Characterization and comparison of mine wastes from legacy mines in NM

Presentation by: John Asafo-akowuah

May 23, 2017

Overview

Purpose

Study Area

Methodology

Results

Preliminary Conclusions

Future Work

Purpose

Determine and compare the mineralogical and geochemical composition of mine wastes in legacy gold (Au) and uranium (U) mines in the study areas

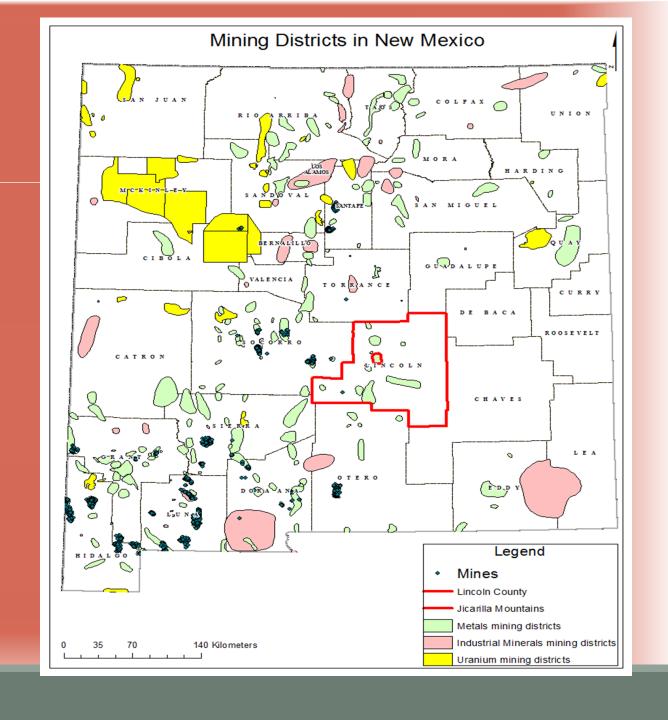
Determine the possible release of trace elements from the waste rock piles into the environment, and their acid/ neutralizing potential

Determine stability, erosion and weathering of waste rock piles in the study area

Study Area Jicarilla Mountains

Apex Mine

Gold Stain


Sally Mine

Jic413

The area is approximately 100 miles southsoutheast of Albuquerque, NM

About 18 km north-east of white oaks, NM

About 155 miles north-northeast of El Paso, Texas.

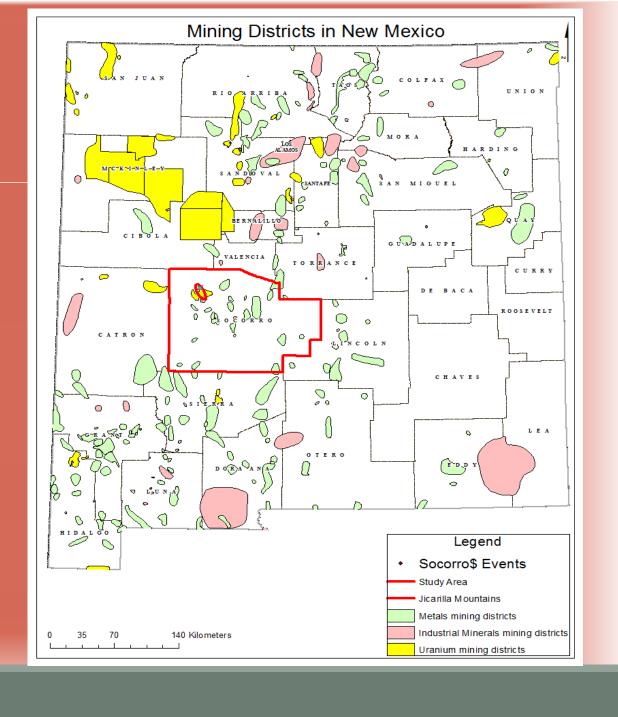
Study Area Socorro District

Lucky Don U Mine
Little Davie U Mine

Lucky Don is located in the Bustos Well $7^1/_2$ quadrangle

About 10miles east of San Antonio, NM

Little Davie is located about ¼ mile southsouthwest of Lucky Don



Study Area Ladron Mountains

Jeter U Mine

About 27 miles north of Socorro.

Lies in section 35, T. 3N, R. 2W

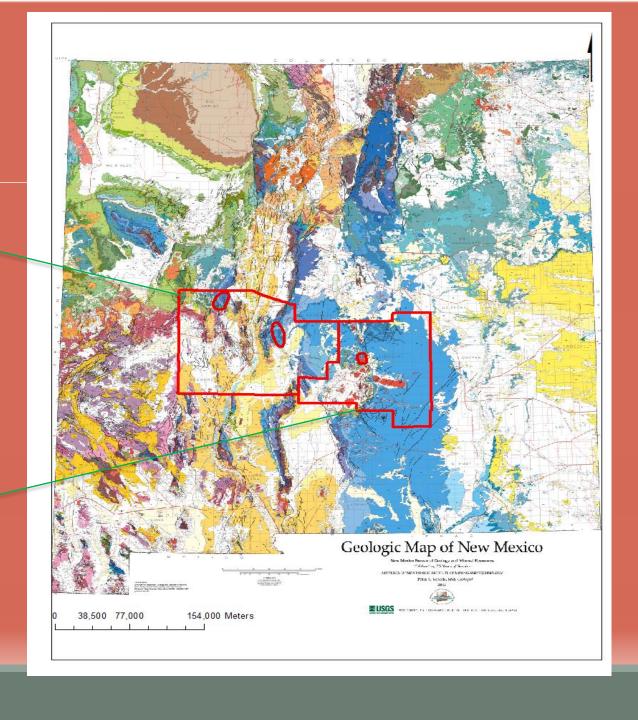
Geology Jicarilla Mountains

Formed by a late-Eocene or early-Oligocene granodiorite to dacite porphyry laccolith that intruded a sequence of Permian sedimentary rocks.

Younger dikes, sills, and laccoliths intruded both the older granodiorite to dacite porphyry and the sedimentary rocks; compositions range from quartz syenite to syenite to granodiorite to quartz monzonite (V.T. McLemore, unpublished mapping).

Contact metamorphism has locally transformed limestone to calc-silicate rocks, and some of the metamorphosed rock has been replaced by magnetite.

Minor vein deposits of hematite and sulfides, and small disseminations of pyrite have been precipitated from hydrothermal solutions. Some of the pyrite and hematite contains minor (< 1 ppm) gold.


Placer-gold deposits are of local derivation, and are found in three separate sedimentary units: an older alluvium (possibly correlated with the Pliocene Ogallala Formation), younger alluvium formed on top of the igneous intrusions, and modern arroyos (V.T. McLemore, unpublished mapping).

.

NM Geologic Map

Geology Lucky Don & Little Davie Mines

Rio Grande Rift Cu-Ag (U) vein type Permian San Andres Formation

The rock formations mostly consist of the Permian Yeso Formation, Glorieta Sandstone, and San Andres Formation

The area is hosted by the Yeso Formation, which consist primarily of beds of sandstone, shale, siltstone, limestone and gypsum

The mineralization appears to be localized by a northeast-trending fault, which parallels the major fault which lies immediately to the west

Lucky Don: 1955-1963: U, V mined from limestone by surface and underground mining methods

Little Davie: 1955: U ,V mined from limestone by surface and underground mining methods

Estimated value of Uranium produced in Lucky Don and Little Davie Mines \$70,000

Geology Jeter Mines

The mountains consist of a core of granite surrounded by gneiss, and quartzite. This core flanked on the west by west-dipping Carboniferous strata of the Magdalena Group, which include the Sandia sandstone and the overlying Madera limestone

Rio Grande Rift Cu-Ag (U) vein type deposit along fault between Proterozoic capirote granite and the Miocene (?) Sediments

The granite has been intruded by a host of fine-grained gray andesitic dikes. Overlying the granite in the fault zone is a layer of light gray to dark gray carbonaceous tuffaceous mudstone with thin interbedded quartzite. This carbonaceous layer is a very favorable host and contains most of the known ore at Jeter mine.

secondary uranium minerals are abundant along outcrops of the fault zone at the mine. These include paraschoepite, meta-autunite, meta-torbernite, and soddyite. Associated with these minerals are tyuyamunite, malachite, azurite, barite, alunite, pitchblende, Fe-Mn oxides, clay, and manganese oxide

Total Uranium produced from Jeter mine amounts to 58,562 worth \$500,000

Methodology

Field Sampling

Au Mine

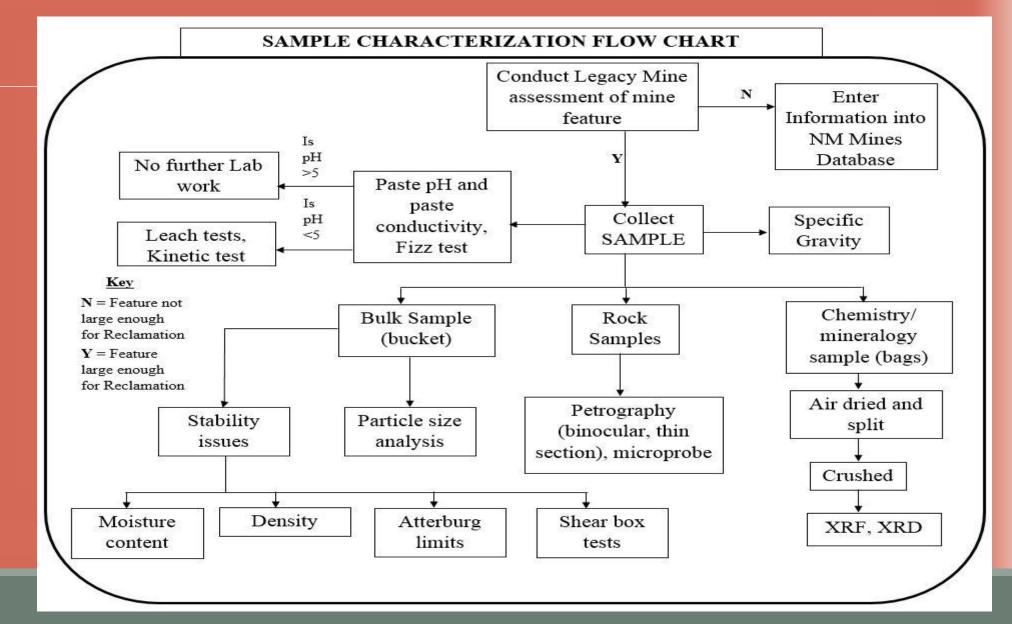
GPS mapping

Waste rock pile sampling

Legacy U Mine

GPS/Scintilometer mapping

Waste rock pile sampling

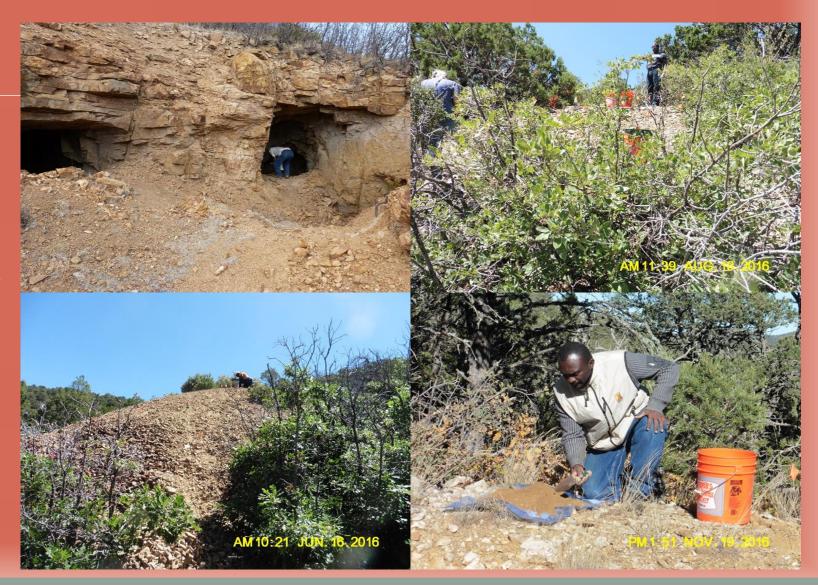

Laboratory Analyses

Paste pH and paste conductivity

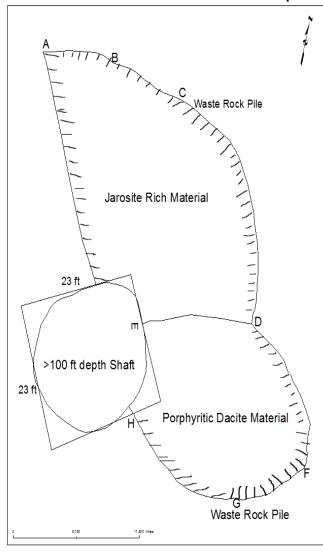
Chemistry – Petrograhy, Whole rock chemistry, XRD and Electron microprobe

Stability – Particle size

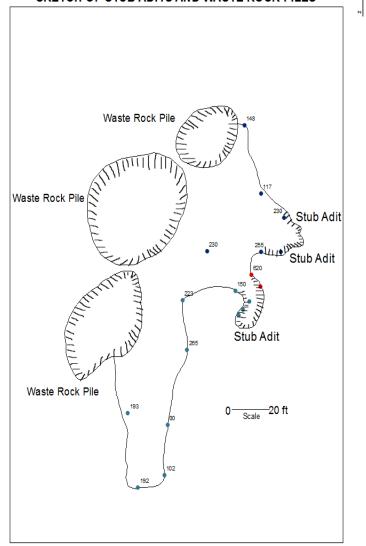
Approach

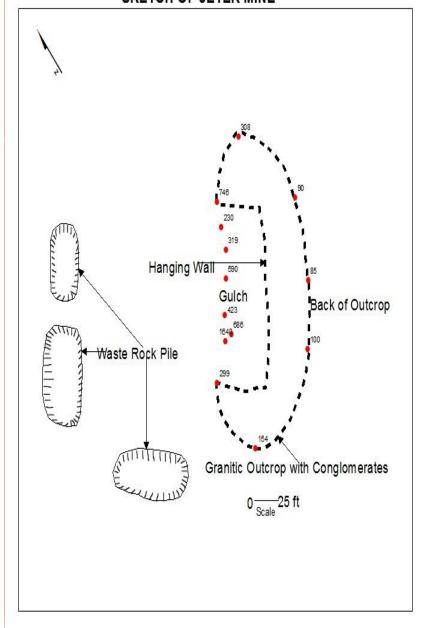

Sampling

Sampling Rationale


Characterize waste rock piles

Determine the presence of trace elements from the waste rock piles


Determine the suitability of waste rock material to be used as backfill


Field sketch of Jic413 Shaft & Mine Dumps

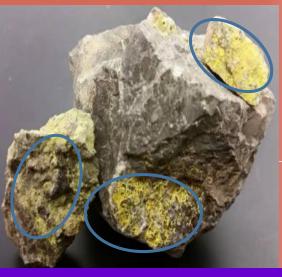
SKETCH OF STUB ADITS AND WASTE ROCK PILES

SKETCH OF JETER MINE

Field Observations - U

Uranium Mine	Mine Feature	Depth of Workings (ft)	
Lucky Don	6 stub adits, loading bin, waste/ rock pile, open pit	0–40	
Little Davie	Pit, short adit, waste/ rock pile	5–10	
Jeter	Concrete platform, 3 waste piles, caved adit, open pit	300	

Field Observations - U


Uranium Mine	Background Radiation (cps)	Min Radiation (cps)	Max Radiation (cps)
Lucky Don	20-50	100	4,435
Little Davie	20-50	120	771
Jeter	10-30	80	1,640

Field Observations — U Mineralized Sample

Carnotite

U,V (uraninite?)

Samples of waste pile rocks with disseminated carnotite from Lucky Don

A mineralized sample of host rock from Little Davie mine (771 cps)

Field Observations – U Mines

Uranium Mine	Ore Minerals	Field evidence of potential acid drainage	
Lucky Don	tyuyamunite, carnotite, uraninite, Cu minerals, uranophane	No	
Little Davie	tyuyamunite, carnotite, uraninite, Cu minerals, uranophane	No	
Jeter	carnotite, tyuyamunite alunite, pitchblende, malachite, Fe-Mn oxides, clay, azuritite, barite, calcite	No	

Laboratory Analyses

Paste pH

Paste pH and paste conductivity are used to determine geochemical behavior of waste rock materials subjected to weathering under field conditions and to estimate or predict the pH and conductivity of the pore water resulting from dissolution of secondary mineral phases on the surface of oxidized rock particles. The paste conductivity values were converted to total dissolve solids (TDS).

XRD Technique

X-ray diffraction analysis was conducted on composite waste rock samples to determine the mineralogy. Samples were grinded into a well homogenized material with mortal and pestol to form a fine powder ($\sim 75 \mu/0029$ mesh), poured into aluminum sample holder and mounted in the silicon standard in the XRD instrument. A five minute absolute scan analysis was run. Sample analyses was done using appropriate software program.

Weighing samples for paste pH

Whole Rock Chemistry

Sample were sent to ALS laboratory in Reno, Nevada fire assay and ICP-AES, fused bead, acid digestion and ICP-MS analytical methods was used to determine the whole rock chemistry of the samples

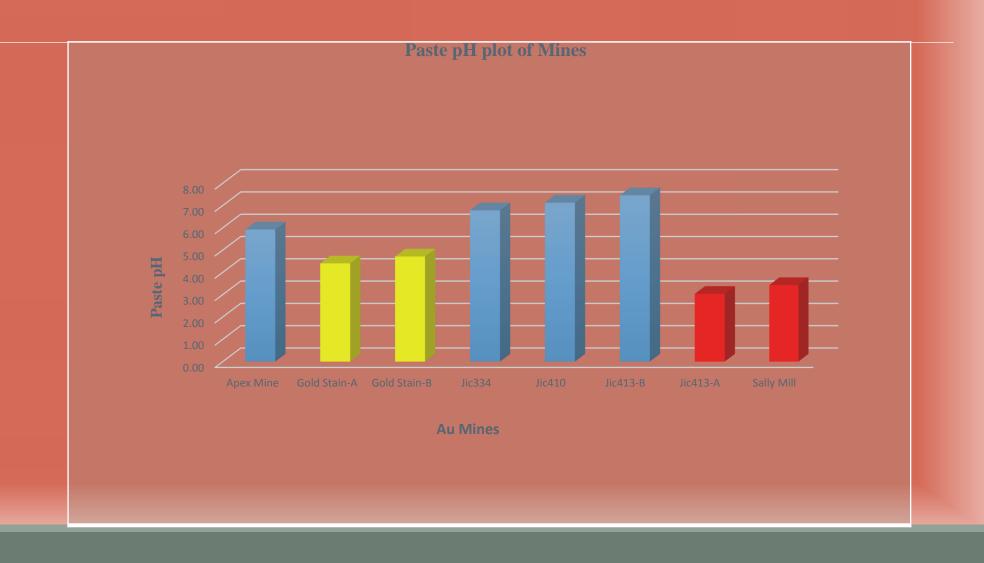
Laboratory Analyses (continued)

Electron Microprobe Analyses

Grab samples from waste rock piles were mounted in epoxy and polished to prepare polish sections. These polish sections are then coated with carbon and analyzed using the electron microprobe. Qualitative and quantitative method of analyses was conducted using the Cameca SX681 Electron Microprobe Spectrometer on the samples. Heavy minerals were first viewed in backscatter electron image (BSE). Quantitative and qualitative analyses were used to determine textures and chemical composition of the minerals.

Elements Analyzed: Au, Cu, As, Fe, S

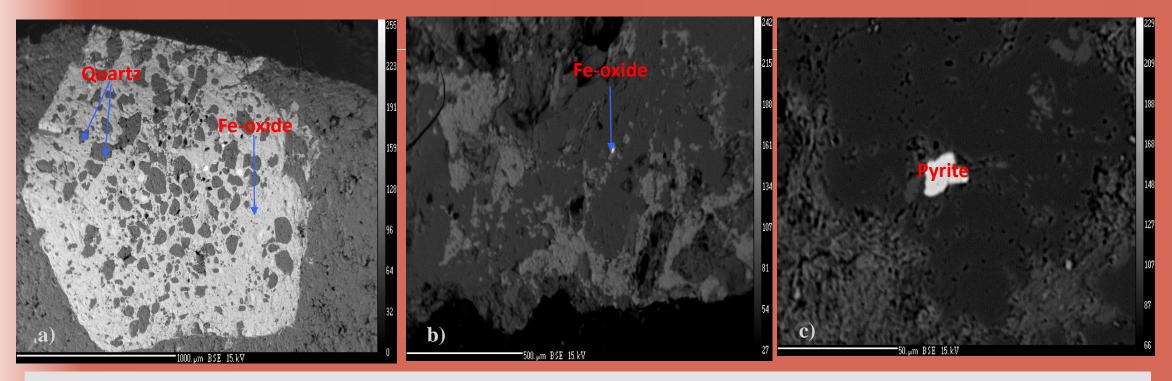
Cameca SX681


Paste pH, Fire assay and ICP-AES – Au Mines

Au >1ppm			

Represent pH 4-3
Represent pH 5-4

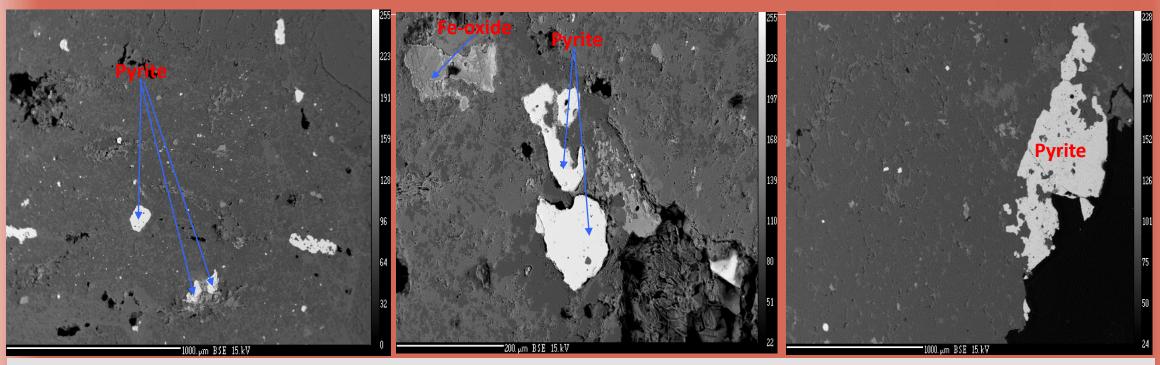
Waste Rock Pile	Average Paste pH	Total Dissolve Solids (ppm)	Au (ppm)
Apex mine	5.92	1.49E+08	0.030
Gold Stain mine-A	4.40	1.02E+08	0.341
Gold Stain mine-B	4.71	6.94E+07	0.229
Jic410	7.13	1.89E+08	0.067
Jic413-A	3.03	3.13E+08	0.820
Jic413-B	7.46	2.60E+08	1.290
Jic334	6.78	9.93E+07	0.049
Sally mine	3.43	1.95E+08	1.400


Paste pH graph – Au mines

Paste pH, Fused bead, acid digestion and ICP-MS Analyses – U mines

	Waste Rock Pile	Average paste pH	Uranium (ppm)	Vanadium (ppm)	Thorium (ppm)
Represent U,V >100 Represent U, V >400	Jeter 1	8.16	23.7	93	14.1
	Jeter 29	8.15	75.1	101	12.4
	Jeter 31	8.16	138	74	13.8
	Little Davie	8.24	160.5	457	1.32
	Lucky Don	7.70	126.5	563	1.96

Microprobe Analysis (BSE) images of Au Samples



Figures a) Backscattered electron images of quartz grain replacing Fe-oxide in sample Jic410. This is likely supergene replacement.

- b) Backscattered electron images of Fe grain in sample Jic412. Note how altered and pitted the grain is.
- c) Backscattered electron images of pyrite grain in sample Jic412 c. Note how pristine the pyrite grain is.

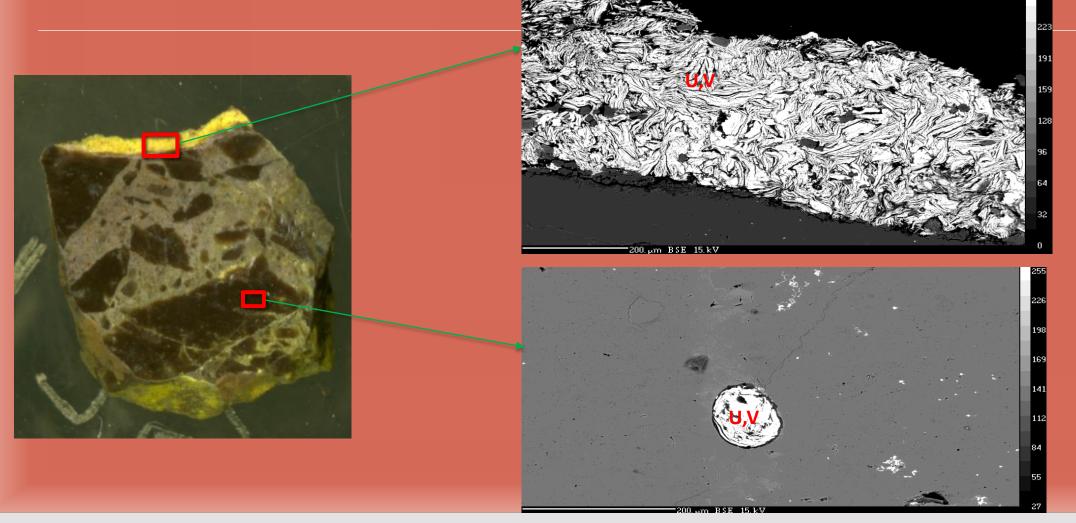
 Pyrite is pristine hence no release of acid mine drainage into the environment

Microprobe Analysis (BSE) images of Au Samples

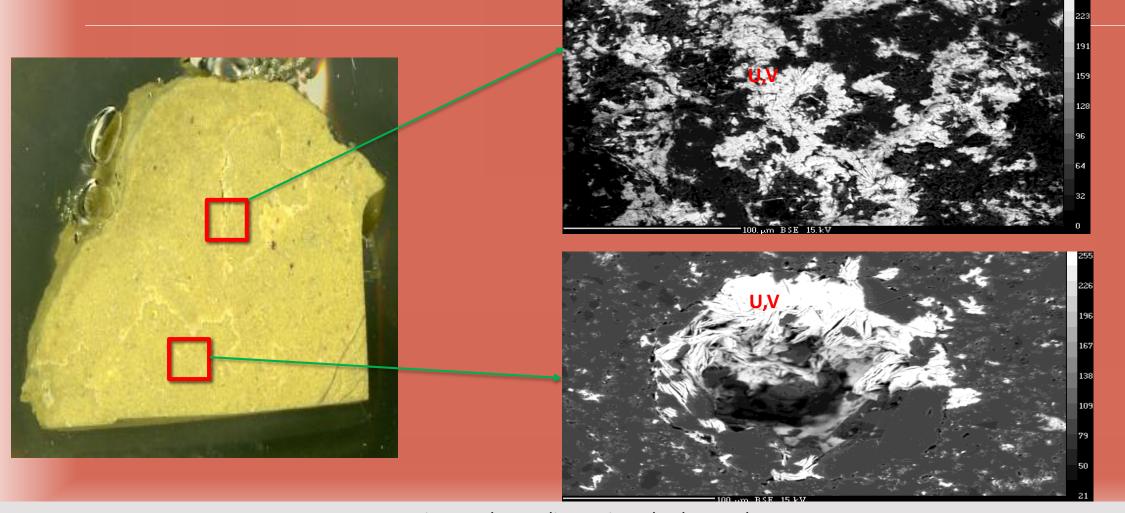
Figures d, e & f) Backscattered electron images of pyrite and Fe-oxide grains distribution in sample Jic802. Note how pristine the pyrite is in Figure d, but pitted in Figure e and f.

Pyrite is pristine hence no release of acid mine drainage into the environment

Microprobe Analysis Quantitative Analyses - Au


Quantitative scan for pyrite

High S and F percentages


As percentage between 0.02-5%

Sample Number	S(%)	Fe(%)	Cu(%)	As (%)
Gold Stain-A-01	53.07	47.36	0.08	0.03
Gold Stain-A-02	33.63	31.11	32.90	0.02
Gold Stain-A-03	54.67	45.84	0.03	0.02
Gold Stain-B-01	52.56	47.50	0.01	0.02
Gold Stain-B-02	52.52	47.59	0.01	0.02
Gold Stain-B-03	52.68	47.09	0.02	0.03
Jic413A-01	53.69	47.39	0	0.02
Jic413A-02	53.02	47.47	0	0.03

Microprobe Analysis (BSE) images of U Samples

Microprobe Analysis (BSE) images of U Samples

Preliminary Conclusion – U Mines

No evidence of potential acid drainage from field observations

No pyrite observed in XRD and electron microprobe analysis

No acid drainage potential from paste pH measurements (pH>5)

Elevated radioactivity (scintillometer mapping) and U and V values (>100 ppm) from chemical analyses in some waste rock piles

Waste piles with high radioactivity from scintillometer should be covered

Preliminary Conclusion – Au Mines

Jarosite (iron sulfate) was observed in sample Jic413A from a waste rock pile; pyrite was observed in numerous waste rock piles (Gold stain-A, Gold Stain-B, Jic413-A and Sally Mine) during field investigations.

Laboratory results from paste pH of samples from these mine waste rock piles have pH <5 suggesting a possible acid-generating environment.

XRD and electron microprobe analyses identified pyrite grains in these waste rock piles, some with quantitative analyses indicating arsenic (As) percentages between 0.02-5%.

Pitted textures in microprobe analyses are consistent with arsenic being leached from pyrite. Pyrite and jarosite were not observed in waste rock pile samples with pH >5.

Elevated values of Au from ICP in some waste rock piles suggest possible Au mineralization potential.

Future Work

Leaching tests are recommended to confirm if acid and/or metals could be leached into the environment from waste rock piles.

Further field studies needed to determine the mineral potential of rock piles with elevated Au and U values

Appreciation

A special thanks to:

Dr. Virginia McLemore

Dr. Navid Mojtabai

Dr. William Chavez

Dr. Ingar Walder

Lynn Heizler

Bonnie Frey

Mineral Engineering department

New Mexico Bureau of Geology and Mineral

Resources (NMBGMR)

New Mexico EpSCOR

New Mexico Geological Society

New Mexico Abandoned Mine Lands Program

Thank you

Questions