOBE YARD IN SAN JUAN PUEBLO, NEW MEXICO.](image1)

![FIGURE 4—USE OF A 7.5-CU-YD READY-MIX TRUCK TO POUR MUD INTO AN ATTACHED MECHANICAL ADOBE LAYER AT THE ADOBE PATCH, LA LUZ, NEW MEXICO.](image2)

Acknowledgments—Grateful acknowledgment is made to Dr. George Austin, Deputy Director, New Mexico Bureau of Mines and Mineral Resources, for his support of this project and his work in identifying the various minerals associated with the adobe clays. Acknowledgment is made to Drs. Tibor Rozgonyi and Kalman Oravecz of the Rock Mechanics Laboratory, New Mexico Institute of Mining and Technology, for their excellent work in testing the various physical properties of adobes and to Sharon Murray and Florence Maestas of the Eight Northern Indian Pueblos Council for their assistance and preparation of the manuscript. I wish to thank the various adobe manufacturers, adoberos, geologists, architects, engineers, soil scientists, archaeologists, and adobe contractors who reviewed the original manuscript and offered many helpful suggestions.

References

Commerce and Industries Division, 1979, New Mexico uniform building code amendments: Commerce and Industries Division, General Construction Bureau, p. 18-20

Long, J. D., 1946, Adobe construction: California Agricultural Experiment Station, Bull. 472, 63 p.

—, 1972, An archaeologist's summary of adobe: Museum of New Mexico, p. 29-39

University of New Mexico, Center for Environmental Research and Development, and Four Corners Regional Commission, 1970, A study of the feasibility of mechanized adobe production: University of New Mexico, Center for Environmental Research and Development, and Four Corners Regional Commission, 48 p.

![TABLE 3—LIST OF ADOBE BRICK PRODUCERS ACTIVE IN 1980 (for locations, see fig. 1).](image3)

<table>
<thead>
<tr>
<th>Map no.</th>
<th>County</th>
<th>Name and location</th>
<th>Telephone</th>
<th>Approximate annual production</th>
<th>Type production equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bernalillo</td>
<td>New Mexico Earth</td>
<td>898-1271</td>
<td>700,000</td>
<td>Front-end loaders, pugmill, wooden forms, and delivery trucks</td>
</tr>
<tr>
<td>2</td>
<td>Bernalillo</td>
<td>Western Adobe 7800 Tower Road, NW Albuquerque, NM</td>
<td>836-1839</td>
<td>250,000</td>
<td>Front-end loader, pugmill, Hans Sumpf type mechanical adobe layer, and delivery trucks</td>
</tr>
<tr>
<td>3</td>
<td>Bernalillo</td>
<td>Manuel Ruiz P.O. Box 104 Corrales, NM</td>
<td>898-1913</td>
<td>175,000</td>
<td>Front-end loader, wooden forms, and delivery truck</td>
</tr>
<tr>
<td>4</td>
<td>Bernalillo</td>
<td>Frank Gutierrez N. R. Box 395 Corrales, NM</td>
<td>898-1913</td>
<td>20,000</td>
<td>Front-end loader, wooden forms, and delivery truck</td>
</tr>
<tr>
<td>5</td>
<td>Bernalillo</td>
<td>Pete Garcia RT. 464, Box DOR Corrales, NM</td>
<td>898-2780</td>
<td>45,000</td>
<td>Front-end loader, wooden forms, and delivery truck</td>
</tr>
</tbody>
</table>

May 1981 New Mexico Geology
Geographic names

U.S. Board on Geographic Names

Bennett Mountain—mountain, highest point 2,187 m (7,175 ft) in the San Andres Mountains, extends north 5.6 km (3.5 mi) from Bear Canyon 37 km (23 mi) northeast of Las Cruces, Doña Ana County, New Mexico; T. 20 S., Rgs. 4 and 5 E.; New Mexico Principal Meridian 32° 34' 30" N., 106° 27' 50" W. (north end), 32° 32' 20" N., 106° 28' 55" W. (south end); not: Goat Mountain.

Compana, Cerro de la—mountain, elevation 1,741 m (5,712 ft) in Jornada del Muerto 17.7 km (11 mi) east-southeast of San Antonio; Spanish descriptive name meaning "Bell Mountain," Socorro County, New Mexico; sec. 1, T. 1 S., R. 1 E.; New Mexico Principal Meridian 33° 30' 47" N., 106° 41' 41" W.; not: Cerro Colorado, Cerro Colorado Mountain, Red Mountain.

Goat Mountain—mountain, highest elevation 2,073 m (6,800 ft) in the San Andres Mountains west of Bennett Mountain and 37 km (23 mi) northeast of Las Cruces, Doña Ana County, New Mexico; secs. 14, 23, and 26, T. 20 S., R. 4 E.; New Mexico Principal Meridian 32° 33' 30" N., 106° 29' 55" W.

Laborcita—populated place, in the Rio Grande valley, 3.2 km (2 mi) north of San Antonio; Spanish name meaning "small patch of tilled land" and originally applied to this area because it was a cluster of small farms; Socorro County, New Mexico; secs. 19 and 20, T. 20 S., R. 1 W.; New Mexico Principal Meridian 33° 56' 45" N., 106° 52' 05" W.; not: La Borcita, Laborcita, River View.

Luis Lopez—populated place, in the Rio Grande valley, 8 km (5 mi) north of San Antonio; named for the eighteenth century owner of the land; Socorro County, New Mexico; sec. 1, T. 4 S., R. 1 W. and sec. 6, T. 4 S., R. 1 E.; New Mexico Principal Meridian 33° 59’ 20” N., 106° 53’ 05” W.; not: La Borcita, Luis Lopez Ranch.

Malone Draw—watercourse, 11.3 km (7 mi) long, in the Tularosa Valley, heads at the junction of an unnamed draw and La Luz Creek at 32° 57’ 53” N., 106° 02’ 13” W., trends southwest to join Ritas Draw at the head of Lost River 14.5 km (9 mi) west of Alamogordo; named for an early settler; Otero County, New Mexico; sec. 27, T. 16 S., R. 9 E.; New Mexico Principal Meridian 34° 54’ 02” N., 106° 06’ 48” W.; not: Lost River.
uplift (Chapin, 1979), exhumed the Socorro and Lemitar blocks and elevated them sufficiently to topographically disrupt the Popotosa Basin. During this period, a major southflowing river (the ancestral Rio Grande) entered and began to fill the developing Socorro Basin. Gently tilted (0–10 degrees) early Pliocene to middle Pleistocene strata of the Sierra Ladrones Formation form westward-thickening wedges in the Socorro and La Jencia Basins to the east and west of Socorro Peak (Fig. 1). Just east of the high-angle (65–75 degrees) range-bounding fault zone at the foot of Socorro Peak, the Sierra Ladrones Formation is at least 350 m thick and may be significantly thicker. About 4 m.y. ago, olivine basalt lavas that were erupted from vents near Sedillo Hill (basalt of Sedillo Hill) flowed eastward down a broad valley cut on the upper Popotosa playa facies and onto channel sands of the ancestral Rio Grande (Sierra Ladrones fluvial facies). Since 4 m.y. ago, the modern ranges have continued to rise and shed piedmont gravels that intertongue with the fluvial sands.

In late Quaternary time continued uplift, faulting, and entrenchment of tributaries to the Rio Grande have all enhanced the modern topography. Upper Popotosa playa claystones on the flanks of the Socorro Mountains are largely masked by landslide blocks derived from the Socorro Peak Rhyolite. Patterns of elevation variation in late Miocene and Pliocene. (65–75 degrees) range bounding fault zone at the Socorro block uplift, central New Mexico: New Mexico Bureau of Mines and Mineral Resources, Open-file Rept. 118, 2 vols., 495 p.

In late Quaternary time continued uplift, faulting, and entrenchment of tributaries to the Rio Grande have all enhanced the modern topography. Upper Popotosa playa claystones on the flanks of the Socorro Mountains are largely masked by landslide blocks derived from the Socorro Peak Rhyolite. Patterns of elevation variation in late Miocene and Pliocene facies, when coupled with modern drainage patterns, suggest the possibility of late Quaternary magmatic doming along an axis trending west-southwest from Socorro Peak.

Conclusion

The primary control of recurrent magma intrusion, hydrothermal activity, and silicic volcanism at Socorro Peak has been the “leaky” Moreno lineament, expressed as a transverse shear zone of the Rio Grande rift. Eruptive periods in the Socorro Peak volcanic center have been dated at 33–29, 12–9, 7, and 4 m.y. in light of this past history, it is not surprising that geophysically defined magma bodies, which provide a heat source for the present geothermal anomaly, are again rising under the Socorro Peak volcanic center.

Acknowledgments—C. E. Chapin and G. R. Osburn, both of the New Mexico Bureau of Mines and Mineral Resources, critically reviewed this manuscript. Many of the key interpretations presented here were initiated by C. E. Chapin or developed jointly with him during the author’s mapping of the Socorro Peak area. Financial support for the dissertation was provided by the New Mexico Bureau of Mines and Mineral Resources and by a grant (76-201) from the New Mexico Energy Resources Board through the Energy Institute at New Mexico State University.

References

In late Quaternary time continued uplift, faulting, and entrenchment of tributaries to the Rio Grande have all enhanced the modern topography. Upper Popotosa playa claystones on the flanks of the Socorro Mountains are largely masked by landslide blocks derived from the Socorro Peak Rhyolite. Patterns of elevation variation in late Miocene and Pliocene facies, when coupled with modern drainage patterns, suggest the possibility of late Quaternary magmatic doming along an axis trending west-southwest from Socorro Peak.

Conclusion

The primary control of recurrent magma intrusion, hydrothermal activity, and silicic volcanism at Socorro Peak has been the “leaky” Moreno lineament, expressed as a transverse shear zone of the Rio Grande rift. Eruptive periods in the Socorro Peak volcanic center have been dated at 33–29, 12–9, 7, and 4 m.y. in light of this past history, it is not surprising that geophysically defined magma bodies, which provide a heat source for the present geothermal anomaly, are again rising under the Socorro Peak volcanic center.

Acknowledgments—C. E. Chapin and G. R. Osburn, both of the New Mexico Bureau of Mines and Mineral Resources, critically reviewed this manuscript. Many of the key interpretations presented here were initiated by C. E. Chapin or developed jointly with him during the author’s mapping of the Socorro Peak area. Financial support for the dissertation was provided by the New Mexico Bureau of Mines and Mineral Resources and by a grant (76-201) from the New Mexico Energy Resources Board through the Energy Institute at New Mexico State University.

References

Eggleston, T. L., in progress, Geology of the central and southern Chupadera Mountains, Socorro County, New Mexico: M.S. thesis, New Mexico Institute of Mining and Technology

Chaco Energy Co. has given $6,500 to the New Mexico Bureau of Mines and Mineral Resources, a division of New Mexico Institute of Mining and Technology, as second-year funding to study fossil plant remains near Hopsah in northwest New Mexico.

The nature of the plants is significant in the formation of the coal deposits leased by Chaco Energy Co. These plant remains include ancient tree stumps, leaves, and roots fossilized in place in the Cretaceous swamps, as well as driftwood bar and beach deposits. Standing fossil tree trunks in growth position are known from scattered areas of the San Juan Basin.

A. T. Cross, professor of geology at Michigan State University, and co-worker A. Jame-sanae are interpreting the plant collections. John Taylor of the Chaco Energy staff has mapped the geology of the fossil localities and provided information for plans for the Chaco's drilling program. Studies of nearby vertebrate fossils in coal-bearing Cretaceous rock beds are being conducted by D. L. Wolber and studies of marine fossils by S. C. Hook, both paleontologists with the New Mexico Bureau of Mines and Mineral Resources.

Adobe production (continued from p. 21)