

Progress Report 10

1978

Washability tests and heat-content predictions for New Mexico coals

by Robert Shantz.

New Mexico Bureau of Mines & Mineral Resources

A DIVISION OF NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY Progress Report 10



# New Mexico Bureau of Mines & Mineral Resources

A DIVISION OF NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY

# Washability tests and heat-content predictions for New Mexico coals

by Robert Shantz

The purpose of this series is the immediate release of significant new information which otherwise would have to await release at a much later date as part of a comprehensive and formal document. These data are preliminary in scope and, therefore, subject to revision and correction.

SOCORRO 1978

#### NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY KENNETH W. FORD, President

#### NEW MEXICO BUREAU OF MINES & MINERAL RESOURCES FRANK E. KOTTLOWSKI, Director George S. Austin, Deputy Director

## BOARD OF REGENTS

Ex Officio Jerry Apodaca, Governor of New Mexico Leonard DeLayo, Superintendent of Public Instruction

#### Appointed

William G. Abbott, 1961-1979, Hobbs Judy Floyd, 1977-1981, Las Cruces Owen Lopez, 1977-1983, Santa Fe Dave Rice, Secretary, 1972-1977, Carlsbad Steve Torres, President, 1967-1979, Socorro

#### BUREAU STAFF

#### Full Time

WILLIAM E. ANNOLD, Scientific Illustrator Robert A. Bieberman, Senior Petrol. Geologist Kathryn Bradley, Secretary Lynn A. Brandvold, Chemist Corale Brienley, Chemical Microbiologist Charles E. Chapin, Senior Geologist Richard R. Chavez, Laboratory Technician IV Ruben A. Crespin, Laboratory Technician I Lois M. Devlin, Office Manager Jim P. Dodson, Laboratory Technician I Robert W. Eveleth, Mining Engineer Rousseau H. Flowen, Senior Paleontologist Stephen J. Frost, Field Geologist Stephen J. Hrowe, Senior Paleontologist Bradley B. House, Metallurgical Technician I Terrir R. Janamillo, Receptionist Robert W. Kelley, Editor & Geologist Arthur J. Mansure, Geophysicist Norma J. Meeks, Secretary I Candace H. Merullat, Assistant Editor

NANCY H. MIZELL, Geologist (on leave) KAREN D. PATTERSON, Secretary NEILA M. PEARSON, Scientific Illustrator JOAN PENDLETON, Editorial Assistant JUDY PERALTA, Executive Secretary CHRISTOPHER RAUTMAN, Economic Geologist MARSHAL A. Reiters, Geophysicist JACQUES R. RENAULT, Geologist JACQUES R. RENAULT, Geologist JAMES M. ROBERTSON, Mining Geologist JAMES M. ROBERTSON, Mining Geologist JACRE H. SMITH, Laboratory Technician IV WILLIAM J. STONE, Hydrogeologist DAVID E. TABET, Geologist JOSEPH E. TACGART, JR., Mineralogist SAMUEL TIADESON III, Petroleum Geologist DAVID L. WHITE, Geochemist MICHAEL R. WHYTE, Field Geologist MICHAEL W. WOOLDRIDCE, Scientific Illustrator JULIE ZEPEDA, Receptionist

#### Part Time

CHRISTINA L. BALK, Geologist CHARLES B. HUNT, Environmental Geologist JACK B. PEARCE, Director, Information Services JOHN REICHE, Instrument Manager Allan R. Sanfoun, Geophysicist Thomas E. ZIMMERMAN, Chief Security Officer

## Graduate Students

Philip Allen Scott K. Anderholm Julie Atkinson Sam Bowring Robert Brod Jo Anne Cima Robert A. C. Jackson David Mayerson Glenn R. Osburn Brian K. Peterson David Petty Tim Post Judy Russell Charles Shearer Ward Sumner

Plus about 25 undergraduate assistants

First printing, 1978

Published by Authority of State of New Mexico, NMSA 1953 Sec. 63-1-4Printed by New Mexico Tech Print Plant, February 1978

Available from New Mexico Bureau of Mines & Mineral Resources, Socorro, NM 87801

# PREFACE

This report was prepared for the New Mexico Energy Resources Board under a contract titled "Assessment of the potential for coal preparation in New Mexico." The purpose of the project was to determine the applicability of coal-washing techniques to the high-ash, low-sulfur coals of the San Juan Basin and to assess the economic advantage of using washed coal for generating power. Additional washability data were developed and the suitability of froth flotation for cleaning the coal fines was investigated. An equation for predicting Btu content from percent of dry ash was developed.

Companies mining the high-ash and thin-bedded coals of the San Juan Basin will be interested in the results presented here. Included are data on the heat content and Btu recoveries that might be expected from a washery in the San Juan Basin; tables and figures are located at the end of the report. A technique for facilitating estimates of Btu content and percent of ash is also included. This information will be useful to coal exploration programs.

Two other papers have resulted from this Energy Resources Board contract: "Calculating heat content from ash percentages" in the May 1977 issue of *Coal Mining and Processing* and New Mexico Bureau of Mines and Mineral Resources Progress Report 9, *Strategy for coal-washing operations in New Mexico*. The present report (PR-10) includes the information presented in *Coal Mining and Processing*.

David Tabet, New Mexico Bureau of Mines and Mineral Resources, provided many valuable suggestions during the preparation of this paper. His help is sincerely appreciated.

Socorro January 24, 1978 Robert Shantz Metallurgist New Mexico Bureau of Mines and Mineral Resources

#### ABSTRACT

Conventional coal-washing methods can significantly reduce the ash content of coals from New Mexico. However, washing causes a loss of 10-20 percent in the heating value of the coal. Because of this loss and the low unit value of steam coal, conventional single-product coal cleaning can be economically justified only for special cases — including exceptionally high-ash coal (greater than 35 percent), thin beds, and extreme shipping distances. Washability data on coal samples from the operating mines and drill cores are reported. Although results varied among the samples, the float-sink tests indicate that low-ash coal can be produced by gravity-cleaning methods. Preliminary froth-flotation tests were made to determine whether a fine coal could be cleaned. Using diesel fuel as a collector, Btu recoveries over 95 percent were made, and about half the ash was rejected. The desire to reduce the number of Btu analyses required for the floatsink tests led to the development of an equation for predicting heat content from ash percentage for coals within each major coal-producing region of the state. Except for weathered coals, prediction within a few percent relative is generally possible. These prediction equations can be used in process control and exploration.

## INTRODUCTION

Coal preparation is widely practiced in the United States but has been used by only a few operators in New Mexico. Phelps Dodge Corporation washed the coal from the Dawson mines prior to their closing, and Kaiser Steel Corporation operates a washery at York Canyon near Raton. Both operations have produced primarily metallurgical coal, which has relatively low ash requirements. The stringent air pollution regulations adopted by the Environmental Protection Agency have forced many operators throughout the country to build washeries to control sulfur, which may reach 8 percent in eastern coals. New Mexico steam coals, however, generally contain less than 1 percent total sulfur (often less than 0.6 percent) and hence normally meet Federal standards without cleaning. Thus, few potential mines in New Mexico will need to consider coal preparation for sulfur removal.

Two problems with New Mexico coals make washing necessary in some cases and advantageous in others. First, some operators are face with mining thin beds, often less than 3 ft thick, which have quantities of interbedded clay. Of necessity, these operators will mine enough material from above and below the bed to necessitate washing. A similar problem arises in mining thicker beds when the wedge portion of the cut is mined and causes overburden to slough into the coal. Second, the ash content of thicker beds can reach 20-30 percent in some areas. While power plants can burn coals of this type, the savings in transportation, ash removal facilities, and plant maintenance and availability make a cleaner coal desirable.

Mines in New Mexico might consider the possibility of washing the coal for a multi-unit power plant to allow reduction in emission control equipment on one unit while sending most or all of the rejects to the other units. Such a multi-unit system has been described for the Homer City, Pennsylvania, power plant, where the purpose was reduction of sulfur rather than of ash (*Coal Age*, 1976). Cleaned coal has even greater advantages when used in small industrial boilers rather than in large utility plants, and so separation of a small, high-quality coal from the general power plant feed might benefit mines in a position to sell to such users.

Several problems have limited the use of coal preparation in New Mexico. The low unit value of steam coal in the past (\$3-4/ton) left little margin for preparation costs. In addition, about 20 percent of the heating value of the coal is lost in a typical single-product washery, and this value must be replaced by additional mining. In many cases, the expenditure for this additional mining is the largest cost associated with coal washing. Although lower ash content can save transportation costs, the higher moisture content that often results from washing can offset much of this benefit, especially if the fines are cleaned. The availability of water for a preparation plant in New Mexico may be a major problem.

a ha shekara

5.012

Little information is available on the washability of the coarser-sized coals that would be treated in a preparation plant. This shortage of data reflects the cost of testing representative samples in larger size ranges. In particular, the maximum size for adequate liberation of the coal and ash has not been determined.

Finally, each mining property has coal with different properties. The amount of overburden that will be mined with the coal and the availability of water for preparation plants varies from one operation to another. Likewise, each plant feeds a user whose requirements are unique. Consequently, the benefits of coal preparation must be evaluated case by case.

#### WASHABILITY TESTS

The washability test results reported by Shomaker and others (1971) provide some data on the washability of San Juan Basin coals. To expand on these results, seven coal samples were collected from operations in the San Juan Basin for float-sink, screen, and froth-flotation tests. All the samples were crushed to -3 mesh and air dried. The float-sink tests were made by screening out the -100 mesh material and separating the appropriate sizes with series of heavy liquids from 1.30 to 1.80 specific gravity by 0.10 specific gravity. The fractions were then analyzed for ash content and, in a few cases, total sulfur content. Flotation tests were made by grinding 350 grams of the material to 95 percent passing 48 mesh and floating in a 3-liter laboratory cell.

The raw coal analyses are given in table 1; the float-sink test results are given in tables 2-19, the screen test results in tables 20-22, and representative flotation test results in table 23. Reported Btu contents (moisture free) for each separated fraction were calculated by using the equation described in the discussion of heat-content predictions (a = 14,000; b = 15,740).

The following samples from mining properties were used in the washability tests:

1) Stockpile, property A - a grab sample of crushed, blended coal taken from the bedding plant

2) Wedge fraction, property A - a grab sample taken from the wedge area of the mine, includes a considerable amount of overburden

3) Run-of-mine, property B - a grab sample taken from a raw coal stockpile being built ahead of the crushing plant

4) Bulk sample, property C - a grab sample taken from a test pit

5) Cut sample, property C - a cut was made across the exposed face of the coal in a test pit

6) Drill core A, property C – split of core having a significant amount of interbedded shale

7) Drill core B, property C – split of core having a significant amount of interbedded shale.

Tests on these samples indicate that a coal containing about 10% ash can be produced by washing at a specific gravity of roughly 1.50; however, about 20% of the heat value would be lost. Up to 50 percent of the ash can be rejected by cleaning near 1.70 specific gravity, and 90-95 percent of the heating value can be retained. Because of the distribution of near-gravity material, separations in the 1.30-1.50 specific gravity range would be somewhat difficult; on the other hand, separations in the 1.70-1.80 specific gravity range should be relatively simple. Thus, heavy-media devices will probably be required for separations at lighter densities, but water-only devices should be acceptable at a higher density.

Froth-flotation tests indicate that the fines can be cleaned by flotation, but high levels of collector addition appear to be necessary. Fig. 1 shows the effect of collector level on Btu recovery. The reagent costs, together with the high costs of centrifuging or filtering the fine material, probably preclude the use of flotation on steam coal.

Washability tests developed during this study and obtained from other sources indicate that washing can produce a product with as little as 5 percent ash. However, the Btu recovery drops rapidly when the coal is cleaned to below 10-15 percent ash. Because of the low unit

value of the product and the washing costs of \$0.50-2.00/ton (depending upon the method used), washing may not be an alternative except in cases where coal of over 30-percent ash is being produced. Such cases would include thin beds or wedge fractions.

Discussions with power-plant personnel lead to the conclusion that the reduction in maintenance associated with lower ash in the feed does not justify a washery. In a few cases, however, large savings may result because of increased power-plant availability. Personnel from each plant would have to make a detailed study to determine if cleaner coal would provide sufficiently higher availability to justify washing costs and coal losses.

Multi-product washing strategies provide opportunities both to produce a high-grade coal for special uses and to achieve high overall heating-value recoveries. One such strategy is described by Shantz (1977a). This proposed process would float 25 percent of the +5/16-inch coal at a specific gravity of about 1.35, resulting in a coal having 6 percent ash and 13,000 Btu/lb (moisture free). The sink coal would then be recleaned at 1.80 specific gravity to reject a high-ash fraction (70 percent). The middlings, which would contain most of the heating value, would feed a minemouth power plant. An overall heat recovery of about 95 percent would result.

The use of coal-washing techniques for New Mexico coal should be investigated further, especially in terms of market studies to determine the price that would be paid for coal with a low ash content. The smaller mines throughout the state might find that coal cleaning would allow them to meet product specifications for industrial users in Texas or southern California.

## HEAT-CONTENT PREDICTIONS

Float-sink analyses of seven coal samples allowed prediction of separations attainable by gravity washing. Because each float-sink test requires eight Btu-content analyses, which are relatively expensive, the possibility of predicting Btu content from the ash fraction was investigated by plotting coal analyses from Shomaker and others (1971). The plots revealed a high degree of linear correlation between Btu and ash contents. Consequently, a simple linear-regression study was made on coal analyses from the major coal districts in New Mexico having available data. In addition, some production data were examined to see if the Btu-prediction equation was suitable for use on routine analyses. Some of these results have been published (Shantz, 1977b).

# Development of Btu-ash content regression parameters

The equation used for the Btu-ash content least-squares regression analyses was

$$\frac{\text{Btu/lb}}{1 - M} = a - b \frac{X}{1 - M}$$

where a and b are the regression parameters, X the ash fraction, and M the moisture fraction. The heat content in Btu/lb is moisture free here. Thus the regression parameters presented in the following sections give Btu/lb (dry) directly from the moisture-free ash analysis:

#### Btu/lb = a - b (ash fraction).

A linear least-squares analysis was made on the available data from each area listed in table 24. Those points in the initial regression analysis that differed by over two standard deviations from the predicted value (usually about 2-5 percent of the available data) were rejected and the regression parameters recalculated.

Data on Btu analyses and ash fractions were obtained from a number of sources, principally U.S. Bureau of Mines Technical Paper 569 and company records. The results of the regression analyses by various groupings are given in table 24. The regression parameters calculated for

various areas in the San Juan Basin are remarkably consistent although they encompass an area of over 26,000 sq mi. The consistency of a is particularly significant because it corresponds to the moisture- and ash-free analysis. The slightly higher parameters for Rio Arriba County in the northeastern part of the basin are from the Monero field near Lumberton. The higher value of a from this field could be expected because the area has undergone more structural deformation and intrusive activity than most of the basin has. Likewise, regression parameters for La Plata County, Colorado, are somewhat high. The extreme variations and large confidence intervals for b in the delivered coal for the Rio Arriba County and Black Mesa, Arizona, regressions are primarily the result of the limited range of ash fractions and Btu contents in the data for these areas. The deviation of the Chaco Canyon regression parameters from the other areas of the basin could be the result of having only limited data available.

The standard deviation of the differences for the basin as a whole (409 Btu/lb) indicates a relative error of 4 percent compared to the average moisture-free Btu content of about 10,000 Btu/lb. This accuracy is sufficient for guiding exploration efforts provided that care is taken to avoid oxidized coal. (See table 28 for examples of the large differences that can be encountered.) Calculated Btu contents can not completely replace the actual analyses but can reduce the number required. Also, such predictions allow faster estimation of the Btu values because the moisture and ash analyses can be made easily in the field.

A generalized relationship giving weight of ash per million Btu as a function of ash fraction can be readily developed. Fig. 2 shows such a graph using the overall San Juan Basin regression parameters. The general expression is as follows:

lb ash/MMBTU = 
$$\frac{X \cdot 10^6}{a \cdot bX}$$

where X is the ash fraction on a moisture-free basis and a and b the appropriate regression parameters.

## Application to float-sink tests

The original purpose for developing a means of predicting Btu content was to reduce the number of Btu analyses required for float-sink tests during washability studies. A high degree of correlation between measured and predicted Btu contents within the fractions from each float-sink test would indicate that only two or three Btu analyses would be required to determine the necessary regression parameters, and then the other Btu contents could be calculated. Table 25 shows the results of regression analyses on three float-sink tests from Shomaker and others (1971). Regression analyses were made for each of the float-sink tests, and representative tests were taken for table 3. The very high correlation coefficients, 0.9871-1.0000 (usually about 0.999), indicate the acceptability of the approach.

Calculation of the cumulative Btu recovery (as a percentage) for each specific gravity is the major requirement for Btu analyses on the individual fractions in float-sink testing. Table 26 gives a comparison of Btu recoveries calculated from the measured Btu contents in Shomaker and others (1971) and those predicted by a linear equation using the basin-wide regression parameter (a = 14,006; b = 15,743). The agreement is excellent: the largest difference noted in the 25 tests was 4 percent (actual) with the average under 1 percent. Consequently, these regression parameters were used to calculate the Btu contents in the experimental work on washability tests.

#### Application to quality control of delivered coal

Sixty-four analyses, each representing approximately 1,000 tons of coal from mine production, were provided by one operator. A comparison of the measured Btu content (as received) and the values calculated using the results of the basin-wide regression (a = 14,006; b = 15,743) is presented in table 27, which gives 40 randomly selected values. The average difference was 3.5 Btu/lb with a standard deviation of 169 Btu/lb. The largest difference was 891 Btu/lb or about 10 percent relative.

Thus an operator should be able to calculate his own regression parameters to predict the average delivered Btu content and significantly reduce the number of Btu analyses required. Since many operators use the bomb washing from the calorimeter for sulfur analyses, the labor saved in bypassing the Btu analysis is difficult to assess.

## Application to coal exploration sampling

After the overall San Juan Basin regression analysis had been made, some additional coal analyses were received from an exploration project in the Basin. The basin-wide regression parameters were used to predict the Btu contents, and a comparison was made between the calculated and measured values. Some representative points are given in table 28, and a plot of representative points versus the basin-wide regression line is given in fig. 3. The overall mean difference was 0 Btu/lb with a standard deviation of 527 Btu/lb, largely as a result of a few 1,000-2,000 Btu/lb differences. In all cases, these large differences occurred in samples taken from the top interval of the hole, and the measured values were lower than the predicted values; all holes did not show significant differences in the top interval.

#### Conclusions

The following conclusions about heat-content predictions were reached from a study of the available coal analyses: 1) correlation coefficients between measured and predicted Btu contents on the order of 0.88 and 0.99 can be obtained in each of the major coal-producing areas and 2) the linear model is essentially as satisfactory as the quadratic model.

Depending upon the particular operation, considerable savings in labor and time could result from predicting rather than from measuring the Btu contents. However, in all cases, some Btu analyses should be made to insure that an atypical coal has not been encountered. In addition, any coal suspected of being weathered should be analyzed for Btu content.

#### REFERENCES

- Coal Age, 1976, Multi-stream coal cleaning system promises help with sulfur problem: Coal Age, v. 81, no. 1, p. 86-88
- Peirce, H. W., Keith, S. E., and Wilt, S. C., 1970, Coal, oil, natural gas, helium, and uranium in Arizona: Arizona Bureau of Mines, Bull. 182, 612 p.
- Pillmore, C. L., and Hatch, J. R., 1976, Geochemical data on selected coal beds, Raton coal field, Colfax County, New Mexico: U. S. Geological Survey, Open-file Rept. 76-542, 26 p., 11 tables, 2 figs.

Shantz, R., 1977a, Strategy for coal-washing operations in New Mexico: New Mexico Bureau of Mines and Mineral Resources, Progress Rept. 9, 7 p.

- \_\_\_\_\_, 1977b, Calculating heat content from ash percentages: Coal Mining and Processing, v. 14, no. 5, p. 112-114
- Shomaker, J. W., Beaumont, E. C., and Kottlowski, F. E., 1971, Strippable low-sulfur coal resources of the San Juan Basin in New Mexico and Colorado: New Mexico Bureau of Mines and Mineral Resources, Mem. 25, 189 p.
- U. S. Bureau of Mines, 1936, Analyses of New Mexico coals: U. S. Bureau of Mines, Tech. Paper 569, 112 p.
- U. S. Bureau of Mines, 1937, Analyses of Colorado coals: U. S. Bureau of Mines, Tech. Paper 574, 327 p.
- U. S. Bureau of Mines, 1947, Analyses of Arizona, California, Idaho, Nevada, and Oregon coals: U. S. Bureau of Mines, Tech. Paper 696, 83 p.

9



FIGURE 1-Effect of collector level on flotation (bulk sample, Property A).



FIGURE 2-Predicted lbs of ash per million Btu; lb ash/million Btu = ash  $\cdot 10^6/14006 - 15473$  (ash).



## TABLE 1-Raw coal analyses (MF = moisture free).

| Sample                   | Moisture % | Ash % (MF) | Total sulfur % (MF) |
|--------------------------|------------|------------|---------------------|
| Stockpile, Property A    | 12.4       | 25.4       | 0,57                |
| Wedge, Property A        | 13.2       | 56.5       | 0,35                |
| Run-of-Mine, Property B  | 9.7        | 35.5       | 0.55                |
| Bulk Sample, Property C  | 9.1        | . 29.6     | -                   |
| Cut Sample, Property C   | 10,4       | 36.2       | -                   |
| Drill Core A, Property ( | 8.8        | 53.6       | -                   |
| Drill Core 8, Property ( | 8,3        | 41.1       |                     |

|                     |      | D    | irect            |        |    |              | Cum  | ulative          |        |
|---------------------|------|------|------------------|--------|----|--------------|------|------------------|--------|
| Sp. gr.<br>fraction | wt%  | ash% | total<br>sulfur% | 8tu/16 | w  | **           | ash% | total<br>sulfur% | Btu/15 |
| Float-1,30          | 7.2  | 4.0  | 0.5              | 13,400 |    | 7.2          | 4.0  | 0.5              | 13,400 |
| 1.30-1.40           | 48.0 | 9.5  | 0.5              | 12,500 | 5  | 5.2          | 8.8  | 0.5              | 12,600 |
| 1.40-1.50           | 13.4 | 23.1 | 0,5              | 10,400 | 68 | 8.6          | 11.6 | 0,5              | 12,200 |
| 1.50-1.60           | 6.2  | 35.4 | 0.6              | 8,400  | 70 | ¥.8          | 13.5 | 0.5              | 11,900 |
| 1.60-1.70           | 3.8  | 45.4 | 0.5              | 6,900  | 78 | 3.7          | 15.1 | 0.5              | 11,600 |
| 1.70-1.80           | 4.0  | 53.1 | 0.5              | 5,60Ò  | 8; | 2.7          | 17.0 | 0.5              | 11,300 |
| 1.80-Sink           | 17.3 | 72.5 | 0.9              | 2,600  | 10 | ) <b>.</b> 0 | 26,5 | 0.6              | 9,800  |

## TABLE 3-Washability test, stockpile, Property A, -10, +28 mesh.

| <b>6</b>            |      | Direct          |        |       | Cumulativ | 18     |
|---------------------|------|-----------------|--------|-------|-----------|--------|
| sp. gr.<br>fraction | wt%  | ash%            | 8tu/16 | wt%   | ash%      | 8tu/16 |
| Float-1.30          | 22.4 | 8.8             | 12,600 | 22,4  | 8.8       | 12,600 |
| 1.30-1.40           | 40.7 | · 10 <b>.</b> 9 | 12,300 | 63.1  | 10.2      | 12,400 |
| 1.40-1.50           | 12.1 | 24.3            | 10,200 | 75.2  | 12.4      | 12,000 |
| 1.50-1.60           | 5.8  | 36.4            | 8,300  | 81.0  | 14.1      | 11,800 |
| 1.60-1.70           | 3.0  | 43.7            | 7,100  | 84.1  | 15.2      | 11,600 |
| 1.70-1.80           | 2.0  | 48.4            | 6,400  | 86.1  | 16.0      | 11,500 |
| 1.80-Sink           | 13.9 | 67.5            | 3,400  | 100.0 | 23,2      | 10,400 |

## TABLE 4-Washability test, wedge fraction, Property A, -28, +100 mesh.

TABLE 2-Washability test, stockpile, Property A, -3, +10 mesh.

| -                   |      | Direct |        |       | Cumulativ | (B     |
|---------------------|------|--------|--------|-------|-----------|--------|
| Sp. gr.<br>fraction | wt%  | ash%   | 8tu/16 | wt%   | ash%      | 8tu/16 |
| Float-1.30          | 12.3 | 3.6    | 13,400 | 12.3  | 3.6       | 13,400 |
| 1.30-1.40           | 40.8 | 7.3    | 12,900 | 53.1  | 6.4       | 13,000 |
| 1.40-1.50           | 16.9 | 17.9   | 11,209 | 70.0  | 9.2       | 12,600 |
| 1.50-1.60           | 7.0  | 29.4   | 9,400  | 77.0  | 11.0      | 12,300 |
| 1.60-1.70           | 4.5  | 39,1   | 7,800  | 81.5  | 12.6      | 12,000 |
| 1.70-1.80           | 3.2  | 48.0   | 6,400  | 84.7  | 13.9      | 11,800 |
| 1.80-Sink           | 15.2 | 69.0   | 3,100  | 100.0 | 22.3      | 10,500 |

## TABLE 5-Washability test, wedge fraction, Property A, -3, +10 mesh.

|                     |      | D    | irect            |        |       | Cumulative |                  |        |  |
|---------------------|------|------|------------------|--------|-------|------------|------------------|--------|--|
| Sp. gr.<br>fraction | wt%  | ash% | total<br>sulfur% | Btu/15 | wt%   | ash%       | total<br>sulfur% | Btu/Jh |  |
| Float-1.30          | 0.6  | 4.1  | 0.5              | 13,400 | D.6   | 4.1        | 0,5              | 13,400 |  |
| 1,30-1,40           | 23.1 | 6.8  | 0.4              | 12,900 | 23.7  | 6.7        | 0.4              | 12,900 |  |
| 1.40-1.50           | 20.7 | 14.9 | 0.4              | 11,700 | 44.4  | 10:5       | 0.4              | 12,300 |  |
| 1.50-1.60           | 5,3  | 28.1 | 0.4              | 9,600  | 49.6  | 12.4       | 0.4              | 12,100 |  |
| 1.60-1.70           | 1.9  | 37.6 | 0.4              | 8,100  | 51.5  | 13.6       | 0.4              | 11,900 |  |
| 1.70-1.80           | 1.0  | 47.5 | 0.3              | 6,500  | 52.5  | 14.0       | 0.4              | 11,800 |  |
| 1.80-Sink           | 47.4 | 90.8 | 0.2              | D      | 100,0 | 50.4       | 0.3              | 6,100  |  |

TABLE 6-Washability test, wedge fraction, Property A, -10, +28 mesh.

| _                   |      | Direct |        |       | Cumulativ | 8      |
|---------------------|------|--------|--------|-------|-----------|--------|
| Sp. gr.<br>fraction | wt%  | ash%   | Btu/16 | wt%   | ash%      | Btu/lb |
| Float-1.30          | 1.6  | 3,8    | 13,400 | 1.6   | 3,8       | 13,400 |
| 1.30-1.40           | 31.0 | 7.1    | 12,900 | 32.6  | 6.9       | 12,900 |
| 1.40-1.50           | 17.5 | 15.1   | 11,600 | 50.1  | 9.8       | 12,500 |
| 1.50-1.60           | 6.4  | 25.2   | 10,000 | 56.5  | 11.5      | 12,200 |
| 1.60-1.70           | 2.5  | 34.6   | 8,600  | 58.9  | 12.5      | 12,000 |
| 1.70-1.80           | 1.5  | 43.9   | 7,100  | 60.4  | 13.3      | 11,900 |
| 1.80-Sink           | 39,6 | 89,3   | 0      | 100.0 | 43.3      | 7,200  |

. . .

| TABLE 7-Washability test, | wedge fraction, Property A, -28, +100 mesh. |
|---------------------------|---------------------------------------------|

# TABLE 8-Washability test, run-of-mine, Property B, -3, +10 mesh.

|                     |      | Direct |        |       | Cumulativ | 8               |
|---------------------|------|--------|--------|-------|-----------|-----------------|
| Sp. gr.<br>fraction | ut%  | ash%   | Btu/lb | wt%   | ash%      | Btu∕lb          |
| float-1.30          | 0.4  | 3,5    | 13,500 | 0.4   | 3.5       | 13,500          |
| 1.30-1.40           | 9.0  | 5.3    | 13,200 | 9.4   | 5.2       | 13 <u>,</u> 200 |
| 1.40-1.50           | 16.7 | 11.5   | 12,200 | 26,1  | 9,2       | 12,600          |
| 1.50-1.60           | 5.0  | 21.9   | 10,600 | 31.1  | 11.3      | 12,200          |
| 1.60-1.70           | (2.6 | 29.5   | 9,400  | 33.7  | 12.7      | 12,000          |
| 1,70-1,80           | 1.4  | 39.5   | 7,800  | 35.1  | 13.8      | 11,800          |
| 1.80-Sink           | 64.9 | 93.5   | 0      | 100.0 | 65.5      | 3,700           |

|                     |      | 0             | irect            |        |       | Cum  | ulative          |        |
|---------------------|------|---------------|------------------|--------|-------|------|------------------|--------|
| Sp. gr.<br>fraction | wt%  | ash%          | total<br>sulfur% | Btu/15 | wt%   | ash% | total<br>sulfur% | Bțu∕lb |
| Float-1.30          | 28.8 | 4.4           | 0.6              | 13,300 | 28,8  | 4,4  | 0.6              | 13,300 |
| 1.30-1.40           | 32,8 | 10.4          | 0,5              | 12,400 | 61.6  | 7.6  | 0.5              | 12,800 |
| 1.40-1.50           | 5.7  | 24.8          | 0.6              | 10,100 | 67.3  | 9.0  | 0.5              | 12,600 |
| 1.50-1.60           | 2,5  | 34 <b>.</b> B | 0.5              | B,500  | 69.8  | 10.0 | 0.5              | 12,400 |
| 1.60-1.70           | 1.9  | 41.1          | 0.8              | 7,500  | 71.7  | 10,8 | 0.6              | 12,300 |
| 1.70-1.80           | 1.7  | 50.1          | 0,7              | 6,100  | 73.4  | 11.7 | 0,6              | 12,200 |
| 1,80-Sink           | 26.6 | 81.3          | 0.6              | 1,200  | 100.0 | 30,2 | 0.6              | 9,300  |

TABLE 9-Washability test, run-of-mine, Property B, -10, +28 mesh.

TABLE 10-Washability test, run-of-mine, Property B, -28, +100 mesh.

| _                   | <u></u> | Direct |        |       | Cumulativ | 6      |
|---------------------|---------|--------|--------|-------|-----------|--------|
| Sp. gr.<br>fraction | wt%     | ash%   | Btu/1b | ut%   | ash%      | Btu/16 |
| Float-1.30          | 27.9    | 3.4    | 13,500 | 27.9  | 3.4       | 13,500 |
| 1.30-1.40           | 34.8    | 9.9    | 12,400 | 62.7  | 7.0       | 12,900 |
| 1.40-1.50           | 6.7     | 22.3   | 10,500 | 69.4  | 8.5       | 12,700 |
| 1.50-1.60           | 2.7     | 32.6   | 8,900  | 72.1  | 9.4       | 12,500 |
| 1.60-1.70           | 2.1     | 39.9   | 7,700  | 74.2  | 10.3      | 12,400 |
| 1.70-1.80           | 1.5     | 47-4   | 6,500  | 75.7  | 11.0      | 12,300 |
| 1.80-Sink           | 24.2    | 80.9   | 1,300  | 100,0 | 27.9      | 9,600  |

|                     |      | Direct |        | · .   | Cumulativ | 8      |
|---------------------|------|--------|--------|-------|-----------|--------|
| Sp. gr.<br>frection | wt%  | ash%   | Btu/1b | wt%   | ash%      | Btu/16 |
| Float-1.30          | 21.6 | 2.9    | 13,600 | 21.6  | 2.9       | 13,600 |
| 1.30-1.40           | 36.1 | 13.8   | 11,800 | 57.7  | 9.7       | 12,500 |
| 1.40~1.50           | 9.1  | 21.7   | 10,600 | 66.8  | 11.4      | 12,200 |
| 1,50-1,60           | 3.1  | 28.6   | 9,500  | 69.9  | 12.1      | 12,100 |
| 1.60-1.70           | 2.2  | 36,6   | в,200  | 72,1  | 12.9      | 12,000 |
| 1.70-1.80           | 1.2  | 42.9   | 7,300  | 73.3  | 13.4      | 11,900 |
| 1.80-Sink           | 26.7 | 79.5   | 1,500  | 100.0 | 31.0      | 9,200  |

| _                   |      | Direct |        |       | Cumulative |        |  |  |
|---------------------|------|--------|--------|-------|------------|--------|--|--|
| Sp. gr.<br>fraction | wt%  | ash%   | Btu/1b | ut%   | ash%       | Btu/16 |  |  |
| Float-1.30          | 18.3 | 4,9    | 13,200 | 18,3  | 4.9        | 13,200 |  |  |
| 1.30-1.40           | 18.2 | 13.4   | 11,900 | 36.5  | 9.1        | 12,600 |  |  |
| 1.40-1.50           | 14.0 | 23.9   | 10,200 | ő50,5 | 13.2       | 11,900 |  |  |
| 1.50-1.60           | 10.1 | 35.6   | 8,400  | 60.6  | 17.0       | 11,300 |  |  |
| 1.60-1.70           | 7.9  | 44.0   | 7,100  | 68.6  | 20.1       | 10,800 |  |  |
| 1.70-1.80           | 6.2  | 56,7   | 5,100  | 74.8  | 23.2       | 10,400 |  |  |
| 1.80-Sink           | 25.2 | 76.9   | 1,900  | 100.0 | 36.7       | 8,200  |  |  |

TABLE 12-Washability test, cut sample, Property C, -3, +100 mesh.

|            | Direct |               |        |       | Cumulativ | 'e     |
|------------|--------|---------------|--------|-------|-----------|--------|
| fraction   | wt%    | ash%          | Btu/1b | wt%   | ash%      | Otu/lb |
| Float-1,30 | 39.9   | 3.9           | 13,400 | 39,9  | 3,9       | 13,400 |
| 1.30-1.40  | 12.3   | 13.6          | 11,900 | 52.3  | 6.2       | 13,000 |
| 1.40-1.50  | 7.1    | 23.2          | 10,400 | 59.3  | 8.2       | 12,700 |
| 1.50-1.60  | 5.3    | 35.5          | 8,400  | 64.6  | 10.4      | 12,400 |
| 1.60-1.70  | 7.0    | 44.3          | 7,000  | 71.6  | 13.7      | 11,800 |
| 1.70-1.80  | 8,9    | 53 <b>.</b> 8 | 5,500  | 80.6  | 18.2      | 11,100 |
| 1.80-Sink  | 19.5   | 68.1          | 3,300  | 100.0 | 27.9      | 9,600  |

# TABLE 13-Washability test, core sample A, Property C, -3, +100 mesh.

|                     |      | Direct |        |       | Cumulative |        |  |
|---------------------|------|--------|--------|-------|------------|--------|--|
| Sp. gr.<br>fraction | wt%  | ash%   | Btu/16 | wt%   | ash%       | Btu/1b |  |
| float-1,30          | 20.0 | 4.0    | 13,400 | 20.0  | 4.0        | 13,400 |  |
| 1.30-1.40           | 8.3  | 7.8    | 12,800 | 28.3  | 5.1        | 13,200 |  |
| 1.40-1.50           | 3.2  | 22.2   | 10,500 | 31.5  | 6.9        | 12,900 |  |
| 1.50-1.60           | 5.6  | 30.6   | 9,200  | 37.1  | 10.4       | 12,400 |  |
| 1.60-1.70           | 2.8  | 38.7   | 7,900  | 39.9  | 12.4       | 12,000 |  |
| 1.70-1.80           | 3,6  | 48,9   | 6,300  | 43.5  | 15.4       | 11,600 |  |
| 1.80-Sink           | 56.4 | 84.4   | 700    | 100.0 | 54.3       | 5,400  |  |

TABLE 14-Washability test, core sample B, Property C, -3, +100 mesh.

| -                   |      | Direct |        |       | Cumulative |        |  |
|---------------------|------|--------|--------|-------|------------|--------|--|
| sp. gr.<br>fraction | wt%  | ash%   | Btu/1b | wt%   | ash%       | Btu/16 |  |
| Float-1.30          | 30.0 | 5.3    | 13,200 | 30,0  | 5.3        | 13,200 |  |
| 1.30-1.40           | 18.6 | 9.5    | 12,500 | 48.6  | 6.9        | 12,900 |  |
| 1.40-1.50           | 13.0 | 22,6   | 10,400 | 61.6  | 10,2       | 12,400 |  |
| 1.50-1.60           | 3.0  | 29,8   | 9,300  | 64,6  | 11.1       | 12,300 |  |
| 1.60-1.70           | 1.1  | 43.5   | 7,200  | 65.7  | 11.7       | 12,200 |  |
| 1.70-1.80           | 1,2  | 49.6   | 6,200  | 66.9  | 12.4       | 12,100 |  |
| 1.80-Sink           | 32,9 | 90,4   | 0      | 100.0 | 38.0       | 8,000  |  |

TABLE 15-Ash and Btu distributions for stockpile sample, Property A.

|                     | -3. +10 mesh       |                   | -10, +2            | 8 mesh            | -28, +10           | <b>−28,</b> +100 mesh |  |
|---------------------|--------------------|-------------------|--------------------|-------------------|--------------------|-----------------------|--|
| Sp. gr.<br>fraction | % ash<br>rejection | % Btu<br>recovery | % ash<br>rejection | % 8tu<br>recovery | % ash<br>rejection | % Btu<br>recovery     |  |
| Float-1,30          | 99                 | 10                | 92                 | 27                | ,<br>98            | 16                    |  |
| 1.30-1.40           | 62                 | 71                | 72                 | 76                | 85                 | 66                    |  |
| 1.40-1.50           | 70                 | 85                | 60                 | 88                | 71                 | 84                    |  |
| 1,50-1,60           | 62                 | 90                | 50                 | 92                | 62                 | 90                    |  |
| 1.60-1.70           | 55                 | 93                | 45                 | 94                | 54                 | 94                    |  |
| 1.70-1.80           | 47                 | 95                | 41                 | 96                | 47                 | 95                    |  |
| 1.80-Sink           | 0                  | 100               | O                  | 100               | 0                  | 100                   |  |

TABLE 16-Ash and Btu distributions for wedge sample, Property A.

|                     | -3, +10            | mesh              | -10, +2            | 8 mesh            | -28, +1            | -28, +100 mesh    |  |
|---------------------|--------------------|-------------------|--------------------|-------------------|--------------------|-------------------|--|
| Sp. gr.<br>fraction | % ash<br>rejection | % Btu<br>recovery | % ash<br>rejection | % Btu<br>recovery | % ash<br>rejection | % Btu<br>recovery |  |
| Float-1.30          | 100                | 1                 | 100                | 3                 | 100                | 1                 |  |
| 1.30-1.40           | 97                 | 49                | 95                 | 58                | 99                 | 30                |  |
| 1.40-1.50           | 91                 | 88                | 89                 | 87                | 96                 | 79                |  |
| 1.50-1.60           | 88                 | 96                | 85                 | 96                | 95                 | 92                |  |
| 1.60-1.70           | 86                 | 99                | 83                 | 98                | 94                 | 97                |  |
| 1.70-1.80           | 85                 | 100               | 81                 | 100               | 93                 | 100               |  |
| 1.80-Sink           | 0                  | 100               | 0                  | 100               | O                  | 100               |  |

## TABLE 17-Ash and Btu distributions for run-of-mine sample, Property B.

|                     | -3, +10 mesh       |                   | -10, +2            | 8 mesh            | -28, +1            | -28, +100 mesh    |  |
|---------------------|--------------------|-------------------|--------------------|-------------------|--------------------|-------------------|--|
| Sp. gr.<br>fraction | % ash<br>rejection | % Btu<br>recovery | % ash<br>rejection | % Btu<br>recovery | % ash<br>rejection | % Btu<br>recovery |  |
| Float-1.30          | 96                 | 42                | 97                 | 39                | 98                 | 32                |  |
| 1.30-1.40           | 84                 | 85                | 84                 | 84                | 82                 | 79                |  |
| 1.40-1.50           | 80                 | 92                | 79                 | 92                | 76                 | 90                |  |
| 1.50-1.60           | 77                 | 94                | 76                 | 94                | 73                 | 93                |  |
| 1.60-1.70           | 74                 | 95                | 73                 | . 96              | 70                 | 95                |  |
| 1.70-1.80           | 72                 | 96                | 70                 | 97                | 68                 | 96                |  |
| 1.80-Sink           | ٥                  | 100               | ٥                  | 100               | O                  | 100               |  |

TABLE 18-Ash and Btu distributions for Property C.

|                     | Bulk s             | ample             | Cut sa             | ample             |
|---------------------|--------------------|-------------------|--------------------|-------------------|
| Sp. gr.<br>fraction | % ash<br>rejection | ぷ Btu<br>recovery | 名 ash<br>rejection | % Btu<br>recovery |
| Minus 100 Mesh      | 92                 | · 6               | <b>9</b> 2         | 6                 |
| Float-1.30          | 90                 | 34                | 87                 | 58                |
| 1.30-1.40           | 84                 | 58                | 81                 | 73                |
| 1,40-1,50           | 75                 | 75                | 76                 | 80                |
| 1,50-1,60           | 66                 | 85                | 70                 | 84                |
| 1.60-1.70           | 58                 | 91                | 59                 | 89                |
| 1.70-1.80           | 49                 | 95                | 44                 | 94                |
| 1.80-Sink           | 0                  | 100               | ٥                  | 100               |

TABLE 19-Ash and Btu distributions for drill cores, Property C.

# TABLE 20-Screen analysis, stockpile sample, Property A, 3 mesh x 0.

|                     | Drill co           | re A              | Drill co           | re B              |
|---------------------|--------------------|-------------------|--------------------|-------------------|
| Sp. gr.<br>fraction | % ash<br>rejection | % Btu<br>recovery | % ash<br>rejection | % Btu<br>recovery |
| Minus 100 Mesh      | 86                 | 3                 | 89                 | 3                 |
| Float-1.30          | 85                 | 51                | 85                 | 51                |
| 1.30-1.40           | 84                 | 70                | 81                 | 79                |
| 1.40-1.50           | 83                 | 76                | 74                 | 95                |
| 1.50-1.60           | 80                 | 85                | 72                 | 98                |
| 1.60-1.70           | . 78               | 89                | 71                 | 99                |
| 1.70-1.80           | 75                 | 93                | 69                 | 100               |
| 1,80-Sink           | D                  | 100               | 0                  | 100               |

|                        |       | Direct |          |       | Cumulativ | 8      |
|------------------------|-------|--------|----------|-------|-----------|--------|
| Tyler mesh<br>fraction | wt%   | ash%   | · Btu/1b | wt%   | ash%      | 8tu/1b |
| -3, +4                 | .10.9 | 25.4   | 10,000   | 10,9  | 25.4      | 10,000 |
| -4, +6                 | 6.0   | 27.2   | 9,700    | 16.9  | 26.0      | 9,900  |
| -6, +8                 | 5.6   | 26.7   | 9,800    | 22.5  | 26.2      | 9,900  |
| -8, +10                | 10.B  | 24,3   | 10,200   | 33.3  | 25.6      | 10,000 |
| -10, +16               | 20.9  | 22.7   | 10,400   | 54.2  | 24,5      | 10,100 |
| -16, +20               | 4.8   | 21.8   | 10,600   | 59.0  | 24.3      | 10,200 |
| <del>~</del> 20, +28   | 8.7   | 22.6   | 10,400   | 67'.7 | 24.0      | 10,200 |
| -28, +35               | 7.9   | 23.0   | 10,400   | 75.6  | 23.9      | 10,200 |
| <b>-35,</b> +48        | 6.2   | 23,3   | 10,300   | 81.8  | 23.9      | 10,200 |
| -48, +65               | 5,6   | 23.8   | 10,300   | 87.4  | 23,9      | 10,200 |
| -65, +100              | 3.7   | 24.6   | 10,100   | 91.1  | 23,9      | 10,200 |
| -100, +150             | 3,0   | 25.7   | 10,000   | 94.1  | 24.0      | 10,200 |
| <b>~15</b> 0, +200     | 2.0   | 26,5   | 9,800    | 96.1  | 24.0      | 10,200 |
| -200                   | 4.1   | 30,0   | 9,300    | 100.0 | 24.3      | 10,200 |

TABLE 21-Screen analysis, wedge fraction, Property A, 3 mesh x 0.

TABLE 22-Screen analysis, run-of-mine, Property B, 3 mesh x 0.

|                        |      | Direct |                |       | Cumulativ | 8      |
|------------------------|------|--------|----------------|-------|-----------|--------|
| Tyler mesh<br>fraction | wt%  | ash%   | Btu/1b         | wt%   | ash%      | 8tu/16 |
| -3, +4                 | 7.8  | 56.8   | 5,100          | 7.8   | 56.8      | 5,100  |
| -4, +6                 | 7.6  | 52.7   | 5,700          | 15.4  | 54.8      | 5,400  |
| -6, +8                 | 9.9  | 48.7   | 6,300          | 25.3  | 52.4      | 5,800  |
| -8, +10                | 11.6 | 44.1   | 7,100          | 36.9  | 49.8      | 6,200  |
| -10, +16               | 14.4 | 41.8   | 7,400          | 51.3  | 47.5      | 6,500  |
| -16, +20               | 3.7  | 44.6   | 7,000          | 55.0  | 47.3      | 6,600  |
| -20, +28               | 6.4  | 46.5   | 6 <b>,7</b> 00 | 61.4  | 47.3      | 6,600  |
| -28, +35               | 5.9  | 51.2   | 5,900          | 67,3  | 47.6      | 6,500  |
| -35, +48               | 5.5  | 58.5   | 4,800          | 72.8  | 48.4      | 6,400  |
| -48, +65               | 7.8  | 71.3   | 2,800          | 80.6  | 50.6      | 6,000  |
| -65, +100              | 7.0  | 80.4   | 1,300          | 87.6  | 53.0      | 5,700  |
| -100, +150             | 4.6  | 79.0   | 1,600          | 92.2  | 54.3      | 5,500  |
| -150, +200             | 2.9  | 73.3   | 2,500          | 95.1  | 54.9      | 5,400  |
| 200                    | 4.9  | 69.0   | 3,100          | 100.0 | 55.6      | 5.300  |

|                        |      | Direct |         |              | Cumulativ | e      |
|------------------------|------|--------|---------|--------------|-----------|--------|
| fyler mesh<br>fraction | wt%  | ash%   | Btu/16  | wt%          | ash%      | 8tu/16 |
| -3, +4                 | 5,6  | 40.2   | 7,700   | 5.6          | 40.2      | 7,700  |
| -4, +6                 | 6,3  | 31.2   | 9,100   | 11.9         | 35.4      | 8,400  |
| -6, +8                 | 11.1 | 29.8   | 9,300   | 23.0         | 32.7      | 8,900  |
| -8, +10                | 15.2 | 28.5   | 9,500   | 38.2         | 31.0      | 9,100  |
| -10, +16               | 18.5 | 27.3   | 9,700   | 56 <b>.7</b> | 29.8      | 9,300  |
| -16, +20               | 4.9  | 28.3   | 9,600   | 61.6         | 29.7      | 9,300  |
| -20, +28               | 7.9  | 37.1   | 8,200   | 69.5         | 30.5      | 9,200  |
| -28, +35               | 6.8  | 31.4   | 9,100 · | 76.3         | 30.6      | 9,200  |
| -35, +48               | 5,6  | 30.7   | 9,200   | 81.9         | 30,6      | 9,200  |
| -48, +65               | 5.4  | 35.9   | 8,400   | 87.3         | 30,9      | 9,100  |
| -65, +100              | 3.6  | 27.4   | 9,700   | 90.9         | 30.8      | 9,200  |
| ~100, +150             | 3.0  | 30.2   | 9,300   | 93,9         | 30.8      | 9,200  |
| -150, +200             | 2.1  | 35.9   | 8,400   | 96.0         | 30.9      | 9,100  |
| ~200                   | 4.1  | 42.2   | 7.400   | 100.0        | 31.4      | 9.100  |

#### TABLE 23-Results of flotation tests.

|                            | Collector   |            | Frother     |            | Concentrate |        | Taile      |                   |      |       |            |                    |
|----------------------------|-------------|------------|-------------|------------|-------------|--------|------------|-------------------|------|-------|------------|--------------------|
| Material                   | Туре        | 16/<br>ton | Туре        | 15/<br>ton | wt,%        | ash,%  | 8tu/<br>16 | % Btu<br>recovery | wt,% | ash,% | Btu/<br>15 | % ash<br>rejection |
| Stockpile, Property A      | Diesel      | 18         | DF 250      | 1.5        | 82.4        | 16.7   | 11,400     | ) 98              | 17.6 | 81.3  | 1,200      | 51                 |
| Wedge, Property A          | Diesel      | 15         | Pine<br>Oil | 5          | 26.8        | 58,9   | 4,700      | 26                | 73.2 | 56.9  | 5,000      | 73                 |
| Bulk, Property C, -35 mesh | -           | -          | DF250       | 2,3        | 8.0         | 20.5   | 10,800     | ) 11              | 92.0 | 41.4  | 7,500      | 96                 |
| Bulk, Property C, -35 mesh | Diesel      | 15         | DF250       | 2.3        | B1.6        | · 28.2 | 9,600      | I 99              | 18,4 | 87.6  | 200        | 41                 |
| Bulk, Property C, -35 mesh | Kerosene    | 18         | DF250       | 1.5        | 80,0        | 27.7   | 9,600      | 100               | 20,0 | 87,8  | 200        | 44                 |
| Bulk, Property C, -35 mesh | Burner Fuel | 15         | DF250       | 1,5        | 80.0        | 27.7   | 9,600      | I 99              | 20.0 | 85.6  | 500        | 44                 |
| Drill Core A, Property C   | Diesel      | 15         | DF250       | 1.5        | 54.D        | 25.9   | 9,900      | 100               | 46.0 | 90.4  | O          | 75                 |
| Drill Core A, Property C   | Kerosene    | 18         | DF250       | 1.5        | 50.4        | 23.6   | 10,300     | 98                | 49.6 | 87.5  | 200        | 78                 |
| Drill Core 8, Property C   | Diesel      | 18         | DF250       | 1.5        | 66.1        | 16,5   | 11,400     | 9B                | 33.9 | 85.9  | 500        | 73                 |

TABLE 24-Area correlation parameters.

|                                            |                                       |                     |                  | • • |           |
|--------------------------------------------|---------------------------------------|---------------------|------------------|-----|-----------|
| Агеа                                       | a*                                    | b*                  | s**              | n   | Reference |
| San Juan Basin field                       | · · · · · · · · · · · · · · · · · · · |                     |                  |     |           |
| Overall, N.M.                              | 14000 <u>+</u> 40                     | 15740 <u>+</u> 150  | 409              | 724 | 1, 3, 4   |
| Company data, delivered coal               | 14880 <u>+</u> 690                    | 19260 <u>+</u> 2780 | 161              | 64  | 1         |
| Company data, core analysis                | 13880 <u>+</u> 40                     | 15260 <u>+</u> 120  | 216              | 210 | 1         |
| Company data, core analysis                | 14070 <u>+</u> 250                    | 15180 <u>+</u> 1050 | 168              | 54  | 1         |
| San Juan and McKinley Counties, New Mexico | 14050 <u>+</u> 110                    | 14350 <u>+</u> 1210 | 197              | 149 | 4         |
| Rio Arriba County, New Mexico              | 14930 <u>+</u> 270                    | 15430 <u>+</u> 2360 | 154              | 33  | 4         |
| Bisti area                                 | 13470 <u>+</u> 172                    | 15140 <u>+</u> 490  | 440              | 80  | 3         |
| Chaco Canyon area                          | 13600 <u>+</u> 250                    | 14430 <u>+</u> 570  | 136              | 8   | 3         |
| Cortez area                                | 15020 <u>+</u> 110                    | 16740 <u>+</u> 290  | 116              | 16  | 3         |
| Newcomb area                               | 13630 <u>+</u> 150                    | 15510 <u>+</u> 450  | 185              | 24  | 3         |
| Standing Rock area                         | 13710 <u>+</u> 130                    | 15340 <u>+</u> 390  | 257              | 45  | 3         |
| Star Lake area                             | 13880 <u>+</u> 150                    | 15900 <u>+</u> 410  | 247 <sup>·</sup> | 36  | 3         |
| Black Mesa, Arizona                        | 13880 <u>+</u> 150                    | 16440 <u>+</u> 1000 | 259              | 49  | 1, 5, 6   |
| La Plata County, Colorado                  | 14610 <u>+</u> 250                    | 14930 <u>+</u> 2630 | 343              | 52  | 7         |
| Raton field                                |                                       |                     |                  |     |           |
| Colfax County, New Mexico                  | 14950 <u>+</u> 120                    | 14780 <u>+</u> 890  | 151              | 139 | 2,4       |
| Las Animas County, Colorado                | 15070 <u>+</u> 130                    | 14660 <u>+</u> 980  | 190              | 204 | 7         |
| Huerfano County, Colorado                  | 14020 <u>+</u> 200                    | 12390 <u>+</u> 1740 | 236              | 126 | 7         |
| Ither areas                                |                                       |                     |                  |     |           |
| Santa Fe County, New Mexico                | 1511p ± 220                           | 16120 <u>+</u> 2140 | 193              | 68  | 4         |
| Socorro and Lincoln Counties               | 14740 <u>+</u> 490                    | 15210 <u>+</u> 3090 | 327              | 16  | 4         |

\* 95% confidence interval

\*\* standard deviation of differences between actual and calculated Btu content (in Btu/lb)

References: 1. Company data

- 2. Pillmore and Hatch (1976)
- 3. Shomaker and others (1971)
- 4. USBM TP-569 (1936)
- 5. USBM TP+696 (1947)
- 6. Peirce and others (1970)
- 7. USBM TP-574 (1937)

#### TABLE 25-Comparisons within individual float-sink tests (moisture-free basis).

## TABLE 26-Comparisons of cumulative Btu recoveries for float-sink tests.

Fraction

Minus-100

Number\*

15

Cumulative Btu recoveries (%) From measured Btu/1b From calculated Btu/1b

|      |                |          | 8tu/1b     |            |                            |
|------|----------------|----------|------------|------------|----------------------------|
| Numb | er* Fraction   | Measured | Calculated | Differenca | Correlation<br>coefficient |
| 15   | Float-1.3      | 14120    | 14065      | 55         | 0.9993                     |
|      | 1.3-1.4        | 13420    | 13330      | 90         |                            |
|      | 1.4-1.5        | 12000    | 11960      | 40         |                            |
|      | 1.5-1.6        | 10530    | 10474      | 56         |                            |
|      | 1.6-1.8        | 8270     | 8253       | 17         |                            |
|      | 5ink-1.8       | 1810     | 1757       | 53         |                            |
|      | Minus-188 mesh | 9660     | 10023      | -363       |                            |
|      | Head(48% Ash)  | 7070     | 7017       | 53         |                            |
| 18   | Float-1.3      | 12830    | 12834      | 4          | D.9996                     |
|      | 1.3-1.4        | 11990    | 12030      | -40        |                            |
|      | 1.4-1.5        | 10070    | 10189      | -119       |                            |
|      | 1.5-1.6        | 8280     | 8256       | 24         |                            |
|      | 1.6-1.8        | 6870     | 6755       | 115        |                            |
|      | Sink-1.8       | 3380     | 3460       | -80        |                            |
|      | Minus-100 mesh | 10320    | 10205      | 115        |                            |
|      | Head(15% Asn)  | 11477    | 11488      | -11        |                            |
| 33   | Float-1.30     | 13040    | 13029      | 11         | 0,9999                     |
|      | 1.30-1.35      | 12250    | 12267      | -17        |                            |
|      | 1.35-1.40      | 11200    | 11227      | -27        |                            |
|      | 1.40-1.50      | 9890     | 9953       | -63        |                            |
|      | 1,50-1,60      | B340     | 8276       | 64         |                            |
|      | 1.60-1.80      | 6080     | 6008       | -72        |                            |
|      | Sink-1.80      | 1630     | 1691       | -61        |                            |
|      | Minus-100 mesh | 7410     | 7375       | 35         |                            |
|      | Head(34% Ash)  | 8604     | 8618       | -14        |                            |

1.8 4.2 29.0 55.8 76.0 89.7 100. Minus-100 Float-1.3 1.3-1.4 1.4-1.5 1.5-1.6 1.6-1.8 1.8-Sink 88.8 100. 2.0 49.5 86.9 92.3 96.5 99.0 2.0 49.6 86.9 92.2 96.5 99.1 100. Minus-100 18 Minus-100 Float-1.3 1.3-1.4 1.4-1.5 1.5-1.6 1.6-1.8 1.8-Sink Minus-100 Float-1.30 1.30-1.35 1.35-1.40 1.40-1.50 1.50-1.60 1.60-1.80 3.4 31.1 54.6 67.6 81.8 88.7 95.9 3.4 31.1 54.7 67.7 82.1 33 88,9 96.0 1.80-Sink 100. 100.

1.8 4.1 28.7 55.1 75.1

\*Table number of float-sink test from Shomaker and others (1971)

\*Float-sink tests from Shomaker and others (1971)

Calculated Btu/lb from overall San Juan Basin correlations Btu/lb = 14DD6-15643 (ash fraction) .

| Btu/1b   |            |            | Btu/:    | Btu/1b     |                 |  |
|----------|------------|------------|----------|------------|-----------------|--|
| Measured | Calculated | Difference | Measured | Calculated | Difference      |  |
| 8793     | 8681       | 112        | 8774     | 8731       | 43              |  |
| 8847     | 8751       | 96         | 8929     | 8834       | 95              |  |
| B739     | 8700       | 39         | 8767     | 8694       | 73              |  |
| 8943     | 8880       | 63         | 8913     | B849       | 64              |  |
| 8921     | 8821       | 100        | 8742     | 8836       | -94             |  |
| 8922     | 8850       | 72         | 9159     | 9020       | 139             |  |
| 8357     | 8341       | 16         | 8728     | B741       | -13             |  |
| 8627     | 8684       | -57        | 9013     | 8892       | 121             |  |
| 8651     | 8661       | -10        | 8858     | 8918       | -60             |  |
| 8425     | 8585       | -160       | 8752     | 8731       | 21              |  |
| 8355     | 8614       | -259       | 8829     | 8866       | -37             |  |
| 8789     | 8755       | 34         | 8885     | 8936       | -51             |  |
| 8743     | 8817       | -74        | 8943     | 8983       | <del>~</del> 40 |  |
| 8936     | 8918       | 18         | 8921     | 8830       | 91              |  |
| 9096     | 9049       | 47         | 9011     | 8880       | 131             |  |
| 9122     | 9061       | 61         | 8857     | 8803       | 54              |  |
| 9050     | 9075       | -25        | 871B     | 8666       | 52              |  |
| 9002     | 9008       | -6         | 8871     | 8799       | 72              |  |
| 9043     | 8994       | 49         | 8596     | 8596       | 0               |  |
| B691     | 8628       | 63         | 8830     | 8789       | 41              |  |

TABLE 27-Comparison of calculated and measured production data (as-received basis).

TABLE 28-Comparison of Btu content from drill cores (moisture free).

|                | Btu/1b              |            |
|----------------|---------------------|------------|
| Measured       | Calculated          | Difference |
| 12867          | 12641               | 226        |
| 6484           | 6276                | 208        |
| 11743          | 11327 .             | 416        |
| 7533           | 8016                | -483       |
| 129 <b>7</b> 2 | 12800               | 172        |
| 10640          | 10557               | 91         |
| 11349          | 11152               | 197        |
| 12384          | ۵۰<br><b>123</b> 92 | -8         |
| 12449          | 12367               | B2         |
| 11474          | 11079               | 395        |
| 11255          | 11116               | 139        |
| 11924          | 11851               | 73         |
| 11309          | 11218 .             | 91         |
| 12674          | 12484               | 190        |
| 7003           | 8609                | 1606       |
| 12276          | 12377               | -101       |
| 8157           | 7577                | 580        |
| 9871           | 9699                | 172        |
| 10710          | 12737               | -2027      |
| 6623           | 6063                | 540        |