Middle Turonian (Late Cretaceous) rudistids from the lower tongue of the Mancos Shale, Lincoln County, New Mexico

Stephen C. Hook, Atarque Geologic Consulting, LLC, 411 Eaton Avenue, Socorro, New Mexico 87801, bellaplicata@gmail.com;
William A. Cobban, 70 Estes Street, Lakewood, Colorado 80226

Abstract

Rudistids are uncommon fossils in Upper Cretaceous rocks of the Western Interior of the United States. Since 1856 there have been fewer than 40 occurrences noted in the literature, many of these without descriptions or illustrations. Only six of these occurrences are from New Mexico. Therefore, the discovery of two fragments of solitary radiolitid rudistids and one fragment of a small bouquet from a sandy concretionary bed in the lower tongue of Mancos Shale in Lincoln County, New Mexico, is of some importance. Associated fossils in the concretions include the ammonites Spathites rioensis, Moroverites depressis, and Collignoniceras woollgari woollgari, placing the rudistid bed in the lower part of the middle Turonian C. woollgari Zone. Although specifically indeterminate, the rudistids are probably conspecific with a large rudistid bouquet composed of Durania coralloidea that was described and illustrated from rocks in the same zone in the Greenhorn Limestone of Colorado.

Introduction

Rudistids (or rudists) are an extinct group of aberrant, inequivalved bivalves that were generally attached to the substrate by either the right or left valve; they could be solitary or gregarious, but not colonial. When gregarious, they could form large wave- and current-resistant structures called reefs. Since 1775 when they were illustrated for the first time, they have been classed as brachiopods, corals, cephalopods, or cirripeds. Deshayes (1825) appears to have been among the first naturalists to determine that the group belonged in the Bivalvia (Dechaseaux 1969, p. N749). In most rudistids the larger (attached) valve ranges from conical to gently curved to spirally coiled and from 2 cm to 2 m in length and 8 mm to 0.6 m in diameter. The smaller (free) valve ranges from flat to slightly convex and lidlike to conical, or coiled. In some cases the larger (free) valve was coiled and the smaller (attached) valve was conical to slightly coiled. Shell wall thickness could vary from less than 2 mm to more than 10 cm. Their geographic range extends from the Upper Jurassic to the Upper Cretaceous.

Even though Late Cretaceous marine faunas from the Western Interior of the United States are dominated by mollusks, rudist bivalves are uncommon elements (Fig. 1), presumably because the boreal waters of the Western Interior Seaway were too cold. The lone exception is the Niobrara Formation of Kansas, where rudistids are relatively abundant (Cobban et al. 1991, p. D2). Cobban et al. (1991, pp. D2–D3) provide a summary of rudistid occurrences in the Western Interior as of 1990; this summary is updated in the Appendix. A web catalog of worldwide occurrences of rudistids can be found at http://www.paleotax.de/rudists/locality.htm#MU.

Formation of Kansas, where rudistids are relatively abundant (Cobban et al. 1991, p. D2). Cobban et al. (1991, pp. D2–D3) provide a summary of rudistid occurrences in the Western Interior as of 1990; this summary is updated in the Appendix. A web catalog of worldwide occurrences of rudistids can be found at http://www.paleotax.de/rudists/locality.htm#MU. Since then, Hall and Meek’s species has been reassigned to the genus Ichtynosacratites. Caldwell and Evans (1963) redescribed Hall and Meek’s holotype and described a Campanian specimen of I. coraloidea from the Bearpaw Shale of Saskatchewan, Canada, making it the northernmost rudist in the Western Interior.

Logan (1898, p. 239) referred to these beds as “Rudistes Beds.” Logan (1898, p. 494, pl. 115, pl. 119, fig. 1) was the first to describe the Kansas rudists as the new species Radiolites maximus.
from the Campanian Niobrara Chalk; *R. maximus* was described in more detail and illustrated by Miller (1968, pp. 37–38, pl. 4, figs. 6–8; 1970 pl. 1, fig. 2). Since Hall and Meek’s (1856) work on the Campanian of South Dakota, rudists from the Western Interior have been reported or described from every stage of the Upper Cretaceous, with occurrences in New Mexico, Arizona, Colorado, Wyoming, Montana, Kansas, and Saskatchewan (Appendix). The six occurrences in New Mexico (Fig. 1) are typical: they range in age from the Cenomanian to Santonian; the taxonomic assignment of the specimens has varied from very generalized (“rudistids”) to a specific identification (*Ichthyosarcolites coraloides*); and the documentation of the occurrence has varied from an observation, to placement in a measured section, to a description with illustration(s).

New Mexico’s Upper Cretaceous rudistids

The oldest rudistid occurrence in the Western Interior is from the Thatcher Limestone Member of the Graneros Shale in northeastern New Mexico. This occurrence is in the middle Cenomanian *Continoceras tarrantense* Zone, indicating that the rudistids established a presence in the Western Interior soon after the Late Cretaceous seaway entered New Mexico. This was merely an observation made by W. J. Kennedy (in Cobban et al. 1991, p. D2) with no locality data and no specific determination of the rudistid.

The second oldest occurrence is from dark-brown-weathering sandstone concretions in the Paguate Tongue of the Dakota Sandstone in McKinley County at USGS Mesozoic locality D7333. The fragmentary
bullid has affinities to Ichthyosarcolites. Associated fossils include Inoceramus ruthenfordi, Ostrea beloi, Acanthoceras amphibolum, and Turrilites acutus (Cobban et al. 1991, p. D2). This faunal assemblage places the rudistid in the middle Cenomanian A. amphibolum Zone, four standard ammonite zones higher than the previous Graneros Shale specimen. See Cobban et al. (2006, fig. 1) for the standard zonal table for the Upper Cretaceous of the Western Interior.

The third oldest occurrence is from two localities in the lower tongue of the Mancos Shale at Bull Gap Arroyo, Lincoln County (Figs. 1–3). The three fragmentary specimens from USGS Mesozoic localities D14973 and D15025 are referred to cf. Durania cornupastoris. Associated fossils include Turrilites acutus (Cobban et al. 1991, p. D2). This faunal assemblage places the rudistid in the middle Turonian Collignoniceras woollgari Zone, 15 standard ammonite zones above the previous Dakota Sandstone specimen. These Bull Gap rudistids will be discussed in detail in the next section of the paper.

The third youngest occurrence is from 50 ft (15 m) above the base of the lower shale unit of the Smoky Hill Shale Member of the Niobrara Formation in Colfax County. Scott et al. (1986, p. 31) report only that a rudistid was discovered. Cobban et al. (1991, p. D2) assign this oyster-encrusted specimen to Durania aff. D. austiniensis from USGS Mesozoic locality D11432. Scott et al. (1986, p. 14) report Cremnoceramus browni from the same interval as the rudistid, which places the interval in the lower Coniacian Scaphites ventricosus Zone, 11 standard ammonite zones above the Bull gap rudistids.

The second youngest occurrence is from 658 ft (200 m) below the top of the Mancos Shale in San Juan County. Reeside (1924, p. 11) records Sawagesia cf. S. austiniensis from the middle Santonian Clioscaphites vermiformis Zone, three standard ammonite zones above the previous occurrence.

The youngest occurrence in New Mexico is from 25 ft (7.6 m) below the Huerfanito Bentonite in the Lewis Shale in Rio Arriba County at USGS Mesozoic locality D13779. Fassett et al. (1997, p. 230) referred this specimen to Hall and Meek’s (1856) species, Ichthyosarcolites coralloidea, and placed it in the upper Campanian Didymoceras nebrascense Zone, 18 standard ammonite zones above the previous occurrence.

Bull Gap Canyon rudistids

The three rudistid fragments collected from sandy limestone concretions in the lower tongue of the Mancos Shale south of Bull Gap Canyon, Lincoln County, New Mexico, are from two localities approximately 0.32 mi (0.51 km) apart. The largest and best preserved fragment is from USGS Mesozoic locality D14973 in the SE14 SW14 SW14 sec. 24 T9S R9E, Bull Gap 7.5-min quadrangle. The two smaller fragments are from the same level at USGS Mesozoic locality D15025 in the SE14 SW14 SW14 sec. 24 T9S R9E, Bull Gap 7.5-min quadrangle. Geographically, locality D15025 is 0.32 mi (0.51 km) due east of D14973; geologically, it lies in the hanging wall block of a normal fault that juxtaposes the sandy beds in which the rudistid was found, and which places the interval in the lower Coniacian Scaphites ventricosus Zone, 11 standard ammonite zones above the previous occurrence.

Measured section

The graphic section at Bull Gap Canyon (Fig. 3) is drawn to emphasize: (1) the relative position of the rudistid bed within the upper part of the lower tongue of the Mancos Shale; (2) the lithology and thickness of the sandy beds in which the rudistid occurs; (3) the lithology and thickness of

FIGURE 3—Graphic section of the upper 339 ft (103 m) of the lower tongue of the Mancos Shale showing lithology and positions of key fossil collections (collection numbers shown in [brackets] if projected into this section). The rudistid (Fig. 4C, D) was recovered from unit 17, a 6-inch (15-cm) thick concretionary sandstone that also yielded Morrowites depressus (Fig. 2D) and Collignoniceras woollgari woollgari (Fig. 4A, B).
the Bridge Creek Limestone Beds; and (4) the paleontology of this part of the lower tongue of Mancos Shale and the overlying Atarque Sandstone. At the same time, Figure 3 de-emphasizes the thickness of the two large covered intervals in the upper shale unit of 200 ft (61 m) and 75 ft (22.9 m), which together comprise not only 81% of the measured section, but also 100% of the thickness error.

Three thin, resistant, concretionary sandstones interbedded with silty shale (Fig. 3, units 13–17) form an inconspicuous hill about three-quarters of the way between the base of the Bridge Creek Limestone and the base of the Atarque Sandstone Member of the Tres Hermanos Formation (Fig. 2B). The rudistid (D14973) is in a 6 inch- (15 cm-) thick sandy concretionary bed (unit 17) at the top of this series that forms a prominent dip slope. A 200 ft- (61 m-) thick, soft, covered interval (unit 11) separates this outcrop from the top of the Bridge Creek; a 75 ft- (23 m-) covered interval (unit 18) separates it from the base of the Atarque.

The Bridge Creek Limestone Beds of the lower tongue of the Mancos Shale are 46.2 ft (14.1 m) thick and consist of five thin limestone beds interbedded with four highly calcareous shale beds (Fig. 3, units 1–10). The lowest bed (unit 1) is a hard, dense, very dark gray, almost lithographic limestone that weathers pale yellowish orange and is 8 inches (20 cm) thick. It breaks with a conchoidal fracture and forms a prominent ledge. The other limestone beds are not as hard or resistant, are a lighter gray, weather to an off white, and do not form as conspicuous an outcrop. All five limestone beds tend to pinch and swell along strike.

Surprisingly, the Bridge Creek Limestone Beds are only sparsely fossiliferous in the Bull Gap Canyon area, especially the lower four limestone beds. The hard, dense limestone at the base of the beds has yielded only one ammonite species, Metococeras geslinium (D10640), indicative of the upper Cenomanian Eumphaloceras septemseriatum Zone. Only a few very small Pycnodonte newberryi shells (D14871) have been collected as float from the shale (unit 4) between the second and third limestones in the sequence. However, this collection constitutes the earliest occurrence of P. newberryi in New Mexico. Fragments of inoceramids have been observed in the lower four limestone beds, but are specifically indeterminate, e.g., D10640 from unit 5.

The uppermost of the five limestone beds (unit 10) is quite fossiliferous in Bull Gap Canyon itself, where several very nice internal molds of the inoceramid Mytiloides puebloense (D14945) have been collected from an inch or so below the top of the bed. In New Mexico, M. puebloense is the most common indicator of the basal lower Turonian Watinoceras devonense Zone. The base of unit 10 is the Cenomanian–Turonian stage boundary; its top is the upper lithologic boundary of the Bridge Creek Limestone Beds in the area. The higher, thin calcarenites that lie in the Mammites nodosoides Zone and form the top of the Bridge Creek at Carthage are not present at Bull Gap. These calcarenites are either covered or, more likely, not developed at Bull Gap.

The next higher fossil in the section occurs at the base of the sandy interval that contains the rudistid. Several very well preserved internal molds of Spathites rioensis (D14987) have been recovered from unit 13, a 7 inch- (18 cm-) thick, light-brown-weathering, fine-grained sandstone. Spathites rioensis is the oldest of three chronologic species in central New Mexico and is indicative of the lower part of the lowermost middle Turonian Collignoniceras woollgari Zone, four standard ammonite zones higher than the Watinoceras devonense Zone. Fragments of the very large ammonite Morrowites depressus (D14988) are present with S. rioensis in a 6 inch- (15 cm-) thick concretionary sandstone, 2.0 ft (61 cm) higher. Approximately 4.5 ft (1.37 m) higher, the best rudistid fragment (D14973) was found in a 6 inch- (15 cm-) thick concretionary sandstone (unit 17). Associated fossils include Collignoniceras woollgari woollgari, Morrowites depressus, calcareous worm

FIGURE 4—Plate of two key fossils from unit 17, a 6 inch- (15 cm-) thick concretionary sandstone that is 213 ft (65 m) above the top of the Bridge Creek Limestone Beds and 75 ft (22.9 m) below the base of the Atarque Sandstone Member (see Fig. 3). A, B—Top (ventral) and side views, respectively, of a whitened fragment of Collignoniceras woollgari woollgari (USNM 558703), X1. Top view shows the clavate keel in which there is one clavus for each set of double ventrolateral tubercles. The inner ventrolateral tubercles are bullate, and the outer tubercles are clavate. The side view reveals a moderately evolved ammonite with prosoradiate ribs that arise from bullate umbilical tubercles. C, D—Top and side views, respectively, of the rudistid cf. Durania cornupastoris (USNM 558700), unwhitened, X0.6. Top view reveals a transverse section across the rudistid showing the thick shell wall composed of polygonal cells (inset X2) and an elliptical mantle cavity that was filled with sediment. Side view reveals a fractured, irregular longitudinal section that shows the shell and mantle cavity tapering downward. The rudistid is shown unwhitened because the whitening agent obscured the telltale polygonal wall structure. Both specimens are from USGS Mesozoic locality D14973 in the SE¼SW¼ sec. 24 T9S R9E, Bull Gap Canyon 7.5-min quadrangle, Lincoln County, New Mexico.
C. woollgari woollgari part of the lower tongue of the Mancos Shale that both Atarque Sandstone and the upper of the Tres Hermanos Formation indicates basal part of the Atarque Sandstone Member woollgari (D14971) collected as float from the locality D10643. That Cobban (1986) illustrated a specimen and depressus*, Collignoniceras woollgari woollgari* cumminsi, Spathites rioensis*, Morrowites sp., Tragodesmoceras socorroense, Placenticeras hercynicus, Camptonectes platessa, Cymbophora Phelopteria gastrodes, Mytiloides worm tubes, and a few fragments of large, but 15, and 17) contained a more diverse fauna from this entire sandy interval (units 13, 14, 16, 15, and 17) contained a more diverse fauna from USGS locality D10643: calcareous worm tubes, Phelopteria gastrules, Mytiloides hercynicus, Camptonectes platessa, Cymbophora sp., Tragodesmoceras socorroense, Placenticeras cumminsi, Spathites rioensis*, Morrowites depressus*, Collignoniceras woollgari woollgari*, and Baculites yokoyamai. An asterisk indicates that Cobban (1986) illustrated a specimen from locality D10643.

A specimen of Collignoniceras woollgari woollgari (D14971) collected as float from the basal part of the Atarque Sandstone Member of the Tres Hermanos Formation indicates that both Atarque Sandstone and the upper part of the lower tongue of the Mancos Shale lie within the C. woollgari woollgari Subzone.

tubes, and a few fragments of large, but indeterminate bivalve internal molds. These ammonites reveal the C. woollgari woollgari Subzone, just as S. rioensis did at the base of the interval.

A 1979 collection made by the authors from this entire sandy interval (units 13, 15, and 17) contained a more diverse fauna but did not include a rudistid. Cobban (1986, p. 81) listed the following fossils from USGS locality D10643: calcareous worm tubes, Phelopteria gastrules, Mytiloides hercynicus, Camptonectes platessa, Cymbophora sp., Tragodesmoceras socorroense, Placenticeras cumminsi, Spathites rioensis*, Morrowites depressus*, Collignoniceras woollgari woollgari*, and Baculites yokoyamai. An asterisk indicates that Cobban (1986) illustrated a specimen from locality D10643.

A specimen of Collignoniceras woollgari woollgari (D14971) collected as float from the basal part of the Atarque Sandstone Member of the Tres Hermanos Formation indicates that both Atarque Sandstone and the upper part of the lower tongue of the Mancos Shale lie within the C. woollgari woollgari Subzone.

Systematic paleontology

Family Radiolitidae

Gray 1847

Inequivalve rudistids in which the right (attached) valve is conical and the left (free) valve is operculiform; the surface of the right valve is without furrows but has two concave, flat, or convex siphonal bands separated by an interband. The ligamental ridge can be present or absent. Stratigraphic range: Lower Cretaceous (Barremian) through Upper Cretaceous (Maastrichtian).

Subfamily Sauvagesinae

Douville 1908

Right valve is composed of cells that are polygonal in transverse section and prismatic in longitudinal section. Stratigraphic range: Lower Cretaceous (Albian) through Upper Cretaceous (Maastrichtian).

Genus Durania (Des Moulins 1826)

Type species—Hippurites cornupastoris Des Moulins 1826

Right valve is cylindrical but can be short or elongate; left valve is operculiform. Siphonal bands can be concave, smooth, or ribbed. The ligamental ridge is absent, but bifurcating radial furrows are present on the upper surface of the outer wall in many species. Stratigraphic range: Upper Cretaceous (Turonian–Maastrichtian). Geographic range: Europe, North Africa, Asia, South America, and North America.

cf. Durania cornupastoris (Des Moulins 1826)

Description—The best preserved of the three rudistid specimens from Bull Gap Canyon is a fragment of the right (attached) valve of a large solitary individual (USNM 558700) from USGS Mesozoic locality D14973 (Fig. 4C, D). The specimen appears to be conical and has an elliptical cross section with a maximum diameter of 98.6 mm, a height of 81.4 mm, and a maximum shell wall thickness of 20.9 mm. This rudistid is the nucleus of a cannonball-type concretion with a diameter of at least 100 mm. The sandy limestone concretion is broken to expose a transverse section of the rudistid, revealing the telltale polygonal structure of a sauvagesinae radiolitid (Fig. 4C). The longitudinal (radial) structures necessary to place the specimen in a genus or species are not preserved or obscured by the outer part of the concretion. The elliptical mantle cavity of the specimen, which filled with sediment after the death of the individual, has a maximum diameter of 49.6 mm and a minimum diameter of 37.2 mm.

The other two specimens (not illustrated) are of right valves of smaller individuals from USGS Mesozoic locality D15025. The solitary rudistid (USNM 558702) is preserved in a portion of a sandy limestone concretion 51 mm long by 42 mm wide by 16 mm deep. A broken surface formed within the concretion cuts across the rudistid in a transverse orientation and reveals an elliptical cross section with a maximum diameter of 18.33 mm and a minimum diameter of 15.03 mm; the shell wall is 1.33 mm thick. The second specimen (USNM 558701) is a small association of two closely spaced individuals that are preserved on the outer surface of a fragment of sandy limestone concretion that is 73 mm long by 65 mm wide by 26 mm deep. The better preserved of the two has an elliptical cross section with a maximum diameter of 20.32 mm thick.
Palaeoecology—Radiolitid rudistids are an extinct group of sessile, filter-feeding, epifaunal bivalves with massive shells that were attached as larvae to objects on the sea floor and grew mostly perpendicular to the sea floor. They preferred shallow, warm, clear water of normal salinity and are commonly found in carbonate deposits. Although gregarious, they were not colonial. They lived as individuals and in conjoined groups that could contain a small number of individuals called bouquets or a large number of individuals called reefs.

The large size of the illustrated specimen (Fig. 4C, D) suggests that it had lived for some time, perhaps a year or so, and was attached to some large, heavy object on the sea floor. The attachment point would have been at the small end of its slightly conical shell. If it had been attached to a smaller or lighter object—such as a small ammonite’s shell or clam’s shell—the rudistid’s high center of gravity and large surface area would have allowed currents to push it over into an unfavorable living position.

The paleogeography and stratigraphy at the measured section indicate that the rudistid lived in a nearshore environment—probably less than 35 mi (56 km) from the strand line (see Fig. 1)—on a relatively soft bottom of silty to sandy clay (Fig. 3). The relatively soft bottom conditions lead to the nature of the holdfast object for a large, erect, heavy animal such as the illustrated rudistid (Fig. 4C, D). Kauffman and Sohl (1979, fig. 1) refer to Durania as a “...large, barrel-shaped [genus],” suggesting that it had a fairly large attachment area relative to other rudistid genera that would provide more stability on the sea floor. They (Kauffman and Sohl 1979, p. 725) state that the “…open cellular structure of the rudist shell permitted rapid growth without great expenditure of calcium carbonate, and this resulted in the construction of very large massive shells in short periods of time. Filling of these cells with fluid would have provided the necessary density to make the rudist shells stable on the sea floor as exposed epifaunal organisms.”

One possibility as an attachment object is presented by the large ammonite Morrowites depressus (Fig. 2D; see Cobban, 1986, fig. 10 for a large specimen from the area). An oyster-encrusted internal mold of M. depressus was collected at USGS Mesozoic locality D15025 along with the two unfigured rudistid specimens. Hook and Cobban (1981, p. 13) interpret similar oyster-encrusted molds in New Mexico as evidence for discontinuity surfaces. The scenario they envision involves burial of the sediment-filled ammonite shell; dissolution of the aragonitic shell resulting in prefossilization of the sediment filling (internal mold); erosion of the sediment surrounding the hardened internal mold; and colonization by oysters (and, here, rudistids) of the discontinuous hardground provided by the internal mold(s), which form a lag deposit on the sea floor (Fig. 5). The mere presence of internal molds of at least two species of ammonites in this bed (Fig. 3, unit 17) indicates that their sediment-filled shells accumulated on the sea floor. Before complete burial, these shells could have acted as heavy, attachment sites for the rudistids, regardless of whether the internal molds were later prefossilized and eroded from the sediment.

Geologic occurrence—Middle Turonian lower tongue of the Mancos Shale, Collignoniceras woollgari woollgari Subzone of the C. woollgari Zone, 75 ft (22.9 m) below the base of the Tres Hermanos Formation and 213 ft (65 m) above the top of the Bridge Creek Limestone Beds of the lower tongue of the Mancos Shale.

Geographic occurrence—D14973: SE1/4 SE1/4 SW1/4 sec. 24 T9S R9E, Bull Gap 7.5-min quadrangle, Lincoln County, New Mexico; and D15025: SE1/4SW1/4SW1/4 sec. 24 T9S R9E, Bull Gap 7.5-min quadrangle, Lincoln County, New Mexico.

Acknowledgments

We thank the U.S. Geological Survey for use of facilities and access to fossil collections stored at their repository in Denver, Colorado. We owe a special debt of gratitude to K. C. McKinney, U.S. Geological Survey, Denver, for his friendship and expertise, without which this paper would not have been possible. He also sponsored Hook as an adjunct at the U.S. Geological Survey working on the Upper Cretaceous stratigraphy and paleontology of New Mexico. Caitlin Lewis, under the supervision of K. C. McKinney, photographed the fossils in Figure 4. We thank Robbie Hooten for allowing us access to the Bull Gap Canyon area. Donald Wolberg (adjunct, New Mexico Institute of Mining and Technology) and Gretchen Hoffman (geologist, New Mexico Bureau of Geology and Mineral Resources) provided thoughtful reviews that improved the manuscript. Primary field support for this study was provided by Atarque Geologic Consulting, LLC. Fossil collections have been assigned U.S. Geological Survey Mesozoic locality numbers; they begin with the prefix “D” for Denver and are housed at the Federal Center in Denver, Colorado. Illustrated and described specimens have been assigned USNM numbers and are repositioned in the U.S. National Museum in Washington, D.C.

We are indebted to the editorial and drafting staff of New Mexico Geology for their competence and excellence. Leo Gabaldon drew the reconstruction of the Late Cretaceous sea floor shown as Figure 5.
References

Cobban, W. A., 1886, Upper Cretaceous molluscan record from Lincoln County, New Mexico; in Ahlen, J. L., and Hanson, M. E. (eds.), Southwest section of AAPG transactions and guidebook of 1886 convention, Ruidoso, New Mexico: New Mexico Bureau of Mines and Mineral Resources, pp. 77–89.

Dane, C. H., 1997, Progress and stratigraphy of the Holotype of <i>Ichthyosarcolites</i> from lowest (no. 1) to highest (no. 37). Although rudistids are rare faunal elements in the Upper Cretaceous of the Western Interior, there is at least one occurrence from each stage. Geographically, they range from New Mexico (NM) on the south to Saskatchewan (SK), Canada, on the north. CSK = Cobban, W. A., Skelton, P. W.; and Kennedy, W. J. (1991).

Appendix

Compilation of Upper Cretaceous rudistid occurrences in the Western Interior of the United States from published records and unpublish collections housed in the USGS Mesozoic Invertebrate collections in the Denver Federal Center. These occurrences are arranged stratigraphically from lowest (no. 1) to highest (no. 37). Although rudistids are rare faunal elements in the Upper Cretaceous of the Western Interior, there is at least one occurrence from each stage. Geographically, they range from New Mexico (NM) on the south to Saskatchewan (SK), Canada, on the north. CSK = Cobban, W. A., Skelton, P. W.; and Kennedy, W. J. (1991).

Hall, J., and Meek, F. B., 1856, Descriptions of new species of fossils from the Cretaceous formations of Nebraska, with observations upon <i>Baculites eurus</i> and <i>B. compressus</i>, and the progressive development of the septa in baculites, ammonites, and scaphitids: American Academy of Arts and Science Memoir, new series, v. 5, pp. 379–411.

Miller, H. W., 1968, Invertebrate fauna and environment of deposition of the Niobrara Formation (Cretaceous) of Kansas; Fort Hays Studies (new series), Science Series 8, 90 pp.

<table>
<thead>
<tr>
<th>No.</th>
<th>Stage</th>
<th>Formation</th>
<th>Member/Bed</th>
<th>State(s)</th>
<th>Taxon</th>
<th>USGS #</th>
<th>Reference</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>Maastrichtian</td>
<td>Hoploscaphites</td>
<td>nicolleti</td>
<td>SD</td>
<td>Caprinella coraloidea</td>
<td>D1349</td>
<td>Fox Hills Sandstone Trail City Member SD</td>
<td>Same</td>
</tr>
<tr>
<td>36</td>
<td>Campanian</td>
<td>Niobrara Chalk</td>
<td>KS</td>
<td>KS</td>
<td>Logarites maximus</td>
<td>D3576</td>
<td>Richards (1975, p. 61)</td>
<td>CSK</td>
</tr>
<tr>
<td>35</td>
<td>Campanian</td>
<td>Pierre Shale</td>
<td>KS</td>
<td>KS</td>
<td>Baculites compressus</td>
<td>D3539</td>
<td>Hall and Mook (1856, p. 30)</td>
<td>CSK</td>
</tr>
<tr>
<td>34</td>
<td>Campanian</td>
<td>Pierre Shale</td>
<td>KS</td>
<td>KS</td>
<td>Caprinella coraloidea</td>
<td>D3569</td>
<td>Haas (1865, fig. 31)</td>
<td>CSK</td>
</tr>
<tr>
<td>33</td>
<td>Campanian</td>
<td>Bearpaw Shale</td>
<td>MT</td>
<td>MT</td>
<td>Didymoceras stevensoni</td>
<td>D3576</td>
<td>Caldwell and Evans (1983)</td>
<td>CSK</td>
</tr>
<tr>
<td>32</td>
<td>Campanian</td>
<td>Bearpaw Shale</td>
<td>MT</td>
<td>MT</td>
<td>Scaphites hippocrepis</td>
<td>D3576</td>
<td>Fassett et al. (1997, p. 2-29)</td>
<td>CSK</td>
</tr>
<tr>
<td>31</td>
<td>Campanian</td>
<td>Bearpaw Shale</td>
<td>MT</td>
<td>MT</td>
<td>Scaphites hippocrepis</td>
<td>D3576</td>
<td>Hattin (1982, fig. 31)</td>
<td>CSK</td>
</tr>
<tr>
<td>30</td>
<td>Campanian</td>
<td>Bearpaw Shale</td>
<td>MT</td>
<td>MT</td>
<td>Scaphites hippocrepis</td>
<td>D3576</td>
<td>Hattin (1982, fig. 31)</td>
<td>CSK</td>
</tr>
<tr>
<td>29</td>
<td>Campanian</td>
<td>Bearpaw Shale</td>
<td>MT</td>
<td>MT</td>
<td>Scaphites hippocrepis</td>
<td>D3576</td>
<td>Hattin (1982, fig. 31)</td>
<td>CSK</td>
</tr>
<tr>
<td>28</td>
<td>Campanian</td>
<td>Bearpaw Shale</td>
<td>MT</td>
<td>MT</td>
<td>Scaphites hippocrepis</td>
<td>D3576</td>
<td>Hattin (1982, fig. 31)</td>
<td>CSK</td>
</tr>
<tr>
<td>27</td>
<td>Campanian</td>
<td>Bearpaw Shale</td>
<td>MT</td>
<td>MT</td>
<td>Scaphites hippocrepis</td>
<td>D3576</td>
<td>Hattin (1982, fig. 31)</td>
<td>CSK</td>
</tr>
<tr>
<td>26</td>
<td>Campanian</td>
<td>Bearpaw Shale</td>
<td>MT</td>
<td>MT</td>
<td>Scaphites hippocrepis</td>
<td>D3576</td>
<td>Hattin (1982, fig. 31)</td>
<td>CSK</td>
</tr>
<tr>
<td>25</td>
<td>Campanian</td>
<td>Bearpaw Shale</td>
<td>MT</td>
<td>MT</td>
<td>Scaphites hippocrepis</td>
<td>D3576</td>
<td>Hattin (1982, fig. 31)</td>
<td>CSK</td>
</tr>
<tr>
<td>24</td>
<td>Campanian</td>
<td>Bearpaw Shale</td>
<td>MT</td>
<td>MT</td>
<td>Scaphites hippocrepis</td>
<td>D3576</td>
<td>Hattin (1982, fig. 31)</td>
<td>CSK</td>
</tr>
<tr>
<td>23</td>
<td>Campanian</td>
<td>Bearpaw Shale</td>
<td>MT</td>
<td>MT</td>
<td>Scaphites hippocrepis</td>
<td>D3576</td>
<td>Hattin (1982, fig. 31)</td>
<td>CSK</td>
</tr>
<tr>
<td>22</td>
<td>Campanian</td>
<td>Bearpaw Shale</td>
<td>MT</td>
<td>MT</td>
<td>Scaphites hippocrepis</td>
<td>D3576</td>
<td>Hattin (1982, fig. 31)</td>
<td>CSK</td>
</tr>
</tbody>
</table>