New Mexico Institute of Mining and Technology

TWO-STAGE LANDSLIDE EMPLACEMENT ON THE ALLUVIAL APRON OF AN ECENE STRATOVOLCANO

Chirigos, Michael G., M.S.

The Sawtooth Mountains, western New Mexico, comprise erosionally isolated klippen of an initially contiguous landslide complex that developed on the alluvial apron of an Eocene stratovolcano during late Laramide volcanoclastic activity. Volcanogenic siltstone, alluvial sandstone and conglomerate of the lower Spears Group were deposited on mainly fine-grained Baca Formation (fluvial flood-plain facies). The klippen are underlain by a locally exposed, low-angle fault within fine-grained, laminated basal Spears strata (distal fan). The lower fault is overlain by a sheet 7–100 m thick of sandy volcanogenic sandstone (Volcaniclastic Unit of Largo Creek, mid-fan facies) that is strongly deformed by large-scale soft-sediment structures. Another low-angle fault caps this sheet, and carries less-deformed conglomerates (Dog Springs Formation, proximal fan facies).

Another fault, where exposed, has a poorly developed fault core, locally comprised of fluvial or foliated gouge, and surrounded by a thin, poorly developed fractured damage zone. The upper fault has a well-developed cataclasite core, 0.12–0.40 m thick, with 1–3 primary slip surfaces, rare pseudotachylite, and local cataclastic injections into the upper plate. Striations on both faults are widely dispersed but cluster in two directions, NNE and ESE. The main structure in the upper plate is an E-vergent monocline.

We conclude that the landslide complex was emplaced in two events, first N-directed sliding down the alluvial apron, while the sediments were poorly consolidated. Most soft-sediment deformation probably occurred in this event, due to loading and shear transmitted down from the upper plate, causing liquefaction. The second event was likely due to W-side-up uplift on the Laramide Hickman Fault, located west of the field area, likely was triggered by an earthquake, and occurred at seismogenic slip rates, forming pseudotachylite on the upper detachment and injections, after the sediments were partially lithified.

CHEMOSTRATIGRAPHY OF THE BONE SPRING FORMATION, DELAWARE BASIN, SE NEW MEXICO

Foli, Isaac David, M.S.

The Bone Spring Formation is a middle Pennsylvanian mixed carbonate and clastic turbidite petroleum reservoir in the Delaware Basin of west Texas and southern New Mexico. It consists of shelf to basin sandy turbidites and carbonate mass-transport deposits sourced from the north and northeastern shelf margins during Leonardian time (275 Ma). Composition heterogeneity within this unit is poorly understood but strongly impacts the spatial and temporal distribution of reservoir forming elements. Substantial research has focused on the Bone Spring Formation, but little work has been undertaken to understand the depositional controls on intramember mineralogy and compositional heterogeneity of the formation within a chemostatigraphic framework. The aim of our research is to characterize the bulk geochemical and lithologic heterogeneity within the Bone Spring Formation to better understand the compositional trends effecting stratigraphic hierarchy.

Element data is presented from 837 feet (255 meters) of Bone Spring Formation core from Eddy and Lea county of New Mexico and identify compositional changes at the foot scale. Bulk element data collected via handheld XRF analyses conducted at an unbiased 6 inch spacing in the cores. XRF bulk composition was analyzed statistically using principal component analysis (PCA) and hierarchical cluster (HCA) analysis to determine stratigraphic heterogeneity from a chemostratigraphic standpoint. Distinct changes in mineralogy describe chemostatigraphic units that relate to depositional trends and the evolution of Delaware Basin stratigraphy in the Leonardian.

Understanding the compositional heterogeneity of the Bone Spring Formation has implications for petroleum system analysis in the Delaware Basin and overlying hydrocarbon reservoirs such as the Brushy Canyon Formation. Our results help to define mechanical properties intrinsic to the compositional architecture of the Bone Spring Formation and will help to improve future well development in the Delaware Basin. Furthermore, our work demonstrates the utility of handheld XRF as a tool to quickly generate and assess large geochemical datasets to describe stratigraphic changes in deep-water deposits and in their relation to sequence stratigraphic evolution.

CARBONATE-WHITE PHYLOSILICATE ALTERATION OF INTRUSIVE ROCK IN THE NORTHERN KELLY MINING DISTRICT, NEW MEXICO

Herman, Colton Tate, M.S.

The polymetallic Kelly mining district is located in the northern Magdalena Mountains, Socorro County, New Mexico approximately 170 kilometers south-southwest of Albuquerque. Mineralization mainly occurs as manto-like carbonate replacement deposits (CRD) and locally minor skarn, both of which primarily replaced Mississippian-age limestone. Hardscrabble Valley, located in the northern extent of the district, contains the Tertiary-age (28 Ma) intrusion known as the Nitt Monzonite. The Nitt Monzonite is pervasively potassically and phyllically altered with local late-stage vein-controlled propylitic alteration assemblages. Carbonate-phyllic alteration observed in the Nitt Monzonite consists of sericite + carbonate + quartz + chloride ± pyrite. This alteration style is atypical of the classic quartz-sericite-pyrite (QSP) type phyllitic alteration of porphyry copper deposits.

The Nitt Monzonite exhibits an inherently low permeability (<1% volume), yet hydrothermal fluid has pervasively permeated and altered this intrusion. Petrographic observations imply that mineral replacement reactions from the interaction of a hydrothermal fluid produced net-zero to negative volume changes in the Nitt Monzonite. This creation of space during mineral-fluid reactions facilitated the infiltration of the hydrothermal fluid through the Nitt Monzonite, resulting in the precipitation of secondary quartz in veins as phyllic alteration was developed and evolved in this hydrothermal system.

Electron microprobe data shows secondary phyllics are of an intermediate composition, known as aluminoceladonite, with a range of (K0.95–0.92)N0.02–0.06Ca0.03Al1.64–1.94Mg0.02–0.08Fe2+–Fe3+0.02–0.04/Si1.88–1.96O15(H2O)18.8–18.9F0.02–0.04. Secondary chlorite is Mg dominant, representing a clinohioch end-member species, with a range of (Mg0.02–0.03Si1.64–1.94Al1.64–1.94Fe2+–Fe3+0.02–0.04O15(H2O)18–18.9F0.02–0.04). Calcite is the exclusive carbonate mineral in the phyllic alteration assemblage.

Microthermometric analyses of primary fluid inclusions in secondary quartz associated with the phyllic alteration styles indicate the trapping of a high-density fluid during quartz deposition. Homogenization temperatures range from 172–427°C; with an average of 296°C. Halite-bearing fluid inclusions are common within this secondary quartz and the measured salinities range from 43–54 wt% NaCl equivalent, implying that some of the trapped fluid was hypersaline. Primary liquid-dominated and vapor-dominated fluid inclusions are locally present within some individual hydrothermal quartz crystals, suggesting the trapping of a boiling fluid occurred in quartz, at least locally, during the history of the phyllic alteration.

Short-wave infrared spectroscopic analyses (SWIR) performed on phyllically altered samples show Al-OH absorption wavelengths between 2198–2214 nm with an average of 2209 nm, consistent with other studies reporting aluminoceladonite. Shorter average Al-OH wavelengths (2203–2205 nm) of samples in the south-central area of Hardscrabble Valley are characteristic of a more muscovitic composition, which may imply proximity to the hydrothermal fluid source.

The geologic features of Hardscrabble Valley are inferred to have formed as a result of
initial development of a graben associated with collapse of the Magdalena caldera during the mid-Tertiary. This study infers that, although not exposed at present erosion levels, a magma intruded the fault zone associated with the graben and generated a magmatic hydrothermal fluid which interacted with indigenous carbonate strata in the subsurface. The dissolution of carbonate resulted in modification of the magmatic fluid which rose to upper structural levels and reacted with the Nitt Monzonite, producing the carbonate-phyllic alteration. This process may be related to swallowout calcite alteration in the subsurface rock units, with the potential for accompanying base metal mineralization.

QUANTIFYING THE TIMESCALES OF ERUPTIONS AND RESURGENCE FOLLOWING CALDERA COLLAPSE: 40Ar/39Ar DATING AND VOLUME ESTIMATIONS OF POST-CALDERA VOLCANISM AT VALLES CALDERA, NORTHERN NEW MEXICO Nasbolds, Morgan Wade Maynard, M.S.

Despite recognition as one of the greatest volcanic hazards in the southwestern United States, many aspects of the post-caldera history of Valles caldera are poorly constrained. This study provides 49 new high-precision 40Ar/39Ar sanidine ages and surface volume estimations to reveal insights into lifespans of dome emplacement as well as resurgence. Caldera collapse and deposition of the Tshirege Member of the Bandelier Tuff at 1231.6 ± 1.0 ka was followed by emplacement of 34 volcanic units erupted from vents on the resurgent dome and along the caldera-ring fracture. New ages indicate vent and dome complexes that followed collapse were emplaced during polygenetic and monogenetic eruptive events. The Deer Canyon rhyolite eruptions began immediately following caldera formation and lasted until 1220.5 ± 3.6 ka for a total lifespan of 1.6 ka. Similarly, the Redondo Creek Member erupted between 1199.0 ± 5.9 ka and 1186.3 ± 2.9 ka for a lifespan of 12.7 ka. Cerro del Medio, the oldest post-resurgent dome, is also the longest-lived ring-fracture complex, erupting seven units in 25.2 ka between 1157.2 ± 3.1 and 1132.0 ± 4.7 ka. Following Cerro del Medio, Cerros del Abrigo erupted at least twice between 1009.8 ± 1.7 and 997.0 ± 1.6 ka. These longer-lived dome complexes are located within structurally-complex zones of the caldera suggesting the dense network of faults promote magma transport to the surface, producing long-lived eruptions. Conversely, the six dome and vent complexes that erupted between 804.7 ± 1.9 ka and 687.1 ± 1.0 ka have shorter eruptive lifespans than the early post-caldera eruptions. Three of the complexes—San Antonio Mountain, South Mountain, and the East Fork Member—are polygenetic with lifespans between 5.2 and 5.5 ka. The Cerro Santa Rosa 2, Cerro San Luis, and Cerro Seco domes are either monogenetic or polygenetic with lifespans less than the associated age uncertainties. The mapped post-caldera units are grouped into a total of 15 eruptive events, bracketed by measurable intra- and inter-dome repose periods. Combined with the total duration of dome and vent lifespans of 81.9 ka, the calculated intra-dome eruptive frequency is 1 eruption event per 5.5 ka for when Valles caldera enters periods of sustained dome emplacement. Volume estimations, along with published volumes of the youngest eruptions, indicate that the post-caldera dome and vent complexes range in volume from 0.8 km³ to 14.1 km³ and have both increased and decreased throughout post-caldera evolution. In contrast, eruptive flux following caldera collapse has systematically increased between each post-caldera volcanic complex from 0.09 to 2.56 km³/ka during post-caldera evolution. Using new ages of the caldera-forming ignimbrite, a syn-resurgent lava, and the oldest post-resurgent ring-fracture eruption, the resurgence durations at Valles caldera are constrained to be between 74.4 ± 3.3 ka and 41.8 ± 6.7 ka. The average magmatic flux during resurgence is between 0.52 and 0.92 km³/ka, which is similar to pluton-filling rates, suggesting that resurgence is partially explained by a significant decrease in magmatic flux following the large fluxes that sustain caldera-forming magma bodies. Establishing an accurate timing of rapid events during post-caldera evolution is possible due to the combination of dating only sanidine grains without melt inclusion-hosted excess 40Ar and the ability of ARGUS VI mass spectrometer to identify problematic grains that skewed the weighted mean ages. The eruptive frequency during dome activity and increasing flux has important implications should Valles caldera enter a new phase of volcanic activity. Likewise, developing similar comprehensive age and volume datasets is necessary to assess hazards at other Quaternary volcanic systems.

IMPLICATIONS OF CRYPTIC, NONSTOICHIOMETRIC URANIUM MINERALIZATION ON THE FORMATION AND LEACHABILITY OF SANDSTONE-HOSTED URANIUM ORES, GRANTS DISTRICT, NEW MEXICO Pearce, Alexandra Rose, Ph.D.

This dissertation consists of three studies examining sandstone-hosted uranium ores from the Grants uranium district in northwestern New Mexico. The first investigates the mineralogy of primary-type uranium ores from the Jackpile Sandstone and Brushy Basin members of the Jurassic Morrison Formation. These ores are characterized by cryptic mineral and mineraloid mixtures, and uranium hosted by “uraniferous organic matter.” The host organic matter and the uranium mineralization is interpreted as having been fixed within the sediments during multistage groundwater mixing episodes involving one or more brines and humic acid-bearing fluids) that resulted in humate flocculation. The second study evaluates the environmental geochemistry of ores of the Jackpile Sandstone sampled from the St. Anthony Mine in Cibola County, NM. The site, slated for remediation, was assessed by its responsible party using a geochemical model which used the uranylslicate mineral uranophane to determine alternate abatement standards for uranium in groundwater. In our examination, we did not find uranophane. Batch leaching tests showed that significant uranium, vanadium and arsenic are released under oxidizing, alkaline conditions. Groundwater leaching experiments showed appreciable release of uranium and vanadium, but not arsenic. The third study investigates the leachability of distributed-type ores from the Westwater Canyon Member, and primary-type ores of the Jackpile Sandstone and Brushy Basin members. Here, leaching tests using alkaline lixiviants and ambient groundwater showed that gangue mineralogy and the non-mineral hosts of uranium produce leaching trends entirely discordant to those of stoichiometric minerals previously identified as important components in these deposits (meta-tuyumunite, meta-autunite, uraninite).

RAINFALL-RUNOFF RELATIONSHIPS IN THE ARROYO DE LOS PINOS, SOCORRO, NEW MEXICO Richards, Madeline A., Ph.D.

The Arroyo de los Pinos is an ephemeral tributary to the Rio Grande located in central New Mexico, draining an area of 32 km². In 2018 the US Bureau of Reclamation funded a sediment transport study at the confluence of the arroyo and the Rio Grande, with the goal of monitoring sediment influx to the mainstream channel in order to better inform sediment transport models. To supplement this study and to enable generalization to other ephemeral tributaries, more information was needed on up-basin flow generating processes. This thesis focuses on these efforts to characterize the runoff generating mechanisms.

A network of eighteen pressure transducers and five rain gauges were installed throughout the arroyo’s watershed in various subbasin tributaries. Pressure transducers monitored water stage data, and these were converted to discharge hydrographs for each flow event. The runoff events monitored this way were all small, close to the threshold of runoff generation, and did not fully activate the channel network. Tipping bucket rain gauges monitored rainfall. Data collected from this network show that rainfall intensity, subbasin lithology and antecedent soil moisture conditions are the primary factors that control runoff initiation, while total rainfall depth and lithology are the main controls on runoff ratio, and subbasin area is the main control on lag time.

Prior to transducer installation, a particularly large flood on 7/26/2018 left behind high-water marks at several locations throughout the watershed. These high-watermarks were surveyed and used as a proxy for maximum flood stage at each location. Peak stage comparisons show that maximum infiltration occurs in the lower third of the watershed that is dominated by alluvial cover and where the channel develops a multi-threaded planform. Results from a relative gravity survey conducted in 2018 confirm that maximum infiltration occurs in the lower elevations of the watershed, where the channel is multi-threaded and flows over alluvium.
The Pennsylvanian-Permian Darwin Basin of Eastern California records the abrupt onset of large-magnitude subsidence of the southwestern margin of Laurentia. The basin formed in the late Pennsylvanian but continuously expanded during the early Permian as subsidence and extensional faulting allowed calcilastic base-of-slope apron depositional systems to retrograde on to the subsided slope and shelf. Areal expansion of the Darwin Basin propagated east and southeast through time and is marked by the first deposition of deep-water facies in areas that had been carbonate shelves since the Ordovician. A nearly identical stratigraphic and structural evolution is present in the Pennsylvanian-Permian of southern California, indicating that the driver of subsidence in the Darwin Basin was able to affect a large swath of the southwestern margin of Laurentia at once. Furthermore, subsidence in the Pennsylvanian-Permian of California coincides with a significant change in deformation style of Ancestral Rocky Mountains basins and uplifts, suggesting that the driver of subsidence in California may have affected tectonics across southwestern Laurentia. Speculative basin evolution models invoke tectonism associated with the Late Paleozoic continent-truncating California-Coahuila transform fault as the principal driver of subsidence in the Darwin Basin and southern California. However, the onset of large-magnitude subsidence in southern and eastern California is spatially and temporally associated with the first appearance of magmatism and volcaniclastic sedimentation in the Late Paleozoic of the southwestern U.S. The geochemistry of these early to middle Permian igneous rocks, which include plutons and lavas in southern California and newly identified tuffs in eastern California, demonstrates that these rocks formed in a continental subduction zone. The presence of continental arc-derived igneous rocks in the early Permian of California is interpreted to indicate that the onset of Cordilleran Subduction occurred earlier than has previously been recognized.

We present 15 new measured sections, facies analysis, clast and point counts, and new conodont biostратigraphy that document the Pennsylvanian-Permian evolution of the Darwin Basin. We also report on whole-rock geochemistry and XRD analysis of five previously unknown tuffs identified in the Darwin Basin. We propose that subsidence in the Darwin Basin and southern California was caused by extension and dynamic topography above the incipient Cordilleran Subduction Zone. We further suggest that the first appearance of this subsidence dates the onset of subduction, which appears to have begun shortly before the Pennsylvanian-Permian boundary. Arc magmatism may have begun as early as 290 Ma, but was likely low-volume and confined to small portions of the southwestern plate margin during the Permian, as is the case for the nascent Neo-
interacting explosively with an external water source, or phreatomagmatic activity. In terms of area, Kilbourne Hole is an unusually large and irregularly shaped, young (~20 ka) maar with well exposed and accessible deposits. Traditional field methods and complementary remote sensing methods were used to investigate the potential eruptive volume, explosion energy, and eruption progression of Kilbourne Hole maar to shed light on large maar-forming eruptions. With a minimum total eruptive volume of 0.23 km3, Kilbourne is the largest known single maar by eruptive volume. The deposits around the maar crater rim range in thickness from ~1 to ≥60 m. The thickness of individual beds also varies, with beds generally increasing in thickness towards the north-northeast particularly up-section, suggesting vent migration potentially occurred at Kilbourne or that the vent was located northward towards the later stages of the eruption. The deposits themselves lack a later magmatic phase and are dominated by fine ash and sandwaves, indicating emplacement largely by dilute density currents (surges), suggesting that the water-magma ratio remained constant throughout the eruption and that explosions occurred dominantly at greater-than-optimal scaled depths (OSD), which produce abundant surges. The total explosion energy predicted by crater dimensions ranges from 5.21 x 1010 to 1.45 x 1012 J, which when compared to the explosion energies derived from individual events, suggests a range of 54 to 209 explosions of 6.94 x 1011 J would be required to form Kilbourne Hole maar. Although the individual explosion energies predicted at Kilbourne are not necessarily more energetic than those predicted by previous maar studies, the thick deposits and large eruptive volume suggest a prolonged eruption is likely responsible for the large maar-forming eruption and that in some special circumstances, maar eruptions dominated by greater-than-OSD explosions may produce large volumes. While further work is needed to investigate the lateral changes in the deposits at Kilbourne, particularly in the west, and further assess the potential for vent migration at this location, this study has demonstrated that prolonged activity, consistent water-magma ratios, and greater-than-OSD dominated explosions can result in large maar-forming eruptions and result in immense eruptive volumes.

University of New Mexico

NEOGENE DRAINAGE REVERSAL AND COLORADO PLATEAU UPLIFT IN THE SALT RIVER AREA

Anderson, Jordan Curtis, M.S.

The modern Salt River flows southwest from the Colorado Plateau, through the Arizona Transition Zone and into the Basin and Range. Rivers in this area flowed northeast during the Paleogene from the Laramide Mogollon Highlands into structural basins of the topographically lower southern Colorado Plateau area. One of these rivers carved the Salt River paleocanyon through a portion of the Mogollon Highlands known as the Apache Uplift to similar depths as the modern Grand Canyon. This study refines the timing of this drainage reversal in the Salt River area by constraining the ages of paleoriver sediments deposited during the time of northeast-flowing rivers, internal drainage and southwest-flowing rivers. These results provide insights into the evolution of the southern Colorado Plateau.

U-Pb dating of detrital zircon is used for maximum depositional ages and provenance analyses. U-Pb dating of detrital sanidine is used for higher precision maximum depositional ages. The majority of paleoriver samples that were analyzed with both detrital zircon and sanidine show similar maximum depositional ages. Minimum or direct depositional ages are determined by overlying or interbedded volcanic units.

The Mogollon Rim Formation is composed of river gravel, sandstone and mudstone on the southern rim of the Colorado Plateau that were deposited by northeast-flowing rivers. Results indicate deposition began after 59.38 Ma in the Flying V Canyon area and from 37–33.55 Ma in the Trout Creek section. The Whitetail Conglomerate represents the transition from northeast-flowing rivers to internal drainage in the Salt River paleocanyon. Whitetail Conglomerate is as old as the interbedded 37.6 Ma dacite in Canyon Creek fault side drainages, but deposition on the axis of the Salt River paleocanyon occurred between 30 and 21.8 Ma. The transition from northeast-flowing rivers to internal drainage occurred between 33.55–30 Ma, marking the age of initial development of the southern edge of the Colorado Plateau. Apache Leap tuff flowed NE down the Salt River paleocanyon nearly to Canyon Creek fault at 18.6 Ma. Internal drainage is documented by the 14.67 Ma Black Mesa basalt that flowed onto underlying lake beds. The first southwest-flowing river system in the Salt River paleocanyon deposited the Dagger Canyon conglomerate after incising at least 200 m deep into the Whitetail Conglomerate. The lower Dagger Canyon conglomerate is present in tilted fault blocks on the eastern side of Tonto Basin and the western portion of the Salt River paleocanyon. The dip of bedding increases down-section from 0 to 27º providing evidence that deposition occurred while the faults were active. Lower Dagger Canyon conglomerate deposition began after 12.49 Ma, presumably due to base level fall associated with Basin and Range extension. The upper Dagger Canyon conglomerate is composed of flat-lying river gravels and sandstone located at higher elevations than the lower Dagger Canyon conglomerate in Tonto Basin and the Salt River paleocanyon. Deposition of the upper Dagger Canyon conglomerate began after 7.34 Ma and a possible lag in fluvial deposition occurred between the two facies. If a lag in fluvial deposition occurred then the upper Dagger Canyon conglomerate represents a rejuvenation of the southwest-flowing river system in the Salt River paleocanyon after Basin and Range faulting waned. A likely driver for this rejuvenation would be southern Colorado Plateau uplift by the building of Mount Baldy volcanic field 12–8 Ma.

FLUVIAL GEOMORPHIC AND HYDROLOGIC EVOLUTION AND CLIMATE CHANGE RESILIENCE IN YOUNG VOLCANIC LANDSCAPES: RHYOLITE PLATEAU AND LAMAR VALLEY, YELLOWSTONE NATIONAL PARK

Bennett, Benjamin Newell, Ph.D.

Quaternary volcanism associated with the last caldera cycle in Yellowstone National Park included emplacement of ash-flow tuffs, massive rhyolite flows ranging from 79 to 484 ka, and valley-filling basalts. This study examines (1) the evolution of spring hydrology with flow age on the Rhyolite Plateau, (2) initial development and evolution of stream networks on the rhyolite flows, and (3) the impact of the 630 ka caldera formation and volcanic flow emplacement on Lamar Valley incision rates. Integrated stream networks formed within 79 kyr on the Rhyolite Plateau. Incision is focused on steep flow margins and knickpoints and is dependent on local stream power. Plugging of fractures causes hydraulic conductivity of the flows to decline over time. Snowmelt infiltrates rapidly into younger flows, leaving ephemeral surface streams, but many flow-margin springs experience a delayed snowmelt response and enhanced discharge during late-summer periods of water stress, providing important refugia for aquatic organisms threatened by climate change.

Incision rates over the past 630 kyr in the Lamar Valley are greatest (≤ 0.55 mm/yr) where the greatest thickness of Quaternary volcanic material was emplaced, where they are higher than most rivers in the region. Incision rates are lowest (≤ 0.15 mm/yr) above a knickpoint caused by erosion resistant crystalline bedrock, and in the upper reaches of two tributaries, where I infer that faulting associated with caldera formation led to stream capture of portions of the headwater areas.

Ferguson, Christina, M.S.

The Pliocene Bouse Formation is discontinuously exposed in the lower Colorado River region and is a record of the first arrival of the Colorado River to the Gulf of California 5 million years ago. It consists broadly of a lower carbonate member (travertine, marl, and biolastic units) and an upper siliciclastic member (claystone, mudstone, and Colorado River sands). This paper focuses on the basal travertine (synonymous with “tufa”) unit of the lower carbonate member. Because of its basal position and its chemical encrustation of pre-Bouse topography, the travertine can offer insight into the earliest depositional settings and may be a proxy for the composition of the waters that deposited the first Bouse carbonates. Hence the travertine unit, if it can be shown to preserve a primary geochemical signal, offers the potential to discriminate between alternative hypotheses for marine versus non-marine deposition of the Bouse carbonates of the Blythe Basin. This paper examines the geochemistry of the travertine unit.
using stable isotopes of carbon and oxygen, ⁸⁷Sr/⁸⁶Sr, petrographic examinations of thin sections, and microprobe traverses. Testing for diagenesis included subsampling techniques and textural studies using thin section examinations and SEM investigations.

The travertine unit forms an encrustation that drapes and mantles pre-Bouse topography, including volcanic bedrock and fanglomerates. The travertine unit is generally thin, often less than several meters thick although it can reach thicknesses of tens of meters. It is intermittent but fairly widespread in the Blythe Basin, the southernmost of the Bouse basins, and also present in scattered locations in the more northern basins. Its facies include: porous tufa, microbialite domes (bioherms), vegetation-casts (charophytes of marsh and probable non-marine origin), and botryoidal travertine, all onlapped by and interfingered with marl and high energy bedforms of bioclastic sandstone that were deposited before the first arriving Colorado River sands. This Walther’s Law relationship suggests that the travertines are broadly coeval with the other facies in the basal carbonate unit of the Bouse Formation. Stable isotope data for travertine reveal a covariation of δ¹³C with ¹⁸O and a spread of values between ~4 and 2‰ and (~16, ~9‰) for the southern Blythe Basin and a regression line with R² = 0.63. Northern basin travertines have a similar covariation trend (R² = 0.73). Travertines show multiple carbonate generations in thin section, but stable isotope analyses did not show continuous or regular differences in composition of subsamples. Silica diagenesis was observed in the Buzzard’s Peak area where the 4.83 Ma Lawlor Peak tuff is interbedded with carbonates, but this area showed overlapping carbonate chemistry to other areas, although somewhat more positive along the regression line. Compiled and new ⁸⁷Sr/⁸⁶Sr analyses show that the basal Bouse carbonates have non-marine values of ~ 0.711 (as opposed to 0.709 for seawater) in all carbonate facies (marls, bioclastic unit, travertine, and numerous fossil types). Double dissolution tests for ⁸⁷Sr/⁸⁶Sr values were performed in travertine and marl to evaluate potential diagenetic changes: these revealed little change in values from 0.7105 to 0.7108; from 0.7105 to 0.7107; and from 0.7106 to 0.7108. Plots of ¹³C versus ⁸⁷Sr/⁸⁶Sr and versus latitude show no covariation in ⁸⁷Sr/⁸⁶Sr over a wide range of ¹³C and facies types.

The combined data are interpreted as showing only limited carbonate diagenesis within the basin travertine of the Bouse Formation such that carbonate geochemistry can be used as a proxy for the waters that deposited them. Two possibilities are examined to explain the covariation of ¹³C and ⁸⁷Sr/⁸⁶Sr: 1) mixing of sea water (0, 0) and meteoric water (~16, ~7); or 2) evaporation of basin water. We favor evaporation as the dominant explanation based on the similarity of travertine variation in northern (lacustrine) and southern (debated marine versus lacustrine) basins, the presence of non-marine charophytes in travertines, and absence of covariation between δ¹³C and ⁸⁷Sr/⁸⁶Sr, consistent with evaporation but not mixing. Radiogenic ⁸⁷Sr/⁸⁶Sr and the presence of localized zones of large volumes of travertine suggest influences from deeply circulated geothermal groundwaters. We do not rule out mixing of marine and non-marine waters in an estuarine environment to explain marine fossils and reported sequence stratigraphic and tidal sedimentary evidence, but the geochemical data are more consistent with the interpretation that the initial travertine deposition in multiple Bouse basins (and the travertine depositing waters) were dominantly non-marine.

INTERPRETING AMALGAMATION PROCESSES OF A FLUVIAL SANDSTONE OF THE NACIMIENTO FORMATION IN THE SAN JUAN BASIN, NEW MEXICO

Outcrop studies of fluvial sand bodies are important for the study of fluid transport and storage capabilities because the deposits are heterogeneous. 3-D photogrammetry was used to evaluate the amalgamation processes of a multi-storey sheet sandstone in the San Juan Basin, NM. The Angel Peak Member was deposited in the proximal-medial transition of a distributive fluvial system by a meandering river during the Paleocene. Within the study area, amalgamation occurred by avulsion and reoccupation of channel-belts to produce five storeys of the multi-storey sheet sandstone. Within each storey is evidence of processes that are internal to a channel-belt, such as bar migrations, small scour surfaces, and chute deposits. Vertical truncation by subsequent channel-belts has occurred to each storey. Miocene to present erosion has also removed portions of the uppermost storeys within the detailed study area. The multi-storey sheet sandstone of the Angel Peak Member was deposited as the San Juan Basin was almost full, thus has many characteristics of amalgamation during low accommodation space.

INTEGRATED STUDIES OF INTRACONTINENTAL DEFORMATION IN THE INTERIOR WESTERN USA, CRETACEOUS TO RECENT

The advent of plate tectonic theory satisfactorily explained a number of deformation belts around the world. However intracratonic deformation (deformation inboard of a plate margin) remains poorly understood in plate tectonic models. In order to further our understanding of intracratonic tectonics and its effects, this dissertation examines paleotectonic and neotectonic settings within the interior western USA.

Chapter 1 focuses on late Miocene–Recent deformation inboard of the San Andreas plate margin fault and its role on the integration history of the lower Colorado River. The neotectonic analysis included geometric and kinematic fault data collected in key geologic units to characterize the timing and style of deformation in an area that has commonly been considered to lack young deformation. It is found that post-12 Ma deformation in the region is cumulatively significant and persisted before, during, and after deposition of the Bouse Formation—a unit that represents the first arrival of the Colorado River— in a (possibly active) zone of inboard transtension.

The remaining chapters focus on Late Cretaceous and younger tectonics within the Laramide foreland region, a world class study area that is still vigorously debated after over 100 years. Chapter 2 utilizes apatite thermochronology to address the timing of Cretaceous (Laramide) and Miocene–Recent tectonism recorded in distinctly situated samples within the Zuni Mountains of west-central New Mexico. Chapter 3, through integrated apatite thermochronology and basin stratigraphy, interprets a ca. 95–70 Ma eastward sweep of Laramide onset of deformation (when it began) across northern Arizona–New Mexico. Chapter 4 scales up the methodology of Chapter 3 with a regional scale compilation effort to interpret an east-northeast directed sweep of time transgressive onset of Laramide deformation from Montana–South Dakota to Arizona–New Mexico during the Late Cretaceous–Paleogene.

These studies contribute to our understanding of plate tectonics and the role that intracratonic deformation plays. Inboard plate margin deformation and its role on river system integration and potential ongoing deformation are described. Likewise, the timing and spatio-temporal patterns of deformation shed light on the tectonic processes that operated during the Laramide orogeny, as well as additional Cenozoic exhumation related to epeirogenic uplift of the western and southwestern United States.

LANDSCAPE EVOLUTION OF THE SOUTHERN COLORADO PLATEAU USING LOW-TEMPERATURE APATITE THERMOCRONOLOGY AND DETRITAL ZIRCON AND SANIDINE PROVENANCE STUDIES

Chapter 1: Westernmost Grand Canyon

Conflicting hypotheses about the timing of carving of the Grand Canyon involve either a 70 Ma (“old”) or < 6 Ma (“young”) Grand Canyon. This paper evaluates the controversial westernmost segment of the Grand Canyon where the following lines of published evidence firmly favor a “young” Canyon. 1) North-derived Paleocene Hindu Fanglomerate was deposited across the present track of the westernmost Grand Canyon, which therefore was not present at ~55 Ma. 2) The 19 Ma Separation Point basalt is stranded between high relief side canyons feeding the main stem of the Colorado River and was emplaced before these tributaries and the main canyon were incised. 3) Geomorphic constraints indicate that relief generation in tributaries and on plateaus adjacent to the westernmost Grand Canyon took place after 17 Ma. 4) The late Miocene-Pliocene Muddy Creek Formation constraint shows that no river carrying far-traveled materials exited at the mouth of the Grand Canyon until after 6 Ma. Interpretations of previously-published low-temperature thermochronologic data conflict with these lines of evidence, but are reconciled in this paper via the integration of three methods of analyses on the same sample: apatite (U-Th)/He ages (AHe), ⁴He/⁹He thermochronometry (³He/²⁹He), and apatite fission-track ages and lengths (AFT). “HeFTy” software was used...
to generate time-temperature (t-T) paths that predict all new and published 4He/He, AHe, and AFT data to within assumed uncertainties. These t-T paths show cooling from ~100°C to 40-60°C in the Laramide (70–50 Ma), long-term residence at 40-60°C in the mid-Tertiary (50–10 Ma), and cooling to near-surface temperatures after 10 Ma, and thus support a “young” westernmost Grand Canyon.

A subset of AHe data, when interpreted alone (i.e., without 4He/He or AFT data), are better predicted by t-T paths that cool to surface temperatures during the Laramide, consistent with an “old” Canyon. This inconsistency, which mimics the overall controversy, is reconciled by optimizing cooling paths so they are most consistent with multiple thermochronometers from the same rocks and adjusting parameters to account for model uncertainties. We adjusted model parameters to account for uncertainty in the rate of radiation damage annealing during sedimentary burial in these apatites and thus possible changes in He retentivity. In the westernmost Grand Canyon, peak burial conditions (temperature and duration) during the Laramide were likely insufficient to fully anneal radiation damage that accumulated during prolonged, near-surface residence since the Proterozoic. The combined AFT, AHe, and 4He/He analysis of a key sample from Separation Canyon can only be reconciled by a ‘young’ Canyon, but thermochronologic uncertainties remain large for this geologic scenario. Additional new AFT (5 samples) and AHe (3 samples) data in several locations along the canyon corridor also support a “young” Canyon and suggest the possibility of variable mid-Tertiary thermal histories beneath north-retreating cliffs. We conclude that application of multiple thermochronometers from common rocks reconciles conflicting thermochronologic interpretations and is best explained by a “young” westernmost Grand Canyon.

Chapter 2: Formation of the Grand Staircase

Dutton’s (1882) “Great Denudation” involved the lateral erosion of Mesozoic strata northwards from the rim of Grand Canyon via cliff retreat. He described a “great stairway” of alternating benches of erodible strata and cliffs of resistant strata now known as the Grand Staircase. We analyze 52 samples from across the southwestern Colorado Plateau and use linear inverse modeling of apatite thermochronometric data in HeFTy to determine continuous thermal histories for each sample. Results from these histories were then passed through a MATLAB code to extract temperatures of the weighted mean paths every 5 Ma, combined with geologic constraints on dated paleosurfaces, and interpolated across the study area. These interpolations show reconstructed cooling patterns of the top contact of the Kaibab Limestone through time since 70 Ma and can be used to estimate the geometry and rates of lateral cliff retreat and resulting erosional volumetric loss through time. We find three main times of denudational cooling, each associated with major through-going river systems. The Laramide orogeny (70–50 Ma) and incision of Paleocene fluvial valleys is associated with 35,750 cubic kilometers of volume loss above the Kaibab datum.

The 35-15 Ma ignimbrite flare-up, initiation of Basin and Range extension, and incision of the East Kaibab paleocanyon is associated with 37,000 cubic kilometers of volume loss above the Kaibab datum. Post-6-Ma river integration of the Colorado River system through Grand Canyon and probable young uplift is driving ongoing deep incision and is associated with a minimum of 15,500 cubic kilometers of volume loss above the Kaibab datum, with at least 4,166 additional cubic kilometers of volume loss from the Grand Canyon alone. Cliff retreat rates are highly lithology dependent and range between 1.8 km/Ma for the Chocolate Cliffs, 2.4 km/Ma for the Jurassic (Vermillion) Cliffs, and 1.8 km/Ma for the Grey Cliffs. We conclude that three periods of accelerated denudation of the southwestern Colorado Plateau, most likely driven by epeirogenic uplift, represent punctuated periods of broad-scale cliff retreat that are coeval with evidence for significant fluvial systems. The Colorado Plateau region is thus a type example of eperogenic controls on geomorphic re-shaping of plateau landscapes.

Chapter 3: Provenance and Pathways of the Music Mountain and Buck and DoePaleoivers

Scattered remnants of “Rim Gravels” on the southern margin of the Colorado Plateau preserve a direct record of its fluvial and erosional history. Two paleoerover deposits containing well-described gravels occur on the far southwestern corner of the plateau, the Paleocene (~55–50 Ma) Music Mountain Formation and the Oligocene-early Miocene (~24–18 Ma) Buck and Doe Conglomerates (Young, 1999). Detrital zircon analysis can provide clues to potential sources and sinks of these deposits and more recently, high-precision detrital sanidine studies have been developed to tightly constrain the maximum depositional ages and provenance of Cenozoic deposits. In this study, we use a combination of new and published detrital zircon and detrital sanidine data to determine provenance and potential sinks of the Music Mountain Formation (n = 1090 U-Pb zircon ages and n = 5 detrital sanidine ages used for maximum depositional ages) and the Buck and Doe Conglomerates (n = 1028 U-Pb zircon ages and n = 6 detrital sanidine ages used for maximum depositional ages). In addition, we collected 4 samples (n = 670 U-Pb zircon ages) from formations in the Table Cliffs Basin area (e.g. Markagunt and Paunsaugunt Plateau regions) to evaluate it as a potential sink for the Music Mountain Formation.

Detrital zircon age populations for the Music Mountain Formation are dominated by a 1691 Ma age peak with a smaller 1390 Ma peak and a small portion of Mesozoic ages. Grenville-aged grains (~1100 Ma) are conspicuously absent. This age distribution indicates that the Music Mountain fluvial system is sourced from the nearby Kingman uplift, where basement rocks of these ages occur. Comparison of this age distribution with coeval Laramide deposits from the Uinta Basin, San Juan Basin, and Table Cliffs Basin reveal that while none of these basins are ideal matches, connections with the Table Cliffs or Uinta Basins are unlikely. The San Juan Basin provides a potential match for age populations, particularly the significant ~1390 Ma age peak, and thus is preferred as a hypothesized sink for the Music Mountain fluvial system. The maximum depositional age via both detrital sanidine and detrital zircon is ~73 Ma, several tens of million years older than the best age estimates of 50-60 Ma and provides little new information. Detrital zircon age populations for the Buck and Doe Conglomerate are also dominated by peaks at ~1680 Ma and 1390 Ma, although the 1390 Ma peak is significantly stronger in comparison with the older Music Mountain Formation. There are very few peaks of Mesozoic-aged zircons and a sharp peak at ~20 Ma sourced from local volcanism, although this is only present in two of the 6 samples. These age populations suggest continued unroofing of the Kingman uplift with increased contribution from the 1390 Ma Peacock Mountain Granite and reworking of the Music Mountain Formation. Contemporaneous deposits include the lower portion of the Brown’s Park Formation from northern Utah and the Rainbow Gardens Formation in the Lake Meade region of eastern Nevada, and a sample from the Table Cliffs Basin that unexpectedly yielded a population of ~20 Ma zircon U-Pb ages. Comparison of age spectra for these units with the Buck and Doe ages indicate that a relationship with the Rainbow Gardens Formation or the Brown’s Park Formation are unlikely, but that there is a high likelihood of a connection with the “White Claron” sample from the Table Cliffs Basin. Maximum depositional ages from detrital sanidine for three samples from the Buck and Doe Conglomerate are 18.065 ± 0.017 Ma, 25.52 ± 0.10 Ma, and 30.2 ± 0.2; the youngest of these is slightly younger than the Peach Springs Tuff (18.78 ± 0.02 Ma), which caps the type section of the Buck and Doe Formation.

The erosional history of the southern Colorado Plateau has been a topic of scientific debate for over 150 years. Key conclusions include 1) both of these fluvial systems were sourced from the Kingman uplift to the south as shown by the 1390 Ma age population, 2) a potential connection is proposed between the Music Mountain Formation and the San Juan Basin, which is also based on this 1390 Ma population, and 3) we also propose a ca. 18 Ma connection between the westernmost Buck and Doe sample and the Miocene “White Claron” of the Table Cliffs Basin, indicating there was no paleo Grand Canyon at that time. The timing of these fluvial systems is consistent with the major periods of denudation found in Chapter 2 and these paleoerovers provide potential pathways for the removal of this material.

TRIPLE OXYGEN ISOTOPE COMPOSITION OF CARBONATES

Wostbrock, Jordan A.G., Ph.D.

This dissertation presents a method of analyzing the triple oxygen isotope compositions of carbonates, presents an empirical calibration of the carbonate-water equilibrium fractionation line, presents a triple oxygen isotope equilibrated fluid-rock mixing model for carbonates to see through diageneis, and applies all these findings to ancient carbonate samples. Using modern carbonates and associate water, the following equations are calculated to describe equilibrium triple oxygen isotope fractionation of carbonates:
STRUCTURAL AND GEOCHRONOLOGIC CONSTRAINTS ON THE DURATION OF THE PICURIS OROGENY AND DEMISE OF AN OROGENIC PLATEAU, NORTHERN NM

Young, Daniel J., M.S.

Metasedimentary and igneous basement rocks in northern New Mexico record episodic pulses of tectonism during cratonic growth from 1.8 to 1.38 Ga. Continued challenges involve parsing the deformational features attributable to the Yavapai Orogeny (1.71–1.68 Ga), Mazatzal orogeny (1.66–1.60 Ga), and Picuris orogeny (1.5–1.38 Ga) in this region and understanding how older structures may have been overprinted and reactivated to explain the observed strain. This paper presents regional cross-sections of the 1.7 Ga Vadito, 1.68 to 1.50 Ga Hondo, and 1.5–1.45 Ga Trampas groups of the Picuris Mountains and Río Mora areas of northern New Mexico combined with new geochronologic and thermochronologic constraints. These data suggest the following tectonic evolution. An early bedding-parallel S1 fabric is present only in pre-Trampas Group rocks and is interpreted to be related to early isoclinal folds and thrusts. All groups were folded by F2 and F3 fold generations during the Picuris orogeny. New U-Pb dates from monazite cores of about 1.5 Ga in aluminous gneisses from the Vadito–Hondo group aluminous contact zone within the Pecos thrust sheet are interpreted as onset of Picuris orogeny prograde tectonism. This onset of heating/deformation is thus close in age, and apparently pre-dates deposition of the Trampas Group at ~1488 ± 6 Ma in the footwall of the Pecos and Plomo thrusts. Growth of metamorphic garnets at 1.45–1.40 Ga from previous studies and new monazite rim dates of ~1.45 Ga may record metamorphism close in age to deposition of the thrust-bound 1.453 ± 10 Ga Marqueñas Formation. Regional cross sections show that the modern surface exposure represents an exhumed ~15 km middle crustal duplex system that juxtaposes, from north to south: 1) 1.45 Ga triple point (>550 C, 3.5 kbars) polyphase metamorphic tectonites in the Copper Hill anticline-Hondo syncline thrust sheet made between the Pilar and Plomo thrusts, 2) a similar grade thrust-bound Marqueñas tectonite that makes up the Plomo shear zone, 3) the 1.45 Ga Peñasco granite that intrudes Vadito Group rocks between the Plomo shear zone and the Pecos master thrust, and 4) overriding volcanic rocks of the ~1.72–1.65 Ga Pecos volcanic complex. Juxtaposition of amphibolite-grade upper plate rocks against 1.48–1.45 Ga metasedimentary lower plate rocks are the product of progressive thrusting from 1.50 to 1.40 Ga, synchronous with development of syntectonic foreland basins. The 1.45 Ga granite and pegmatites show only minor penetrative strain but are considered broadly syntectonic with waning deformation at 1.45–1.40 Ga. A modern analog is the Tien Shan–Tarim basin region of the interior Tibetan Plateau inferred for the Picuris tectonism. New 40Ar/39Ar dates on hornblende and muscovite constrain cooling through ~500°C and ~350–400°C respectively and provide insight into cooling rates following the Picuris orogeny, and hence the nature and timing of demise of Picuris orogenic uplifts. Hondo and Trampas group rocks cooled through 500°C 1420–1381 Ma and through 350°C from 1378–1359 Ma. This is similar to new data with 40Ar/39Ar cooling data from muscovite from the Petaca pegmatite district (mean cooling age of 1375 ± 10 Ma), and similar ages in basement exposures from neighboring mountain ranges. Slow cooling from >500 to <350°C from ~1420 to ~1360 Ma suggests cooling rates of ~3°C/Ma over 60 Ma following peak triple point metamorphism. To explain this protracted cooling we propose that an orogenic plateau was built by thrust duplexing and penetrative folding in northern New Mexico during the Picuris orogeny followed by relatively slow erosional removal. Erosion of much of the region initiated by 1.1–1.3 Ga, resulting in deposition of the De Baca Group and correlative strata.