Gold in New Mexico

Virginia T. McLemore
New Mexico Bureau of Geology and Mineral Resources, New Mexico Tech, Socorro, NM
ACKNOWLEDGEMENTS

• New Mexico Energy, Minerals and Natural Resource Department
• Company annual reports
• Personal visits to mines
• Historical production statistics from U.S. Bureau of Mines, U.S. Geological Survey, N.M. Energy, Minerals and Natural Resource Department (NM MMD), company annual reports
• Students at NM Tech
• New Mexico Mining Association
• Virgil Lueth for photos of museum gold specimens
OUTLINE

- Introduction
- Production
- Types of deposits
- Placer gold deposits
- Volcanic-epithermal deposits
- Great Plain Margin deposits
- Potential for gold in NM
- Publications
Uses of Gold

- Currency (Coinage, Bullion, Backing)
- Jewelry
- Electronic products like computers, telephones, and home appliances, industries, medical field, etc.
- Glassmaking (red or purple colors in glass, thin film of gold in windows in tall buildings, airplanes, space craft, reflects much of the very intense solar radiation, mirrors)
- Dentistry
- Drug to treat a small number of medical conditions
INTRODUCTION

- NM has some of the oldest mining areas in the United States
- Native Americans mined turquoise from Cerrillos Hills district more than 500 yrs before the Spanish settled in the 1600s
- One of the earliest gold rushes in the West was in the Ortiz Mountains (Old Placers district) in 1828, 21 yrs before the California Gold Rush in 1849
INTRODUCTION

- Spanish settled New Mexico in hopes of finding riches, in particular gold.
- New Mexico doesn't have the gold deposits that other western states have.

11313B - Gold, San Pedro
11439A - Gold, Magdalena
PRODUCTION

16136 - Gold - Nogal Canyon
Hydraulic mining at the Lynch Placer in Colfax County, New Mexico, about 1880 (NMBGMR #p-00565)
Arrastre in action with John and Jake Long at Piños Altos New Mexico, 1892
GOLD MINING DISTRICTS IN NEW MEXICO
1804-2015 >3.3 million troy ounces Au worth >$487 million
Gold and silver production in 1994-2008, 2011-2017 as a byproduct of copper production from the Ivanhoe concentrator (Freeport-McMoRan)

2009-2016 Summit mine

9th in gold production
10th in silver production
Active mines and exploration sites in New Mexico 2000-2017
Copper reserves—2016

• Chino
 – milling reserves are 135 million tons of 0.59% copper, 0.04 g/t gold and 0.01% molybdenum
 – leaching reserves are 91 million tons of 0.28% Cu

• Tyrone
 – leaching reserves are estimated as 6 million tons of ore grading 0.51% Cu
 – Expected to close 2019

• Cobre
 – leaching reserves are 13 million tons of 0.57% Cu

• Niagara deposit
 – contains 500 million tons of ore grading 0.29% Cu (leaching)
In 2009, Santa Fe Gold opened the Summit mine in the Steeple Rock district. The ore was milled at Lordsburg and sold as silica flux.
TABLE 3—Major gold-producing districts in New Mexico (updated from North and McLemore, 1986, 1988). *Major placer production (>50,000 oz), + no known placer deposits.

<table>
<thead>
<tr>
<th>District</th>
<th>County</th>
<th>Estimated gold production (oz)</th>
<th>Type of deposits</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Santa Rita</td>
<td>Grant</td>
<td>>475,000</td>
<td>porphyry copper</td>
</tr>
<tr>
<td>*Elizabethtown-Baldy</td>
<td>Colfax</td>
<td>471,400</td>
<td>Great Plains Margin, placer</td>
</tr>
<tr>
<td>*Old Placers</td>
<td>Santa Fe</td>
<td>450,000</td>
<td>Great Plains Margin, placer</td>
</tr>
<tr>
<td>+ Mogollon</td>
<td>Catron</td>
<td>365,000</td>
<td>volcanic-epithermal</td>
</tr>
<tr>
<td>*Hillsboro</td>
<td>Sierra</td>
<td>270,000</td>
<td>Laramide vein, placer</td>
</tr>
<tr>
<td>Lordsburg</td>
<td>Hidalgo</td>
<td>266,600</td>
<td>Laramide vein, minor placer</td>
</tr>
<tr>
<td>Willow Creek</td>
<td>San Miguel</td>
<td>179,000</td>
<td>Proterozoic massive sulfide, minor placer</td>
</tr>
<tr>
<td>White Oaks</td>
<td>Lincoln</td>
<td>163,500</td>
<td>Great Plains Margin, placer</td>
</tr>
<tr>
<td>+ Steeple Rock</td>
<td>Grant</td>
<td>151,000</td>
<td>volcanic-epithermal</td>
</tr>
<tr>
<td>*Pinos Altos</td>
<td>Grant</td>
<td>150,000</td>
<td>Laramide vein, carbonate-hosted, placer</td>
</tr>
</tbody>
</table>
TYPES OF GOLD DEPOSITS IN NEW MEXICO

11443A - Gold, North Baldy, Magdalena

11314A - Gold and Pyrite, San Pedro
Types of Gold Deposits in New Mexico

- **Placer gold**
- **Volcanic-epithermal**
- Copper-silver (±uranium) vein
- **Great Plains Margin**
- Rio Grande Rift
- Carbonate-hosted lead-zinc (copper-silver) replacement
- Carbonate-hosted silver (manganese, lead) replacement
- Laramide copper and lead/zinc skarn
- Laramide vein
- Laramide porphyry-copper (molybdenum, gold)
- Sedimentary-copper
- Vein and replacement deposits in Proterozoic rocks
- Proterozoic massive-sulfide deposits
PLACER GOLD DEPOSITS IN NEW MEXICO

15811 - Gold, San Lazurus Gulch, San Pedro
Gold Placer Deposits in New Mexico

- Important source of gold in NM prior to 1902
- Placer production in NM after 1902 has been minor
- Most placer gold deposits discovered in NM by 1900
- ~662,000 oz of gold produced 1828 to 1991
- No recorded placer production since 1991
Placer deposits

• Placer is from Spanish meaning alluvial sand
• Any natural accumulation or concentration of a material in unconsolidated sediments of a stream, beach, or residual deposit
• Four conditions must occur
 – Source terrain must crop out
 – Source must be weathered
 – Gold is eroded, transported and concentrated
 – Deposit must be preserved from erosion
Types of placer deposits

• Alluvial, including terrace placers
 – the sands and gravels of streams, rivers, beaches and deltas

• Aeolian
 – windblown sand deposits and are relatively minor

• Eluvial (hill-slope) or residual
 – weathered detritus directly over or near the outcrops of the lode deposits
Alluvial deposits

• Hill-side placers on valley slopes that are partly sorted by running water but not in distinct channels
• Gulch or creek placers that are shallow placers in or adjacent to the beds of small streams
• Bench or terrace placers, consisting of old stream gravels partly removed by later streams that have cut into the original bedrock
Alluvial deposits—cont

• River-bar placers that occur in river bars and in gravel flats adjacent to larger streams of small gradient
• Gravel-plain placers formed in flood plains, deltas and alluvial fans
• Buried placers that have been buried by a later accumulation of sediments or by surface flows of igneous rock
• Beach placer deposits
Major placer gold deposits in NM

• >100,000 oz gold
 – Elizabethtown/Baldy
 – Hillsboro
 – Old Placers
 – New Placers

• Generally occur in alluvial fan deposits, bench or terrace gravel deposits, river-bars, and stream deposits or as residual placers formed directly on top of lode deposits
Placer gold districts and selected placer gold mines in New Mexico
<table>
<thead>
<tr>
<th>Map no.</th>
<th>District</th>
<th>County</th>
<th>Year of discovery</th>
<th>Estimated prior to 1902 (oz)</th>
<th>Recorded 1902–1991 (oz)</th>
<th>Total estimated placer production (oz)</th>
<th>Total estimated lode production (oz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Elizabethtown-Baldy</td>
<td>Colfax</td>
<td>1866</td>
<td>225,000</td>
<td>25,167</td>
<td>251,000</td>
<td>220,400</td>
</tr>
<tr>
<td>2</td>
<td>Hillsboro</td>
<td>Sierra</td>
<td>1877</td>
<td>104,000</td>
<td>15,559</td>
<td>120,000</td>
<td>45,000</td>
</tr>
<tr>
<td>3</td>
<td>Old Placers</td>
<td>Santa Fe</td>
<td>1828</td>
<td>100,000</td>
<td>1,558</td>
<td>>102,000</td>
<td>98,000</td>
</tr>
<tr>
<td>4</td>
<td>New Placers</td>
<td>Santa Fe</td>
<td>1839</td>
<td>96,759</td>
<td>3,011</td>
<td>>100,000</td>
<td>17,000</td>
</tr>
<tr>
<td>5</td>
<td>Pinos Altos</td>
<td>Grant</td>
<td>1860</td>
<td>38,842</td>
<td>5,995</td>
<td>50,000</td>
<td>100,000</td>
</tr>
<tr>
<td>6</td>
<td>Hopewell</td>
<td>Rio Arriba</td>
<td>1880</td>
<td>15,000</td>
<td>121</td>
<td>16,000</td>
<td>8,000</td>
</tr>
<tr>
<td>7</td>
<td>Pittsburg</td>
<td>Sierra</td>
<td>1901</td>
<td>none</td>
<td>7,089</td>
<td>8,000</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Jicarilla</td>
<td>Lincoln</td>
<td>1850</td>
<td>4,500</td>
<td>3,020</td>
<td>8,000</td>
<td>8,000</td>
</tr>
<tr>
<td>9</td>
<td>Orogrande</td>
<td>Otero</td>
<td>1899</td>
<td>400</td>
<td>1,546</td>
<td>>2,000</td>
<td>14,500</td>
</tr>
<tr>
<td>10</td>
<td>White Signal and Malone</td>
<td>Grant</td>
<td>1884</td>
<td>some</td>
<td>366</td>
<td>1,700</td>
<td>12,000</td>
</tr>
<tr>
<td>11</td>
<td>White Oaks</td>
<td>Lincoln</td>
<td>1879</td>
<td>unknown</td>
<td>885</td>
<td>1,000</td>
<td>162,000</td>
</tr>
<tr>
<td>12</td>
<td>Rio Grande valley</td>
<td>Taos</td>
<td>1600</td>
<td>unknown</td>
<td>16</td>
<td><1,000</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>Cimarroncito</td>
<td>Colfax</td>
<td>1898</td>
<td>unknown</td>
<td>none</td>
<td><1,000</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>Bayard</td>
<td>Grant</td>
<td>1900</td>
<td>some</td>
<td>128</td>
<td><1,000</td>
<td>24,000</td>
</tr>
<tr>
<td>15</td>
<td>Red River (Rio Hondo)</td>
<td>Taos</td>
<td>1826</td>
<td>unknown</td>
<td>120</td>
<td><500</td>
<td>365</td>
</tr>
<tr>
<td>16</td>
<td>Nogal</td>
<td>Lincoln</td>
<td>1865</td>
<td>some</td>
<td>134</td>
<td>200</td>
<td>14,800</td>
</tr>
<tr>
<td>17</td>
<td>Sylvanite</td>
<td>Hidalgo</td>
<td>1908</td>
<td>none</td>
<td>109</td>
<td><200</td>
<td>2,400</td>
</tr>
<tr>
<td>18</td>
<td>Willow Creek</td>
<td>San Miguel</td>
<td>1883</td>
<td>unknown</td>
<td>none</td>
<td>100</td>
<td>179,000</td>
</tr>
<tr>
<td>19</td>
<td>Picuris</td>
<td>Taos</td>
<td>1908</td>
<td>unknown</td>
<td>65</td>
<td>100</td>
<td>15</td>
</tr>
<tr>
<td>20</td>
<td>Rio Chama</td>
<td>Rio Arriba</td>
<td>1848</td>
<td>unknown</td>
<td>some</td>
<td><100</td>
<td>0</td>
</tr>
<tr>
<td>District</td>
<td>Approximate location of placer gold deposits</td>
<td>Approximate age of lode gold deposits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
<td>---------------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elizabethtown-Baldy</td>
<td>T27N R16-18E Moreno River valley, flanks of Baldy Mountain, Ute and Ponil Creeks</td>
<td>Oligocene-Miocene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hillsboro</td>
<td>T15-16S R6-7W Animas Hills, Dutch Gulch, Rio Percha</td>
<td>Laramide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Old Placers</td>
<td>T12-13N R7-8E Ortiz Mountains, Cunningham Canyon, Dolores Gulch, Arroyo Viejo</td>
<td>Oligocene-Miocene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Placers</td>
<td>T12N R2E San Pedro Mountains, Tuerto Creek</td>
<td>Oligocene-Miocene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinos Altos</td>
<td>T16-17S R13-14W Bear Creek, Rich Gulch, Whiskey Gulch, Santo Domingo Gulch, near Mountain Keg mine</td>
<td>Laramide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hopewell</td>
<td>T28-29N R6-7E Tusas Mountains, Placer Creek (Eureka Creek)</td>
<td>Proterozoic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pittsburg</td>
<td>T14,16,17S R4W Trujillo Gulch, Apache Canyon, Union Gulch, Palomas Gap</td>
<td>Proterozoic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jicarilla</td>
<td>T5S R12E Ancho, Warner, Spring, and Rico Gulches</td>
<td>Oligocene-Miocene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orogrande</td>
<td>T22S R8E Jarilla Mountains</td>
<td>Laramide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White Signal, Malone</td>
<td>T20S R16, 14W Gold Gulch, Gold Lake</td>
<td>Laramide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White Oaks</td>
<td>T6S R11E Baxter and White Oaks Gulches</td>
<td>Oligocene-Miocene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rio Grande valley</td>
<td>— Red River to Cabresto Creek</td>
<td>unknown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cimarroncito</td>
<td>T26N R18E Urraca Creek</td>
<td>Oligocene-Miocene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bayard</td>
<td>T17-18S R12-13W drainages near Bayard</td>
<td>Laramide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red River</td>
<td>T28-29N R14-15E, T26-27N R13E Bitter Creek, Comanche Creek, Placer Creek, Red River, Gold Hill, Lucero Creek, Arroyo Honda</td>
<td>Precambrian, mid-Tertiary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Placer mining with rockers and longtoms in mouth of Baxter Gulch near Baxter Mountain near White Oaks, New Mexico, ca 1900 (NMBGMR #p-01658)
The Oro Dredge on the Moreno Placers, New Mexico, July 8, 1905
(NMBGMR #sh-00905)
Gold Panning
Sluice box

Shaking table
Using Trace Element Analysis of Placer Gold to Determine Source and type of original deposit
METHODOLOGY

- Physical collection and organization
- Sphericity & Roundness
- Morphological studies
- Microprobe analysis
- Backscattered electron (BSE) imaging
- Quantitative Analysis

<table>
<thead>
<tr>
<th>Sample Name</th>
<th>Length (mm)</th>
<th>Size of Particles (d.)</th>
<th>Sphericity</th>
<th>Roundness</th>
</tr>
</thead>
<tbody>
<tr>
<td>OROGPEP1a</td>
<td>1.24</td>
<td>4</td>
<td>3.5</td>
<td>0.5</td>
</tr>
<tr>
<td>OROGPEP1b</td>
<td>1.32</td>
<td>4</td>
<td>3.5</td>
<td>1.5</td>
</tr>
<tr>
<td>OROGPEP1c</td>
<td>0.86</td>
<td>3</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>OROGPEP1d</td>
<td>0.95</td>
<td>3</td>
<td>2.5</td>
<td>0.5</td>
</tr>
<tr>
<td>OROGPEP1e</td>
<td>0.8</td>
<td>3</td>
<td>3.5</td>
<td>1.5</td>
</tr>
<tr>
<td>OROGPEP1f</td>
<td>1.07</td>
<td>4</td>
<td>4.5</td>
<td>2.5</td>
</tr>
<tr>
<td>OROGPEP1g</td>
<td>0.45</td>
<td>3</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>OROGPEP1h</td>
<td>0.74</td>
<td>3</td>
<td>3.5</td>
<td>1.5</td>
</tr>
<tr>
<td>OROGPEP1i</td>
<td>0.59</td>
<td>3</td>
<td>1.5</td>
<td>4.5</td>
</tr>
<tr>
<td>OROGPEP1j</td>
<td>0.53</td>
<td>3</td>
<td>2.5</td>
<td>1.5</td>
</tr>
<tr>
<td>OROGPEP1k</td>
<td>0.49</td>
<td>2</td>
<td>4.5</td>
<td>0.5</td>
</tr>
<tr>
<td>OROGPEP1l</td>
<td>0.56</td>
<td>3</td>
<td>3.5</td>
<td>2.5</td>
</tr>
<tr>
<td>OROGPEP1m</td>
<td>0.46</td>
<td>2</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>OROGPEP1n</td>
<td>0.23</td>
<td>1</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>OROGPEP1o</td>
<td>0.32</td>
<td>2</td>
<td>3.5</td>
<td>2.5</td>
</tr>
<tr>
<td>OROGPEP1p</td>
<td>0.32</td>
<td>2</td>
<td>0.5</td>
<td>2.5</td>
</tr>
<tr>
<td>OROGPEP1q</td>
<td>0.41</td>
<td>2</td>
<td>4.5</td>
<td>3.5</td>
</tr>
<tr>
<td>OROGPEP1r</td>
<td>0.41</td>
<td>2</td>
<td>1.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Orogrande GPEP1
Lat: 32.399175 32° 23' 57.03" N
Long: -106.125924 106° 7' 33.33" W

JWa
2.93 mm S: 0.5 R: 3.5

JGILm
1.08 mm S: 3.5 R: 1.5

JGILa
0.65 mm S: 1.5 R: 0.5

JG3b
0.48 mm S: 3.5 R: 1.5
Backscattered Electron Imaging

Analysis begins with backscattered electron (BSE) imaging using an electron microprobe to determine if chemical or weathering zonation was present in gold particles
Source of placer gold deposits

backscattered electron (BSE) imaging to determine chemical zonation in gold particles

Hillsboro grain

PA grain

JICS/Sally vein grain
Quantitative Analysis

- Determine composition of different areas of a selected grain.
- Element selection
 - Ag, Au, Cu, As, Pb, Fe, S
- Analyses on:
 - Rims
 - Cores
 - Inclusions

<table>
<thead>
<tr>
<th></th>
<th>Ag</th>
<th>Au</th>
<th>Cu</th>
<th>As</th>
<th>Pb</th>
<th>Fe</th>
<th>S</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>37/1</td>
<td>DeadwoodGulch-01</td>
<td>24.55</td>
<td>72.77</td>
<td>0.02</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
</tr>
<tr>
<td>39</td>
<td>38/1</td>
<td>DeadwoodGulch-02</td>
<td>0.87</td>
<td>96.34</td>
<td>0.06</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
</tr>
<tr>
<td>40</td>
<td>39/1</td>
<td>DeadwoodGulch-03</td>
<td>24.62</td>
<td>72.95</td>
<td>0.02</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>41</td>
<td>40/1</td>
<td>DeadwoodGulch-04</td>
<td>1.32</td>
<td>95.48</td>
<td>0.05</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Piños Altos

2 sources

- Au-rich Cu porphyry
- Pb-Zn and Cu skarns and polymetallic veins
New Mexico placer gold districts

- New Mexico’s placer gold didn’t travel far from source
- Chemical compositions of placer gold samples can be correlated with specific
Best places to pan for gold in New Mexico
VOLCANIC-EPITHERMAL VEIN DEPOSITS
In 2009, Santa Fe Gold opened the Summit mine in the Steeple Rock district. The ore is milled at Lordsburg.
Breccia ore
GREAT PLAINS MARGIN (ALKALIC-RELATED) GOLD DEPOSITS or NORTH AMERICAN ALKALINE GOLD BELT

16295 - Gold, Helen Rae mine, Nogal Canyon

16136 - Gold - Nogal Canyon
Great Plains Margin (Alkaline-related) Gold Deposits

- Part of a regional belt of similar deposits that extends northward into Canada and southward into Mexico
- Gold vein, skarn, breccia pipe, porphyry, placer that are associated with alkaline rocks
- Associated with Fe, Mo, F, W, U, Th, REE (rare earth elements), Nb
General characteristics of GPM mineral deposits

- Gold/silver ratios in GPM deposits are generally higher than other deposits in New Mexico
- Low silver, lead, and zinc concentrations
- REE deposits in Laughlin Peak and Gallinas, Capitan, and Cornudas Mountains, but are typically not found with significant gold deposits, although trace amounts of gold are locally present
Age and geochemistry

- Eocene to Oligocene
- Igneous rocks are typically subalkaline to alkaline, predominantly metaluminous to peraluminous intrusions
- Many intrusions are porphyryitic and texturally and compositionally zoned
Cripple Creek
Ortiz belt
Lincoln County porphyry belt
Trans-Pecos
Texas-New Mexico belt

- Major alkaline-related gold deposits (Mutschler et al., 1991)
- Major alkali igneous complexes of Cenozoic age (Mutschler et al., 1991; Wooley, 1987)
- Approximate boundary between Cordillera and Great Plains
Gold districts in NM
TABLE 3—Major gold-producing districts in New Mexico (updated from North and McLemore, 1986, 1988). *Major placer production (>50,000 oz), + no known placer deposits.

<table>
<thead>
<tr>
<th>District</th>
<th>County</th>
<th>Estimated gold production (oz)</th>
<th>Type of deposits</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Santa Rita</td>
<td>Grant</td>
<td>>475,000</td>
<td>porphyry copper</td>
</tr>
<tr>
<td>*Elizabethtown-Baldy</td>
<td>Colfax</td>
<td>471,400</td>
<td>Great Plains Margin, placer</td>
</tr>
<tr>
<td>*Old Placers</td>
<td>Santa Fe</td>
<td>450,000</td>
<td>Great Plains Margin, placer</td>
</tr>
<tr>
<td>+Mogollon</td>
<td>Catron</td>
<td>365,000</td>
<td>volcanic-epithermal</td>
</tr>
<tr>
<td>*Hillsboro</td>
<td>Sierra</td>
<td>270,000</td>
<td>Laramide vein, placer</td>
</tr>
<tr>
<td>Lordsburg</td>
<td>Hidalgo</td>
<td>266,600</td>
<td>Laramide vein, minor placer</td>
</tr>
<tr>
<td>Willow Creek</td>
<td>San Miguel</td>
<td>179,000</td>
<td>Proterozoic massive sulfide, minor placer</td>
</tr>
<tr>
<td>White Oaks</td>
<td>Lincoln</td>
<td>163,500</td>
<td>Great Plains Margin, placer</td>
</tr>
<tr>
<td>+Steeple Rock</td>
<td>Grant</td>
<td>151,000</td>
<td>volcanic-epithermal</td>
</tr>
<tr>
<td>*Pinos Altos</td>
<td>Grant</td>
<td>150,000</td>
<td>Laramide vein, carbonate-hosted, placer</td>
</tr>
</tbody>
</table>
New Mexico Deposits

- Elizabethtown-Baldy district
 - 471,400 oz Au produced
- Old Placers district
 - 450,000 oz produced
- New Placers district
- Jicarilla district
- White Oaks district
- Nogal-Bonito district
- Orogrande district
 - 305,000 metric tons of ore grading 1.7 ppm Au
- Great Western deposit
 - 3.275 million metric tons of ore containing less than 2 ppm Au
- Vera Cruz deposit
 - 188,590 metric tons of ore grading 4.8 ppm Au
- Carache Canyon breccia deposit
 - 4.5 million metric tons of ore grading 3.2 ppm Au
- Lukas Canyon
 - 5.4 million metric tons of ore grading 1 ppm Au
Types of GPM deposits

- Polymetallic epithermal to mesothermal veins
- Gold-bearing breccia deposits and quartz veins
- Copper-gold and/or gold porphyries
- Iron skarns and replacements
- Copper, lead-zinc, and gold skarns or carbonate-hosted replacements,
- Gold placers
- Th-u-ree-fluorite epithermal veins and breccias
Jicarilla district
Ray and Alpers (1993)
Ages of igneous rocks associated with GPM districts in New Mexico, arranged from north to south.
Oldest igneous rocks (Old Placers, Jicarilla Mountains, Orogrande, Organ)

- Older than 36 Ma
- Magnesian, alkali-calcic to alkalic
- Gold districts
Production, Jicarilla district

- 800 oz placer Au
- 800 oz lode Au
- 38,000 oz Ag
- 8000 tons Fe ore
- Possible Spanish production
Types of Deposits

- Placer
- Au-bearing quartz veins
- Fe skarn/replacement and vein deposits
- Low sulfur, little silver, copper, lead, zinc
Au in veins and mineralized rocks

As=ppm
Au=ppb
White Oaks district
Gold districts in NM
POTENTIAL FOR GOLD IN NEW MEXICO

17 - Gold, Boot Heel Claim
1. Vera Cruz, Lincoln Co
2. Carache Canyon, Santa Fe Co
3. Lukas Canyon, Santa Fe Co
4. San Lazarus, Santa Fe Co
5. Jicarilla Au placers
6. Steeple Rock district
7. Mogollon
PUBLICATIONS

Gold, Nogal Canyon
RM-21—Silver and Gold in New Mexico, reprinted in 2010
Resource Map 24- Mining Districts and Prospect Areas in New Mexico
Placer gold deposits in New Mexico

by Virginia T. McLemore, New Mexico Bureau of Mines and Mineral Resources, Socorro, New Mexico 87801

Abstract

Thirty-six mining districts in New Mexico contain placer gold deposits. Production from these deposits began as early as 1828, resulting in the first gold rush in the western United States; however, minor production by Pueblo Indians and Spaniards probably occurred 200 or more years earlier. Most placer deposits were discovered by 1900, and almost all placer production occurred before 1902. It is estimated that 662,000 oz of gold were produced from New Mexico placer deposits between 1828 and 1991. The deposits typically are found in late Tertiary to Recent alluvial or eluvial deposits; alluvial fan deposits, bench or terrace deposits, river bars, stream concentrations, and residual placers that formed directly on top of lode deposits are known. New Mexico placer gold deposits are derived from Oligocene–Miocene Great Plains Margin deposits, Laramide vein deposits, and Proterozoic vein and replacement deposits in highly weathered and eroded terrains. The future potential will depend on discovery of large-volume, low-grade deposits. Also, new technologies minimizing water may stimulate activity because lack deposits (Boyle, 1979, 1987): eluvial, alluvial, and aeolian. Eluvial deposits occur in weathered detritus at or near the outcrop of gold-bearing lode deposits. Alluvial deposits occur in the sands and gravels of streams, rivers, beaches, and deltas. Alluvial deposits are further subdivided into classes by Wells and Wootton (1932): hillside (valley slopes not in discrete channels), gulch or creek, bench or terrace, river-bar, gravel-plain, and buried placers. The aeolian deposits accumulate in windblown sand deposits and are relatively minor and unimportant. Most of the gold deposits in New Mexico are alluvial deposits, but some eluvial deposits are found in many districts. There are no known aeolian gold placer deposits in New Mexico.

This report presents a summary of continuing research on placer gold deposits in New Mexico. Johnson (1972) published one of the most comprehensive compilations of information on placer gold deposits in the state. This study updates the work by Johnson (1972) and McLemore (1986, 1988) and incorporates additional field observations and other data deposits in New Mexico were discovered by 1900. Early production from placer deposits is poorly documented, and total production can only be estimated. It is estimated that 662,000 oz of gold have been produced from placer deposits throughout New Mexico from 1828 to 1991 (updated from Johnson, 1972). This production is insignificant compared to larger placers found in Alaska, California, New Zealand, and South America that contain millions of ounces of gold. Only four districts here have yielded more than 100,000 oz of placer gold production: Elizabethtown-Baldy, Hillsboro, Old Placers, and New Placers. Currently only one district is yielding some minor production (White Oaks) although small exploration activities and recreational gold panning are occurring in most areas of the state.
Decision Makers Field Guides

The New Mexico Bureau of Geology and Mineral Resources is joining with several state and local governmental agencies and organizations in conducting a series of field conferences for influential New Mexico decision makers. The purpose of these conferences is to present decision makers with the opportunity to learn first-hand about geological problems, opportunities, and potential solutions from some of the state's top experts, and to hear impartial (or at least balanced) opinions regarding current scientific knowledge about these matters.

Mining in New Mexico—The Environment, Water, Economics, and Sustainable Development

Decision-Makers Field Guide 2005

Edited by L. Greer Price, Douglas Bland, Virginia T. McLemore, and James M. Barker

Mining has played a significant role in the history and development of New Mexico and continues to play an important role in the state's economic prosperity. The future of this industry will depend upon achieving a balance between our needs and desires, the changing economy, and our growing concern over environmental and social issues. This anthology of 30 articles is a timely look at some of those science and policy issues. 176 pages with tables, diagrams, maps, and color photographs throughout.
VISIT OUR WEB PAGE
http://geoinfo.nmt.edu/
More Information

- Mines and Minerals Division
 http://www.emnrd.state.nm.us/MMD/index.htm
- Virginia McLemore web page
 http://geoinfo.nmt.edu/staff/mclemore/home.html
- New Mexico Bureau of Geology and Mineral Resources
 http://geoinfo.nmt.edu/
QUESTIONS?