The type section of the Upper Cretaceous Tokay Tongue of the Mancos Shale (new name), Carthage coal field, Socorro County, New Mexico

Stephen C. Hook, William A. Cobban 27

Then and Now—A Brief History of Tokay, New Mexico

Stephen C. Hook ... 47

Audley Dean Nichols’ Tokay Panorama of ca. 1927

Robert W. Eveleth .. 52

In Memoriam—William A. Cobban 55

Additional Resources .. 57

Cover Image

The coal-mining community of Tokay, Socorro County, New Mexico, which is now a ghost town, comes alive in this detail of a 1927 oil painting by the noted southwestern landscape painter Audley Dean Nicols. With smoke billowing from the power plant on the north end of a windswept mesa and dust devils whirling in the desert to the west, it is almost possible to imagine the hustle and bustle in the center of this town of approximately 600 people. Tokay, which is located about 10 miles east of San Antonio on the southwest side of the Carthage coal field, was named for a case of grapes sold in the general store. The town had a post office from 1917 to 1932 and boasted of an on-site physician and a grade school on the second floor of the two-story building in the center of town—the first floor housed a barbershop, pool hall, and bar! Today, Tokay has two residents; the few buildings left from the original town site are part of the Fite Ranch.

The story surrounding the painting is that the artist traded it for a load of coal. Whatever the true story, Mr. Nicols has left New Mexico a beautiful legacy of its coal mining past during its early days of statehood. The original painting hangs in the home of Mr. Edward Kinney, Jr., grandson of Bartley H. Kinney, who founded and named Tokay. Mr. Kinney provided the high-resolution image of the painting and gave New Mexico Geology permission to publish it. (For additional information, see “Then and Now—A Brief History of Tokay, New Mexico”, this volume, p. 47.)
The type section of the Upper Cretaceous Tokay Tongue of the Mancos Shale (new name), Carthage coal field, Socorro County, New Mexico

Stephen C. Hook, Atarque Geologic Consulting, LLC, 411 Eaton Avenue, Socorro, NM 87801 bellaplicata@gmail.com and William A. Cobban, 70 Estes Street, Lakewood, CO 80226 (December 31, 1916–April 21, 2015)

Abstract

The Tokay Tongue of the Mancos Shale (new name) is that portion of the Mancos Shale lying between the undifferentiated or main body of the Dakota Sandstone and the Tres Hermanos Formation (or offshore equivalent). Its type locality is in the Carthage coal field, Socorro County, New Mexico. At its type section the Tokay Tongue is 575 ft (175 m) thick and consists of the following five bed–rank units (in ascending order): 1) the shale and sandstone unit, 182 ft (55 m) thick; 2) the calcareous shale and bentonite unit, 120 ft (36 m) thick; 3) the Bridge Creek Limestone Beds, 72 ft (22 m) thick; 4) the noncalcareous shale unit, 113 ft (34 m) thick; and 5) the noncalcareous shale unit, 88 ft (27 m) thick. The Tokay Tongue was deposited during the initial depositional cycle of the Late Cretaceous Seaway in New Mexico: units #1 and #2 as the western shoreline transgressed southwestward (T-1); unit #3 at maximum transgression (end T-1); and units #4 and #5 as the shoreline regressed northeastward (R-1). The Tokay Tongue at Carthage ranges in age from middle Cenomanian to middle Turonian; both its base and top are diachronous across its outcrop belt in southern New Mexico. There are more than 70 discrete bentonite beds in the tongue at its type locality, ranging in thickness from a fraction of an inch to 14 inches (36 cm); a 12 inch- (30 cm-) thick bentonite near the base of the tongue that lies just above strata containing the middle Cenomanian ammonite Acanthoceras amphibolium is correlated with the "x" or marker bentonite that occurs throughout the Western Interior. A thin, white limestone near the middle of the Bridge Creek Limestone Beds contains the bivalve Mytiloides puelboensis, which marks the base of the Turonian Stage at the Global Boundary Stratotype section and point for the Turonian Stage at Pueblo, Colorado.

Introduction

The Upper Cretaceous Tokay Tongue of the Mancos Shale (new name) is a relatively thick, member-rank, stratigraphic unit that occurs at or near the base of Upper Cretaceous strata over much of central and southern New Mexico, often at isolated exposures (Fig. 1). The sediments that became the Tokay Tongue were deposited in the Late Cretaceous Seaway during the initial transgressive/regressive cycle (T-1/R-1) of the seaway’s western shoreline across New Mexico. The Tokay Tongue, which lies between the undifferentiated or main body of the Dakota Sandstone and the overlying Tres Hermanos Formation is composed primarily of shale, but contains subordinate amounts of sandstone, siltstone, and limestone. However, none of the previously described members or tongues of Dakota Sandstone that interfinger with temporal equivalents of the Tokay Tongue elsewhere in New Mexico can be differentiated and mapped within this tongue. Its type locality is in the western portion of the Carthage coal field, Socorro County, New Mexico (Fig. 1), about 2 mi (3.2 km) north of the former coal-mining town of Tokay, from which it takes its name. There, the Tokay Tongue is well exposed even though it consists primarily of easily eroded and covered shale. At its type section the Tokay Tongue...
Tongue is 575 ft (175 m) thick, is composed of five bed–rank units, and contains a marine fauna that ranges in age from late middle Cenomanian to earliest middle Turonian, spanning approximately four million years. As defined, the Tokay Tongue of the Mancos Shale can be recognized in isolated outcrops over an area of New Mexico of approximately 14,650 sq. mi (37,944 sq. km) (Fig. 1). This area is bounded by known outcrops of the Tokay Tongue: 1) on the north at Riley and the southern end of the Sevilleta National Wildlife Refuge; 2) on the east at White Oaks Canyon and High Nogal Ranch; 3) on the southeast by Love Ranch/Davis Well; 4) on the south by a truncated exposure in the Little Hatchet Mountains; and on the west at 5) Virden and 6) Hurley. The polygon with these outcrops as vertices includes portions of Socorro, Lincoln, Otero, Doña Ana, Sierra, Luna, Hidalgo, and Grant Counties.

North and northwest of this area, especially in the southeastern margin of the San Juan Basin, the temporal equivalents of the Tokay Tongue are included in formally named, member-rank units of the intertongued Dakota Sandstone and Mancos Shale (Landis et al. 1973). This intertongued sequence includes—in ascending order—the Oak Canyon Member of the Dakota Sandstone, the Cubero Tongue of the Dakota Sandstone, the Clay Mesa Tongue of the Mancos Shale, the Paguate Tongue of the Dakota Sandstone, the Whitewater Arroyo Tongue of the Mancos Shale, the Twowells Tongue of the Dakota Sandstone, and Rio Salado Tongue of the Mancos Shale. Recognition of the lower two tongues of Mancos Shale requires the presence of the bounding tongues of Dakota Sandstone. The Rio Salado Tongue, the uppermost of the Mancos Shale tongues in this sequence, is bounded by the Twowells Tongue of the Dakota Sandstone below and the Tres Hermanos Formation (or equivalent) above.

Although the Tokay Tongue at its type section contains the temporal equivalents of all but the Oak Canyon Member and lower two-thirds of the Cubero Tongue of the Dakota Sandstone, none of the overlying tongues of Dakota Sandstone can be differentiated lithologically within the Tokay Tongue throughout its outcrop in the Carthage coal field and in its outcrop area in southern and central New Mexico (Fig. 1). Therefore, none of the existing Dakota Sandstone and Mancos Shale terminology from this intertongued sequence can be applied.

Historical background

The two decades from 1970 to 1990 were an unprecedented time of research and discovery in the stratigraphy and biostratigraphy of the Upper Cretaceous of New Mexico. Among notable accomplishments, Landis et al. (1973) worked out the intertonguing relationships between the Dakota Sandstone and Mancos Shale in the middle and upper Cenomanian part of the section; Hook et al. (1983) demonstrated that the Turonian wedge of marine and nonmarine rocks that splits the Mancos Shale into two major tongues in central and southern New Mexico was the Tres Hermanos Formation and not a Gallup Sandstone; Molenaar (1983) showed the complex intertonguing relationships among the upper Turonian and Coniacian Gallup Sandstone, Mancos Shale, and Crevasses Canyon Formation; and Cobban et al. (1989) illustrated the late Cenomanian/early Turonian ammonite fauna of southwest New Mexico. The late Cenomanian portion of this ammonite fauna consists of at least 63 species distributed among 31 genera, making it the most diverse late Cenomanian ammonite fauna in the world. This new understanding of the Upper Cretaceous was used to map large areas of the southern Acoma Basin (Chapin et al. 1979) and the southern Zuni Basin (e.g., Anderson 1987).

Much, but certainly not all, of this progress in understanding the Upper Cretaceous of New Mexico can be attributed to a series of collaborative projects between the New Mexico Bureau of Mines and Mineral Resources (NMBMMR) and the U.S. Geological Survey (USGS) during the late 1970s and early 1980s. The driving force behind these advances was the detailed biostratigraphy that Cobban had developed for use in the Western Interior of the United States, often with specific application to west-central New Mexico (e.g., Cobban 1977 and 1984a, and Cobban and Hook 1989). In addition, Owen's work on the Dakota Sandstone (e.g., Owen 1966 and 1982), which was not supported financially by the NMBMMR or the USGS, was instrumental in determining the depositional environments and correlation for both the Dakota Sandstone and immediately underlying Jurassic units.

Between July 1976 and March 1981 more than 800 Upper Cretaceous fossil invertebrate localities in New Mexico were added to the USGS Denver Mesozoic Invertebrate Locality database as a result of this collaboration. Most of these collections were in central and southern New Mexico; many were tied to detailed measured sections that were important in working out stratigraphic and map relationships.

Unfinished project

One of the authors’ unfinished projects from that unprecedented time is the designation of a formal stratigraphic name for the thick tongue of Mancos Shale in southern and central New Mexico that lies between the main body of the Dakota Sandstone and the Tres Hermanos Formation. Hook et al. (1983, chart 1, section 59) used the informal designation lower part of the Mancos Shale for this member-rank unit at Carthage, but also used the same informal designation for the thinner tongue of Mancos between the main body of the Dakota Sandstone and the Twowells Tongue of the Dakota Sandstone at Puertecito (Fig. 1, section #58A; Fig. 2), which contains the type section of the Rio Salado Tongue of the Mancos Shale and the type area of the Tres Hermanos Formation (Hook et al. 1983). As shown on Figure 2, the informal, lower tongue (or part) of the Mancos Shale in west-central New Mexico is composed of rocks of different thickness and time-equivalency depending on whether its upper boundary is at the base of the Twowells Tongue or at the base of the Tres Hermanos Formation (Fig. 2). Hook et al. (1983, p. 24–27) named the tongue of shale between the Twowells and Tres Hermanos, the Rio Salado Tongue of the Mancos Shale. Anticipating that later workers might have difficulty in applying the member-rank Rio Salado Tongue correctly, Hook et al. (1983, p. 27) state:

East of Puertecito, the Twowells Tongue of the Dakota Sandstone pinches out into Mancos Shale. Although both time and lithologic equivalents of the Rio Salado Tongue can be recognized from Riley to Carthage to Truth or Consequences, the Rio Salado Tongue cannot be differentiated out of this larger body of shale that extends from the top of the main body of the Dakota Sandstone to the base of the Tres Hermanos Formation. In those areas, strata equivalent to the Rio Salado are included within the undifferentiated Mancos Shale. However, individual limestones within the Bridge Creek Limestone Beds of the Rio Salado Tongue can be traced in continuous outcrop from Puertecito to Riley and correlated with equivalent beds at Carthage and Truth or Consequences.

Nonetheless, the absence of a formal name for this thicker shale tongue has resulted in 1) the misapplication of the name “Río Salado Tongue of the Mancos Shale” to this larger shale body at Carthage, in the Caballo Mountains, and at Love Ranch/Davis Well, and 2) a misunderstanding of the larger tongue’s age and physical relationships. By naming this unit formally as the Tokay Tongue of the Mancos Shale, establishing a type section, and describing its lithology and fauna in detail, the authors hope to eliminate these problems for future stratigraphers and geologic mappers.

Previous work

The Carthage coal field (Fig. 1), Socorro County, is a key Upper Cretaceous stratigraphic and biostratigraphic control point in central New Mexico because it 1) provides the lithologic and paleontologic links from the better known, more or less continuous...
of drab shale, but lists no fossils from it (Fig. 3).

Lee (1916, p. 41), in his study of the relationship between the Cretaceous formations of Colorado and New Mexico to the Rocky Mountains, recognizes that Carthage is the southernmost locality in the Rocky Mountain region with a "satisfactory" Upper Cretaceous section. He repeats Gardner's (1910) measured section, but correlates the 895 ft of marine deposits with the Mancos Shale of the San Juan Basin (Fig. 3).

Darton (1928, p. 74–75), in his monumental discussion of the geology of New Mexico, repeats Gardner's (1910) section, but suggests that the fossiliferous sandstone beds above the 500 ft of drab shale are "... the Greenhorn limestone underlain by the Graneros shale, and the upper fossiliferous bed with concretions is closely similar to the Carlile shale in the northern part of the State."

Rankin (1944), in his stratigraphy of the Colorado Group in New Mexico, presents the first new measured section at Carthage and extends the Great Plains terminology of Graneros Shale, Greenhorn Limestone, and Carlile Shale into the drab shale of the Carthage area (Fig. 3). Rankin's (1944, p. 21–22) section at Carthage was "...[measured near Tokay, T. 14 [sic] N., R. 2 E., Socorro County, New Mexico, by C. E. Needham; supplemented by data added by the author."

Thus, Rankin's measured section near the town of Tokay is in the same general area (major fault block) as the type section of the Tokay Tongue. Rankin shows the lower Mancos to be considerably thinner at 297 ft than both Gardner's section and the one presented in this paper; his section may have been measured across unrecognized faults. He subdivides the lower Mancos into three units: 1) a lower black fissile shale, 157 ft thick that is very sandy near the base (the Graneros shale); 2) a middle black, calcareous shale, 30 ft thick, with thin calcareous sandstones at the top and four-to-eight-inch thick limestones near the base (the Greenhorn limestone); and 3) an upper silty to sandy shale, 110 ft thick, with numerous limestone concretions (basal part of the Carlile shale). Rankin (1944, p. 25) recognizes the great stratigraphic utility of the "... Greenhorn limestone [that was] deposited so uniformly over such a wide area." On page 9 he notes that "[w]herever the Greenhorn has been studied in northern New Mexico, the characteristic fossil, Inoceramus labiatus Schlotheim has been found. Baculites asper Norton is also common." He finds the uniformity of faunal types over such a wide area to be "most unusual." (Note: Inoceramus labiatus was a general form that today would include Mytiloides mytiloides, M. puelpoensis, and M. battini from the upper part of the Bridge Creek; and Baculites asper is a misidentification of Sciponoceras gracile (Shumard), the only baculite to occur in the Bridge Creek Limestone Beds, from the basal part.)

Pike (1947, p. 87), in his classic paper on the intertonguing Upper Cretaceous of the southwest, uses Gardner's (1910) measured section at Carthage (his section "P"). He uses the informal "lower Mancos Shale" for the 500 feet of drab, marine shale between the "Dakota" Sandstone and the lower part of the Gallup Member of the Mesaverde (= Tres Hermanos Formation). Although Pike (1947, p. 88) refers to Rankin's (1944) work, he does not use his measured section or fossils. The extreme thickness of the "Dakota" at Carthage suggests to Pike (1947, p. 87) that the "Dakota" represented both the Dakota (?) and Tres Hermanos Sandstones of earlier workers and that the top of the "Dakota" was of Graneros age. Pike (1947, p. 88) qualifies his correlations by saying they "...have been made entirely upon lithologic evidence, sequence of beds, and interval and are not supported by such meager paleontological evidence as is available." However, in his correlation chart from Mesa Verde, Colorado, to Atarque, New Mexico, Pike (1947, pl. 11) uses the Zones of Inoceramus labiatus (= Mytiloides mytiloides) and Gryphaea (= Pycnodonte) neuberryi to help correlate the lower part of the Mancos Shale. A lower [portion of the] Mancos Shale and the higher Pescado Tongue are indicated at Carthage on his three-dimensional correlation diagram (Pike 1947, pl. 12). On page 87 Pike refers to the lower Mancos simply as "... drab marine shale."

Wilpolt and Wanek (1951), on their geologic map of the area from Carthage to Chupadera Mesa, Socorro County, New Mexico, used the informal term "lower Mancos" for the 500 feet of drab shale above the Greenhorn Limestone. The boundaries of the informal "lower Mancos Shale" are from the top of the Greenhorn Limestone at the base of the "Dakota" Sandstone to the top of what is now known as the Mancos Shale. This "lower Mancos" is a combination of the old "Dakota" Sandstone and the "Dakota" Sandstone equivalents and the "Dakota" Sandstone equivalents are the same as the Mancos Shale. This is an example of how geological terminology changes with time.

The geologic literature on the Carthage coal field extends back to at least 1868, when Le Conte (1868, p. 136) mentioned coal from the mine eight miles east of San Antonio and the Rio Grande. Interest in the area has continued over the intervening 147 years not only because of the economic importance of coal to New Mexico, but also because of good exposures, abundant fossils, and well-exposed structures of Laramide and Rio Grande Rift ages in the coal field. Carthage has become a natural geologic laboratory for generations of students studying at the New Mexico Institute of Mining and Technology, which was established in Socorro in 1889.

The earliest fossil collections from Carthage date back to at least 1905 when Willis T. Lee, U.S. Geological Survey, collected fossils from the base of the Fite Ranch Sandstone Member of the Tres Hermanos Formation (Kauffman, 1965, p. 76, localities 63 and 64).

Reports dealing specifically with the lowest portion of the Mancos Shale at Carthage span more than 100 years. Gardner (1910), in his report on the Carthage coal field, published the first measured section at Carthage. He subdivides the Upper Cretaceous into three units: Dakota(?), Sandstone, Colorado Group, and Montana Group. The basal unit of his 895-ft-thick Colorado Group is the shale herein named the Tokay Tongue; he describes it as 500 feet...
Mexico, differentiate the Mancos Shale at Carthage into three informal members; a lower shale (= Tokay Tongue), a middle sandstone (= Tres Hermanos Formation); and an upper shale (= D-Cross Tongue). They describe the lower member as “dark gray to dove-gray, friable, calcareous shale with several beds of flaggy limestone just above the middle,” 295–340 ft thick. Their flaggy limestone is identifiable as today’s Bridge Creek Limestone Beds. Budding (1963) used the same scheme in a field trip guide to the Carthage coal field.

Cobban and Reeside (1952), Dane and Bachman (1965), and Molenaar (1974) call the lower shale at Carthage the Mancos Shale. Cobban and Reeside (1952), in their correlation of Western Interior Cretaceous Formations, indicate that there is a “thin limestone member” near the base; Dane and Bachman (1965) generalize Cretaceous units for use on the geologic map of New Mexico; and Molenaar (1974), whose emphasis was on the stratigraphically higher Gallup Sandstone, shows only a portion of the shale that he called “lower Mancos Shale.”

Cobban and Hook (1979, fig. 3), in a graphic section at Carthage in their study of a middle Turonian ammonite fauna from the Western Interior, present a newly measured section at Carthage that shows the lower tongue of Mancos Shale to be about 440 ft thick with a 60 ft limestone unit (= Greenhorn Limestone of Rankin 1944), 200 ft above the base. Their section contains a considerable amount of cover in the lower half of the unit; it was measured about 0.5 mi east of the type section of the Tokay Tongue, in the next major fault block to the east (Anderson and Osburn 1983). However, they are the first to date the shale section from top to bottom paleontologically. They show four fossils collections in the lower shale tongue: a middle Cenomanian *Sciponoceras* collection near the base; an upper Cenomanian *Inoceramus arvanus* collection at the base of the limestone; an early Turonian *Collignoniceras* collection at the top of the limestone; and a middle Turonian *Atarque Sandstone Member*

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorado Group upper 395 ft</td>
<td>Mancos shale (395 ft)</td>
<td>Greenhorn limestone (30 ft)</td>
<td>Caliche shale (upper part)</td>
<td>lower part of Gallup Member the Mesaverse (40 ft)</td>
<td>middle sandstone member</td>
<td>Tres Hermanos Formation Atarque Sandstone Member</td>
</tr>
<tr>
<td>Colorado Group lower 500 ft</td>
<td>Mancos shale (500 ft)</td>
<td>Graneros shale (500 ft)</td>
<td>Greenhorn limestone (30 ft)</td>
<td>lower Mancos Shale (500 ft)</td>
<td>lower shale member (295–340 ft)</td>
<td>noncalcareous shale unit 88 ft (27 m)</td>
</tr>
</tbody>
</table>

Dakota (?) Ss. Dakota Sandstone? (= Tres Hermanos Ss.?) Dakota (?) Ss. Dakota (?) Sandstone “Dakota” Sandstone Dakota Sandstone Dakota Sandstone

Figure 3—Evolution of stratigraphic nomenclature used to describe the lower tongue of the Mancos Shale in the Carthage coal field from 1910 to 2015.

Mexico, differentiate the Mancos Shale at Carthage into three informal members; a lower shale (= Tokay Tongue), a middle sandstone (= Tres Hermanos Formation); and an upper shale (= D-Cross Tongue). They describe the lower member as “dark gray to dove-gray, friable, calcareous shale with several beds of flaggy limestone just above the middle,” 295–340 ft thick. Their flaggy limestone is identifiable as today’s Bridge Creek Limestone Beds. Budding (1963) used the same scheme in a field trip guide to the Carthage coal field.

Cobban and Reeside (1952), Dane and Bachman (1965), and Molenaar (1974) call the lower shale at Carthage the Mancos Shale. Cobban and Reeside (1952), in their correlation of Western Interior Cretaceous Formations, indicate that there is a “thin limestone member” near the base; Dane and Bachman (1965) generalize Cretaceous units for use on the geologic map of New Mexico; and Molenaar (1974), whose emphasis was on the stratigraphically higher Gallup Sandstone, shows only a portion of the shale that he called “lower Mancos Shale.”

Cobban and Hook (1979, fig. 3), in a graphic section at Carthage in their study of a middle Turonian ammonite fauna from the Western Interior, present a newly measured section at Carthage that shows the lower tongue of Mancos Shale to be about 440 ft thick with a 60 ft limestone unit (= Greenhorn Limestone of Rankin 1944), 200 ft above the base. Their section contains a considerable amount of cover in the lower half of the unit; it was measured about 0.5 mi east of the type section of the Tokay Tongue, in the next major fault block to the east (Anderson and Osburn 1983). However, they are the first to date the shale section from top to bottom paleontologically. They show four fossils collections in the lower shale tongue: a middle Cenomanian *Inoceramus arvanus* collection near the base; an upper Cenomanian *Sciponoceras gracile* collection at the base of the limestone; an early Turonian *Mammites nodosoides* collection at the top of the limestone; and a middle Turonian *Collignoniceras woollgari woollgari* collection at the top of the shale.

Hook and Cobban (1981, p. 6), in a paper on Greenhorn-age discontinuity surfaces in southwest New Mexico, demonstrated that the limestone unit in the middle of the lower tongue of Mancos Shale was equivalent to only the lower part of the uppermost member of the Greenhorn Limestone, the Bridge Creek Member, at its principal reference section near Pueblo, Colorado (see Fig. 5). They, therefore, designated this limestone unit as the Bridge Creek Limestone Member of the Colorado Formation for use in southwest New Mexico.

Hook et al. (1983, pp. 24–27 and chart 1, control point 59), in their paper on Cretaceous stratigraphy in west-central New Mexico,
reduce the stratigraphic rank of the Bridge Creek from member to bed for use in the lower tongue of the Mancos Shale at Carthage. This puts the units at Carthage in compliance with the North American Code of Stratigraphic Nomenclature. Their detailed graphic section shows the lower part of the Mancos Shale to be 440 ft thick, with sandy/silty beds at the base; a 57-ft-thick limestone and shale unit, the Bridge Creek Limestone Beds, that begins 210 ft above the Dakota Sandstone; and a 170-ft-thick shale that lies between the Bridge Creek Beds and the Tres Hermosas Formation. They show nine numbered, USGS Mesozoic fossil collections ranging in age from middle Cenomanian at the base of the shale to middle Turonian at the top. A thick bentonite (the x-bentonite of present usage) is shown about 30 ft above the Dakota, as are two thick bentonites just below the base of the Bridge Creek. Up to the present paper, this is the best-documented (paleontologically and lithologically) section in the literature on the lower shale tongue at Carthage. The same stratigraphic nomenclature is used in Hook (1983 and 1984).

Lucas et al. (1988, fig. 14, col. 6) in a diagram showing the correlation of the Upper Cretaceous in the Coosyes Range with rocks elsewhere in New Mexico, show the shale tongue that lies between the Dakota Sandstone and Tres Hermosas Formation at Carthage as the “lower part of the Mancos Shale.” They (Lucas et al. 1988, fig. 14, col. 6) mis-assigned member-rank status to the Bridge Creek Limestone, which is within a member-rank unit, the lower part of the Mancos Shale.

Lucas et al. (2000, p. fig. 7) correlate the lower part of the Mancos at Carthage with the (less inclusive, thinner) Rio Salado Tongue. Compounding the microrrelation error, they show a formally named limestone unit, the Bridge Creek [Limestone] Member, in the middle part of their Rio Salado Tongue, which is itself a member–rank stratigraphic unit.

Lucas and Spielmann (2009, p. 311 and fig. 1), in their paper on a selachian assemblage at Carthage, split the Mancos Shale below the Tres Hermosas Formation into two parts with a limestone unit. Both parts are labeled Mancos Shale (formational rank) on their figure 1. The limestone is called the Greenhorn Limestone (formational rank) in the title, but labeled Bridge Creek Limestone (formational rank) on their figure 1.

In this paper the 575 ft (175 m)-thick Tokay Tongue is subdivided into five lithologically defined bed-rank units. In ascending order they are 1) a shale and sandstone unit, 182 ft (55 m) thick; 2) a calcareous shale and bentonite unit, 120 ft (36 m) thick, containing 40 individual bentonites; 3) the Bridge Creek Limestone Beds, 72 ft (22 m) thick; 4) a calcareous shale unit, 112 ft (34 m) thick; and 5) a noncalcareous shale unit, 88 ft (27 m) thick. The name of the lowest bed-rank unit (#1) is changed slightly from that given in Hook (2009) from sandstone and shale to shale and sandstone to reflect the greater amount of shale than sandstone in the unit. Initially, the offshore muds that became the lower part of the shale and sandstone unit consisted of noncalcareous clays, reflecting the proximity of the western shoreline to Carthage (Fig. 1A, B). As the shoreline transgressed farther to the southwest during T-1, these offshore muds became more and more calcareous until the noncalcareous clays are at the base of the Bridge Creek Limestone Beds, deposited at the time of maximum transgression of the seaway (Fig. 1C). As the shoreline retreated (regressed) during R-1, these calcareous muds were replaced by noncalcareous muds and eventually coarser grained clastics, now called the Atarque Sandstone Member of the Tres Hermosas Formation. The broad pattern of shale units within the Tokay Tongue consists, from bottom to top, of noncalcareous shale that gradually becomes more calcareous until limestones appear near the middle of the tongue, followed by calcareous shale that becomes less and less calcareous. Thus, noncalcareous and calcareous shale units are arranged symmetrically on either side of the limestone beds. Appendix 1 repository contains the detailed measured section for the Tokay Tongue at its type section.

The lower contact of the Tokay Tongue is conformable with the Dakota Sandstone; the upper few inches of the Dakota are buried below a chert-pebble conglomerate, which could indicate an intraformational unconformity within the Dakota or simply a transgressive lag associated with the initial transgression. The upper contact of the Tokay Tongue is fairly abrupt into the overlying Atarque Sandstone Member of the Tres Hermosas Formation. Both upper and lower contacts are diachronous throughout the tongue’s geographic extent in New Mexico (Fig. 1). The basal contact at Carthage is in the middle Cenomanian Acanthoceras bellense Zone; at Mescal Canyon, it is one zone higher in the A. amphibolum Zone. The upper contact at Mescal Canyon is in the lower Turonian Mammites nodosoides Zone; at Carthage it is one zone higher in the middle Turonian Collignoniceras woolgari Zone (Hook et al. 2012).

At Carthage the upper few inches of the Dakota Sandstone (Fig. 4, unit 1) through the basal part of the Bridge Creek Limestone Beds (Fig. 4, unit 181) represent deposition during the initial transgression (early T-1) of the Late Cretaceous Seaway into New Mexico that began in the middle Cenomanian. As the southern shoreline of Seboyeta Bay (Fig. 1A) transgressed south and south-westward across New Mexico (Fig. 1B), the distance from the shoreline and water depth at Carthage increased. Nearshore coarser-grained sands and silts at the base of the section were succeeded by more offshore noncalcareous clays, then calcareous clays, and eventually, at maximum transgression (Fig. 1C), almost pure carbonates that became the base of the Bridge Creek Limestone Beds. The upper part of the Bridge Creek through the remainder of the Tokay Tongue into the basal part of the Tres Hermosas Formation (Fig. 4, units 192–234) were deposited during the initial regression (R-1) of the seaway. As the western shoreline of the seaway retreated north-easterly across New Mexico (Fig. 1D), the distance from the shoreline and water depth at Carthage decreased. The offshore carbonates of the upper Bridge Creek were succeeded by nearer-shore, calcareous clays, then noncalcareous clays, and eventually, the nearshore, coarser clastics of the Atarque Sandstone Member of the Tres Hermosas Formation. The overlying Carrage Member is nonmarine, reflecting deposition as the shoreline retreated to the northeast beyond Carthage and reached maximum regression during this initial depositional cycle.

The lower, transgressive contact of the Tokay Tongue with the Dakota Sandstone rises to the south and west (landward) of Socorro County from the earliest middle Cenomanian at Riley, New Mexico, to late middle Cenomanian in the Caballo Mountains, near Truth or Consequences, to earliest late Cenomanian in the Deming/Silver City area. Its upper, regressive contact rises to the north and east (seaward) from latest early Turonian near Truth or Consequences to earliest late Cenomanian near Seboyeta Bay. Its boundary at Carthage is in the late Cenomanian Collignoniceras woolgari Zone (Hook et al. 2007, 2012). The Holly Chalk Sand Member of the Atarque Sandstone is noncalcareous, and the Atarque Sandstone is the uppermost unit of the Tres Hermosas Formation (Hook et al. 2007, 2012). The Atarque Sandstone Member of the Tres Hermosas Formation is the uppermost unit of the Tres Hermosas Formation (Hook et al. 2007, 2012).

Ash beds (bentonites) are extremely abundant in the Tokay Tongue at Carthage. There are at least 77 discrete bentonites
Figure 4—Detailed, measured section of the Tokay Tongue of the Mancos Shale at its type section in the Carthage coal field, Socorro County, New Mexico. The tongue is divided into five bed-rank units, only one of which is formally named. Numbers to the left of the lithologic column are measured section units; more information on each unit can be found in Appendix 1. (NOTE: Appendix 1 in blue links to data repository 20150001 throughout this article). A small x to the right of the column indicates the position of a bentonite; numbers preceded by the letter D are USGS Denver Mesozoic Invertebrate collecting localities.
distributed throughout the lower 486 ft (148 m) of the tongue; in addition there are five ferruginous beds that may represent altered bentonites. The upper 89 ft (27 m) of the tongue, which has no observed bentonites, underlies the ridge-forming Atarque Sandstone and is generally covered with sandstone debris. The measured bentonites range from 0.25 to 14 inches (0.6 to 35.6 cm) in thickness; most are white, but weather orange. On the basis of thickness, stratigraphic position, and underlying fauna, unit 26, a 12-inch- (30.5 cm-) thick bentonite, 40 ft (12.2 m) above the Dakota Sandstone is correlated with the widespread x-bentonite, which is found throughout the Western Interior. Four bentonites above or just below the base of the Bridge Creek Limestone Beds have been used by Elder (1989) to make high precision correlations between Carthage and sections elsewhere in the Western Interior. The bentonites in the Tokay Tongue will be discussed in more detail in a later section.

Biostratigraphy

Fossils collected from the Tokay Tongue of the Mancos Shale in its type area in the Carthage coal field, Socorro County, New Mexico, range in age from late middle Cenomanian to early middle Turonian, spanning approximately 3.78 my from 95.15 mybp to 91.37 mybp (Fig. 5). The lowest collections from 4 to 8 ft (1.2–2.4 m) above the base of the shale and sandstone unit include *Acanthoceras bellense*, *Inoceramus arvamus*, and *Ostrea beloti*, all indicative of the middle Cenomanian *A. bellense* Zone (Fig. 4, D5774, D14726, and D14450). The highest collection, at the contact between the calcarous and noncalcarous shale units, consists of *Mytiloides subhercynicus*, indicative of the middle Turonian *Collignonica woollgari* woollgari Subzone (Fig. 4, D10129). In addition, *C. woollgari* woollgari occurs below this collection in the calcarous shale unit (Fig. 4, D14708-09) and above it at the base of the Atarque Sandstone Member of the Tres Hermanos Formation (Fig. 4, D10241).

Index fossils indicative of seven of the first 19 standard Upper Cretaceous ammonite zones for New Mexico have been collected from the Tokay Tongue at Carthage (Fig. 5): three ammonites and three inoceramids from the shale and sandstone unit (#1); zero from the calcarous shale and bentonite unit (#2), four inoceramids and two ammonites from the Bridge Creek Limestone Beds (#3); one ammonite and one inoceramid from the calcarous shale unit (#4); and zero from the noncalcarous shale unit (#5). The two units without index ammonites or inoceramids are unfossiliferous, at least at the macrofossil level.

Two assumptions apply to the ages shown for the ammonite zones on Figure 5. First, all dated bentonites are assumed to be from the base of the ammonite zone from which it was collected. Second, if there is more than one ammonite zone between two dated bentonites, each zone is assumed to be of equal duration. The first assumption is generally not true. For example, a sample of the marker bentonite (= x-bentonite) from Niobrara County, Wyoming, provides the age date for the middle Cenomanian *Acanthoceras amphibolatum* Zone (Obradovich and Cobban 1975, table III). In the Pueblo, Colorado, area the x-bentonite lies just above the middle of the known stratigraphic range of *A. amphibolatum* (Cobban and Scott 1972). The second assumption concerning the durations of ammonite zones is untestable, but probably also not true. However, these assumptions provide a means to make gross estimates for compacted sedimentation rates and frequency of events within the Tokay Tongue, especially for the lower three units, where there is more detailed faunal data. The red age dates shown on Figure 5 are based on dated bentonites in the fossil zone somewhere in the Western Interior (Cobban et al. 2006); black age dates are interpolated between calculated ages by applying the two assumptions discussed above.

In addition, the faunal duration of each bed-rank unit of the Tokay Tongue is simplified by assuming that: unit #1 lasted from the beginning of the *Acanthoceras bellense* Zone to the end of the *Calycoceras cantiturrium* Zone; unit #2 lasted from the beginning of the *Dumeganoceras* spp. Zone to the end of the *Vascoceras diar- tianum* Zone; Unit #3, the Bridge Creek Limestone Beds, lasted from the beginning of the *Eomorphoceras septemseriatum* Zone to the end of the *Mammites nodossoides* Zone; and units #4 and #5, and the Atarque Sandstone Member of the Tres Hermanos Formation split the *Collignonica woollgari* woollgari Subzone evenly.

Using the age dates from Figure 5, Table 1 indicates that the entire Tokay Tongue was deposited over ~3.78 my beginning about 95.15 mybp and ending about 91.37 mybp; it has a compacted sedimentation rate of 1.8 inches/ky (4.6 cm/ky). Unit #1 was deposited over ~680 ky, representing about 18% of the total time, with a compacted sedimentation rate of 3.2 inches/ky (8.2 cm/ky); unit #2, ~790 ky, 21%, with 1.8 inches/ky (4.6 cm/ky); unit #3, the Bridge Creek Limestone Beds, ~1, 980 ky, 52%, with 0.4 inches/ky (1.1 cm/ky); units #4, ~170 ky, 5%, 8.0 inches/ky (20.3 cm/ky); and #5, ~160 ky, 4%, with 6.6 inches/ky (16.8 cm/ky). These quantitative estimates are compatible with the qualitative assessments based on shoreline movement. As the T-1 shoreline moved southwestward across the area, the sedimentation rate would be relatively high as sands and silts were deposited (basal part of unit #1). As the shoreline transgressed farther

<table>
<thead>
<tr>
<th>Unit</th>
<th>Name</th>
<th>Thickness -ft(m)</th>
<th>% thickness of total Tongue</th>
<th>Start (mybp)</th>
<th>End (mybp)</th>
<th>Duration (ky)</th>
<th>% duration of total Tongue</th>
<th>Rate-in/ky (cm/ky)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#5</td>
<td>noncalcarous shale</td>
<td>88 (27)</td>
<td>15.30%</td>
<td>91.53</td>
<td>91.37</td>
<td>160</td>
<td>4.23%</td>
<td>6.6 (16.8)</td>
</tr>
<tr>
<td>#4</td>
<td>calcarous shale</td>
<td>113 (34)</td>
<td>19.65%</td>
<td>91.70</td>
<td>91.53</td>
<td>170</td>
<td>4.50%</td>
<td>8.0 (20.3)</td>
</tr>
<tr>
<td>#3</td>
<td>Bridge Creek Limestone Beds</td>
<td>72 (22)</td>
<td>12.52%</td>
<td>93.68</td>
<td>91.70</td>
<td>1,980</td>
<td>52.38%</td>
<td>0.4 (1.1)</td>
</tr>
<tr>
<td>#2</td>
<td>calcarous shale and bentonite</td>
<td>120 (36)</td>
<td>20.87%</td>
<td>94.47</td>
<td>93.68</td>
<td>790</td>
<td>20.90%</td>
<td>1.8 (4.6)</td>
</tr>
<tr>
<td>#1</td>
<td>shale and sandstone</td>
<td>182 (55)</td>
<td>31.65%</td>
<td>95.15</td>
<td>94.47</td>
<td>680</td>
<td>17.99%</td>
<td>3.2 (8.2)</td>
</tr>
</tbody>
</table>

Table 1—Compacted sedimentation rates in the Tokay Tongue of the Mancos Shale.
<table>
<thead>
<tr>
<th>Stage</th>
<th>New Mexico Ammonite Zone</th>
<th>Age (Ma)</th>
<th>Composite Laguna/ Puertecito*section, NM</th>
<th>Carthage coal field, NM</th>
<th>Pueblo, CO, Global Boundary Stratotype</th>
<th>New Mexico Inoceramid Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turonian</td>
<td>Collignoniceras woolgari regulare</td>
<td>91.20</td>
<td>Atarque Sandstone Member*</td>
<td>Tres Hermanos Formation</td>
<td>Atarque Sandstone Member</td>
<td>Mytiloides hercynicus</td>
</tr>
<tr>
<td></td>
<td>Collignoniceras woolgari woolgari*</td>
<td>91.70</td>
<td></td>
<td></td>
<td></td>
<td>Mytiloides subhercynicus*</td>
</tr>
<tr>
<td>Mammmites nodosoides*</td>
<td>92.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mytiloides mytiloides*</td>
</tr>
<tr>
<td>Vascocones birchbyi</td>
<td>92.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mytiloides kossmati</td>
</tr>
<tr>
<td>Pseudospincites flexuosum</td>
<td>93.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mytiloides pueblensis*</td>
</tr>
<tr>
<td>Walnicocones devonense</td>
<td>93.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mytiloides hattini*</td>
</tr>
<tr>
<td>Nigeroceras scoti</td>
<td>93.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Inoceramus ginterensis</td>
</tr>
<tr>
<td>Neoecinoceras juddii</td>
<td>93.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Inoceramus prefragilis stephensoni*</td>
</tr>
<tr>
<td>Burroceras clydense</td>
<td>93.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Inoceramus macconnelli</td>
</tr>
<tr>
<td>Euomphaloceras septemseriatum*</td>
<td>93.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Inoceramus arvanus*</td>
</tr>
<tr>
<td>Vascocones diartianum*</td>
<td>93.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Inoceramus rutherfordi*</td>
</tr>
<tr>
<td>Metoicocones mosbyense</td>
<td>94.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Inoceramus pictus*</td>
</tr>
<tr>
<td>(=Dunveganoceras spp.)</td>
<td>94.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Inoceramus altaoshanensis</td>
</tr>
<tr>
<td>Calycoceras canitaurinum*</td>
<td>94.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Inoceramus ginterensis</td>
</tr>
<tr>
<td>Plesiocancones wyomingensis</td>
<td>94.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Inoceramus arvanus*</td>
</tr>
<tr>
<td>Acantoceras bellense*</td>
<td>95.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Inoceramus arvanus*</td>
</tr>
<tr>
<td>Acantoceras mulldorrense</td>
<td>95.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Inoceramus macconnelli</td>
</tr>
<tr>
<td>Acantoceras granerosense</td>
<td>95.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Inoceramus rutherfordi*</td>
</tr>
<tr>
<td>Conlinicocones tarrantense</td>
<td>95.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Inoceramus pictus*</td>
</tr>
<tr>
<td>Older rocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Inoceramus prefragilis stephensoni*</td>
</tr>
</tbody>
</table>

Figure 5—Correlation of the Tokay Tongue of the Mancos Shale at its type section in the Carthage coal field, New Mexico, with 1) the intertongued Dakota Sandstone and Mancos Shale in west-central New Mexico and 2) the reference sections of the Graneros Shale and Greenhorn Limestone near Pueblo, Colorado. Standard ammonite and inoceramid zones of New Mexico (=southern Western Interior) are shown to the left and right side of the diagram. Symbols used: "a" indicates that the zonal index ammonite occurs in the section; "i", that the index inoceramid occurs in the section; "o", that some other mollusk fossil confined to that zone occurs in the section; a number preceded by "CS" is the bed number in the Carthage measured section (see Fig. 4 and Appendix 1); T-1 = transgression 1; and R-1 = regression 1. Red age dates are calculated from bentonites collected within the zone somewhere in the Western Interior; black age dates are interpolated. An asterisk following a fossil name in the zonal column indicates that index species has been collected from the Tokay Tongue at its type section. Color code: yellow = marine sandstone; gray = marine shale; brown = nonmarine sandstone. The Laguna section (Oak Canyon Member through Two Wells Tongue) is from Landis et al. (1973, pp. J4-J8); the Puertecito section (Rio Salado Tongue) is from Hook et al. (1983, p. 25); the Pueblo section (Rock Canyon Anticline) is from Cobban and Scott (1972). Only fossils collected from these measured sections are indicated in the left-hand portion of the stratigraphic columns.
One of his studied sections was at Carthage. Discrete bentonites within the Tokay Tongue comprise an aggregate thickness of 14 cm. The 77 measured ash beds are distributed unevenly through the Tokay Tongue at its type section that the normally medium dark gray shales appear light gray in satellite images. Ash beds (=bentonites) are so abundant in the well-exposed shales of the Tokay Tongue at Carthage, which he called the lower tongue, that two of them below the Bridge Creek Limestone, two within the unit, and one above. These differences over such a small area are In terms of frequency of eruptions, the Tokay Tongue as a whole records one ash fall approximately every 49 ky (Table 2). The lower two bed rank units (#1 and #2) have frequencies of 28 and 20 ky/ash indicating that the middle and earliest late Cenomanian was a time of intense volcanic activity in the southern Western Interior. The average frequency of eruptions decreases in the overlying Bridge Creek Limestone Beds (#3) and calcareous shale unit (#4) to one eruption every 198 ky and 57 ky, respectively.

The bar graph (Fig. 6) summarizes much of the descriptive information from Table 2 as well as showing the thickness distribution of the bentonites within the tongue. The waxing and waning of the intensity of volcanic activity, which may reflect the proximity of active volcanoes, are shown in terms of thickness of individual bentonites that are arranged chronologically, but not to time scale, with the oldest bed on the left and youngest bed on the right. Bentonite numbers on the horizontal axis correspond to the numbered bentonites in the measured section (Appendix 1).

Using an arbitrary cutoff thickness of 4 inches (10 cm) to separate thick bentonites from thin, there are 14 of these high intensity events recorded within the entire Tokay Tongue, representing 18% of the measured bentonites. Their distribution is uneven with 11 of them below the Bridge Creek Limestone, two within the unit, and one above. This pattern of waxing and waning bentonite thicknesses may also reflect factors other than intensity of volcanic activity, such as wind speed and direction, currents, waves, and storms. Several of the bentonites in Figure 6 are given descriptive names and will be discussed in chronological order below.

A thick bentonite bed (CS-26, #7), 40 ft (12.2 m) above the Dakota Sandstone in the basal shale and sandstone unit is the appropriate age and thickness to be the widespread middle Cenomanian x-bentonite that has been traced/correlated from Montana to northern New Mexico. Bed CS-26 is as much as 12 inches (30 cm) thick and probably lies within the Acanthoceras amphibolatum Zone, although no fossils that are confined to A. amphibolatum Zone have been found above the bentonite (Figs. 4). CS-26 produces a wide outcrop band at Carthage because it occurs on or just above a resistant, tan-weathering siltstone ledge (CS-24) that forms a major dipslope. The soft bentonite tends to smear along this resistant dipslope, creating a white outcrop belt that is several times wider than the bentonite is thick.

In the major fault block that comprises the type area of the Tokay Tongue, the x-bentonite varies in thickness between 10 and 12 inches (25–30 cm). It can sit directly on the underlying siltstone ledge (CS-24) or be separated from the ledge by an inch or so of shale (CS-25). These differences over such a small area are probably the effects of local currents.

<table>
<thead>
<tr>
<th>Unit Name</th>
<th>Unit T-ft(m)</th>
<th>Duration (ky)</th>
<th># of bentonites</th>
<th># >= 4 in (10 cm)</th>
<th>max T-in (cm)</th>
<th>total T-in (cm)</th>
<th>% of unit frequency (ky/fall)</th>
<th>T/fall [in(cm)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>#5</td>
<td>noncalcareous shale</td>
<td>88 (27)</td>
<td>160</td>
<td>0</td>
<td>0</td>
<td>---</td>
<td>0 (0)</td>
<td>0.00%</td>
</tr>
<tr>
<td>#4</td>
<td>calcareous shale</td>
<td>113 (34)</td>
<td>170</td>
<td>3</td>
<td>1 (33%)</td>
<td>7 (17.8)</td>
<td>11 (28)</td>
<td>0.82%</td>
</tr>
<tr>
<td>#3</td>
<td>Bridge Creek Limestone Beds</td>
<td>72 (22)</td>
<td>1,980</td>
<td>10</td>
<td>2 (20%)</td>
<td>6 (15.2)</td>
<td>24.5 (62.2)</td>
<td>2.83%</td>
</tr>
<tr>
<td>#2</td>
<td>calcareous shale & bentonite</td>
<td>120 (36)</td>
<td>790</td>
<td>40</td>
<td>6 (15%)</td>
<td>14 (35.6)</td>
<td>79.8 (202.7)</td>
<td>5.54%</td>
</tr>
<tr>
<td>#1</td>
<td>shale and sandstone</td>
<td>182 (55)</td>
<td>680</td>
<td>24</td>
<td>5 (21%)</td>
<td>12 (30.5)</td>
<td>60.0 (152.4)</td>
<td>2.77%</td>
</tr>
</tbody>
</table>

Table 2—Volcanic activity recorded in the Tokay Tongue of the Mancos Shale.
Tokay Tongue Bentonites

Figure 6—Bar graph showing thickness of measured ash beds within the bed-rank units of the Tokay Tongue at its type section arranged chronologically from oldest (1) to youngest (77). Blue, horizontal dashed line is at an arbitrary thickness of 4 inches (10 cm), separating thick from thin bentonites. Key or unusual bentonites are labeled with names and bed numbers (see Fig. 4 and Appendix 1).

The x-bentonite is an important middle Cenomanian marker bed in the Western Interior. In the Pueblo, Colorado, area, for example, Cobban and Scott (1972) use it as the boundary between the Graneros Shale (below) and the Lincoln Member of the Greenhorn Limestone (above). It provides the age date of 94.96 Ma for the middle Cenomanian Acanthoceras amphibolum Zone used throughout the Western Interior (Cobban et al. 2006). The x-bentonite lies approximately in the middle of the range of A. amphibolum at Pueblo.

Grayish-brown barite nodules, most irregularly shaped spherical masses, up to 3 inches (7.6 cm) in diameter with a radial internal structure, litter the ground below bentonites #16 and #19 (CS-62 and CS-68). These two bentonites are 2 and 4 inches (5 and 10 cm) thick, respectively, and occur 115 and 120 ft (35 and 37 m) above the top of the Dakota in the shale and sandstone unit. The barite nodules are probably alteration products related to the ash.

Two of the thickest bentonites in the shale and sandstone unit, #21 (CS-72), which is 6 inches (15.2 cm) thick, and #22 (CS-74), which is 7 inches (17.8 cm) thick, are separated from each other by 1.5 ft (46 cm) of calcareous shale. Their distinctive outcrop pattern on a near-horizontal surface near the top of unit looks like white tire tracks or the tracks from a narrow gauge railroad.

The thickest ash bed in the Tokay Tongue is # 51 (CS-143), a 14 inch- (36 cm-) thick, white-weathering bentonite that is in the upper third of the shale and bentonite unit, 36 ft (11 m) below the base of the Bridge Creek Limestone Beds. This bed shows up well on satellite images of the fault block as a white band offset by minor north-south trending, normal faults. If the compacted sedimentation rate for the entire shale and bentonite unit (1.6 inches/ky (4.1 cm/ky)) applied to this bentonite, it would have taken 8.8 ky to form! Obviously, the overall sedimentation rate does not apply to this (or any other) bentonite. This rate over-estimates the settling time of bentonites by at least three orders of magnitude (base 10).

The four lettered bentonites, A (# 64), B (# 66), C (#69), and D (# 70) (CS- 172, 183, 193, and 197) were used by Elder (1988) in his study on Upper Cretaceous bentonite beds in the southern Western Interior. From their isopachs he determined that the volcanic source areas were both northwest and southwest of the central Western Interior basin.

The last labeled bentonite on Fig. 6 is #77 (CS-229) is a 7 inch- (18 cm-) thick, white-weathering bentonite that can be used to establish the boundary between the calcareous and noncalcareous shale units. The 2 inch- (5 cm-) thick limestone (CS-230) that forms the boundary in the type area is not well-developed elsewhere in the coal field, but the bentonite is always present.

Detailed stratigraphy and biostratigraphy

In this section the stratigraphy and fauna of each of the five bed-rank units that comprise the 575 ft (175 m) thick Tokay Tongue of the Mancos Shale at its type locality in the Carthage coal field are discussed in detail. From bottom to top, these are: #1) the shale and sandstone unit (informal name); #2) calcareous shale and bentonite unit (informal name); #3) the Bridge Creek Limestone Beds (formal name); #4) calcareous shale unit (informal name); and #5) noncalcareous shale unit (informal name). Each of these bed-rank units is compared to (1) the principal reference sections for the Graneros Shale and Greenhorn Limestone near Pueblo, Colorado, and (2) the intertongued Dakota Sandstone/Mancos Shale sequence in west-central New Mexico.

Shale and sandstone unit (#1)

Stratigraphy—Unit #1, the shale and sandstone unit, is the thickest of the subdivisions of the Tokay Tongue (Table 1). Its 182 ft (55 m) thickness represents 32% of the total thickness of the tongue, even though its duration represents only 18% of that of the entire tongue. Its compacted sedimentation rate is 1.8 times greater than that of the tongue as a whole, primarily because its early sedimentation occurred in relatively nearshore environments as the T-1 shoreface developed up-coast. From this shoreline, transgressive across the area (Fig. 1 A, B). Unit #1 is composed primarily of medium to dark gray shale (94%), which includes ash beds, with a subsidiary amount (6%) of either fine-grained, tan weathering, thin bedded sandstone or siltstone. Both its lower and upper contacts are conformable. Its basal contact with the Dakota Sandstone is drawn at the base of 2.1 ft- (64 cm-) thick, dark gray, noncalcareous shale (CS-2) that lies on the Dakota dip sole (Figs. 4 and 7A). Its upper contact is placed at the last ridge-forming bed below the basal limestone in the Bridge Creek Limestone Beds, which forms the next ridge in the sequence. This resistant bed (CS-82) is a 3 inch- (8 cm-) thick, tan-weathering siltstone that creates an impressive plane of a dip sole that is completely clear...
sandstone ledge CS-3
Top Dakota Sandstone CS-1
noncalcareous shale CS-2
Tokay Tongue Mancos Shale
Dakota sandsstone
Top Dakota Sandstone CS-1
Calcareous shale & bentonite unit
Tokay Tongue CS-82
length = 20.75 cm

D14757 Acanthoceras bellense
height = 20.75 cm
length = 18.35 cm
shelf material
Top shale and sandstone unit CS-82

D14498 Acanthoceras bellense
D14490 Acanthoceras bellense (peel)
of weathered debris from the overlying shales (Figs. 4 and 7D, E). Shale beds in the lowest part of the unit are noncalcareous, but become progressively more calcareous up section (Fig. 4). Shales in the upper half of the unit cannot be differentiated visually from those in the overlying calcareous shale and bentonite unit. Presumably, the noncalcareous shales reflect the proximity of the shoreline with its influence of fresh water. By the time the x-bentonite was deposited, the shoreline was south of Truth or Consequences, at least 80 mi (128 km) southwest of Carthage (Fig. 1B). The shales above the x-bentonite are slightly calcareous; those stratigraphically higher become progressively more calcareous, although not every shale bed was tested (Fig. 4, Appendix 1).

There are at least 24 discrete bentonite beds in the shale and sandstone unit, including the foot-thick x-bentonite (Figs. 4, 7B,C) that lies 40 ft (12.2 m) above the base of the Tokay. Dividing the number of discrete ash beds by the calculated duration of the unit yields an average frequency of one volcanic eruption every 28 ky (Table 2). Five (21%) of the bentonites are at least 4 inches (10 cm) thick. The x-bentonite provides the age date of 94.96 Ma for the Acanthoceras amphibolum Zone (Fig. 5) that is used throughout the Western Interior (Cobban et al. 2006); the base of the x-bentonite (also called the marker bentonite) is used as the boundary between the Graneros Shale (below) and the Lincoln Member of the Greenhorn Limestone (above) in the Pueblo, Colorado, area, (Cobban and Scott, 1972).

The aggregate compacted thickness of the bentonites is 60 inches (152 cm) or ~2.8% of the unit. Average compacted thickness per fall is 2.5 inches (6.4 cm), slightly more than the average for the tongue. In addition, there are two ferruginous beds and one unusual limestone that may represent altered ash beds (Appendix 1). The limestone (CS-30) is gray, 2 inches (5 cm) thick, and crystalline. Its upper surface appears to be covered with thin, flattened tubes a few millimeters in diameter. The authors' first impression was that this surface consisted of coral branches. Closer inspection revealed that the tubes had no surface markings, were a centimeter or so long and arranged haphazardly on the surface. They were interpreted in the field as inorganic in origin. When dug out, one outcrop had a thin, powdery clay at the base of the limestone that may have been the remnants of a bentonite.

Fauna and age—The shale and sandstone unit is poorly fossiliferous in terms of megafaunal body fossils. Collected fossils consist of seven species of ammonites, three species of clams, and one species of oysters collected from only 10 of the 82 rock subunits in the shale and sandstone unit. With one exception these low diversity faunas are found in sandstones and siltstones. The lone exception is from sandy, limestone concretions near the top (Fig. 4, D14725 and D5778) that contains the lowermost upper Cenomanian zonal index ammonite Calycoceras cantauarium. However, the ammonite Metengonoceras acutum?, collected from CS-34 just below the middle of the unit, is known from only three other localities in the Western Interior: Colorado, Iowa, and Minnesota (Cobban 1987, p.C3).

The lowest fossils (D14726, D14490, and D5774) from the unit come from CS-3, a 7 ft (2.1 m) thick, thin-bedded, fine-grained sandstone that is 2.1 ft (64 cm) above the base of the tongue (Figs. 4 and 7A). Fossils collected from this ledge-forming unit include the ammonite Acanthoceras bellense (Fig. 7G, H), the clam Inoceramus arvamus, and the oyster Ostrea beloiti. Together, these fossils represent the upper middle Cenomanian A. bellense Zone (Fig. 5). Although the fauna is of low diversity, the clam and especially the oyster occur in great abundance, often as fragments on bedding planes. The ammonite, of which there are three specimens, occurs as impressions (bounce marks?) on bedding surfaces (Fig. 7G). Acanthoceras bellense is an uncommon ammonite in New Mexico, but is known from the Dakota Sandstone on the nearby Sevilleta National Wildlife Refuge (Hook and Cobban 2007, p. 94; Fig. 1). Acanthoceras bellense gave rise to the morphologically similar A. amphibolum, which occurs stratigraphically higher in the type section of the Tokay Tongue. The two species differ “...most obviously in the much earlier loss of differentiated inner and outer ventrolateral tubercles in A. amphibolum, where a massive horn develops, and the equally early loss of the siphonal tubercules (Kennedy and Cobban 1990, p. 104)."

The next level of fossils occurs in the siltstone ledges (CS-20 through CS-24) just beneath the x-bentonite (Figs. 4 and 7B,C), about 37 ft (11 m) above the Dakota. Collected fossils include the ammonites Acanthoceras amphibolum (D10128) and Turrilites acutus americanus (D14715), the clam Inoceramus rutherfordi (D14728), and the oyster Ostrea beloiti (D14716). These fossils represent the next higher middle Cenomanian zone of A. amphibolum. Preservation is the same as the previous zone. This assemblage is common in the Paguate Sandstone Tongue of the Dakota Sandstone in the San Juan Basin to the northwest (Cobban 1977, table 1).

The 40 ft (12 m) of slightly calcareous shale with interbedded thin sandstones above the x-bentonite is almost barren of megafauna. A thin sandstone about 5 ft (1.5 m) above the x-bentonite yielded a complete right valve of a large Ostrea beloiti (D15042) that has a height of 4.0 cm and a length of 2.4 cm. Metengonoceras acutum? (D5777) occurs as an internal mold in CS-34, a 3 inch-(8cm-) thick sandstone 81 ft (25 m) above the Dakota. Other fossils occurring with the Metengonoceras are Tarrantoceras sp. and Inoceramus prefragilis stephensi. Tarrantoceras sp. (D14718) occurs as an impression in CS-50, a 7 inch-(18 cm-) thick, fine-grained sandstone, 14 ft (4.3 m) higher in the section (Fig. 4).

Tarrantoceras is a common ammonite in west-central New Mexico often associated with Acanthoceras amphibolum (Cobban 1977, table 1). Cobban et al. (1989, p. 28) note that T. sellardsii can range as high as the Calycoceras cantauarium Zone. The presence of Inoceramus prefragilis stephensi in these collections indicates they are more likely to be from the Calycoceras cantauarium Zone.

Calycoceras cantauarium (D5778 and D14725), the name-bearer for the lowest upper Cenomanian ammonite zone occurs as poorly preserved internal molds in sandy limestone concretions (CS-80) about 20 ft (6.1 m) below the top of the unit (Figs. 4 and 7D). Occasional fragments of Inoceramus sp. occur in the concretions as well.

The uppermost bed (CS-82) of the shale and sandstone unit has produced only one fossil, but with a height of 20.75 cm and an estimated length of 18.25 cm it turns out to be the largest inoceramid collected in the Carthage area (Fig. 7E). This giant Inoceramus prefragilis stephensi (Fig. 4, D14757) was collected as a peel.

Assuming that the giant Inoceramus prefragilis stephensi (D14757) at the top of the unit (CS-2) represents the top of the basal upper Cenomanian Calycoceras cantauarium Zone and that the base of this unit (CS-2) represents the base of the middle Cenomanian Acanthoceras bellense Zone, then the shale and sandstone unit was deposited over ~680 ky (Table 1).

In terms of the principal reference section of the Graneros Shale and Greenhorn Limestone at Pueblo, Colorado (Cobban and Scott 1972), the 182 ft-(55 m-) thick sandstone and shale unit (CS-2) represents the top of the basal upper Cenomanian Calycoceras cantauarium Zone and the base of this unit (CS-2) represents the base of the middle Cenomanian Acanthoceras bellense Zone.
Tongue of the Dakota Sandstone (Fig. 5). Included, then, are the entire Clay Mesa, Paguate, and Whitewater Arroyo Tongues at the Laguna measured section (Landis et al. 1973, pp. J4-J8). Together, the correlative portions of these tongues are approximately 250 ft (76 m) thick.

Calcareous shale and bentonite unit (#2)

Stratigraphy—Unit #2, the calcareous shale and bentonite unit, is the second thickest of the subdivisions of the Tokay Tongue (Table 1). Its 120 ft (36 m) thickness represents 21% of the total thickness of the tongue; its duration also represents 21% of that of the entire tongue. Its compacted sedimentation rate of 1.8 inches (4.6 cm/ky) is identical to that of the tongue as a whole. Sedimentation occurred entirely in offshore environments as the T-1 shoreline had transgressed to the point that New Mexico was completely covered by marine water (Fig. 1 C), although the T-1 shoreline had not yet reached maximum transgression. Unit #2 is composed almost entirely of medium to dark gray, calcareous shale (94%) and white bentonite beds (6%). Both its lower and upper contacts are conformable. The calcareous shale and bentonite unit is one of the easiest to differentiate in the Carthage coal field—it is the soft, slope-forming, partially to almost completely covered, shale between the highest ridge of the shale and sandstone unit (CS-82) and the lowest ridge of the Bridge Creek Limestone Beds (CS-174). There are more discrete bentonite beds in the calcareous shale and bentonite unit than in any other unit in the Tokay Tongue (Table 2; Fig. 7F). These 40 ash beds contain an aggregate compacted thickness of 79.8 inches (202.7 cm) and account for almost 6% of the unit’s thickness. Six (15%) of these 40 bentonites are at least 4 inches (10 cm) thick, including the thickest bentonite in the tongue, CS-143, which is 14 inches (35.6 cm) thick. The average frequency of one volcanic eruption every 20 ky (Table 2), is the shortest for any of the bed rank units. Figure 7F shows a portion of the angular unconformity between the Quaternary alluvium and the Tokay Tongue at Carthage. There are 12 white bentonite beds exposed in the 20 ft (6 m) of the calcareous shale and bentonite exposed beneath the unconformity.

Average compacted thickness per ash fall is 1.8 inches (4.6 cm), the average for the entire tongue. In addition, there are three ferruginous beds that may represent altered ash beds (Appendix 1). Elder’s (1988) “A” bentonite (CS-172) occurs just below the top of the unit, 11 inches (28 cm) below the base of the first Bridge Creek Limestone. The “A” bentonite has a source area to the west in the Sierra Nevada batholith according to Elder (1988, p. 837).

Fauna and age—Boulders have been collected from only one interval in the calcareous shale and bentonite unit: DI4728 from a thin shale (CS-171) 1 ft (30 cm) below the top of the unit contains original shells of the oyster Ptychodus newberryi. This first occurrence (FO) of P. newberryi is probably from the top of the Vascoceras diartianum Zone. Otherwise, the unit is unfossiliferous in terms of megaflaunal body fossils. Therefore, it has to be dated indirectly using the highest datable fossil in the underlying unit (Inoceramus prefragilis stephensoni) and the lowest datable fossil in the overlying unit (Euomphaloceras septemseriatum) to bracket its age (Figs. 4 and 5). This bracket places the calcareous shale and bentonite unit entirely in the upper Cenomanian between the basal upper Cenomanian Calycoceras cauritaurinum Zone and the middle upper Cenomanian Euomphaloceras septemseriatum Zone. Assuming that the inoceramid at the top of the lower unit represents the top of the C. cauritaurinum Zone and that E. septemseriatum at the base of the Bridge Creek represents the base of the zone, then the calcareous shale and bentonite unit was deposited over ~790 ky (Table 1).

The lack of megafossils in unit #2 is directly attributable to its complete lack of hard beds (e.g., limestones and lime concretions) to preserve the fossils once they are exposed at the surface. Study of the Candy Lane core (USGS CL-1) from Montrose County, Colorado (Ball et al. 2009), indicates that Upper Cretaceous shales can preserve flattened fossils, but they are of delicate, original shell preservation. These fossils as well as the enclosing shale deteriorate rapidly once they are exposed at the surface. However, the Candy Lane well was not drilled deep enough to penetrate rocks that are the temporal equivalent of the calcareous shale and bentonite unit.

Hook et al. (2012, p. 131) suggest that the lack of fossils in this unit could have been a result of the extensive volcanic activity that fouled the water with ash, thus inhibiting bottom-dwelling, filter-feeding organisms, such as clams and oysters. The 20 ky, on average, between recorded bentonites (Table 2) suggest that this hypothesis is not tenable over the entire unit. Unfortunately, the Candy Lane well is not deep enough to have penetrated this portion of the section. Therefore, a direct comparison of bentonites and fossils is not possible. Nektonic organisms, especially ones that could have floated for some time after death like the ammonites, would not have been affected by the ash in the water. The lack of concretions and/or hard beds may be a better explanation for the absence of megafossils. A few, thin, resistant beds (lenses?) of very fine-grained calcareite are present near the top of the unit. Theses beds are composed almost entirely of the tests of globigerinid foraminifera.

Cobban and Scott (1972, p. 31) note the lack of fossils in this portion of the section at Pueblo, Colorado: “[t]he poor preservation of fossils in both the Lincoln and Hartland Members may be due to the activity of Ptychodus, the shell-crushing [shark]. The few fossils that are described were found by splitting the shale and the thinly layered calcareite beds.” At Carthage, there are few calcareite beds in the calcareous shale and bentonite unit (Appendix 1), but no Ptychodus teeth have been found on its outcrop.

The 120 ft - (36 m-) thick calcareous shale and bentonite unit of the Tokay Tongue is the exact temporal equivalent of the 59 ft (18 m-) thick Hartland Shale Member of the Greenhorn Limestone (Fig. 5). It is also the temporal equivalent of the upper 83% (63 ft (19 m) of the Twowells Tongue of the Dakota Sandstone and the entire 35 ft - (11 m-) thick lower calcareous shale beds of the Rio Salado Tongue of the Mancos Shale (Fig. 5). Together these units are approximately 98 ft (30 m) thick.

The temporal equivalent of the Twowells Tongue is generally well exposed everywhere in the Carthage coal field near the middle of the Tokay Tongue beneath the base of the Bridge Creek Limestone Beds; this interval consists almost entirely of calcareous shale (Appendix 1). Intermittently along the outcrop, a 6 inch - (15 cm-) thick, highly calcareous, very fine-grained sandstone to siltstone crops out approximately 10 ft (3 m) below the base of the Bridge Creek Limestone Beds and 7.5 ft (2.3 m) below the first occurrence of the oyster Ptychodus newberryi.

The stratigraphic position of this thin bed is approximately where the top of the Twowells Tongue should lie based on regional geology of Socorro County. Fifty-two miles (84 km) to the north-west of Carthage, the Twowells pinches out to the east between Puertecito and Riley into the laterally continuous Tokay Tongue (Fig. 1). At Puertecito (Hook et al. 1983, chart 1, #58A), the Twowells is 49 ft (15 m) thick and lies 15 ft (4.6 m) below the base of the Bridge Creek Limestone Beds of the Rio Salado Tongue of the Mancos Shale. The only ammonite, and one of the few fossils, collected from the Twowells in the Puertecito area is Metoicoceras mosbyense (Hook et al. 1983, sheet 1, section 58A, D10267).

Twenty-four miles (39 km) the north of Carthage (Fig. 1), the Twowells is 90 ft (27 m) thick in the central portion of the Sevilleta National Wildlife Refuge (SNWR), but is not present in (pinches out into?) an isolated exposure of the Tokay Tongue approximately 4 mi (6.4 km) to the south (Hook and Cobban 2007 and unpublished measured sections). Although the basal nodular limestones of the Bridge Creek Limestone Beds are not developed on SNWR, the top of the Twowells lies 5 ft (1.5 m) below the first occurrence (FO) of Ptychodus newberryi. The only fossil collected from the Twowells on SNWR is the ammonite Metoicoceras mosbyense (Hook 1983, fig. 3, D10979; Hook et al. 2012, fig. 6). The Twowells is not present in the Jornada del Muerto coal field, which is 10 mi (16 km) south of SNWR, between SNWR and Carthage (Fig. 1).
In summary, the Twowells Tongue of the Dakota Sandstone in Socorro County lies within the upper Cenomanian *Metoicoceras mosbyense* Zone, can be as thick as 90 ft (27 m), and its top lies 9 ft (4.6 m) to 5 ft (1.5 m) below the first occurrence of the abundant oyster *Psilocodonta newberryi*. The Twowells Tongue is not present in the Carthage coal field.

Pike (1947, p. 87) noted explicitly at Carthage that there "...is no large sandstone near the base of marine shale (unit 2) [=Twowells Tongue] which might be correlated with the Tres Hermanos [=Twowells Tongue]." The absence of a mappable (> 5 ft (1.5m) thick), continuous quartzose sandstone at Carthage and elsewhere in the hypothetical outcrop belt of the Tokay Tongue (Fig. 1) precludes use of not only the Twowells Tongue, but also the (overlying) Rio Salado and (underlying) Whitewater Arroyo Tongues of the Mancos Shale as stratigraphic names in the area.

Bridge Creek Limestone Beds (#3)

Stratigraphy—Unit #3, the Bridge Creek Limestone Beds, is the thinnest of the subdivisions of the Tokay Tongue (Table 1). Its 72 ft (22 m) thickness represents 13% of the total thickness of the tongue, whereas its duration of ~1,980 ky represents ~52% of that of the entire tongue. Its compacted sedimentation rate of 0.4 inches (11 cm/ky) is only 22% of that of the tongue as a whole, primarily because sedimentation occurred in relatively deep, offshore environments as the T-1 shoreline reached maximum transgression (Fig. 1 C). Unit #3 is composed primarily of medium gray, blocky to chippy weathering, highly calcareous shale (77%) with subsidiary amounts of calcarenite (16%), limestone (5%), and bentonite (3%). Using a twofold lithologic division, it is 79% shale and 21% limestone. However, the resistant limestones, which are concentrated at the top and bottom of the unit, form persistent ridges in the shale valley between the hogback formed by the Dakota Sandstone and the high ridge formed by the Atarque Sandstone Member of the Tres Hermanos Formation. In rivulets in the steep slope, the noncalcareous shale has 100% exposure.

From the Scip zone limestone #3 at the base of the Bridge Creek Limestone Beds of the Tokay Tongue of the Mancos Shale, USGS Mesozoic Invertebrate Locality D5780. The flat, almost horizontal outcrop pattern of the calcareous shale unit (#3), which is supported by the highly resistant Atarque Sandstone Member of the Tres Hermanos Formation. In situ outcrops at the top of the Bridge Creek Limestone Beds lie 5 ft (1.5 m) below the bed containing *M. pueblensis* (CS-183) that is 4 ft (1.2 m) below the *M. battini* bed appears to be bentonite "B" (bed 80) from the Pueblo section (Fig. 5). A two-inch thick bentonite (CS-193) that is 7 inches above the *M. pueblensis* limestone correlates to bentonite "C" (bed 88).

The brown, weathering, thin-bedded, ridge-capping calcarenites at the top of the Bridge Creek Limestone Beds (C-217 and 219) are composed of the comminuted remains of the inorganic bivalve *Mytiloides mytiloides* (D5782) and contain occasional internal molds of the lower Turonian ammonites *Mammites nodosoides* and *Puelboites greenbornensis* (D5781). There are 10 discrete bentonite beds in the Bridge Creek Limestone Beds. These 10 ash beds contain an aggregate compacted thickness of 24.5 inches (62.2 cm) and account for almost
3% of the unit’s thickness. Two (20%) of the bentonites are at least 4 inches (10 cm) thick, the thickest CS-183, is 6 inches (15 cm) thick. The average frequency of one volcanic eruption every 198 ky (Table 2) is the longest for any of the bed rank units with at least 10 bentonites. Average compacted thickness per ash fall is 2.5 inches (6.4 cm), slightly more than the average for the tongue, but great enough that of the calcareous shale and bentonite unit. Elder’s (1988) “B, C, and D” bentonites (CS-183, 193, and 197) occur in the lower half of the unit. According to Elder (1988, p. 837), bentonite B has a source area to the north near the U.S.-Canadian border and C and D have a source area to the west in the Sierra Nevada Batholith.

Fauna and age—The Bridge Creek Limestone Beds at Carthage are the most fossiliferous portion of the Tokay Tongue. A high diversity molluscan fauna from the four Scip zone limestones dates the base of the unit as late Cenomanian and places it in the Euomphaloceras septemspersatum Zone; a low diversity molluscan fauna from the uppermost calcarenites dates the top of the unit as latest early Turonian and places it in the Mammites nodosoides Zone. A Mytiloides battini collection (D14729) from a limestone 15.3 ft (4.7 m) above the base is from the latest Cenomanian in the Nagericeras scotti Zone; a Mytiloides pueboensis collection (D14702) from a limestone 20.4 ft (6.2 m) above the base is earliest Turonian from the Watinoceras devonense Zone and establishes the position of the Cenomanian/Turonian boundary at the base of CS-191 (Fig. 4). Ammonites collected from the four Scip zone limestones at Carthage are:

- **Pseudocalycoceras angolaense** (Spath),
- **Euomphaloceras septemspersatum** (Cragin),
- **Metaiococeras glesinianum** (d’Orbigny),
- **Allocioceras annulatum** (Shumard),
- **Sciponoceras gracile** (Shumard), and
- **Wortboceras vermiculus** (Shumard).

Other fossils include: the oysters *Pycnodonte newberryi* (Stanton) and *Rhyndostreon levis* (Stephenson); the bivalve *Inoceramus pictus* Sowerby and *Pliespiumna* sp., the echinoid *Mecaster batnensis* (Coquand); the brachiopod *Disciniscus* sp., and a few mostly unidentified gastropods that include *Turritella* sp.

Figure 9 shows an unusually dense occurrence of key fossils from Scip zone limestone #3 (D5780) collected from CS-179 at the type section (Fig. 4). The hand specimen is 4.2 inches (10.7 cm) long, 2.9 inches (7.4 cm) wide, and 1.3 inches (3.4 cm) deep. It contains two specimens of the index ammonite *Euomphaloceras septemspersatum*, the larger with a diameter of 4.0 cm; two specimens of *Sciponoceras gracile*, the larger running the entire length of the hand specimen; one specimen of *Allocioceras annulatum*; and a fragment of the index inoceramid *Inoceramus pictus*.

Burrows are common in the Scip zone limestones. Limestone #2, in particular, is highly burrowed with burrow fillings of many different orientations and sizes. Burrows that are vertical or oblique to bedding are up to 0.5 inches (1.4 cm) in diameter; those that are parallel to bedding can be up to 1.0 inch (2.5 cm) in diameter. All burrows are filled with matrix, but tend to weather a reddish brown. The most enigmatic sedimentary structures in the basal portion of the Bridge Creek at Carthage are long, cylindrical, often y-shaped limestone “tubes.” Figure 9E shows one of the best preserved examples: a 3 inch (8 cm) diameter, y-shaped, cylindrical limestone structure that is developed on, but not in, limestone #3 (CS-179). These tubes are common at the base of the Bridge Creek Limestone Beds at Carthage, but are not developed limestone #3 (CS-179), probably limited to the absence of crustacean fossils or fossils of other burrowing animals. Burrows that are oriented in different orientations and sizes; however, the absence of crustacean fossils or fossils of other burrowing animals in limestone #3 is limited to the absence of the presence of these limestone tubes in the shale above, but not in the limestone, the authors originally concluded that these large, y-shaped, cylindrical tubes were of inorganic origin.

The interpretation of an echinoid internal mold within what appears to be its burrow (Fig. 8F) in a slab of limestone #3 (C-179) suggests that these y-shaped limestone structures could be the burrows of the irregular echinoid *Mecaster batnensis*, which is abundant in the Scip zone limestones at Carthage. The interpreted burrow (Fig. 8F) has a diameter that is 2.5 times the width of the echinoid. The largest echinoid collected from the Scip zone limestones at Carthage has a length of 4.16 cm and a width of 4.12 cm. If this ratio of burrow diameter to echinoid width (fig. 8F) holds, it is then possible that the large “tubes” shown in Figure 9E were made by burrowing echinoids. Kier (1987, fig. 18.81) shows three still pictures taken sequentially of a modern spatangoid burrowing into soft sediment on the Caribbean sea floor. *Mecaster*, a member of the Order Spatangoida, was a detritus-feeding animal that lived buried deeply in the sediment and used its long tube feet to maintain its burrow (see Kier, 1987, fig. 18.77). The presence of abundant specimens of *M. batnensis* at Carthage at this stratigraphic level attests to the soft nature of the sea floor at Carthage during deposition of the basal Bridge Creek. The major problem with this burrow interpretation is that an echinoid’s burrow would be primarily vertical, rather than horizontal. However, Bernadi et al. (2010, Fig. 4) report echinoid burrows from the Oligocene of Italy that extend for “metric distances” with traces that are “…parallel to the stratification.” There is also little reason to think that an echinoid’s burrow would bifurcate. In addition, echinoid fossils in the basal part of the Bridge Creek are confined to the four Scip zone limestones; none have been found in the intervening shales.

The uppermost, ridge-forming beds of the Bridge Creek Limestone (CS-212-222) are composed primarily of thin bedded, yellowish brown-weathering calcarenites and calcilutites composed of the comminuted remains of inoceramid debris (inoceramites). Shell debris and internal molds of *Mytiloides mytiloides* crowd the upper part of the Bridge Creek Limestone Beds at Carthage from the type section of the Tokay Tongue. However, Murphy et al.’s (2007, p. 63) description of the “… sandstone/limestone/calcarenite at the top of the Bridge Creek Member [near the town of Carthage] yields numerous shells of the bivalves *Ostrea beloiti* and *Mytiloides mytiloides*” and that “this assemblage falls within the *Sciponoceras gracile* ammonite zone” are incorrect. The oyster *Ostrea beloiti* is known from rocks of middle and late Cenomanian age, ranging from the *Calycoceras larrantense* Zone through the *Dunveganoceras pondii* (=Calycocestes cantianumum) on Fig. 5) Zone (Cobban and Hook 1980, p. 170). The clam *Mytiloides mytiloides* occurs in early Turonian rocks in the *Mammites nodosoides* Zone (Cobban 1984b, p. 35). In the type section of the Tokay Tongue (Fig. 4) the last occurrence of *O. beloiti* in sandy limestone concretions (CS-80) near the top of the shale and sandstone unit, 160 ft (49 m) above the top of the *Mammites nodosoides* Zone. The last occurrence of *M. mytiloides* is in a calcarenite (CS-219) near the top of the Bridge Creek Limestone Beds, 371 ft (113 m) above the top of

42 New Mexico Geology June 2015, Volume 37, Number 2
the Dakota Sandstone. *Sciponoceras gracile* is a late Cenomanian ammonite that does not range into the Turonian (Cobban et al. 1989, pp. 62-64) and, therefore, could not occur with either *M. mytiloides* or *O. belotti*.

Fossils from the Scip zone limestones place the base of the Bridge Creek Limestone Beds in the upper Cenomanian *Euomphaloceras septemseriatum* Zone; those from the top, in the lower Turonian *Mammites nodosoides* Zone. Therefore, the Bridge Creek Limestone Beds at Carthage were deposited over a span of ~1.98 my, the longest duration of any of the bed-rank units in the Tokay Tongue, and 52% of the entire duration of the tongue. (Table 1).

In terms of the Pueblo reference section (Fig. 5), the 72 ft- (22 m-) thick Bridge Creek Limestone Beds of the Tokay Tongue are the temporal equivalent of approximately the lower 35 ft (11 m) of the 57 ft- (17 m-) thick Bridge Creek Limestone Member of the Greenhorn Limestone. They are also the exact temporal equivalent of the upper 47 ft- (14 m-) thick Bridge Creek Limestone Beds of the Rio Salado Tongue of the Mancos Shale at the Puertecito measure section (Fig. 5).

Calcareous shale unit (#4)

Stratigraphy—Unit #4, the calcareous shale, is in the middle of the five subdivisions of the Tokay Tongue in terms of thickness (Table 1). Its 113 ft (34 m) thickness represents 20% of the total thickness of the tongue, whereas its duration of 170 ky represents less than 5% of that of the entire tongue. Its compacted sedimentation rate of 8.0 inches (20.3 cm)/ky is 4.4 times of that of the tongue as a whole, primarily because sedimentation occurred in relatively shallow, offshore environments as the R-1 shoreline retreated to the northwest across southwest New Mexico (Fig. 1 D). Unit #4 is composed almost entirely of medium gray, blocky to chippy weathering, calcareous shale (99%) that becomes progressively less calcareous upsection. There are also insignificant amounts of bentonite and limestone (in the form of concretions). However, the concretions contain all the fossils. For practical purposes the top of the upper (CS-229) of the two bentonites in the unit marks the top of the unit, with noncalcareous shale above and slightly calcareous shale below (Fig. 8H). Both its lower and upper contacts are conformable. The lower contact is above a resistant calcarenite and is easily picked in the field. The upper contact (Fig. 8C, D) is often covered because it involves two easily eroded units against each other. Occasionally, the upper contact will be visible as a white band in the steep slope under the Tres Hermanos ridge. The lower 70% of the unit is usually at least partially covered and forms an almost flat surface from the calcarenites at the top of the Bridge Creek Limestone Beds to the break in slope beneath the Tres Hermanos ridge (Fig. 8G).

Fauna and age—The calcareous shale unit is sparsely fossiliferous; only the upper 31 ft (9.4 m) contains megafossils. These fossil occurrences are confined to either limestone concretions developed on top of bentonites (CS-227 and CS-230) or to flattened or gypseriferous concretions developed in CS-228, a slightly calcareous shale just below the top of the unit. The lower contact (Fig. 8C) is often covered because it involves two easily eroded units against each other. Occasionally, the upper contact will be visible as a white band in the steep slope under the Tres Hermanos ridge. The fossils are few in number and low in diversity. They consist of the ammonites *Morrowites depressus* and *C. woolgari* *woolgari*, and the bivalves *Mytiloides subvercymicus* and *M. sp*. In terms of the Pueblo reference section (Fig. 5), the calcareous shale unit is the temporal equivalent to the upper part, but not the uppermost, part, of the Bridge Creek Limestone Member of the Greenhorn Formation.

The calcareous shale unit along with the overlying noncalcareous shale unit and the Ataque Sandstone Member of the Tres Hermanos Formation together are the approximate temporal equivalent of the upper 22 ft (7 m) of the Bridge Creek Limestone Member of Greenhorn Limestone at the Pueblo measured section (Fig. 5). It is approximately the temporal equivalent of the upper calcareous shale unit of the Rio Salado Tongue of the Mancos...
Shale at the Puertecito measured section (Fig. 5).

Noncalcareous shale unit (#5)

Stratigraphy—Unit #5, the noncalcareous shale, is 88 ft (27 m) thick, the second thinnest unit in the Tokay Tongue. It is composed almost entirely of medium gray, chippy to blocky weathering, noncalcareous shale (Fig. 8G). It represents 4% of the total thickness of the tongue, whereas its duration of ~160 ky represents less than 5% of that of the entire tongue (Table 1). Its compacted sedimentation rate of 6.6 inches (16.8 cm)/ky is 3.7 times that of the tongue as a whole, primarily because sedimentation occurred in shallowing offshore environments as the R-1 shoreline retreated to the northwest across southwest New Mexico (Fig. 1 D). Unit #5 forms the steep, debris-covered slope beneath the Atarque Sandstone ridge (Fig. 8G). Exposures of shale can be pieced together from rivulets in the slope. The only lithologic deviation from noncalcareous shale in unit #5 is a 3 inch- (7.5 cm-) thick bed of irregularly shaped, unfossiliferous, white limestone concretions (CS-232), 56 ft (17 m) above the base of the unit. No bentonites were observed in unit #5, which was measured with less detail than any of the other four units because of lack of fossils and bentonites. Both its lower and upper contacts are conformable. As a matter of convenience, the lower contact is drawn at CS-229, the 7 inch- (18 cm-) thick bentonite (Fig. 8H) just below the top of the calcareous shale unit. The upper contact is sharp to slightly gradational with the overlying Atarque Sandstone Member of the Tres Hermanos Formation (Fig. 8G).

Fauna and age—No fossils have been collected from the noncalcareous shale unit in the Carthage coal field. Therefore, unit #5 has to be dated indirectly using fossils from the underlying and overlying units. Both the top of the underlying calcareous shale unit (Fig. 4, D10129) and the base of the overlying Atarque Sandstone Member of the Tres Hermanos Formation (Fig. 4, D10241) lie in the basal middle Turonian Collignoniceras woollgari woollgari Subzone. The change from calcareous shale below to noncalcareous shale above is interpreted to represent a change in the chemistry of the seawater caused by the influx of more fresh water into the depositional system because of the encroaching (regressing) shoreline (Fig. 1E). This contact, which is diachronous, has been verified at outcrops of the Rio Salado Tongue at Puertecito, and at outcrops of the Tokay Tongue at the Jornada del Muerto coal field, the Carthage coal field, and Mescal Canyon east of Truth or Consequences. In terms of the principal reference section of the Graneros Shale and Greenhorn Limestone at Pueblo, Colorado (Fig. 5), the noncalcareous shale unit (#5) of the Tokay Tongue is the temporal equivalent of the upper, but not uppermost part of the Bridge Creek Limestone Member of the Greenhorn Limestone, which extends through the Collignoniceras woollgari woollgari Subzone. It is approximately the temporal equivalent of the noncalcareous shale unit of the Rio Salado Tongue of the Mancos Shale at the Puertecito measured section (Fig. 5).

The noncalcareous shale unit along with the underlying calcareous shale unit and the overlying Atarque Sandstone Member of the Tres Hermanos Formation together are the approximate temporal equivalent of the upper 22 ft (7 m) of the Bridge Creek Limestone Member of Greenhorn Limestone at the Pueblo measured section (Fig. 5).]

Conclusions

After more than 100 years of geologic investigations into the stratigraphy and paleontology of the lowermost marine shale in the Carthage coal field, the following conclusions can be drawn (with the original citation in parentheses):

1) The lower shale unit is at least 500 ft thick (Gardner 1910); 2) The lower shale is part of the Mancos Shale (Lee 1916); 3) The lower shale contains fossils that are Graneros and Greenhorn equivalents (Darton 1928);

4) The lower shale contains temporal and physical equivalents of the Graneros Shale and Greenhorn Limestone of Great Plains usage (Rankin 1944); 5) The limestone beds near the middle of the lower shale are equivalent to only a portion of the upper member of the Greenhorn Formation, not the entire formation (Hook et al. 1983); and 6) The lower shale ranges in age from late middle Cenomanian to early middle Turonian (Cobban and Hook 1979).

For many years this shale body between the Dakota Sandstone and Tres Hermanos Formation at Carthage and elsewhere in southern New Mexico was known informally as the lower tongue (or part) of the Mancos Shale. However, this same informal designation was used for a thinner tongue of Mancos, temporally equivalent to only the lower part of the Tokay Tongue (Fig. 2), between the main body of the Dakota Sandstone and the Twowells Tongue of the Dakota Sandstone in northwest Socorro County (Hook et al. 1983, chart 1). This informal usage for rocks of differing thicknesses, differing boundaries, and differing temporal equivalences led to confusion and to the misapplication of the name “Rio Salado Tongue of the Mancos Shale” to the entire lower shale at Carthage. The lower tongue of the Mancos Shale at Carthage is herein named the Tokay Tongue of the Mancos Shale. The detailed description of type section of the Tokay Tongue at Carthage, presented above, should eliminate this confusion, while at the same time presenting geographic, paleogeographic, paleontologic, lithostratigraphic, and biostratigraphic limits on its usage. In addition this detailed analysis: 1) locates the lithostratigraphic and biostratigraphic position of the Cenomanian and Turonian stage boundary within the Tokay Tongue and ties it to the global boundary stratotype and point at Pueblo, Colorado; 2) identifies with biostratigraphic precision the “x” bentonite, which is widespread in the Western Interior; 3) shows that the Tokay Tongue at any locality ranges in age from middle to late Cenomanian at its base and from latest early Turonian to early middle Turonian at its top; 4) shows that over its lateral extent both the base and top of the Tokay Tongue are diachronous, with the age of the base of the section rising to the southwest (landward) and the age of the top rising to the northeast (seaward); and 5) shows that the late Cenomanian was a time of extensive volcanic activity in the southern portion of the Western Interior.

Acknowledgments

We thank the U.S. Geological Survey for use of facilities and access to fossil collections stored at their repository in Denver, Colorado. We continue to owe a special debt of gratitude to K. C. McKinney, U. S. Geological Survey, Denver, for his friendship and expertise, without which this paper would not have been possible. He took the photograph of the hand specimen used as Figure 9. He also sponsored Hook as an adjunct at the U.S. Geological Survey working on the Upper Cretaceous stratigraphy and paleontology of New Mexico.

We thank Don and Lila Swearinger and Dewy and Linda Brown, San Antonio, New Mexico, for access to their private land. Primary field support for this study was provided by Atarque Geologic Consulting, LLC. Early field support (prior to 2002) was provided by the New Mexico Bureau of Mines and Mineral Resources under the direction of Dr. Frank Kottlowski. Fossil collections have been assigned U.S. Geological Survey Mesozoic locality numbers; they begin with the prefix “D” for Denver and are housed at the Federal Center in Denver, Colorado. Illustrated specimens have been assigned USNM numbers and are reposited in the U.S. National Museum in Washington, D.C.

Bruce A. Black (Black Oil) and Greg Mack (New Mexico State University) reviewed the manuscript and made many helpful suggestions, which we appreciate greatly.
Murphy, J. W., Lucas, S. G., and Spielmann, J. A., 2007, Upper Cenomanian selachian assemblage from the Bridge Creek Member of the Mancos Shale, Socorro County, New Mexico: New Mexico Geology, v. 29, no. 2, p. 63 (abs.)
Wilpolt, R. H., and Wanek, G., 1951, Geology of the region from Socorro and San Antonio east to Chupadera Mesa, Socorro County, New Mexico: U.S. Geological Survey, Oil and Gas Investigations Map 121.
Then and Now—A Brief History of Tokay, New Mexico

Stephen C. Hook, Ataque Geologic Consulting, LLC, Socorro, NM 87801

Then

In the 1920s the coal-mining settlement of Tokay, Socorro County, New Mexico (Fig. 1), was a bustling town of a few hundred inhabitants, including 125 coal miners (Julyan, 1996, p. 356). Tokay was on the southwest side of the Carthage coal field, about 10 miles east of San Antonio, New Mexico. See map in Hook and Cobban 2015 (this volume, p. 27). Among more than 50 frame structures Tokay boasted a single two-story building that had a pool hall/barbershop/bar on the first floor and a school for grades 1-5 on the second. A staircase on the outside of the building allowed the students to go to school without having to pass through the bar first.

A power plant on the north end of town provided electricity for Tokay; it billows smoke both in the postcard (Fig. 1) and in the 1927 oil painting of the town (cover and Fig. 2). A combination general store/post office/mine office on the north side of the camp provided supplies for the miners and their families. The settlement had no bank, so the miners were paid partly in script or trade tokens in various denominations that could be redeemed at the store. The general store stocked the case of Tokay grapes that gave the town its name in 1917 (Anonymous, 1968).

The original town was established in 1915 by Bartley H. Kinney, who later served as President of the board of Regents of the New Mexico School of Mines. Mr. Kinney, a mining engineer, organized the San Antonio Coal Company to mine coal in the southwest portion of the Carthage coal field. During the first year or two of its existence, the town had no formal, i.e., no federally recognized, name. The Post Office Department had rejected many names for the town, including the name “Kinney,” which it found to be in conflict. One day, according to Julyan (1996, p. 356), “... while Kinney and a postal inspector were discussing names in the community’s general store, Kinney looked at a case of Tokay grapes on the counter and asked, ‘How about Tokay?’” The inspector agreed and the town of Tokay was born, named for a very sweet grape and wine that had nothing to do with coal mining. Tokay had a post office from 1917 until 1932. Mining ceased in the late 1940s, when most of the town’s frame buildings were moved to Socorro.

However, during Tokay’s heyday, the plaza between the school house and general store (Figs. 1 and 3) was used for festivals and celebrations; three major holidays—Mexico’s 1862 victory over France (Cinco de Mayo), U.S. Independence Day (July 4th), and Mexican Independence Day (Sixteenth of September)—were celebrated with explosions of miners’ firecrackers (sticks of dynamite). The married miners and their families lived in four rows of six frame houses on either side of the plaza (Fig. 3). A physician lived and worked in town. A small Catholic mission, part of the San Marcial Parish, was located on the south end of the settlement, as was a windmill that was the water source for the camp’s boilers and industrial use. A well about a mile south of the camp provided drinking water. Details of the town of Tokay (Fig. 3) are from Trancito Diaz, (1915–1990), a long time resident of Tokay, who moved there from Jalisco, Mexico in 1920.

Bartley H. Kinney (1884–1959), former superintendent of the Carthage Fuel Company, founded what would become Tokay in 1915 when he homesteaded 160 acres on the southwest side of the Carthage coal field in the SW1/4 NE1/4 and the W1/2 SE1/4 section 8 and the NW1/4 NE1/4 section 17, T. 5 S., R. 2 E. of the New Mexico Meridian, Socorro County, New Mexico. At an elevation of 5,055 ft, Tokay sat on a mesa underlain by the resistant Pleistocene Sierra Ladrones Formation. The productive Kinney No. 1 and No. 4 mines were located about half a mile southeast of the settlement. The main coal seam, which is up to 5 ft thick, lies in the basal part of the Dilco Coal Member of the Crevasse Canyon Formation, 25 ft or so above its contact with the Gallup Sandstone (Hook 2010, fig. 6).

Coal mining was backbreaking, dangerous work. Miners were generally paid by the number of coal cars they filled; usually six to seven cars per shift. In her scrapbook of memorabilia on life in Tokay and the Carthage coal field, Ruth Kinney Gannaway (written communication, May 5, 2015) who was born in Tokay, recounts the system used to keep track of which miners had worked on any given day. Before going into the mines, each miner took a “washer,” also known as “miner’s brass,” from a pegboard in the office with his unique number on it. At the end of the shift, he returned the washer to the pegboard. In this way Mr. Kinney could make sure no one was left in the mine at the end of the day.

Coal production from Tokay increased steadily from 1915 to 1927 as Mr. Kinney opened more mines. However, the Depression and the introduction of lower cost fuel oil and natural gas for heating and power generation took its toll in the late 1920s (Hoffman and Heretford, 2009, p. 412). Tokay lost its major contract with El Paso Gas and Electric Company about 1928 to the Pacific Natural Gas Company; this loss reduced Tokay from a railroad-serviced town to a truck-serviced town (Anonymous, 1968). Commercial mining ceased in the late 1940s. In 1949 Mr. Kinney sold the land and his house to Mr. and Mrs. Dean Fite. Mr. Kinney’s original house is still in use today as the Fite Ranch Headquarters (Fig. 3). The name Tokay lives on as a legacy of New Mexico’s coal mining history and as the formal stratigraphic name of a tongue of the Upper Cretaceous Mancos Shale (this volume, p. 27–46).

Now

In 2014 what remains of Tokay is on the north end of a wind-swept mesa, about 10 miles east of San Antonio, New Mexico, and a mile south of US Highway 380. Its 50 or so buildings have been reduced to the Fite Ranch Headquarters (Mr. Kinney’s former house) along with an adjacent garage and guest quarters; the single workers’ quarters (not visible in Figure 2), a long narrow building about a tenth of a mile to the northwest of, but at a lower elevation than, the ranch house is the main portion of the Fite Ranch Bed and Breakfast. The present population of Tokay is two: Dewey and Linda Brown who bought the Fite Ranch from Evelyn Fite in 2002.

The Painter

The painting of Tokay (cover and Fig. 2B) was painted onsite by Audley Dean Nichols (1875–1941) in 1927. Little biographical information is available either online or in print about Mr. Nichols; even less is known about how he happened to be in Tokay, New Mexico, in 1927. Audley Dean Nichols was born in Pittsburgh, Pennsylvania, in 1885 and died in El Paso, Texas, in 1941. He was primarily a landscape painter, but also did illustrations for Cosmopolitan, McClure’s, Collier’s, and other well known magazines of the day. He had tuberculosis of the hip (osteoarticular tuberculosis) and moved to El Paso for health reasons by 1927. He spent the remainder of his life painting landscapes in the deserts of Texas, New Mexico, Arizona, and California.

The story surrounding this painting according to Mrs. Gannaway, (personal communication, 2013), is that “…Audley Dean Nichols of El Paso, Texas, was in need of coal to heat his home, but did not have the money to pay for it. He went to Mr. Kinney and said that he would do an oil painting of Tokay in
The Painting

The painting (cover and Fig. 2B) is an oil on canvas that is 30 inches long by 17 inches high. Based on the geology (with the Eocene Baca Formation in the foreground) and perspective, Mr. Nichols painted his picture looking west from an elevation of 5,155 feet in the NE 1/4 NW 1/4 SE 1/4 SE1/4 section 16, T. 5 S., R. 2 E., Cerro de Campana 7.5 quadrangle, Socorro County, New Mexico, approximately 0.2 mi N 14°E of the feature labeled “radio tower” on the Cerro de la Campana 7.5’ quadrangle. The panoramic photograph (Fig. 2A,C) was taken on January 8, 2011 with the tripod positioned approximately on the spot where Mr. Nichols stood when he painted the town (UTM point 339637 mE and 3748942 mN, Zone 13S, NAD27). The Fite Ranch headquarters is 0.9 mi away; the Magdalena Mountains are 28 mi to the west, and “M” Mountain is 19 mi to the northwest.

When viewed by itself, the painting appears to be undistorted with horizontal and vertical scales approximately equal; the buildings and landscape appear to have a natural look to them. However, when the painting is compared to the photographic panorama with the same horizontal scale as the painting (Fig. 2C), it becomes apparent that the vertical scale of the painting is approximately two times that of the horizontal scale (Fig. 2A). This exaggeration factor of 2.0 not only makes the mountains more impressive, but also allows enough vertical space in the painting that Tokay’s buildings can be differentiated from each other. This exaggeration also shows the “M” on Socorro Peak to good effect. According to Eveleth (2010, 2011, and this volume, p. 50), the New Mexico School of Mines class of 1914 surveyed and built the “M” on Socorro Peak. The “M” presumably stands for “Mines, minerals, and midnight oil.” To become proficient at the first two Ms, the students at the School of Mines had to burn a lot of the latter. [A volcanologist at the New Mexico Bureau of Geology offers a dissenting, tongue-in-cheek, view: he says the “M” stands for Miocene, the age of rocks it is painted on.] The “M” is roughly 150 feet high and 110 feet wide, freshened every year by a whitewash composed of lime (now powdered limestone or marble) and water.

Exactly when Mr. Nichols completed his painting and how long it took him to paint it are unknown. There are no clues present in the painting to suggest the season in which it was painted. In both painting and panorama the vegetation in the foreground is green and the mountains in the background are without any snow cover. The panorama was photographed in January 2011.

The original painting hangs in the home of Mr. Edward Kinney Jr., Cupertino, California. Photographic reproductions of the painting belong to Mrs. Ruth Kinney Gannaway, Albuquerque, New Mexico, Mrs. Evelyn Fite, Socorro, New Mexico, and Mr. and Mrs. Dewey Brown, “Tokay,” New Mexico.

Summary

The importance of the isolated exposure of Upper Cretaceous rocks, known as the Carthage coal field, in central New Mexico was summarized by Howard Nicholson (1990): “The Carthage coal field played an important part in New Mexico history. It kept soldiers at Fort Craig warm, shoes on their mules and horses, and wagon rims tight; it made coke to smelt the rich silver ores and fueled the Santa Fe engines; it heated countless homes from Socorro into Old Mexico; and it left two ghost towns [Carthage and Tokay].”

Acknowledgments

I thank Mrs. Ruth Kinney Gannaway and Mr. Edward Kinney Jr. for permission to publish a photographic reproduction of the painting of Tokay, New Mexico, and the schematic map of Tokay. Ruth Gannaway, Evelyn Fite, and Dewey and Linda Brown provided stimulating discussions on Tokay and the painting. Dewey Brown took the author to the spot where Audley Nichols stood as he painted the town of Tokay. Mr. Donald Boyd, Socorro, took the panoramic photograph shown in Figure 2. Ruth Kinney Gannaway and Robert Eveleth read an early version of this paper and provided helpful suggestions.

References

Wilpolt, R. H., and Waneck, G., 1946, Geology of the region from Socorro and San Antonio east to Chupadera Mesa, Socorro County, New Mexico: U.S. Geological Survey, Oil and Gas Investigations Map 121.
Figure 1—1920s postcard of Tokay, Socorro County, New Mexico. This view is taken from the south end of the town plaza looking north across the windswept mesa on the southwest side of the Carthage coal field. The large building in the center distance is the Kinney store/post office; to its right (east), the power plant billows smoke to the west. The frame houses in the foreground were the homes of the coal miners and their families that were dismantled and moved to Socorro, New Mexico, when Tokay was abandoned in the 1940s.
Figure 2—One of the crown jewels of illustrations of ghost towns in New Mexico is this oil painting of Tokay dated 1927 and signed by the well-known western artist Audley Dean Nichols (1875–1941). Mr. Nichols reportedly traded this painting for a load of coal (see text for details). In this figure, the painting (B) can be compared visually with two versions (A and C) of a panoramic digital image taken from the same spot from which Mr. Nichols made the painting. Both digital images have the same horizontal scale as the painting. In (A) the vertical scale is twice the horizontal scale (exaggeration factor = 2.0); in (C) the vertical scale is the same as the horizontal scale (exaggeration factor = 1.0). A visual comparison of the topographic profiles of the mountains in the background of the panoramic photographs (A and C) with the painting (B) shows that the painting has a vertical scale of approximately twice that of the horizontal scale.
Figure 3. Schematic diagram, not to scale, of the plat of Tokay showing the layout of the settlement with the names of the last occupants of each house. Modified from a memorandum from Trancito Diaz to B. T. Kinney dated May 15, 1986.
A well-worn cliché tells us that “a picture is worth a thousand words,” but in the case of Audley Dean Nicols’ panorama a mere thousand is woefully insufficient to do it justice. The story of how artist Nicols came to create his masterpiece is found elsewhere in this volume; the following are descriptions of the principal features that can be observed or, in one case, almost observed, from Nicols’ vantage point just east of Tokay, New Mexico. These include, from left to right, the New Mexico Midland Railway, Magdalena Range, Socorro Peak, and the “M” on Socorro Peak. The mining camp of Tokay, visible at far left and major focal point for Nichols, is described elsewhere in this volume.

The New Mexico Midland Railway

Though not depicted in Nicols’ panorama, would have made its presence obvious even to the most casual observer and the artist, likely spending hours, even days, at his easel scanning the Rio Grande Valley to the west, could not have missed the black smoke plumes (note that the two “plumes” visible to the west are “dust devils” and not smoke), staccato engine exhausts, shrill steam whistles and other sounds attendant to the operations of this pre-depression era steam railroad.

The Midland was the resurrected version of the older Atchison Topeka & Santa Fe (AT&SF) San Pedro Branch built by the Santa Fe in 1882 to provide rail service to the Carthage coal mines ten miles east. A report allegedly indicating the coal resource was depleted in ca. 1895–96 (Myrick 1990, p. 172) led to the abandonment of the branch officially in 1896 although the rails at least as far as the Fralely lime quarry remained in place until May 1897 (Joe Hereford, pers. comm., 2010). Good quality coal remained however and the successor company, the Carthage Fuel Co., attempted for a time to ship coal to San Antonio via teams and wagons. By 1904 the new company decided to rebuild the San Pedro branch taking advantage of the AT&SF bridge over the Rio Grande and much of the existing grade to Carthage. Midland trains were running on the new rails by summer 1906 (Myrick 1990, p. 173). At a point common to sections 5, 6, 7, and 8, T5S, R2E, the line split with the older alignment continuing eastward to the McIntyre, Hilton, and Bernal mines at Carthage and the new line bearing southeast to service the Emerson, Kinney, and Bernal mines at Carthage Fuel Co, next door at Carthage.

By 1904 the new company decided to rebuild the San Pedro branch taking advantage of the AT&SF bridge over the Rio Grande and much of the existing grade to Carthage. Midland trains were running on the new rails by summer 1906 (Myrick 1990, p. 173). At a point common to sections 5, 6, 7, and 8, T5S, R2E, the line split with the older alignment continuing eastward to the McIntyre, Hilton, and Bernal mines at Carthage and the new line bearing southeast to service the Emerson, Kinney, and Bernal mines at Carthage.

No. 1, affectionately called “Betsy” by the locals (pers. comm. Abe Baca, 1984) was purchased new in 1906. No. 2 was an older locomotive built in 1901 and purchased second hand from the El Paso & Southwestern RR in 1920. Operations, as for most short line railroads, were simple and Midland schedules called for one round trip per day. Service from the beginning was daily except Sunday, and classed as “mixed” in that passengers could purchase a ticket and ride in the spacious accommodations of the caboose behind whatever freight cars—coal, machinery, and an occasional stock car—were cut in behind the engine and tender. Photos of the Midland caboose indicate that it was equipped with large windows at one end and had several seats for passengers. A large door at the other end provided security for mail and baggage, and work area for the crew (pers. comm. Vernon Glover 2013).

During pre-WWI days the train overnighted in San Antonio and departed at 8:30 am arriving in Carthage at 9:30 am. The return trip left Carthage at 3:30 pm and arrived back at San Antonio at 4:30 pm. From about 1916 and up through the time Mr. Nichols worked at his easel, train movements were even more visible because the trains originated on the western end of the line—right next door at Carthage. By 1926 the eastbound run passed by early in the afternoon and returned by 5:00 pm. Travel times varied from one hour in 1913 to as much as 1–1/2 hours throughout the twenties. Considering the railroad was only 9.99 miles in length the New Mexico Midland must have operated one of the slowest trains in the west and those passengers who dared to book passage in the caboose plodded along at the breakneck speed of 6–7 mph!

Production and revenues gradually declined but the loss of Carthage Fuel Co’s contract with the El Paso Gas & Electric Co. in 1928 marked the beginning of the end for railroad operations. The last train ran in August 1931 and the Interstate Commerce Commission formally granted permission to abandon two years later (Myrick 1990, p. 173). Little remains of this transportation enterprise today beyond the abandoned but fairly well defined grade between San Pedro, Carthage, and Tokay.

The Magdalena Range dominates Nicols’ panorama on the horizon. The north end of the range rises from the desert sands at a point south of Granite Mountain about 3-1/2 miles northeast of Magdalena (just south of US Highway 60) and extends in a roughly southerly direction for about 18 miles to again plunge to earth near Puertocito Gap just north of Milligan Gulch. The highest point in the range is South Baldy at 10,783 feet while nearby Timber peak reaches 10,510 feet. North Baldy comes in a distant third at 9,858 feet. The range derives its name from a low mountain on the west side of the range and south of Magdalena that bears a cameo likeness of a woman’s face which, according to legend, reminded the early Spanish explorers of a similar mountain in their native Spain (Eveleth 2006). South Baldy is of particular interest due to the presence of two scientific research facilities both managed by the New Institute of Mining & Technology (New Mexico Tech or NMT): the Langmuir Atmospheric Research Laboratory and the recently completed Magdalena Ridge Observatory Interferometer (MRO). The Langmuir Lab was established by New Mexico Tech President E. J. Workman in 1963 and named in honor of his colleague Dr. Irving Langmuir. The lab studies the atmospheric conditions that produce rain, hail, and lightning, some of the latter induced by the lab itself. The MRO is located adjacent to Langmuir and is currently operating a 2.4-meter optical telescope and is constructing an infrared interferometer that will be laid out in a “Y” pattern similar to the Very Large Array radio telescope west of Magdalena. The Magdalena Ridge Observatory Interferometer, which will ultimately be composed of ten 1.4-meter telescopes, “expects first light in the Beam Combining Facility (BCF) in 2015 (New Mexico Tech 2013).”

The Magdalena Range is also home to a large portion of the US Forest Service’ Cibola National Forest and its deeply incised canyons and verdant conifer and juniper forests have long been an attraction for campers, hikers, and others out for a relatively cool day of picnicking and sight-seeing in the pines. The tallest peaks can remain snow-clad well into March and April and a trickle of produce rain, hail, and lightning, some of the latter induced by the lab itself. The MRO is located adjacent to Langmuir and is currently operating a 2.4-meter optical telescope and is constructing an infrared interferometer that will be laid out in a “Y” pattern similar to the Very Large Array radio telescope west of Magdalena. The Magdalena Ridge Observatory Interferometer, which will ultimately be composed of ten 1.4-meter telescopes, “expects first light in the Beam Combining Facility (BCF) in 2015 (New Mexico Tech 2013).”

During pre-WWI days the train overnighted in San Antonio and departed at 8:30 am arriving in Carthage at 9:30 am. The return trip left Carthage at 3:30 pm and arrived back at San Antonio at 4:30 pm. From about 1916 and up through the time Mr. Nichols worked at his easel, train movements were even more visible because the trains originated on the western end of the line—right next door at Carthage. By 1926 the eastbound run passed by early in the afternoon and returned by 5:00 pm. Travel times varied from one hour in 1913 to as much as 1–1/2 hours throughout the twenties. Considering the railroad was only 9.99 miles in length the New Mexico Midland must have operated one of the slowest trains in the west and those passengers who dared to book passage in the caboose plodded along at the breakneck speed of 6–7 mph!

Production and revenues gradually declined but the loss of Carthage Fuel Co’s contract with the El Paso Gas & Electric Co. in 1928 marked the beginning of the end for railroad operations. The last train ran in August 1931 and the Interstate Commerce Commission formally granted permission to abandon two years later (Myrick 1990, p. 173). Little remains of this transportation enterprise today beyond the abandoned but fairly well defined grade between San Pedro, Carthage, and Tokay.

The Magdalena Range dominates Nicols’ panorama on the horizon. The north end of the range rises from the desert sands at a point south of Granite Mountain about 3-1/2 miles northeast of Magdalena (just south of US Highway 60) and extends in a roughly southerly direction for about 18 miles to again plunge to earth near Puertocito Gap just north of Milligan Gulch. The highest point in the range is South Baldy at 10,783 feet while nearby Timber peak reaches 10,510 feet. North Baldy comes in a distant third at 9,858 feet. The range derives its name from a low mountain on the west side of the range and south of Magdalena that bears a cameo likeness of a woman’s face which, according to legend, reminded the early Spanish explorers of a similar mountain in their native Spain (Eveleth 2006). South Baldy is of particular interest due to the presence of two scientific research facilities both managed by the New Institute of Mining & Technology (New Mexico Tech or NMT): the Langmuir Atmospheric Research Laboratory and the recently completed Magdalena Ridge Observatory Interferometer (MRO). The Langmuir Lab was established by New Mexico Tech President E. J. Workman in 1963 and named in honor of his colleague Dr. Irving Langmuir. The lab studies the atmospheric conditions that produce rain, hail, and lightning, some of the latter induced by the lab itself. The MRO is located adjacent to Langmuir and is currently operating a 2.4-meter optical telescope and is constructing an infrared interferometer that will be laid out in a “Y” pattern similar to the Very Large Array radio telescope west of Magdalena. The Magdalena Ridge Observatory Interferometer, which will ultimately be composed of ten 1.4-meter telescopes, “expects first light in the Beam Combining Facility (BCF) in 2015 (New Mexico Tech 2013).”
and several other natives of [Socorro] exploited a number of placers on the east slope of the Magdalenas and succeeded in saving a considerable amount of gold dust. The enterprise was successful but was finally abandoned for want of the necessary appliances of capital and experience... (Bullion 7/24/1886, p. 2). Additionally, “Squire Sam C. Meek [also of Socorro] in 1867 prospected the placers in Water Canyon (then known as the “Canyon de Agua in the Sierra de la Magdalena”) and never got less than eight colors of gold dust. He and his colleagues commenced operations in a cut at the mouth of Water Canyon and in ten days washed $257 in gold dust... (Bullion op. cit.). A torrential downpour was said to have swept away their sluice boxes and filled up the workings such that the boys got discouraged and the enterprise was abandoned. Another group was organized at Socorro in January 1867 to systematically prospect the placers and reported back that although good “colors” were found they were not enough to justify continued exploration (Daily New Mexican 2/23/1867, p. 1). Prospectors returned in the early 1880s to examine the lode deposits surrounding Water, Copper, and Dark canyons and several claims were located. These included the Buckeye Group, Wall Street, Jane Bowman, Minerva, and many others. A small settlement eventually accreted near the confluence of Water and Copper Canyons and boasted several miners’ cabins, at least one saloon run by A. Torres & Bros. (Kiser 2004, p. 182), a livery, and post office from 1887 intermittently into the 1920s (Julyan 1996 p. 376). Hack service connected with the daily except Sunday mixed trains at Water Canyon Station on the Magdalena Branch of the Atchison Topeka & Santa Fe Rail Road. For a time Water Canyon became a popular summer “resort” for Socoroans and the cool pine-scented mountain breezes were a welcome respite from Socorro’s hot pre-air-conditioned days of summer.

Three other settlements were also established in the Magdalena range but these were in the foothills on the northwest side. They bore the clever and original names, from north to south, of North Camp, Middle Camp, and South Camp. The first was located at the base of the Vindicator and Hardscrabble mines on the north end of the Magdalena district. South camp was a similar small group of structures near the Iron Mask mine while Middle Camp eventually morphed into the town site of Kelly, the largest by far of the three. Commercial mining operations in the Kelly area continued until 1949 when the American Smelting & Refining Co, closed its Graphic-Waldo mine permanently. All four sites are ghosts today although a post-historic church, an adjacent graveyard, and one of the first all-steel mine headframes in the west remain at Kelly.

The Magdalena Range continues to be a popular recreational area but with the decrease of summer monsoonal rains in recent years some of it is closed to the public during especially dry periods.

* “color” = a visible speck of gold in the pan

Socorro Peak, the northernmost object depicted at far right in the panorama, rises to an elevation of 7,243 feet, 4 miles west of the town of the same name, and is of interest for two reasons: it is the location of both the Socorro Peak Mining District and the large block letter “M” on its east-facing slope. The Socorro Peak Mining District (originally “Encarnacion”) is one of the oldest mining areas in New Mexico. According to a note recorded by Fray Alonso Benavidez in 1629 regarding the Socorro area: “Well, all this land is full of great treasures—namely, very rich and prosperous silver and gold mines. As his affectionate chaplains and vassals, we customarily ask God for things like this...and applying a little diligence, as an intelligent person will do, we did indeed discover these mines. We gave Him endless thanks for this in the name of Your Majesty—in particular for the range near the pueblo of Socorro, which is the principal one among the gold and silver mines in the province of the Piros...The ease with which silver may be taken from this range is the greatest in all the Indies (sic). It would be wiser to extract eight ounces of silver here than many more ounces from other places, as elsewhere mining materials and supplies must be hauled from great distances to a source of water, which is certainly necessary to extract silver anywhere. But in these Socorro mines everything needed for the job is right at hand (Benavidez 1630).”

Canyon del Oro...explored by the Caballeros...the “ore was taken from [Socorro Peak] under the supervision of the Franciscan Friars...and conveyed to a fundacion that stood quite close to the southeast tower of the present church of San Miguel del Socorro whose walls were erected [about the same time]...Six years ago (i.e., ca. 1885) Rev. F. Lestra during the process of some improvements recovered the remains of the smelter and presented to the editor of this paper the spouts and other utensils found on the spot (Bullion 9/1/1891, p. 7).”

Subsequent to the Pueblo revolt of 1680 during which the church was destroyed by fire, no further work was done until 1840 when Estanislao Montoya operated what is now the Merritt mine. The mine was worked by the most primitive method of “gophering” by which the high-grade streaks of silver chloride (the mineral chlorargyrite, AgCl) were followed by the narrowest of workings and chiseled out by hand. “The cause that during the Spanish and Mexican regimes led to only spasmodic attempts at mining in the Socorro Mountains was the continued hostility of the Indians. This was especially the case [sic] at Socorro where the inhabitants were particularly exposed to the raids of the aggressive [Indians]” (Bullion, op. cit., p 7). Most of the bullion produced during this period was “made into bullets which would have assayed high in silver and it is probable that many a copper-colored individual was called to the golden city by a silver summons that came from the celebrated Merritt” (Daily New Mexican, 9/2/1882, p 2). Et Tu Kemo Sabe?

With the arrival of American prospectors the mines were reopened and worked more systematically via carefully laid out shafts and tunnels some of which attained depths of 200 feet and lengths of several hundred feet. Beginning about 1880 both the Torrance and Merritt were worked profitably. Other mines received similar attention over the years including the Morning Star, Reserve, Santa Teresa, Induvigen (sic), and Cabinet. Nearly three-dozen mines and prospects were once located in the Socorro Peak district and while most of their names are forgotten today they are preserved in the New Mexico Bureau of Geology & Mineral Resources mining archives.

The “heyday” of mining for Socorro Peak occurred in the decade leading up to about 1894 when an event remembered by history as the “Silver Crash” caused the price of silver bullion to plummet to such low levels (below $0.50 per ounce at one point) it could not be mined economically. During better years the Merritt Company erected a ten stamp mill on the southeast side of Socorro (near the Magdalena Branch Railroad tracks) and for a time was shipping ten to twenty tons or more of good grade ore to the plant daily. Total silver production, while not by most standards, was given, based upon actual bullion shipment records, as 768,410 oz. Of this amount one half was produced by the Torrance while the Merritt, Silver Bar, New Find (an offshoot of the Torrance) and others produced the remainder (Chieftain 12/12/1892, p. 4). This does not, of course, include the alleged silver bullion production by the earlier Spanish era miners.

The entire area (with the exception of two patented mining claims—the Alta Vista and Dewey Lodes) was withdrawn from mineral entry ca. 1950 at the request of the US Navy to be converted to a research and development facility to test and experiment with high-tech explosive devices. No mining activity has taken place in the area since that time although the School of Mines (now New Mexico Tech) students continued to take advantage (as they had done since the Silver Crash days) of the inactive workings to conduct surveying, engineering, and geological studies. For many years the mining and geology students were given the task of mapping and surveying the workings of surveying and mapping the workings of the Torrance, Merritt, and Boardinghouse tunnels. Their work was carefully compared to previous “standard” maps of the mines and grades issued on that basis. Examples of their work are preserved in the Bureau’s
archives today. Not to be outdone, the extractive metallurgy students, as part of their senior class project, ventured up the hill to collect high-grade silver chloride ore which was then brought back to campus and reduced to silver bullion. With the recent loss of the Waldo Tunnel lease at Magdalena, attempts have been made to rehabilitate some of the Socorro peak workings to once again provide “field labor” for mapping, geology, and ventilation surveys, but the workings have deteriorated to the point they are no longer safe enough for use.

The “M” on Socorro Peak, unlike the foregoing, is not a geological feature but a man-made one and was originally surveyed and laid out by the New Mexico School of Mines students Class of 1914. The exact date the M first appeared on the mountain remains lost to history but, as will be seen, doubtless coincided closely to New Mexico’s statehood in January 1912 (Eveleth 2010). Horace Lyons, who entered the New Mexico School of Mines (NMSM) in 1908, was the student who conceived of the idea and kept after his fellow classmates until they concurred that the school would benefit by having their own mascot on the mountain (due to the central role played by Lyons, a fourth member of NMSM Class of 1914, Antonio Abeyta, always thought that “M” as staked out “1911–1912” should be known as “Horace Lyons Day”). Two other western mining schools already boasted such letters on mountains prominently overlooking their campuses. The Colorado School of Mines first saw the light of day about May 1908 while that of the Montana School of Mines (now Montana Tech) appeared two years later. Lyons reasoned that if other prestigious mining schools in the Rocky Mountains were bequeathed with such mascots, why then should not the most prestigious mining school in the southwest have one as well? And following through with the prestige aspect Socorro’s M must be even larger than its Colorado and Montana counterparts. Just for the record Montana Tech’s M is about 90-feet by 90-feet, while Colorado’s is roughly 104-feet by 107-feet. Socorro’s M, through no accident, is roughly 150-feet in height by 110-feet wide.

By the fall semester of 1911, Lyons had found just the man to lead the survey crew and turn his idea into a reality. Frank Maloit, already well experienced, had previously been employed by the Western Electric Company and had completed his first year of undergraduate work at the Armour Institute of Technology (now Illinois Tech) before entering NMSM in his sophomore year. Since the Colorado and Montana M’s required 2–3 months to construct and Socorro’s letter, due to its remoteness, likely consumed as much or more, Maloit and his survey crew, consisting of Phillip A. Campredon, Martin J. O’Boyle, and a third person possibly named Shoemaker (Maloit 1912), got to work on the project soon after his arrival. Maloit’s son Robert, in an interview with the author, confirmed his father laid out the M during the “fall 1911” time frame (Eveleth, 1987). Avery J. Smith, son of James Avery Smith (NMSM, 1913), provided confirmation of the handwritten notes that indicate the M was staked out “1911–1912.” James (son of Socorro’s pioneer photographer Joseph E. Smith) further revealed that the M was surveyed not with a transit but a Brunton compass and steel tape. His contribution to the project was to provide two burros to haul the first loads of lime and water. Socorro newspapers are quite scarce for this period so no known published accounts have surfaced but it is interesting to consider that the appearance of the M must have coincided closely with New Mexico’s statehood.

The logistics of the actual layout are of more than passing interest. Various positions were likely considered for the best visibility and the slope of the peak also played an important role in the design. The letter must be recognizable from a great distance and retain its proportions and perspective throughout a wide field of view. Since the slope of the peak is about 60 degrees the height of the letter must be greater than the width to maintain the appearance of a roughly equal height to width ratio. The fact that artist Nicholays could see the M from a point a third as distant as Tokay is testament to the success of Maloit and his crew.

Some observers nevertheless think the letter is a little askew. The topic came up at a most unusual time and place—the dedication of Maloit Park at Minturn, near Gilman, Colorado in 1959, the planning and execution for which Frank Maloit was heavily involved. When speaking of Maloit’s long and illustrious career one of the speakers (Hayes 1959) stated, “another extracurricular activity still shines from near the top of a tall mountain overlooking Socorro. It is a large, painted block letter “M.” It is reputed to have been surveyed and staked out by an undergraduate by the name of Maloit. A quiet controversy usually springs up upon viewing it whether or not the letter is straight. The school says it stands for “Mines” if the letter IS straight but if it is not straight then it stands for ‘Maloit.’ Each of you can be his own judge upon viewing it. My observation is that it is just as straight as most of the underground mine survey connections by the engineers serving under Maloit. They had better be straight!”

Today the M, having reached the century mark, is the oldest visible icon of the New Mexico School of Mines, now New Mexico Tech and the school is to be commended for maintaining the Mascot through good times and bad so that future students, citizens, and passers-by can enjoy it long into the future.

Acknowledgments

Special thanks are due to Vernon Glover and the Fred Springer collection of railway timetables at the Friends of the Cumbres & Toltec Library, Albuquerque; the late Abe Baca for his recollections of operations on the New Mexico Midland Railway; Joe Hereford for generously sharing his unpublished map and manuscript on the Carthage area; and the sons of the New Mexico School of Mines classes of 1913 and 1914 for sharing their father’s memories regarding the M.

References

Benavides, Fray Alonso, 1630, “A Memorial to King Philip IV of Spain on the Indians Missions of New Mexico, Madrid, 1630.” (Father Alonso de Benavides served as the director of the New Mexico missions from 1626 to 1629.)

Bullion, (a/k/a Socorro Bullion) 1886, 1891; territorial newspaper published first in Socorro, NM and later in El Paso, TX.

Chiettain, (a/k/a Socorro Chiettain) 1892; territorial newspaper, Socorro, New Mexico.

Daily New Mexican 1867, territorial newspaper, Santa Fe, New Mexico.

Glover, Vernon, 2013, personal communication.

Hayes, A. L. [Lee], 1959, Notes of a talk given at the dedication of Maloit Park on July 4, 1959, 3 pp; author’s collection, courtesy Robert J. Maloit.

Hereford, Joseph, 1969, unpublished manuscript map of the New Mexico Midland Railway, August 1969, 1p.

New Mexico Tech, 2013, Magdalena Ridge Observatory (MRO), mro.nmt.edu/about-mro
In Memoriam—William A. Cobban
1916–2015

Bill Cobban, my friend and mentor of almost 40 years, died peacefully in his sleep on April 21, 2015. He was 98 years old and had been in declining health for several years. He was probably the best known and most respected invertebrate paleontologist in the United States. He was the last of a distinguished lineage of USGS paleontologists stretching back to the 1870s that included F. B. Meek, T. W. Stanton, and J. B. Reeside, Jr. Since at least the 1960s, every student of the Upper Cretaceous of the Western Interior knew Bill; many benefited from a visit to the USGS Mesozoic Invertebrate Collections in Denver, Colorado; some ended up writing papers with him; and all were amazed by his detailed knowledge of Late Cretaceous faunas, biostratigraphy, strata, radiometric dating, and shoreline movements. When he started work at the USGS in 1949, there were 10 molluscan zones representing the entire Upper Cretaceous; by 2006, there were 66 zones, due primarily to Bill’s detailed work and meticulous record keeping. His professional achievements were summarized in Larson and Landman (2007), which includes a chronological publication record beginning in 1942 that contains more than 300 papers, many of seminal importance.

Less well known—although hidden in plain sight in that exhaustive publication list—was Bill’s interest in and fondness for the Upper Cretaceous of New Mexico, especially the Cenomanian, Turonian, and lower Coniacian parts of the section. He was especially interested in southern half of the state, where outcrops are isolated and widely scattered, but record the earliest cycles of transgression and regression of the Late Cretaceous Seaway in the Western Interior. The alteration of marine and nonmarine rocks combined with little previous study of the marine faunas created an irresistible attraction that drew Bill’s attention to New Mexico. Southern New Mexico is also the area in which the cold water, Boreal faunas of the Western Interior intermingled with warm water, Tethyan faunas, thus providing a means of international correlation. It was this interest that forged our partnership.

As a new employee of the New Mexico Bureau of Mines and a freshly minted Ph.D. (on Ordovician nautiloids) in 1976, I was asked to work on the stratigraphy and paleontology of the Upper Cretaceous of New Mexico. The best exposed and closest outcrops of the Upper Cretaceous to the Bureau are in the Carthage Coal Field, 20 miles southeast of Socorro. I was a quick learner in those days and soon realized that I needed some professional help. My first letter to Bill explaining my Carthage Project, which was closely tied to coal studies in the state, was quickly answered by Bill with an offer to help in any way that he could. He included a copy of USGS Professional Paper 645 (Cobban and Scott, 1972), a detailed study of the ammonites of the Graneros Shale and Greenhorn Limestone near Pueblo, CO. Although I did not realize it then, PP 645 was Bill’s way of showing me how to do paleontology and stratigraphy properly; i.e., by measuring sections in painstaking detail and tying every fossil collection to a single stratigraphic bed or unit. In all the years I worked with Bill, he never once told me how paleontological/biostratigraphical research should be done; he simply showed me by example how he did it.

My new found knowledge was soon used to measure and collect the section at Carthage, which both Bill and I initially thought contained only the first two cycles of transgression/regression of the western shoreline. These first two cycles are represented by the Dakota Sandstone at the base, the Toyah Tongue of the Mancos Shale, the Tres Hermanos Formation (with a nonmarine core), the D-Cross Tongue of the Mancos, the Gallup Sandstone, and the Crevasse Canyon (with the Dilco Coal Member) at the top. In 2003 I discovered, purely by accident, that there is another tongue of Mancos Shale (the Mulatto) above the Dilco at Carthage, meaning that there are three depositional cycles preserved there—a fact published in a 1910 coal study that I had been unable to verify by dedicated field work! This oversight was corrected in Hook (2010), a paper on which Bill declined coauthorship, because he felt the discovery was mine alone, although he contributed substantially to it.

This 1,200 foot-thick measured section at Carthage was the first I had measured. However, it was substantially less detailed than necessary to satisfy my mentor’s standards: it had 52 units that contained five fossil zones. Obviously, I had a lot to learn. By contrast the 575 foot-thick Toyah Tongue of the Mancos Shale at Carthage described in this volume (Hook and Cobban, 2015) has 234 units and 35 fossil collections tied to individual units. As our knowledge of the Upper Cretaceous increased, more and more detailed collecting was required. Bill always stressed that every unit, by measuring and tying every fossil collection to a single stratigraphic bed or unit. In all the years I worked with Bill, he never once told me how paleontological/biostratigraphical research should be done; he simply showed me by example how he did it.

I soon realized that one control point (Carthage) was not enough to understand the Upper Cretaceous of southern New Mexico. With Bill’s remote guidance from Denver, I ventured south 70 miles to the isolated Upper Cretaceous exposed in Mescal Canyon, on the east side of the town of Truth or Consequences. The lower part of the section in Mescal Canyon is similar to that at Carthage,
and also contains good exposures of the “Greenhorn Limestone.” From Mescal Canyon, it was southwest 50 miles to the Cookes Range, where N. H. Darton, the great USGS field geologist and one of Bill’s geologic heroes, had discovered an unusual, but poorly preserved Late Cretaceous ammonite fauna. The only rock units I recognized in the Upper Cretaceous at Darton’s locality southwest of Cookes Peak were the distinctive orange-weathering, thin-nodular limestones at the base of the “Greenhorn.” Of course, the abundance of the oyster Pycnodonte newberryi cemented the correlation with Carthage and Mescal Canyon. A little higher, I found Darton’s ammonite bed, which consisted of hundreds of internal molds of ammonites weathered matrix free on the outcrop. These molds included the finely ribbed, small ammonite Neocardioceras judii and outer whorls of the larger, coarsely ribbed ammonite Pseudaspisoceras pseudonodosoids, neither of which had been identified in New Mexico before. In my naïveté, I thought that the former represented the inner whorls of the latter.

Bill was so excited when he received this collection, that he was on a plane to New Mexico on October 19, 1976, less than two weeks later. I took him to Darton’s locality, where Bill patiently explained the facts of ammonite morphology to me and we collected one of the most prolific ammonite beds in New Mexico, along with several other equally exciting faunas. Thus began my life-long association with Bill. For the next five years we were in the field together three or four times a year for a least a week at a time. I usually spent a week with Bill in Denver in the winter discussing the collections and deciding what papers should be written and, more importantly, where I should concentrate my work. I was his boots on the ground in New Mexico at Riley, Puertecito, D-Cross Mountain, Big and Little Burro Mountains, Cane Spring Canyon, Bull Gap, Springer, and on and on. I enjoyed every minute of it.

The work in the Cookes Range and surrounding areas in southwestern New Mexico led to the discovery of the most diverse late Cenomanian ammonite fauna in the world (64 species in 31 genera) and the establishment of three new ammonite range zones in the upper Cenomanian of the Western Interior (Cobban et al. 1989). So, the Cooke’s Range looms large in my memories of Bill.

I saw Bill for the last time in on March 4, 2015 when I visited him and the collections in Denver. Bill was not strong enough to go to the USGS collections with me, but we had lunch together the two days I was in town. We talked of the many good times we had in the field, especially the “Cookie” Range with its famous banana tree locality. The mountain’s name is in reference to the field cookies we had on that first trip and every subsequent field trip in New Mexico: Pepperidge Farm® Bordeaux® Cookies, ever after called “Bill Cobban Field Cookies.” Of course, there is no banana tree there in the desert of southwestern New Mexico; a colleague of ours had thrown the banana peel from his peanut butter and banana sandwich into a tree at Shale Spring, on the east side of the Cookes Range. Ever since, we referred to it as the banana tree locality.

The first paper I co-authored with Bill was on the oyster Pycnodonte newberryi (Hook and Cobban, 1977). It was also the first in a series of eight papers we published on important Upper Cretaceous guide fossils in New Mexico. We continued that series until I left Socorro in 1981 to work for an oil company in Houston. I was gone for 20 years before moving back to Socorro in 2002. However, Bill and I continued to publish papers in the interim on the research we did during those magical six years of unraveling the Upper Cretaceous of New Mexico. To date we have coauthored more than 30 papers on the Late Cretaceous stratigraphy, paleontology, biostratigraphy, and paleogeography of New Mexico.

Since my return to New Mexico, Bill and I have written four more papers on Late Cretaceous oysters because their evolution is extremely interesting and they are such useful fossils for geologic mapping. Oysters are generally abundant (especially in near shore sandstones), are well preserved (because they have calcitic shells that preserve as original shell material), have limited vertical ranges, and are easily identified.

The last paper Bill worked on actively with me before his health deteriorated concerns the echinoid Mecaster batnensis. Echinoids are extremely rare in the Western Interior Upper Cretaceous, although they are abundant at the base of the “Greenhorn” in the Cookes Range, Mescal Canyon, Carthage, and elsewhere in west-central New Mexico. That paper has been submitted for publication. I have notes on several other New Mexico papers that Bill had hoped we could work up for publication: some on oysters, some on ammonites, one on a coral (as rare as echinoids in the Western Interior), another on an echinoid from higher in the section, and a monograph on the Upper Cretaceous molluscan faunas of New Mexico, what Bill called a picture book of key Upper Cretaceous fossils. I am going to miss having my friend and coauthor to talk with as I prepare these papers. As I look back on my long association with Bill, I feel honored to have worked with him and to have been his friend. I look forward to continuing his legacy of detailed, careful work on the Upper Cretaceous of New Mexico.

Acknowledgment

The photograph of Bill Cobban was taken by Neal Larson, Larson Paleontology Unlimited, Keystone, South Dakota, on August 27, 2006 at a symposium in Golden, Colorado, on the Upper Cretaceous of the Western Interior that honored the lifetime achievements of Bill. According to Neal, this photograph was taken while I was presenting a paper by Bill and me on a condensed middle Cenomanian succession in the Dakota Sandstone exposed on the Sevilleta National Wildlife Refuge, New Mexico.

References

—By Stephen C. Hook,
Ataque Geologic Consulting, LLC
Meetings and other events in and around New Mexico are listed on the bureau’s Upcoming Events webpage: http://geoinfo.nmt.edu/events/

New Mexico Bureau of Geology news may be found at: http://geoinfo.nmt.edu/news/

The bibliography of New Mexico geology is an online, searchable index available at: http://geoinfo.nmt.edu/libraries/gic/bibliography/

New Mexico Geological Society spring meeting abstracts from 2013 back to 2004 are posted on their website (see following web address, scroll to the bottom of the page to see the list). http://nmgs.nmt.edu/meeting/

Current spring meeting abstracts are posted prior to the spring meeting (this year April 11th). http://nmgs.nmt.edu/meeting/abstracts/

New Mexico Mineral Symposium abstracts are posted on the New Mexico Bureau of Geology’s Mineral Museum website (select a year and enter author or title or keyword). http://geoinfo.nmt.edu/museum/minsymp/abstracts/

New Mexico Institute of Mining and Technology Earth and Environmental Science Department theses, dissertations, and independent study papers are available at: http://www.ees.nmt.edu/outside/alumni/thesis.php

New Mexico State University Department of Geological Sciences theses are available at: http://geology.nmsu.edu/grad.html

University of New Mexico Department of Earth & Planetary Sciences provides an extensive list of links for geologists at: http://epswww.unm.edu/escilink.htm

American Geosciences Institute (AGI) open-access journals series is available at http://www.agiweb.org/georef/about/openaccess.html#internet

If there are meetings or events that you would like to see us display on these pages, you can direct your suggestions to the Managing Editor at: nmgeology@nmbg.nmt.edu

These links are available on the New Mexico Geology home page by going to: http://geoinfo.nmt.edu/publications/periodicals/nmg