ME589/Geol571/GEOC 589-04D/GEOL 589-04/GEOL 589-04D Advanced Topics

Mineral Deposits in New Mexico

Virginia T. McLemore
Fatal Powered Haulage Accident
October 31, 2017
MSHA Investigations - No. 26-02081
Rudimentary Driving Rules While on a Mine Site:

“Haul trucks and other large surface mining vehicles are capable of destroying smaller vehicles that cannot be seen by the operator. Traffic controls, training, and avoiding distractions are key to enhancing safety. “ (MSHA)

- Communicate and verify with all equipment operators any planned movements and location upon entering or exiting a work area.
- Ensure all persons are trained to recognize workplace hazards. Specifically, train equipment operators on the limited visibility and blind spot areas that are inherent to the operation of large equipment. Do not drive or park smaller vehicles in mobile equipment’s potential path of movement.
- Instruct all operators on the importance of using flags or strobe lights on the cabs of their vehicles to make haulage truck operators aware of their location. Flags must be high enough to be in the view of equipment operators.
6:00a.m - Eight new hires meet the mine safety superintendent to begin in-processing and safety training.

1:40p.m - The eight new employees dawned their ppe and got into a van to begin an introductory mine tour with the mine safety superintendent.

1:50p.m - The mine safety superintendent requested permission to go into the pit so the new employees could observe the 2:00p.m blast. They were told that they could go ahead by mine ops, but to be careful because the area was congested with two parked haul trucks.

1:55p.m - The mine safety superintendent got verbal permission to pass one of the parked haul trucks, but did not inform the other haul truck of their approach, and proceeded to park on the right side of the second haul truck.

2:00p.m - The roadblock was set for the blast zone and all vehicles were grounded until the all-clear radio message at 2:05p.m

2:06p.m - The second Haul truck driver honked his horn twice, put the truck into forward gear, released the brake and began to turn sharply to the right. The driver applied the throttle and felt hesitation. The driver heard “481 stop, stop, stop” over the radio and immediately stopped the truck.

2:07p.m - The mine safety superintendent and a new hire did not escape before the loaded (582.25 ton) haul truck crushed the front of the van. The seven other new hires were able to jump out the rear door unscathed.
Complacency kills

- The van operator, who had over 25 years of mine experience, did not make radio contact and visual contact with the operator of mobile equipment. In addition, the van operator parked in the blind spot of the 340-ton haul truck.

- In response, SSR updated policies and procedures and developed new training materials, adding information concerning blind spot awareness and communication. Using the updated policies and procedures and new training material, the operator retrained the workforce.
Field Trips
First field trip—Lemitar Mountains

• Volunteer to find best time
 • Afternoon (3-4 hrs)
 • High clearance vehicles (no Durangos)—pickups (2 people)
 • Drivers (me, Haley, Ethan, others?)
 • Feb 4, 7, 9-11

• Who will video for those unable to attend?
 • Maybe we can try a Zoom?

• Field trip report required (by yourself or as a team)
 • You are tasked with examining this site and reporting to your boss
 • Is this deposit worth further investigation by your company
Second field trip—Winston area (Monticello diatomite, Winston zeolite mine, Kline kaolin, Taylor Creek tin)

• Feb 19, 2021
 • All day
 • Gravel or paved roads
 • Durangos (3-4 people), pickups (2 people), passenger cars
 • Drivers (me, Haley, Ethan, others?)

• Who will video for those unable to attend?

• Field trip report required (by yourself or as a team)
 • You are tasked with examining these sites and reporting to your boss
 • Are these deposits worth further investigation by your company
Report required

- If you are not comfortable to attend or you are not feeling well, DO NOT GO
- Those who can’t go
 - Video on Socorro perlite
 - https://geoinfo.nmt.edu/staff/mclemore/DicaPerl17minmovie.mp4
 - Another video on the web or go on your own trip and photograph or even video
FIELD NOTES
What are field notes?
What are field notes?

• Done in the field not at camp or office after field work

• Types
 • Jottings, scratch notes—minimal notes to get you thru, triggers to remind you
 • Diary—personal notes, not for public consumption
 • Log—running account of how you spend your time, what you did, how much you spent
 • Field notes
 • Methodical
 • Descriptive
 • Analytical

Descriptive (facts, observations) and reflective (thoughts)
Can be used in court for legal cases
Field notes

- In field books or field forms or ipad/smart phone or apps
- Pen or pencil or apps?
- Who needs access to field notes?
- Scan field notes or enter into a database
- Bound books vs loose papers vs numbered pages
- Are they required for legal or contract purposes?

Remember—it costs time and money to perform field investigations and it is important to make the best use of that activity
Field Notes

• Not writing down your observations could result in missed data being recorded and lead to inaccurate conclusions about the rocks being studied.

• Field notes allow you to write down descriptions of fossils, minerals, or rocks while they are being collected. This saves time.

• Sketches are also helpful in interpreting geologic events.

• Field notes can be a legal document, and must be saved for future reference.

• Record any deviations from SOPs.
Field Notes

• Record date, time, location, who, weather
• Describe locality, directions, map names
• Sketch
• Photographs
 • Location (lat, long, UTM, datum)
 • Directions
 • Description
 • Direction
 • Relationships
• Other notes, comments, future work, questions
Field Notes

• If you are unsure of the name of a rock, fossil, or mineral, make a description of it, assign a field name or wait until a lab determination is made.

• Detailed description
 • Thickness of the beds
 • Describe the rocks
 • Record any fossils or minerals
 • Strike and dip, trend
 • Unique features (layered, cross-bedding, ripple marks)
 • Alteration, mineralization
Field Notes

• Collect samples
 • Date
 • Location
 • Photograph
 • Description
 • Lithology
 • Unit if known
 • Purpose of sampling
Information needed in field notes to enter in database
Requirements for a 43-101 report

• Item 1: Summary or abstract
• Item 2: Introduction
• Item 3: Reliance on Other Experts
• Item 4: Property Description and Location
• Item 5: Accessibility, Climate, Local Resources, Infrastructure and Physiography
• Item 6: History
• Item 7: Geological Setting and Mineralization
• Item 8: Deposit Types
• Item 9: Exploration
• Item 10: Drilling
• Item 11: Sample Preparation, Analyses and Security
Requirements for a 43-101 report

• Item 12: Data Verification
• Item 13: Mineral Processing and Metallurgical Testing
• Item 14: Mineral Resource Estimates
• Item 15: Mineral Reserve Estimates
• Item 16: Mining Methods
• Item 17: Recovery Methods
• Item 18: Project Infrastructure
• Item 19: Market Studies and Contracts
Requirements for a 43-101 report

- Item 20: Environmental Studies, Permitting and Social or Community Impact
- Item 21: Capital and Operating Costs
- Item 22: Economic Analysis
- Item 23: Adjacent Properties
- Item 24: Other Relevant Data and Information
- Item 25: Interpretation and Conclusions
- Item 26: Recommendations
- Item 27: References
MINING’S INFLUENCE IN HISTORIC CULTURES
Critical and strategic minerals will change with time.
Importance of minerals

- Mining began with prehistoric man who wanted to improve their way of life.
- Ancient cultures often settled time after time around areas that provided raw materials.
- 300,000-100,000 years ago mining of flint in N France and S England.
- Throughout history, wars were fought over natural resources.
Important Cultural Eras

- Stone Age (prior to 4000 B.C.)
- Bronze Age (4000 to 5000 B.C.)
- Iron Age (1500 B.C. to 1780 C.E.)
- Steel Age (1780 to 1945)
- Nuclear Age (1945 to the present)
• **Early civilisations**: fundamental importance of nonfuel minerals, metals, and materials technology and applications.
 - Stone Age, Copper Age, Bronze Age, Iron Age
 - Discovery of metals: **innovations and applications**
 - Gold (6000 BC), copper (4200 BC), silver (4000 BC), lead (3500 BC), tin (1750 BC), iron (1500 BC), mercury (750 BC)
• **Information Age**: developments in materials science and engineering, mineral exploration, and processing continue to enable and support the development of new technologies
<table>
<thead>
<tr>
<th>Period—Stage</th>
<th>Near East—Mediterranean—Africa</th>
<th>Central and Northern Europe and Great Britain</th>
<th>North and South America</th>
<th>Australasia</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC</td>
<td></td>
<td>300,000–100,000 Surface mining of flint (N. France, S. England)</td>
<td></td>
<td>c.500,000 Use of fire (China)</td>
</tr>
<tr>
<td>Paleolithic</td>
<td>c.40,000 Hematite mined for ritual painting (Africa)</td>
<td>c.30,000 Use of fire, lamps, cave art, hunting with projectiles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.20,000</td>
<td></td>
<td>End of Ice Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Late Paleolithic</td>
<td>c.9500 Copper pendant. (Iraq)</td>
<td>c.10,000 Gold ornaments</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
When was the first mine?

Certainly after agriculture???
How would you find the answer to this question?
When was the first mine?

- Prehistoric man used chert and flint as tools 450,000 years ago
- Nazlet Khater 4 site, Nile Valley, Upper Egypt 33,000 yr
- British flint quarries
- Krzemionki Opatowskie, Southern Poland
 - Upper Palaeolithic
 - Middle and Neolithic (4500 B.C.)
 - Early Bronze Age
When was the first underground mine?

- Bomvu Ridge, Swaziland
- Hematite
- 40,000 years old
- Crude methods of ground control, ventilation, haulage, hoisting, lighting, and rock breakage

Krzemionki
Opatowskie, Southern Poland

Fig. 1. From the left: scheme of a pit-mine, miner tools.

http://archterra.cilea.it/exhibits/archweb/pocz_gor.htm
Krzemionki
Opatowskie, Southern Poland

http://archterra.cilea.it/exhibits/archweb/pocz_gor.htm
When was the first mine?

- Prehistoric man used soapstone
- Fleur de Lys quarry, Newfoundland
- Maritime Archaic peoples used it approximately 4,000 years ago

http://www.heritage.nf.ca/environment/soapstone.html
Old Testament recognized the land of Ophir (Zimbabwe), which was somewhere in Africa, as a source of gold.
African mining sites

- Zimbabwe 20,000 to 26,000 BC
- Swaziland 50,000 BC

http://www.anvilfire.com/21centbs/stories/rsmith/biblical_1.htm
History of mining in southern and east Africa

Ancient mines

World’s first underground mine at Lion Cavern, Swaziland; built by San people (20,000-43,000 BP years)

Engraved ochre from Blombos Cave was the first evidence of human art (75,000 BP years)

Iron, copper and tin smelting (c. AD 200)

Venda-type iron smelting furnace from 1888

Traditional products, such as, hoes, arrow heads, and assegais produced until ~1950s

Gold artefact found at Mapungubwe (c. 1220-1270)
Other uses of minerals in ancient societies

- Egyptians replaced water clocks with sand hour glasses
- Greek and Romans made concrete-like structures that are still standing today
- Building stones used in many ancient cultures
Let's look at a commodity in more detail
SALT

• NaCl
• table salt
• essential to life (man 2-5 gr/day)
• salt was used as a preservative, tanning leather, stock, mining
• salt was used to preserve Egyptian mummies
Why is salt important?
SALT

• Trade in salt was very important; salt was valuable enough to be used as currency in some areas.
 • Salt cakes
• The Latin phrase "salarium argentum," "salt money," referred to part of the payment made to Roman soldiers.

• http://www-geology.ucdavis.edu/~gel115/salt.html
• Greek worshippers consecrated salt in their rituals
• In the Old and New Testaments, covenants were sealed with salt
• Jewish "KASHRUT" [hygiene] tradition and law, involves the dehydration of meat for its preservation
• Catholic Church used salt in purifying rituals
• Buddhist believed salt repeals evil spirits
• Pueblo people worship the Salt Mother
Blocks of pure salt cut from the earth sit stacked in rows awaiting carriers in Taoudenni, as a miner removes earth from his pit mine.
Caravans across the Sahara basin carrying salt across the desert to the trading centers of Karta, Bambara, Cairo and Timbuktu.

Mining salt in 1920s at The Cheetham Salt mine, Australia
The star of David used to crystallise salt in salt pans in Mexico, La Concordia - from "Maya Salt Production and Trade - Antony P. Andrews," courtesy Gertrude Blom.
Salt in Austria

• Heilbad Durnenberg
• 750-150 BC
• 200 people worked the deposits
• wealth of this small settlement is clearly evidenced by the clusters of graves which surrounded the various rectangular houses
Estancia Basin in central New Mexico

- Salt basin, few areas in NM with edible salt
- Tompiro Indians (Abo and Gran Quivira) first to harvest the salt
- Later the peoples of Tijeras, Chilili, Tajique, and Quarai gathered the salt
- Central to Indian Pueblos—Abo, Gran Quivira, Salinas, a total of 10 Piro pueblos
- Important in trade by 13th century
- Spanish conquest in 1581, built churches, and demanded more salt
- The Spanish who settled in the region referred to it as the Salinas Province
- By 1660 Spanish shipped salt 700 mi to Mexico for use in processing silver
Kraemer, 1998)
Gran Quivira
Estancia playa, looking northwest
Salt and Silver Processing

- Patio process developed in 1557 in Pachuca, Hidalgo, Mexico
- silver ores crushed in arrastras to a fine slime
- mixed with salt, water, copper sulfate, mercury
- spread onto a patio and allowed to dry in the sun
- silver could then amalgamate with mercury and thus be recovered

Pinos Altos arrastra
End of an Era

- By the late 1670s the entire Salinas district, as the Spanish had named it, was depopulated
 - 1672 Apache raids increased
 - 1671 Famine hit the area
 - Poor harvests
 - By the Pueblo revolt in 1680, the pueblos were abandoned
- Guadalupe salinas, SW of the Guadalupe Mountains, eastern Tularosa Basin, were discovered in 1691, Guadalupe and Lake Lucero deposits supplied salt to the mines
- Salt was still needed and when the Spanish resettled New Mexico, armed escorts frequently traveled to the lakes and mined salt for the rest of the state
- 1821, area near Mountainair in the Manzano Mountains was resettled
 - Some of the orchards from past settlement remained
- Even soldiers from Ft. Craig mined salt from the playas in 1860s
- The coming of the railroad in 1879, ended the salt trade
Modern Era

• Julius Meyer produced salt in 1915 from Estancia Lakes
• Between 1915-1933, several operators
• In 1932 New Mexico Salt Co. mined and marketed 350 short tons of salt and 700 short tons in 1933
 • Sold in 3 grades 85, 92, and 98% pure
 • Vats formed by low dike controlled deposition
 • Used a well to pump water into the vats and allow to evaporate
• In 1931, Carlsbad salt deposits were exploited
• In the 1950s, the Southwestern Chemical Co. attempted to process salt for fertilizer
• Thicker salt beds in Laguna Salina
• Today exploration for Li, Sr, B, Br
• Uranium also is found in the playas (as much as 334 ppb U in waters)
Salt, Societies, and Spirituality: A Tale of Two Cultures.

Tucked away in the middle of New Mexico you’ll find Salinas Pueblo Missions National Monument. Its three distinct sites offer a glimpse into a unique time in history—a time entrenched with cultural borrowing, conflict and struggles. These sites continue to stand as reminders of the Spanish and Pueblo peoples’ early encounters and prompt exploration of today’s interactions among different people.

Virtual Tour of Abó
Take a tour of Abó from your home! Abó features a short trail to the picturesque mission ruins.

Gran Quivira
Gran Quivira is the most remote of the three sites. If you're interested in visiting excavated Puebloan ruins, you won't want to miss it!

Quarai Virtual Tour
Quarai features the most intact church of the three sites and is a wonderful birding location. Learn more about Quarai in this virtual tour.

https://www.nps.gov/sapu/index.htm
Salt

![Salt](https://www.usgs.gov/centers/nmic/mineral-commoditysummaries)

Salient Statistics—United States:

<table>
<thead>
<tr>
<th></th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production</td>
<td>45,100</td>
<td>41,700</td>
<td>38,600</td>
<td>41,000</td>
<td>42,000</td>
</tr>
<tr>
<td>Sold or used by producers</td>
<td>42,800</td>
<td>39,900</td>
<td>38,200</td>
<td>40,000</td>
<td>41,000</td>
</tr>
<tr>
<td>Exports</td>
<td>830</td>
<td>729</td>
<td>1,120</td>
<td>986</td>
<td>730</td>
</tr>
<tr>
<td>Consumption:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apparent</td>
<td>63,600</td>
<td>51,300</td>
<td>49,700</td>
<td>57,000</td>
<td>57,000</td>
</tr>
<tr>
<td>Reported</td>
<td>52,300</td>
<td>47,800</td>
<td>45,500</td>
<td>48,000</td>
<td>49,000</td>
</tr>
<tr>
<td>Price, average value of bulk, pellets and packaged salt, dollars per ton, f.o.b. mine and plant:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vacuum and open pan salt</td>
<td>188.87</td>
<td>197.78</td>
<td>211.71</td>
<td>230.00</td>
<td>220.00</td>
</tr>
<tr>
<td>Solar salt</td>
<td>102.04</td>
<td>99.69</td>
<td>115.88</td>
<td>120.00</td>
<td>120.00</td>
</tr>
<tr>
<td>Rock salt</td>
<td>56.32</td>
<td>56.75</td>
<td>60.41</td>
<td>62.00</td>
<td>62.00</td>
</tr>
<tr>
<td>Salt in brine</td>
<td>10.27</td>
<td>8.68</td>
<td>9.49</td>
<td>10.00</td>
<td>10.00</td>
</tr>
<tr>
<td>Employment, mine and plant, number</td>
<td>4,200</td>
<td>4,000</td>
<td>4,100</td>
<td>4,100</td>
<td></td>
</tr>
<tr>
<td>Net import reliance as a percentage of apparent consumption</td>
<td>33</td>
<td>22</td>
<td>23</td>
<td>30</td>
<td>29</td>
</tr>
</tbody>
</table>

Recycling: None

World Production and Reserves:

<table>
<thead>
<tr>
<th></th>
<th>2018</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>41,000</td>
<td>42,000</td>
</tr>
<tr>
<td>Australia</td>
<td>12,000</td>
<td>13,000</td>
</tr>
<tr>
<td>Austria</td>
<td>4,900</td>
<td>4,900</td>
</tr>
<tr>
<td>Brazil</td>
<td>7,500</td>
<td>7,600</td>
</tr>
<tr>
<td>Canada</td>
<td>12,000</td>
<td>12,000</td>
</tr>
<tr>
<td>Chile</td>
<td>8,000</td>
<td>9,000</td>
</tr>
<tr>
<td>China</td>
<td>58,000</td>
<td>60,000</td>
</tr>
<tr>
<td>France</td>
<td>5,700</td>
<td>5,700</td>
</tr>
<tr>
<td>Germany</td>
<td>14,000</td>
<td>14,000</td>
</tr>
<tr>
<td>India</td>
<td>29,000</td>
<td>30,000</td>
</tr>
<tr>
<td>Italy</td>
<td>4,100</td>
<td>4,100</td>
</tr>
<tr>
<td>Mexico</td>
<td>9,000</td>
<td>9,000</td>
</tr>
<tr>
<td>Netherlands</td>
<td>7,000</td>
<td>7,000</td>
</tr>
<tr>
<td>Pakistan</td>
<td>4,400</td>
<td>4,500</td>
</tr>
<tr>
<td>Poland</td>
<td>4,400</td>
<td>4,500</td>
</tr>
<tr>
<td>Russia</td>
<td>7,000</td>
<td>7,000</td>
</tr>
<tr>
<td>Spain</td>
<td>4,200</td>
<td>4,300</td>
</tr>
<tr>
<td>Turkey</td>
<td>6,500</td>
<td>6,600</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>4,100</td>
<td>4,100</td>
</tr>
<tr>
<td>Other countries</td>
<td>43,000</td>
<td>44,000</td>
</tr>
<tr>
<td>World total (rounded)</td>
<td>286,000</td>
<td>293,000</td>
</tr>
</tbody>
</table>

Large. Economic and subeconomic deposits of salt are substantial in principal salt-producing countries. The oceans contain a virtually inexhaustible supply of salt.
Is salt a critical/strategic mineral?
What has changed from Prehistoric times to today?
Need for more commodities

Technology
Global market

Fig. 1. Trade patterns in phosphate rock.
Environmental concerns
Mineral availability
Long term mineral availability (>10 Yr)

- Geologic (does the mineral resource exist)
- Technical (can we extract and process it)
- Environmental and social (can we mine and process it in environmentally and socially acceptable ways)
- Political (how does politics influence)
- Economic (can we mine and produce it at a cost the markets will pay)
Short- and medium-term availability

- Significant or unexpected increase in demand
- Small markets
- Production from a small number of mines, companies, or markets
- Minerals whose supply consist significant of byproduct production (i.e. Ga byproduct of bauxite mining)
- Markets for which there is no significant recovery from old scrap
Global challenges

• The small volumes of strategic/critical minerals utilized makes them price sensitive
• New producers need a reliable, long-term buyer
• Long-term buyers require a fixed price, but operating costs are variable
• Monopolies/oligopolies can drive out marginal producers by over-supplying the market until the competition is eliminated
Other factors

• Population
• Food
• Pandemic
China has ~19% of the world population.
Global population, estimates and projections (billions)

Current population today: 7 billion

2B people have risen out of poverty in Asia in the last 20 years = more consumption

Developing countries – The world is becoming Asia centric
Food Security

Agricultural international land leases
- South Korea: 2,000 thousand hectares
- China: 1,500 thousand hectares
- UAE: 710 thousand hectares
- Saudi Arabia: 620 thousand hectares
- Japan: 320 thousand hectares
- Libya: 250 thousand hectares
- Malaysia: 40 thousand hectares
- India: 10 thousand hectares

Each square represents 50,000 hectares. Values under this value are represented with one square.

UNEP

http://dnr.alaska.gov/commis/priorities/Slides/Lance_Miller.pdf
Where will those materials come from?

- Even though there is little danger of material exhaustion, there is a very real danger of supply disruption.

- Critical means you need it, strategic means you don’t have it.

- Mineral resource discovery is not automatic – it takes time, money, and training (education) to find new resources.

- Even with exploration success – you can decide *whether* to mine something but not *where* to mine it - mineral deposits are part of nature.
Main Points:

◆ As world population and standards of living increase, new resources are needed

◆ Recycling, even if 100% efficient, cannot supply entire need

◆ More efficient or innovative manufacturing and technology can help, but cannot supply entire need

◆ “Circular Economy” can help but cannot supply entire need

◆ Complete life cycle analysis needs to include upstream (exploration, discovery, and production) as well as downstream (manufacturing, recycling, disposal) parts of the materials cycle – education is critical
CLASSIFICATION OF RESERVES AND RESOURCES
Reserves/Resources (1)
Reserves are currently economic occurrences
Initial in place resources

<table>
<thead>
<tr>
<th>Economic Viability Categories:</th>
<th>1: economic</th>
<th>2: potentially economic</th>
<th>3: intrinsically economic (economic to potentially economic)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feasibility Study and/or Mining Report</td>
<td>1 (111)</td>
<td></td>
<td>usually not relevant</td>
</tr>
<tr>
<td>Prefeasibility Study</td>
<td>1 (121) + (122)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geological Study*</td>
<td>3 (331)</td>
<td>3 (332)</td>
<td>3 (333)</td>
</tr>
</tbody>
</table>

*Notes: The table shows the UNFC in matrix form applied to coal, uranium and other solid minerals. The numbers in parentheses indicate the stage of exploration or study.
RESERVES

• **Inferred**: That part of a Mineral Resource for which tonnage, grade and mineral content can be estimated with a low level of confidence.

• **Indicated**: That part of a Mineral Resource for which tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a reasonable level of confidence.

• **Measured**: That part of a Mineral Resource for which tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a high level of confidence.
RESERVES

• **Probable**: The economically mineable part of an Indicated and, in some circumstances, Measured Mineral Resource.

• **Proven**: The economically mineable part of a Measured Mineral Resource.
Economic Viability Defined

- **X**
 - reserves have no equivalent of inferred resource

- **Probable**
 - moderately established viability

- **Proven**
 - well established viability
Resources
DEFINITIONS OF LEVEL OF RESOURCE POTENTIAL

N No mineral resource potential is a category reserved for a specific type of resource in a well-defined area.
L Low mineral-resource potential is assigned to areas where geologic, geochemical, and geophysical characteristics indicate geologic environments where the existence of mineral resources is unlikely and is assigned to areas of no or dispersed mineralized rocks.
M Moderate mineral-resource potential is assigned to areas where geologic, geochemical, and geophysical characteristics indicate a geologic environment favorable for resource occurrence.
H High mineral-resource potential is assigned to areas where geologic, geochemical, and geophysical characteristics indicate a geologic environment favorable for resource occurrence. Assignment of high mineral-resource potential to an area requires some positive knowledge that mineral-forming processes have been active in at least part of the area.

DEFINITIONS OF LEVEL OF CERTAINTY

A Available information is not adequate for the determination of the level of mineral resource potential.
B Available information suggests the level of mineral-resource potential.
C Available information gives a good indication of the level of mineral-resource potential.
D Available information clearly defines the level of mineral-resource potential.

<table>
<thead>
<tr>
<th>INCREASING LEVEL OF RESOURCE POTENTIAL</th>
<th>U/A Unknown Potential</th>
<th>H/B High Potential</th>
<th>H/C High Potential</th>
<th>H/D High Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M/B Moderate Potential</td>
<td>M/C Moderate Potential</td>
<td>M/D Moderate Potential</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L/B Low Potential</td>
<td>L/C Low Potential</td>
<td>L/D Low Potential</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/D No Potential</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INCREASING LEVEL OF CERTAINTY

FIGURE 48. Classification of mineral-resource potential and certainty of assurance (modified from Goudarzi, 1984).
DEFINITIONS OF LEVEL OF RESOURCE POTENTIAL

N No mineral-resource potential is a category reserved for a specific type of resource in a well defined area.

L Low mineral-resource potential is assigned to areas where geologic, geochemical, and geophysical characteristics indicated geologic environment where the existence of mineral resources is unlikely and is assigned to areas of no or dispersed mineralized rocks.

M Moderate mineral-resource potential is assigned to areas where geologic, geochemical, and geophysical characteristics indicate a geologic environment favorable for resource occurrence.

H High mineral-resource potential is assigned to areas where geologic, geochemical, and geophysical characteristics indicate a geologic environment favorable for resource occurrence. Assignment of high mineral-resource potential to an area requires some positive knowledge that mineral-forming processes have been active in at least part of the area.

DEFINITIONS OF LEVEL OF CERTAINTY

A Available information is not adequate for the determination of the level of mineral resource potential.

B Available information suggests the level of mineral-resource potential.

C Available information gives a good indication of the level of mineral-resource potential.

D Available information clearly defines the level of mineral-resource potential.
<table>
<thead>
<tr>
<th>INCREASING LEVEL OF RESOURCE POTENTIAL</th>
<th>U/A Unknown Potential</th>
<th>H/B High Potential</th>
<th>H/C High Potential</th>
<th>H/D High Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M/B Moderate Potential</td>
<td>M/C Moderate Potential</td>
<td>M/D Moderate Potential</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L/B Low Potential</td>
<td>L/C Low Potential</td>
<td>L/D Low Potential</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N/D No Potential</td>
<td></td>
</tr>
</tbody>
</table>
“A mineral is where you find it. It may not be the most suitable place in the world.”

U.S. Senator Larry Craig, explaining why he is seeking to lift limits on mine waste dumping on public lands
Bre-X
Bre-X Scandal: A History Timeline

- Gold was known from the headwaters of the Busang River in the jungle of Borneo.
- 1989 David Walsh funded Bre-X Minerals, Ltd. as a subsidiary of Breacea Resources Ltd.
- 1993 Walsh bought a property near Busang River, Borneo, Indonesia.
- 1994 drilled

http://www.visualcapitalist.com/bre-x-scandal-history-timeline/
Bre-X Scandal: A History Timeline-2

- Contrary to company statements, the Busang core samples had been prepared for assay in the jungle, not in the testing lab
- Security was nonexistent
- Project manager Michael de Guzman was filing gold from his wedding ring and adding the flakes to the crushed core samples, John Felderhof another geologist on site
- De Guzman used realistic ratios of gold to rock and the project kept going
- De Guzman then bought $61k of panned gold from the locals to use in salting
 - Gold was visible and rounded, well worn grains
 - Some had silver depletion along rims, characteristic of placer samples

http://www.visualcapitalist.com/bre-x-scandal-history-timeline/
Bre-X Scandal: A History Timeline-3

- Independent auditors were fooled
- Everyone wanted to invest in the company
- Reported 200 million oz of gold ($240 billion in 2014 prices)
- De Guzman, Felderhoff, and Walsh sold some of their options for $100 million
- 1996 Indonesia revoked their exploration permits
- 1997 a fire destroys many of the sample records

http://www.visualcapitalist.com/bre-x-scandal-history-timeline/
• 1997 Joint venture established between Indonesia (40%), Bre-x (45%), and Freeport McMoRan (15%)
• Freeport begins due diligence and twin previously drilled holes
• Freeport reports minor amounts of gold
• De Guzman falls to his death from a helicopter on the way to meet Freeport geologists (did he jump or was he pushed?)
• David Walsh died due to brain aneurysm at the age of 52 soon after
• John Feldorhof, chief geologist of Bre-X, made $84 million by selling his Bre-X shares. He moved to the Cayman Islands. He was the only one who was tried in Canada, but found not guilty in 2007

http://www.visualcapitalist.com/bre-x-scandal-history-timeline/
Red Flags

• Only 10-cm length of core retained but industry standard is to retain ½ core
 • Reanalysis failed to find any gold
• Core treated differently (sample preparation, storage, transit)
• Early met tests indicated >90% of gold was recoverable by gravity separation and particle shapes were mostly rounded (vein deposit)
• Sample grades difficult to reproduce

• The movie *Gold* is based on the scandal
GEOLOGY OF MINERALS DEPOSITS
Geology provides the framework in which mineral exploration and the integrated procedures of remote sensing, geophysics, and geochemistry are planned and interpreted.
Factors important in evaluating a minerals deposit

• Customer specifications
• Distance to customer (transportation)
• Ore grade--concentration of the commodity in the deposit
• By-products
• Commodity prices
• Mineralogical form
• Grain size and shape
• Origin of ore-bearing fluids
Factors—continued

- Undesirable substances
- Size, attitude and shape of deposit
- Process of deposition (replacement, open-space filling)
- Ore character
- Cost of capital
- Location
- Environmental consequences/ reclamation/bonding
- Land status
- Taxation
- Political factors
Figure 1. Conceptual model for the formation of a mineral deposit (after Tilsley, 1990).
TYPES OF MINERAL DEPOSITS
Classifications

• Niggli (1929) (historic, considered deposits related to magmatic process)
• Schneiderhohn (1941) (historic, considered deposits related to magmatic process)
• Lindgren (1933, modified 1968) (all types)
• Bateman (1942, revised 1979) (all types)
• Stanton (1972)
• Guilbert and Park (1986)
• Cox and Singer (1986)
I. Plutonic, or intrusive
 A. Orthomagmatic
 1. Diamond, platinum-chromium
 2. Titanium-iron-nickel-copper
 a. Iron-nickel-copper sulfide/arsenide
 b. Titanium-iron oxide
 B. Pneumatolytic to pegmatitic
 1. Heavy metals - alkaline earths - phosphorus - titanium
 a. Copper-lead-zinc
 b. Tourmaline-rutile
 2. Silicon-alkali metals-fluorine-boron-tin-molybdenum-tungsten
 3. Tourmaline-quartz
 C. Hydrothermal
 1. Iron-copper-gold-arsenic
 2. Lead-zinc-silver
 3. Nickel-cobalt-arsenic-silver
 4. Carbonates-oxides-sulfates-fluorides

II. Volcanic, or extrusive
 A. Tin-silver-bismuth
 B. Heavy metals
 C. Gold-silver
 D. Antimony-mercury
 E. Native copper
 F. Subaquatic-volcanic and biochemical deposits
I. Intrusive and liquid-magmatic deposits
II. Pneumatolytic deposits
 A. Pegmatitic veins
 B. Pneumatolytic veins and impregnations
 C. Contact pneumatolytic replacements
III. Hydrothermal deposits
 A. Gold and silver associations
 B. Pyrite and copper associations
 C. Lead-silver-zinc associations
 D. Silver-cobalt-nickel-bismuth-uranium associations
 E. Tin-silver-tungsten-bismuth associations
 F. Antimony-mercury-arsenic-selenium associations
 G. Nonsulfide associations (Iron-manganese-magnesium oxide/carbonate)
 H. Nonmetallic associations (Fluorite-barite-quartz)
IV. Exhalation deposits

Schneiderhohn (1941)
1. Deposition produced by chemical processes of precipitation, temperatures and pressures vary between wide limits.

A. In masses by processes of differentiation.
1. Magnesian sediments generally, magmatic segregation deposits, injection deposits. Temperature: 900°-1500°C; pressure very high.
2. Pogesites. Temperature very high to moderate; pressure very high.

II. In bodies of rocks.
1. Concentration affected by introduction of substances foreign to the rock (epigenetic).
 a. Origin dependent upon the nature of igneous rocks.
 i. Volcanic, deposits associated usually with volcanic rocks. Temperature 100°-600°C; pressure moderate to atmospheric.
 ii. Plutonic effusive bodies. Subvoleanic, kimberlites. Temperature: 100°-600°C; pressure moderate to atmospheric.
 iii. Plutonic intrusive bodies. Hypabyssal magmatic deposits. Temperature 660°-800°C; pressure very high.
 iv. By hot ascending waters of meteoric origin, possibly magmatic, metamorphic, oceanic, connate, or meteoric. Hydrothermal deposits.
 i. Hypothermal deposits. Deposition and concentration at great depths or at high temperature and pressure. Temperature: 300°-500°C; pressure very high.
 ii. Mesothermal deposits. Deposition and concentration at intermediate depths. Temperature: 200°-300°C; pressure high.
 iii. Epothermal deposits. Deposition and concentration at shallower depths. Temperature: 50°-200°C; pressure moderate.
 iv. Teleothermal deposits. Deposition from nearly spent solutions. Temperature and pressure low; upper limit of the hydrothermal range.
 v. Hypothermal deposits. Deposition and concentration at shallower depths, but at high temperatures. Temperature high to low; pressure moderate to atmospheric.
 b. Origin by circulating, meteoric waters at moderate or slight depth. Temperature up to 100°C; pressure moderate.

2. By concentration of substances contained in igneous body itself.
 a. Concentration by dynamic and regional metamorphism. Temperature up to 400°C; pressure high.
 b. Concentration by groundwaters of deeper circulation. Supergene enrichment. Temperature up to 100°C; pressure moderate.
 c. Concentration by rock decay and residual weathering near surface. Temperature up to 100°C; pressure atmospheric to moderate.

C. In bodies of water.
1. Phreatic geysers. Underwater springs associated with volcanism. Temperatures high to moderate; pressure low to moderate.
2. By interaction of solutions. Sedimentary deposits. Temperature up to 70°C; pressure moderate.
 a. Ionic reactions.
 b. Organic reactions.
3. By evaporation of solvents.

III. Deposits produced by mechanical processes of precipitation. Temperature and pressure moderate to low.
1. Magmatic concentration. High T and P.
 I. Early magmatic.
 A. Disseminated crystallization.
 B. Segregation.
 C. Injection.
 II. Late magmatic.
 A. Residual liquid segregation.
 B. Residual liquid injection.
 C. Immobile liquid segregation.
 D. Immiscible liquid injection.

2. Sublimate. Low T and P.

3. Contact metamorphism. Intermediate to high T and P.

4. Hydrothermal processes. T and P conditions from low to high.
 I. Teithermal.
 II. Epithermal.
 III. Leptothermal.
 IV. Mesothermal.
 V. Hypothermal.
 VI. Xerothermal.

5. Sedimentation. Low T and P.

7. Submarine exhalative volcanism. Low to high T and P.

8. Evaporation. Low T and P.
 I. Marine.
 II. Lobe.
 III. Groundwater.

9. Residual and Mechanical Concentration. Low T and P.
 I. Residual concentration.
 II. Mechanical concentration. Phreas.
 A. Stream.
 B. Beach.
 C. Phreatic.
 D. Eklog.

10. Surficial oxidation and supergene enrichment. Low T and P.

11. Metamorphism. Intermediate to high T and P.
 I. Metamorphosed deposits.
 II. Metamorphic deposits.
I. Igneous associations
 A. Mafic and ultramafic associations
 1. Cr-Ni-Platinum Group Elements
 2. Fe-Ni-Cu-S-Platinum Group Elements
 B. Felsic associations
 1. Carbonatite-Rare Earths-Cu-P
 2. Anorthosite-Fe-Ti
 3. Quartz monzonite-granodiorite-Cu-Mo-S

II. Sedimentary affilations
 A. Fe, B. Mn, C. Limestone-Pb-Zn, D. Sandstone-U-V-Cu, E. Conglomerate-Au-U-Pyrite

III. Marine-Volcanic associations

IV. Vein associations
 A. Precious metal-Te, B. Base metal-S, C. Ag-Co-Ni-As

V. Metamorphic Affiliations
 A. Contact metamorphism
 B. Regional metamorphism
 C. Dislocation metamorphism

Stanton (1972)
I. Mafic igneous rock associations
 A. Layered mafic intrusions
 B. Anorthosites
 C. Kimberlites
 D. Carbonatites
 E. Ultramafic volcanic rocks
II. Ocean crust associations
III. Intermediate to felsic intrusion associations
 A. Igneous iron deposits
 B. Fumarolic base-metal deposits
 C. Hydrothermal iron deposits
 D. Cordilleran vein-type deposits
 E. Pegmatites
 F. Granitic tin and uranium deposits
IV. Subaerial volcanic associations
V. Submarine volcanic associations
 A. Volcanogenic massive sulfides
 B. Banded iron formations
 C. Ecthalie gold deposits
VI. Submarine volcanic-sedimentary associations
VII. Chemical sedimentation
VIII. Chemical sedimentation (Thusret)
IX. Weathering
 A. Laterites
 B. Supergene sulfide enrichment
X. Regional metasomatism
XI. Solution removal
XII. Epigenetic deposits of doubtful igneous connection
 A. Mississippi Valley type Pb-Zn
 B. Colorado Plateau type U
 C. Unconformity-related U
<table>
<thead>
<tr>
<th>GEOLOGIC ENVIRONMENT</th>
<th>Deposit Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intrusive</td>
<td>Mafic-ultramafic</td>
</tr>
<tr>
<td></td>
<td>Stable Area 1 to 4</td>
</tr>
<tr>
<td></td>
<td>Unstable Area 5 to 10</td>
</tr>
<tr>
<td></td>
<td>Alkaline and basic 11 to 12</td>
</tr>
<tr>
<td></td>
<td>Phanerocrystalline 13 to 15</td>
</tr>
<tr>
<td></td>
<td>Porphyrophanitic 16 to 22</td>
</tr>
<tr>
<td>Felsic</td>
<td>23 to 24</td>
</tr>
<tr>
<td>Extrusive</td>
<td>Mafic</td>
</tr>
<tr>
<td></td>
<td>Felsic - mafic 25 to 28</td>
</tr>
<tr>
<td>Sedimentary</td>
<td>Clastic rocks 29 to 31</td>
</tr>
<tr>
<td></td>
<td>Carbonate rocks 32</td>
</tr>
<tr>
<td></td>
<td>Chemical sediments 32 to 35</td>
</tr>
<tr>
<td>Regional Metamorphic</td>
<td>Metavolcanic and metasedimentary 36</td>
</tr>
<tr>
<td></td>
<td>Metapelite and metaarenite 37</td>
</tr>
<tr>
<td>Surficial</td>
<td>Residual 38</td>
</tr>
<tr>
<td></td>
<td>Depositional 39</td>
</tr>
</tbody>
</table>

Cox and Singer (1985)
Figure 3.1-1 Plate tectonic settings for key magmatic and hydrothermal deposit types (numbers refer to deposit classes and types shown in Table 3.1-1)
Why do we classify mineral deposits?
Why do we classify mineral deposits?

• geological conditions of formation
• how they formed
• where they formed
• exploration
Mineral deposits in New Mexico
ACKNOWLEDGEMENTS

• New Mexico Energy, Minerals and Natural Resource Department
• Company annual reports
• Personal visits to mines
• Historical production statistics from U.S. Bureau of Mines, U.S. Geological Survey, N.M. Energy, Minerals and Natural Resource Department (NM MMD), company annual reports
• Students at NM Tech
INTRODUCTION

- NM has some of the oldest mining areas in the United States
- Native Americans mined turquoise from Cerrillos Hills district more than 500 yrs before the Spanish settled in the 1600s
- One of the earliest gold rushes in the West was in the Ortiz Mountains (Old Placers district) in 1828, 21 yrs before the California Gold Rush in 1849

One of the turquoise mines in the Cerrillos Hills district
Active mines 2020

- ~282 active registered mines (NMMMD)
- 4 coal
- 3 potash, 4 potash plants
- 2 copper open pits, 1 concentrator (mill), 2 solvent/electro-winning (SX-EW) plants
 - 2 additional mines in permitting stage
 - Several exploration
- 1 gold mine and 1 mill (on standby)
- 2 iron mines
- 32 industrial minerals mines, 18 mills
- ~236 aggregate/stone

From NM Mining and Minerals Div. database
From NM Mining and Minerals Div. and NMBGMR databases, company web sites
Most of these exploration sites have been known for >20 yrs

Industrial minerals deposits sometimes can be permitted within a few yrs but not metal mines
COAL

- Fuels 3 electrical generating plants
- 3 surface mines and 1 underground mine in San Juan Basin
- Resources at Raton, Carrizozo
- 12th in production in U.S. in 2018
- 11th in estimated recoverable coal reserves—7 billion tons of recoverable reserves (2005 figures)
- San Juan generating station in the Farmington is scheduled to close in the near future

- Coal production is expected to decrease in the near future
Coal production in New Mexico 1998-2017

Mining Districts (production) and Prospect Areas (no production)

- 274 in NM, including coal
- Mining district, coal field, prospect area, or the geographical area as defined by File and Northrop (1966), Shoemaker et al. (1971), North and McLemore (1986), McLemore and Chenoweth (1989), Hoffman (1996), and McLemore (2001)
Mining districts and prospect areas

• Originally defined by the miners themselves
 • During the California Gold Rush in 1849, the Military Governor of California established that gold can be produced from federal land without charge or hindrance
 • Bylaws written and filed in the county courthouse

• 1872 Mining Act validated existing organized mining districts and authorized formation of new mining districts

• Raymond (1870) recognized a mining district as any area of mineral production

• Jones (1904) stated that “most mining districts in New Mexico are very indefinite in regard to their extent or area…”

• Lindgren et al. (1910, p. 46) was one of the first to recognize mining districts on the basis of geology
Mining districts and prospect areas

- A mining district is a group of mines and/or mineral deposits that occur
 - in a geographically defined area (such as a mining district or coal field)
 - locally are determined by geologic criteria (distribution of mines and deposits, mineralogy, faults, lithology, stratigraphic horizons, common mineralization processes, age, etc.)
 - has had some mineral production

- A prospect area is an area defined by
 - geologic criteria (distribution of mines and deposits, mineralogy, faults, lithology, stratigraphic horizons, age, etc.)
 - that has had no mineral production
Why are mining districts important in exploration?
Why are mining districts important in exploration?

- Historical
- Production typically reported by mining district not by individual mine
- Guide to exploration
- When you file a mining claim on Federal land you must designate a mining district
- Identifies area of geologically similar settings
- Attract potential investors
Boundaries determined by the miners, locations of mines/deposits, geological characteristics, natural boundaries (rivers, mountains, watersheds), political, and potential investors

Note that many mining districts and prospect areas in New Mexico have more than one type of mineral deposit
Only six commodities have cumulative production from New Mexico exceeding $1 billion: coal, copper, potash, uranium, aggregates, and cement.

<table>
<thead>
<tr>
<th>NMBGMR classification</th>
<th>USGS classification (USGS model number)</th>
<th>Commodities</th>
<th>Perceived age of deposit in NM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volcanogenic massive sulfide (VMS)</td>
<td>Volcanogenic massive sulfide (24a,b, 28a)</td>
<td>Au, Ag, Cu, Pb, Zn</td>
<td>1,650–1,600 Ma</td>
</tr>
<tr>
<td>Pegmatites</td>
<td>Pegmatite (13a–h)</td>
<td>Be, Li, U, TH, REE, Nb, Ta, W Sn, Zr, Hf</td>
<td>Probably 1,450–1,400 Ma, 1,100–1,200 Ma, some Tertiary</td>
</tr>
<tr>
<td>Vein and replacement deposits in Proterozoic rocks (formerly Precambrian veins and replacements)</td>
<td>Polymetallic veins, fluorite veins (22c, 26b)</td>
<td>Au, Ag, Cu, Pb, Zn, Mn, F, Ba</td>
<td>Proterozoic to Tertiary</td>
</tr>
<tr>
<td>Proterozoic iron formation</td>
<td>Volcanic hosted magnetite (25i)</td>
<td>Fe, Au</td>
<td>Proterozoic</td>
</tr>
<tr>
<td>Syenite/gabbro-hosted Cu-Ag-PGE</td>
<td>Gabbroid-associated Ni-Cu (7a)</td>
<td>Cu, Ag, PGE</td>
<td>Probably 1,450–1,400 Ma, could be older</td>
</tr>
<tr>
<td>Disseminated Y-Zr deposits in alkaline rocks</td>
<td>Alkaline complex associated zircon (11c)</td>
<td>Y, Zr, REE, U, Th, Hf</td>
<td>1,100–1,200 Ma</td>
</tr>
<tr>
<td>Carbonatites</td>
<td>Carbonatite (10)</td>
<td>REE, U, Th, Nb, Ta, Zr, Hf, Fe, Ti, V, Cu, apatite, barite</td>
<td>400–800 Ma, one about 22 Ma</td>
</tr>
<tr>
<td>NMBGMR classification</td>
<td>USGS classification (USGS model number)</td>
<td>Commodities</td>
<td>Perceived age of deposit in NM</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>----------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Episyenites and REE-Th-U veins</td>
<td>Th-REE veins (10b, 11d)</td>
<td>REE, U, Th, Nb, Ta</td>
<td>400–600 Ma</td>
</tr>
<tr>
<td>Sedimentary iron deposits</td>
<td>Oolitic iron (34f)</td>
<td>Fe</td>
<td>Cambrian-Ordovician</td>
</tr>
<tr>
<td>Sedimentary-copper deposits</td>
<td>Sediment-hosted copper (30b)</td>
<td>Cu, Ag, Pb, Zn, U, V</td>
<td>Pennsylvanian-Permian, Triassic</td>
</tr>
<tr>
<td>Uraniferous collapse-breccia pipe (including clastic plug deposits)</td>
<td>Solution-collapse breccia pipe U deposits (32e)</td>
<td>Cu, Ag, U, Co, Se, REE?</td>
<td>Triassic, Jurassic</td>
</tr>
<tr>
<td>Limestone uranium deposits*</td>
<td>None</td>
<td>U, V, Se, Mo</td>
<td>Jurassic</td>
</tr>
<tr>
<td>Sandstone uranium deposits*</td>
<td>Sandstone uranium (30c)</td>
<td>U, V, Se, Mo, REE?</td>
<td>Pennsylvanian-Permian-Miocene</td>
</tr>
<tr>
<td>Beach-placer sandstone deposits</td>
<td>Shoreline placer Ti (39c)</td>
<td>Th, REE, Zr, Hf, Ti, U, Fe, Nb, Ta</td>
<td>Cretaceous</td>
</tr>
<tr>
<td>Replacement-iron</td>
<td>Iron skarn (18d)</td>
<td>Fe</td>
<td>Cretaceous-Miocene (75–50 Ma)</td>
</tr>
<tr>
<td>Porphyry Cu, Cu-Mo (±Au)</td>
<td>Porphyry copper (17, 20c, 21a)</td>
<td>Cu, Mo, Au, Ag</td>
<td>75–50 Ma</td>
</tr>
<tr>
<td>Laramide, Cu, Pb, Zn, Fe skarn</td>
<td>Skarn (18a, 18c, 19a)</td>
<td>Au, Ag, Cu, Pb, Zn</td>
<td>75–40 Ma</td>
</tr>
<tr>
<td>Laramide, Polymetallic vein</td>
<td>Polymetallic veins (22c)</td>
<td>Au, Ag, Cu, Pb, Zn</td>
<td>75–40 Ma</td>
</tr>
<tr>
<td>Porphyry Mo (±Cu, W)</td>
<td>Porphyry Mo-W (16, 21b)</td>
<td>Mo, W, Au, Ag, Be, Cu</td>
<td>Probably 35–25 Ma</td>
</tr>
<tr>
<td>Carbonate-hosted W-Be replacement and skarn (Mo-W-Be, F-Be, Fe-Mn)</td>
<td>W-Be skarns (14a)</td>
<td>Mo, W, Be, Pb, Zn, Cu, F, Mn</td>
<td>Probably 35–25 Ma</td>
</tr>
<tr>
<td>Carbonate-hosted Pb-Zn (Cu, Ag) replacement</td>
<td>Polymetallic replacement (19a)</td>
<td>Pb, Zn, Cu, Ag</td>
<td>75–25 Ma</td>
</tr>
<tr>
<td>Carbonate-hosted Ag-Mn (Pb) replacement</td>
<td>Polymetallic replacement, replacement manganese (19a, b)</td>
<td>Ag, Mn, Pb, Zn</td>
<td>75–25 Ma</td>
</tr>
<tr>
<td>Deposit Type</td>
<td>Mineral Assemblage</td>
<td>Elements Present</td>
<td>Age Range</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Great Plains Margin (GPM or alkaline-related) deposits (including veins; gold-bearing breccias and quartz veins; porphyry Cu-Mo-Au; Cu, Pb/Zn, and Au skarns and carbonate-hosted replacement deposits; Fe skarns and replacement bodies; Th-REE-fluorite (with U and Nb) epithermal veins, carbonatites)</td>
<td>Porphyry copper, polymetallic veins, copper skarns, iron skarns, placer gold (17, 22c, 18a,b, 18d, 39a), Th-REE veins (10b, 11d)</td>
<td>Au, Ag, Cu, Pb, Zn, Mo, Mn, Fe, F, Ba, Te, REE, Nb, Zr, U, Th</td>
<td>47–25 Ma</td>
</tr>
<tr>
<td>Volcanic-epithermal veins</td>
<td>Quartz-adularia, quartz-alunite, epithermal manganese (25b,c,d,e,g, 26b, 35a)</td>
<td>Au, Ag, Cu, Pb, Zn, Mn, F, Ba</td>
<td>35–16 Ma or younger</td>
</tr>
<tr>
<td>Rhyolite/granite-hosted tin (topaz rhyolites)</td>
<td>Rhyolite-hosted tin (25h)</td>
<td>Sn, Be, REE</td>
<td>28 Ma</td>
</tr>
<tr>
<td>Tin skarns</td>
<td>Tin skarns (15c, 14b, 14c)</td>
<td>Sn</td>
<td></td>
</tr>
<tr>
<td>Volcanogenic Be (volcanic-hosted replacement, volcanic-epithermal, Spor Mountain Be-F-U deposits)</td>
<td>Volcanogenic Be deposits</td>
<td>Be, F, U</td>
<td>Miocene-Pliocene</td>
</tr>
<tr>
<td>Carbonate-hosted Mn replacement</td>
<td>Replacement Mn (19b)</td>
<td>Mn</td>
<td>Miocene-Pliocene</td>
</tr>
<tr>
<td>Rio Grande Rift Copper-silver (±U) vein deposits</td>
<td>Polymetallic veins (22c)</td>
<td>Cu, Ag, U</td>
<td>Miocene-Pliocene</td>
</tr>
<tr>
<td>Mississippi Valley-type (MVT) (here restricted to Permian Basin)</td>
<td>Mississippi Valley-type (MVT) (32a-d)</td>
<td>Cu, Pb, Ag, Zn, Ba, F</td>
<td>Oligocene-Pliocene</td>
</tr>
<tr>
<td>Surficial uranium deposits*</td>
<td></td>
<td>U</td>
<td>Miocene-Recent</td>
</tr>
<tr>
<td>Rio Grande Rift (RGR) Epithermal Mn</td>
<td>Epithermal Mn (25g)</td>
<td>Mn</td>
<td>Miocene-Recent</td>
</tr>
<tr>
<td>Rio Grande Rift (RGR) barite-fluorite-galena</td>
<td>Fluorite and barite veins, polymetallic replacement (IM26b, c, 27e, 19a)</td>
<td>Ba, F, Pb, Ag, U</td>
<td>12 Ma-Recent</td>
</tr>
<tr>
<td>Age</td>
<td>Years Ma</td>
<td>Types of Deposits</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>Cenozoic</td>
<td>2.8</td>
<td>Pliocene, Miocene, Oligocene, Eocene, Paleocene, Cretaceous</td>
<td></td>
</tr>
<tr>
<td></td>
<td>65.5</td>
<td>beach-placer sandstone deposits</td>
<td></td>
</tr>
<tr>
<td>Mesozoic</td>
<td></td>
<td>uraniferous collapse-breccia pipe and clastic plug deposits, limestone uranium deposits</td>
<td></td>
</tr>
<tr>
<td>Jurassic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triassic-Permian</td>
<td>251</td>
<td>sedimentary-copper deposits, sedimentary-iron deposits</td>
<td></td>
</tr>
<tr>
<td>Cambrian-Ordovician</td>
<td>600-400</td>
<td>carbonatites, REE-Th-U veins, episynites</td>
<td></td>
</tr>
<tr>
<td>Proterozoic</td>
<td>1100-1200</td>
<td>disseminated Y-Zr deposits in alkaline rocks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1450-1400</td>
<td>vein and replacement deposits in Proterozoic rocks, pegmatites</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1650-1600</td>
<td>volcanogenic massive sulfide (VMS), Proterozoic Iron Formation</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2. Distribution of Proterozoic-Mesozoic metallic mineral and uranium deposits in New Mexico through time. Arrows delineate the time period sedimentary-copper and sandstone uranium deposits span.
Figure 3. Distribution of Late Cretaceous to Cenozoic metallic mineral and uranium deposits in New Mexico through time.
What are the Mining Issues Facing New Mexico?

Gold King adit

Animas River after Gold King spill
Mining Issues Facing New Mexico

• Some current mines are reaching the end of their life and will close over the next decade, decreasing minerals production.
• There are not many new mines to replace them.
• Results in unemployment and decrease in revenues:
 • Affects rural economies
 • Affects state revenues
Mining Issues Facing New Mexico

- Mining requires water and their environmental effects must not impact water supplies
- Legacy issues of past mining activities form negative public perceptions of mining
 - Abandoned or legacy mines, especially Grants uranium district and Questa mine
 - Gold King spill
 - Not in my backyard!!!!!!
Mining is viewed as favorable by only 27% of New Mexicans.
Mining Issues Facing New Mexico

• Many inactive mines still have the potential to contaminate the environment or present a hazard to health and safety
 • Gold King spill
 • AML sites (Abandoned mine lands)
 • Grants uranium district
Mining Issues Facing New Mexico

• Global competition is closing some of our mines

• Exploration for new deposits often results in drill targets based upon regulatory minimal impact regulations rather than optimum geological criteria

• Permitting for exploration can take longer than exploration funds are available

• Lower prices = closed mines, little exploration
Mining Issues Facing New Mexico

• In some areas conflicts arise between mining and other activities
 • Grants uranium district
 • Otero Mesa
 • Pecos/Tererro mine
 • Water, don’t want a mine in their backyard

• Shortage of young geologists and engineers to explore for, develop, mine, permit these commodities and evaluate their effect on the environment—math, science skills critical
Number of thesis and dissertations on non-energy economic geology has decreased

SUMMARY

• New Mexico has a wealth of mineral resources
• Exploration and permitting takes many years before a deposit can be mined, >10 yrs
• Legacy issues are being addressed
• Negative public perceptions are major issue as is funding
• Global competition is a major threat
• NMBG/NMT research is addressing some of these issues, as well as training future geologists and engineers
Assignment

• Safety

• Read Mineral Resources: Reserves, Peak Production and the Future Meinert et al. https://www.mdpi.com/2079-9276/5/1/14 (be prepared to discuss next week)