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Geographic names

U.S. Board on Geographic Names

Barela Mesa—mesa, 8 km (5 mi) long, highest el-
evation 2,658 m (8,720 ft.); bound by Burro Mesa
to the north, Horseshoe Mesa and Little Mesa
to the east, and Horse Mesa and Little Fishers
Peak Mesa to the west; 16.9 km (10.5 mi) north-
east of Raton, New Mexico; named for Senator
Casimiro Barela, a prominent Spanish-Ameri-
can resident of Trinidad, Colorado, in the 1890's;
Colfax County, New Mexico and Las Animas
County, Colorado; T. 35 S., R. 62 W., Sixth Prin-
cipal Meridian and T. 32 N., R. 61 W., NMPM;
36°59'59" N., 104°18'48” W.; not: Barilla Mesa,
Raton Mesa.

Bear Wallow Ridge—ridge, 4.8 km (3 mi) long, in
Sangre de Cristo Mountains, highest elevation
2,965 m (9,727 ft), 7.2 km (4.5 mi) southeast of
Ranchos de Taos; Taos County, New Mexico;
36°19°15" N., 105°32'40" W. (northwest end),
36°17'05" N., 105°30'35" W. (southeast end).

Beclabito—populated place, on the north side of
Beclabito Wash 31 km (19 mi) northwest of Ship-
rock; a Navajo Indian name reportedly meaning
“water underneath”; San Juan County, New
Mexico; T. 30 N., R. 21 W., NMPM; 36°50'30"
N., 109°01'10" W.; 1937 decision revised; not: Be-
clabato, Beklabito, Biclabito, Biltabito (BGN 1915),
Bitlabito (BGN 1937).

Beclabito Spring—spring, in Beclabito 31 km (19
mi) northwest of Shiprock; a Navajo Indian name
reportedly meaning “water underneath”; San
Juan County, New Mexico; T. 30 N., R. 21 W,,
NMPM; 36°50'28” N., 109°01'05” W.; 1937 deci-
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Ash-flow tuffs of northeast
Mogollon-Datil volcanic field

by Glenn R. Osburn, New Mexico Bureau of Mines and Mineral Resources, Socorro, NM

Volcanoes and lava flows are a common
sight throughout New Mexico. Most of the
youngest rock types are basaltic lava flows
and associated cinder cones, volcanic rocks
that are relatively poor in SiO, (45-55%).
Young, high-silica rocks (rhyolites) are scarce
in New Mexico except in the Jemez Moun-
tains, northwest of Santa Fe. However, within
the older Mogollon-Datil volcanic field (Oli-
gocene and early Miocene) that covers most
of southwest New Mexico, rhyolitic rocks
make up an appreciable percentage of vol-
canic materials. These rhyolites occur both
as lava flows and domes and as pyroclastic
deposits. Pyroclastic rocks dominate volu-
metrically and are also the most important
for stratigraphic purposes. Ash-flow tuffs or
ignimbrites (a New Zealand term for ash-
flow tuffs) are by far the most voluminous
and important pyroclastic rocks. Ignimbrites
are the clastic deposits left behind by hot gas-
and-particle slurries of volcanic origin. These
move as ground-hugging, gravity-controlled
pyroclastic flows (nuées ardentes) that are
often very fluidal and travel long distances
(many tens of km) from their source. Pyro-
clastic flows conserve heat very well, and
their deposits are commonly so hot (>500-
600°C) that the soft glassy particles weld to-
gether to form dense, solid rocks. These rock
units are usually recognizable even after
structural disruption and provide superb
marker horizons (time lines) for reconstruct-
ing events within volcanic fields.

If ignimbrites are to be used as marker ho-
rizons, it is imperative that individual ge-
netic units are separated and that ignimbrites
are distinguished from rhyolite lavas with
similar characteristics. Textural and miner-
alogical characteristics that are useful in dis-

.tinguishing one ignimbrite from another are:

color; proportions of ash, pumice, rock frag-
ments, and phenocrysts; and the degree of
welding and induration of the unit. Many of
these textural characteristics vary laterally and
vertically within the same unit and must be
applied with caution. In the Socorro-Mag-
dalena area, the amount and relative per-
centages of the various phenocrysts have
proven to be the single most important cor-
relation tool. Ignimbrites are often petro-
graphically and chemically zoned in vertical
sections; however, at least in this area, lateral
zonation has not been observed in the many
tens of kilometers of exposure. The same
general sequence of units and zoning within
units is observed from the Joyita Hills to Da-
til, a distance of approximately 100 km. For
detailed descriptions of these units, the reader
is referred to New Mexico Bureau of Mines
and Mineral Resources Stratigraphic Chart 1

(Osburn and Chapin, 1983a) and to a sum-
mary article by the same authors (Osburn
and Chapin, 1983b).

Because ignimbrites were originally frag-
mental, they usually can be distinguished
from similar lava flows by the presence of
pumice, lithic fragments, and broken crystal
fragments in hand samples, and by the pres-
ence of glass shards (if preserved) in thin
sections. Many papers in the geologic liter-
ature have treated these features in more de-
tail; two of the best, Ash-flow tuffs—their origin,
geologic relations, and identifications (Ross and
Smith, 1961) and Zones and zonal variations in
welded ash-flow tuffs (Smith, 1960) have been
recently reprinted as New Mexico Geological
Society Special Publication 9.

Figures 1-8 below are representative pho-
tomicrographs of each of the eight major re-
gional ignimbrites found in the Socorro-
Magdalena area. These photomicrographs are
presented in ascending stratigraphic order
(oldest to youngest). They were photo-
graphed at the same scale (for ease in com-
paring textures and phenocryst percentages)
and with crossed polarizers rotated a few
degrees from orthogonal to reduce contrast
for photography. These side-by-side com-
parisons illustrate that, although many of
these units are grossly similar and can be
confused on cursory examination, differ-
ences do exist. All of these units have been
defined in areas where thick sequences ex-
pose several units in unambiguous strati-
graphic successions. The best areas for the
units below Hells Mesa Tuff are in the west-
ern Gallinas Mountains and Datil Mountains
(Harrison, 1980; Coffin, 1981; and Lopez and
Bornhorst, 1979). Excellent exposures of the
younger units are found in the Joyita Hills
(Spradlin, 1976).

A variety of petrographic, vitroclastic, de-
vitrification, and vapor-phase alteration tex-
tures are visible in these photomicrographs;
these textures are discussed where perti-
nent. Obviously, many of the units can be
easily distinguished from each other; how-
ever, some units are very similar and great
care must be taken in identification. Rock
House Canyon Tuff, La Jencia Tuff, and Vicks
Peak Tuff (phenocryst-poor units) have min-
eralogies similar enough to be confusing; up-
per Lemitar Tuff and Hells Mesa Tuff
(phenocryst-rich units) are nearly indistin-
guishable. Identification is especially diffi-
cult when dealing with isolated outcrops or
less welded, distal deposits. A sequence con-
taining several units is the best tool where
identification is uncertain.
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FIGURE 1—Datil Well Tuff (sample NJ-1-2, Jor-
nada del Muerto) is a moderately phenocryst rich
unit containing abundant feldspar (10-15%) and
minor biotite (b) and opaque oxides. The miner-
alogy is distinctive in thin section because all of
the feldspar is sanidine (s) (largely untwinned).
This unit contains appreciable pumice and there-
fore is readily recognizable as an ignimbrite; how-
ever, normally, as in this section, the groundmass
is devitrified into a finely crystalline mosaic show-
ing little, if any, vitroclastic texture. The small dark
circles are bubbles in thin-section epoxy.
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FIGURES 4a, b—Hells Mesa Tuff (4a, sample IL-
19-A; 4b, sample 80-1-3; both from Joyita Hills)
is a very phenocryst rich, petrographically (and
chemically) zoned ash-flow sheet.

Figure 4a depicts the lower zone of the tuff that
contains subequal plagioclase (p) and sanidine (s),
abundant biotite and minor quartz (q), opaque
oxides, and hornblende. In this specimen, a glassy
vitrophyre, well-preserved shards may be seen in
the small dark-gray areas between phenocrysts.

Figure 4b illustrates a higher zone of Hells Mesa
Tuff. This interval is even more phenocryst rich
and contains proportionally more quartz (q) and
sanidine (s), less plagioclase (p) and biotite, and
only traces of hornblende, The groundmass of this
unit is strongly devitrified and shows only cloudy
ghosts of shards. Pumice is often sparse in the
Hells Mesa Tuff, and formerly it was commonly
mistaken for a rhyolite lava or sill.
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FIGURE 2—Rock House Canyon Tuff (sample NJ—
1-3, Jornada del Muerto) is a phenocryst-poor tuff
containing a few percent sanidine (s) and lesser
plagioclase (p) with minor biotite, opaque oxides,
and quartz. The unit usually contains abundant
pumice, and in this specimen the groundmass ex-
hibits a well-preserved vitroclastic texture even
though it is partially devitrified. Lack of distortion
in the glass shards (small dark-gray curved shapes)
indicates an unwelded to poorly welded zone.
(Shards are remnants of glass bubbles formed dur-
ing vesiculation as pressure was released during
eruption.) Well-preserved shard textures are com-
monly, but not universally, present in Rock House
Canyon Tuff. This unit can be distinguished mi-
croscopically from the similar La Jencia and Vicks
Peak Tuffs by the presence of more abundant pla-
gioclase or by stratigraphic position. The large light-
gray patch (h) in left center is a hole in the thin
section.
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FIGURE 5—La Jencia Tuff (sample 3-1-790, south-
east Magdalena Mountains) is a phenocryst-poor
ignimbrite containing a few percent sanidine (s),
minor quartz (none visible), traces of biotite, and
at the upper stratigraphic levels, green clinopy-
roxene. This sample shows the characteristic ex-
tremely flattened pumice, which, in three
dimensions, is both flattened and elongated. The
elongation, within the plane of flattening, is thought
to be caused by flowage of the unusually hot pum-
ice during deposition (Chapin and Lowell, 1979).
The groundmass of this sample is glassy to cryp-
tocrystalline, and the pumice (p) is extensively re-
crystallized to quartz and potassium feldspar,
probably by vapor-phase alteration during weld-
ing and cooling of the unit. La Jencia Tuff contains
little pumice and fewer phenocrysts in the lower
parts of the unit. Pseudobrookite(?) and other un-
common vapor-phase minerals are present some-
times in pumice and lithophysae (gas bubbles).
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FIGURE 3—Blue Canyon Tuff (sample LJ-H, Datil
Mountains) is moderately phenocryst rich and
largely similar to the Datil Well Tuff. Petrograph-
ically, Blue Canyon Tuff contains plagioclase (p)
as well as sanidine (s) and abundant (approxi-
mately 3%) biotite (b). In addition, the pheno-
crysts are larger and blockier in hand sample.
Devitrified groundmass gives a hint of the vitro-
clastic nature of the unit.
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FIGURES 6a, b—Vicks Peak Tuff (samples M-24-
83, Bear Mountains; and Talp-213, Gallinas Moun-
tains) is quite similar to La Jencia Tuff because it
is phenocryst poor and contains a few percent
sanidine (s), minor quartz, and traces of plagio-
clase. Vicks Peak Tuff contains less biotite, no known
pyroxene, and is characteristically zoned from a
very phenocryst poor base to a slightly less phe-
nocryst-poor upper part.

Figure 6a, from the lower parts of the unit, illus-
trates the very phenocryst poor nature of this in-
terval. Pumice (p) is usually present but probably
accentuated in this example by the mild propylitic
alteration that has affected this outcrop. The
groundmass is totally recrystallized and little, if
any, vitroclastic texture remains.
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Figure 6b illustrates the upper intervals of Vicks
Peak Tuff that contain more phenocrysts (same
phases) and abundant large pumice (p). Vitroclas-
tic texture is moderately well preserved in the
groundmass of this specimen, but the pumice is
characteristically recrystallized and, in some cases
(top center), it is hollow in the center. =
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FIGURES 7a, b, c—Lemitar Tuff (samples TS-5,
TS-23, DB-10B, all from south and southeast Mag-
dalena Mountains) is a strongly and complexly
zoned unit. The Lemitar Tuff is a moderately crys-
tal rich rhyolite at the base (7a) that grades nor-
mally upward into a quartz-poor quartz latite (7b),
which in turn grades upward into a very pheno-
cryst rich rhyolite (7c).

Figure 7a, from the lower rhyolite interval, con-
tains approximately 12-15 percent phenocrysts
consisting of sanidine (s), quartz (q), minor pla-
gioclase, biotite and opaques, and traces of zircon
and sphene. The groundmass in this sample is
partly glassy and contains well-preserved shard
structures. This lower interval grades upward over
a few ft into a phenocryst-rich quartz latite (Fig.
7b).

Imm
Figure 7b contains abundant sanidine (s), plagio-
clase (p), biotite and minor quartz, opaques and
pyroxene, This middle zone grades upward over
several tens of hundreds of ft into a very pheno-
cryst rich rhyolite (Fig. 7c).
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Figure 7c contains abundant quartz (q), sanidine
(s), plagioclase (p), and biotite (b). Very little
groundmass is visible between the phenocrysts in
figures 7b and 7c, but large pumice fragments in
outcrop attest to the pyroclastic origin.
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FIGURES 8a, b—South Canyon Tuff (samples JA-
SC-1, Joyita Hills; 8-11-8, southeast Magdalena
Mountains) is texturally zoned from phenocryst
poor below to moderately phenocryst rich above;
mineralogies are similar in both zones.

Figure 8a illustrates a glassy vitrophyre from the
base of the lower zone. Small gray, irregularly
curved shapes are undeformed glass shards. Note
slight compaction around phenocrysts. Subequal
amounts of sanidine (s) and quartz (q) make up
the phenocrysts.
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Figure 8b, from the upper interval of this unit,
contains more abundant and larger phenocrysts
of sanidine (s) and quartz (q) with minor biotite,
but little preserved vitroclastic texture.
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